1 | /***************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | *****************************************/ |
---|
4 | /* $Id$ */ |
---|
5 | /* |
---|
6 | * ABSTRACT: Implementation of the Groebner walk |
---|
7 | */ |
---|
8 | |
---|
9 | // define if the Buchberger alg should be used |
---|
10 | // to compute a reduced GB of a omega-homogenoues ideal |
---|
11 | // default: we use the hilbert driven algorithm. |
---|
12 | #define BUCHBERGER_ALG //we use the improved Buchberger alg. |
---|
13 | |
---|
14 | //#define UPPER_BOUND //for the original "Tran" algorithm |
---|
15 | //#define REPRESENTATION_OF_SIGMA //if one perturbs sigma in Tran |
---|
16 | |
---|
17 | //#define TEST_OVERFLOW |
---|
18 | |
---|
19 | #define CHECK_IDEAL_MWALK //to print intermediate results |
---|
20 | |
---|
21 | //#define NEXT_VECTORS_CC |
---|
22 | #define PRINT_VECTORS //to print weight vectors |
---|
23 | |
---|
24 | #define INVEPS_SMALL_IN_FRACTAL //to choose the small invers of epsilon |
---|
25 | #define INVEPS_SMALL_IN_MPERTVECTOR //to choose the small invers of epsilon |
---|
26 | #define INVEPS_SMALL_IN_TRAN //to choose the small invers of epsilon |
---|
27 | |
---|
28 | #define FIRST_STEP_FRACTAL // to define the first step of the fractal |
---|
29 | #define MSTDCC_FRACTAL // apply Buchberger alg to compute a red GB, if tau doesn't stay in the correct cone |
---|
30 | |
---|
31 | //#define TIME_TEST // print the used time of each subroutine |
---|
32 | //#define ENDWALKS //print the size of the last omega-homogenoues Groebner basis |
---|
33 | |
---|
34 | /* includes */ |
---|
35 | |
---|
36 | #include <kernel/mod2.h> |
---|
37 | #include <misc/intvec.h> |
---|
38 | #include <Singular/cntrlc.h> |
---|
39 | #include <misc/options.h> |
---|
40 | #include <omalloc/omalloc.h> |
---|
41 | #include <Singular/ipshell.h> |
---|
42 | #include <Singular/ipconv.h> |
---|
43 | #include <coeffs/ffields.h> |
---|
44 | #include <coeffs/coeffs.h> |
---|
45 | #include <Singular/subexpr.h> |
---|
46 | #include <polys/templates/p_Procs.h> |
---|
47 | |
---|
48 | #include <polys/monomials/maps.h> |
---|
49 | |
---|
50 | /* include Hilbert-function */ |
---|
51 | #include <kernel/combinatorics/stairc.h> |
---|
52 | |
---|
53 | /** kstd2.cc */ |
---|
54 | #include <kernel/GBEngine/kutil.h> |
---|
55 | #include <kernel/GBEngine/khstd.h> |
---|
56 | |
---|
57 | #include <Singular/walk.h> |
---|
58 | #include <kernel/polys.h> |
---|
59 | #include <kernel/ideals.h> |
---|
60 | #include <Singular/ipid.h> |
---|
61 | #include <Singular/tok.h> |
---|
62 | #include <coeffs/numbers.h> |
---|
63 | #include <Singular/ipid.h> |
---|
64 | #include <polys/monomials/ring.h> |
---|
65 | #include <kernel/GBEngine/kstd1.h> |
---|
66 | #include <polys/matpol.h> |
---|
67 | #include <polys/weight.h> |
---|
68 | #include <misc/intvec.h> |
---|
69 | #include <kernel/GBEngine/syz.h> |
---|
70 | #include <Singular/lists.h> |
---|
71 | #include <polys/prCopy.h> |
---|
72 | #include <polys/monomials/ring.h> |
---|
73 | //#include <polys/ext_fields/longalg.h> |
---|
74 | #include <polys/clapsing.h> |
---|
75 | |
---|
76 | #include <coeffs/mpr_complex.h> |
---|
77 | |
---|
78 | #include <stdio.h> |
---|
79 | // === Zeit & System (Holger Croeni === |
---|
80 | #include <time.h> |
---|
81 | #include <sys/time.h> |
---|
82 | #include <math.h> |
---|
83 | #include <sys/stat.h> |
---|
84 | #include <unistd.h> |
---|
85 | #include <float.h> |
---|
86 | #include <misc/mylimits.h> |
---|
87 | #include <sys/types.h> |
---|
88 | |
---|
89 | int nstep; |
---|
90 | |
---|
91 | extern BOOLEAN ErrorCheck(); |
---|
92 | |
---|
93 | extern BOOLEAN pSetm_error; |
---|
94 | |
---|
95 | void Set_Error( BOOLEAN f) { pSetm_error=f; } |
---|
96 | |
---|
97 | BOOLEAN Overflow_Error = FALSE; |
---|
98 | |
---|
99 | clock_t xtif, xtstd, xtlift, xtred, xtnw; |
---|
100 | clock_t xftostd, xtextra, xftinput, to; |
---|
101 | |
---|
102 | /**************************** |
---|
103 | * utilities for TSet, LSet * |
---|
104 | ****************************/ |
---|
105 | inline static intset initec (int maxnr) |
---|
106 | { |
---|
107 | return (intset)omAlloc(maxnr*sizeof(int)); |
---|
108 | } |
---|
109 | |
---|
110 | inline static unsigned long* initsevS (int maxnr) |
---|
111 | { |
---|
112 | return (unsigned long*)omAlloc0(maxnr*sizeof(unsigned long)); |
---|
113 | } |
---|
114 | inline static int* initS_2_R (int maxnr) |
---|
115 | { |
---|
116 | return (int*)omAlloc0(maxnr*sizeof(int)); |
---|
117 | } |
---|
118 | |
---|
119 | /************************************ |
---|
120 | * construct the set s from F u {P} * |
---|
121 | ************************************/ |
---|
122 | // unused |
---|
123 | /* |
---|
124 | static void initSSpecialCC (ideal F, ideal Q, ideal P,kStrategy strat) |
---|
125 | { |
---|
126 | int i,pos; |
---|
127 | |
---|
128 | if (Q!=NULL) i=((IDELEMS(Q)+(setmaxTinc-1))/setmaxTinc)*setmaxTinc; |
---|
129 | else i=setmaxT; |
---|
130 | |
---|
131 | strat->ecartS=initec(i); |
---|
132 | strat->sevS=initsevS(i); |
---|
133 | strat->S_2_R=initS_2_R(i); |
---|
134 | strat->fromQ=NULL; |
---|
135 | strat->Shdl=idInit(i,F->rank); |
---|
136 | strat->S=strat->Shdl->m; |
---|
137 | |
---|
138 | // - put polys into S - |
---|
139 | if (Q!=NULL) |
---|
140 | { |
---|
141 | strat->fromQ=initec(i); |
---|
142 | memset(strat->fromQ,0,i*sizeof(int)); |
---|
143 | for (i=0; i<IDELEMS(Q); i++) |
---|
144 | { |
---|
145 | if (Q->m[i]!=NULL) |
---|
146 | { |
---|
147 | LObject h; |
---|
148 | h.p = pCopy(Q->m[i]); |
---|
149 | //if (TEST_OPT_INTSTRATEGY) |
---|
150 | //{ |
---|
151 | // //pContent(h.p); |
---|
152 | // h.pCleardenom(); // also does a pContent |
---|
153 | //} |
---|
154 | //else |
---|
155 | //{ |
---|
156 | // h.pNorm(); |
---|
157 | //} |
---|
158 | strat->initEcart(&h); |
---|
159 | if (rHasLocalOrMixedOrdering_currRing()) |
---|
160 | { |
---|
161 | deleteHC(&h,strat); |
---|
162 | } |
---|
163 | if (h.p!=NULL) |
---|
164 | { |
---|
165 | if (strat->sl==-1) |
---|
166 | pos =0; |
---|
167 | else |
---|
168 | { |
---|
169 | pos = posInS(strat,strat->sl,h.p,h.ecart); |
---|
170 | } |
---|
171 | h.sev = pGetShortExpVector(h.p); |
---|
172 | h.SetpFDeg(); |
---|
173 | strat->enterS(h,pos,strat, strat->tl+1); |
---|
174 | enterT(h, strat); |
---|
175 | strat->fromQ[pos]=1; |
---|
176 | } |
---|
177 | } |
---|
178 | } |
---|
179 | } |
---|
180 | //- put polys into S - |
---|
181 | for (i=0; i<IDELEMS(F); i++) |
---|
182 | { |
---|
183 | if (F->m[i]!=NULL) |
---|
184 | { |
---|
185 | LObject h; |
---|
186 | h.p = pCopy(F->m[i]); |
---|
187 | if (rHasGlobalOrdering(currRing)) |
---|
188 | { |
---|
189 | //h.p=redtailBba(h.p,strat->sl,strat); |
---|
190 | h.p=redtailBba(h.p,strat->sl,strat); |
---|
191 | } |
---|
192 | else |
---|
193 | { |
---|
194 | deleteHC(&h,strat); |
---|
195 | } |
---|
196 | strat->initEcart(&h); |
---|
197 | if (h.p!=NULL) |
---|
198 | { |
---|
199 | if (strat->sl==-1) |
---|
200 | pos =0; |
---|
201 | else |
---|
202 | pos = posInS(strat,strat->sl,h.p,h.ecart); |
---|
203 | h.sev = pGetShortExpVector(h.p); |
---|
204 | strat->enterS(h,pos,strat, strat->tl+1); |
---|
205 | h.length = pLength(h.p); |
---|
206 | h.SetpFDeg(); |
---|
207 | enterT(h,strat); |
---|
208 | } |
---|
209 | } |
---|
210 | } |
---|
211 | #ifdef INITSSPECIAL |
---|
212 | for (i=0; i<IDELEMS(P); i++) |
---|
213 | { |
---|
214 | if (P->m[i]!=NULL) |
---|
215 | { |
---|
216 | LObject h; |
---|
217 | h.p=pCopy(P->m[i]); |
---|
218 | strat->initEcart(&h); |
---|
219 | h.length = pLength(h.p); |
---|
220 | if (TEST_OPT_INTSTRATEGY) |
---|
221 | { |
---|
222 | h.pCleardenom(); |
---|
223 | } |
---|
224 | else |
---|
225 | { |
---|
226 | h.pNorm(); |
---|
227 | } |
---|
228 | if(strat->sl>=0) |
---|
229 | { |
---|
230 | if (rHasGlobalOrdering(currRing)) |
---|
231 | { |
---|
232 | h.p=redBba(h.p,strat->sl,strat); |
---|
233 | if (h.p!=NULL) |
---|
234 | h.p=redtailBba(h.p,strat->sl,strat); |
---|
235 | } |
---|
236 | else |
---|
237 | { |
---|
238 | h.p=redMora(h.p,strat->sl,strat); |
---|
239 | strat->initEcart(&h); |
---|
240 | } |
---|
241 | if(h.p!=NULL) |
---|
242 | { |
---|
243 | if (TEST_OPT_INTSTRATEGY) |
---|
244 | { |
---|
245 | h.pCleardenom(); |
---|
246 | } |
---|
247 | else |
---|
248 | { |
---|
249 | h.is_normalized = 0; |
---|
250 | h.pNorm(); |
---|
251 | } |
---|
252 | h.sev = pGetShortExpVector(h.p); |
---|
253 | h.SetpFDeg(); |
---|
254 | pos = posInS(strat->S,strat->sl,h.p,h.ecart); |
---|
255 | enterpairsSpecial(h.p,strat->sl,h.ecart,pos,strat,strat->tl+1); |
---|
256 | strat->enterS(h,pos,strat, strat->tl+1); |
---|
257 | enterT(h,strat); |
---|
258 | } |
---|
259 | } |
---|
260 | else |
---|
261 | { |
---|
262 | h.sev = pGetShortExpVector(h.p); |
---|
263 | h.SetpFDeg(); |
---|
264 | strat->enterS(h,0,strat, strat->tl+1); |
---|
265 | enterT(h,strat); |
---|
266 | } |
---|
267 | } |
---|
268 | } |
---|
269 | #endif |
---|
270 | } |
---|
271 | */ |
---|
272 | |
---|
273 | /***************** |
---|
274 | *interreduce F * |
---|
275 | *****************/ |
---|
276 | static ideal kInterRedCC(ideal F, ideal Q) |
---|
277 | { |
---|
278 | int j; |
---|
279 | kStrategy strat = new skStrategy; |
---|
280 | /* |
---|
281 | if (TEST_OPT_PROT) |
---|
282 | { |
---|
283 | writeTime("start InterRed:"); |
---|
284 | mflush(); |
---|
285 | } |
---|
286 | strat->syzComp = 0; |
---|
287 | */ |
---|
288 | strat->kHEdgeFound = (currRing->ppNoether) != NULL; |
---|
289 | strat->kNoether=pCopy((currRing->ppNoether)); |
---|
290 | strat->ak = id_RankFreeModule(F, currRing); |
---|
291 | initBuchMoraCrit(strat); |
---|
292 | strat->NotUsedAxis = (BOOLEAN *)omAlloc((currRing->N+1)*sizeof(BOOLEAN)); |
---|
293 | for(j=currRing->N; j>0; j--) |
---|
294 | { |
---|
295 | strat->NotUsedAxis[j] = TRUE; |
---|
296 | } |
---|
297 | strat->enterS = enterSBba; |
---|
298 | strat->posInT = posInT0; |
---|
299 | strat->initEcart = initEcartNormal; |
---|
300 | strat->sl = -1; |
---|
301 | strat->tl = -1; |
---|
302 | strat->tmax = setmaxT; |
---|
303 | strat->T = initT(); |
---|
304 | strat->R = initR(); |
---|
305 | strat->sevT = initsevT(); |
---|
306 | if(rHasLocalOrMixedOrdering_currRing()) |
---|
307 | { |
---|
308 | strat->honey = TRUE; |
---|
309 | } |
---|
310 | |
---|
311 | //initSCC(F,Q,strat); |
---|
312 | initS(F,Q,strat); |
---|
313 | |
---|
314 | /* |
---|
315 | timetmp=clock();//22.01.02 |
---|
316 | initSSpecialCC(F,Q,NULL,strat); |
---|
317 | tininitS=tininitS+clock()-timetmp;//22.01.02 |
---|
318 | */ |
---|
319 | if(TEST_OPT_REDSB) |
---|
320 | { |
---|
321 | strat->noTailReduction=FALSE; |
---|
322 | } |
---|
323 | updateS(TRUE,strat); |
---|
324 | |
---|
325 | if(TEST_OPT_REDSB && TEST_OPT_INTSTRATEGY) |
---|
326 | { |
---|
327 | completeReduce(strat); |
---|
328 | } |
---|
329 | pDelete(&strat->kHEdge); |
---|
330 | omFreeSize((ADDRESS)strat->T,strat->tmax*sizeof(TObject)); |
---|
331 | omFreeSize((ADDRESS)strat->ecartS,IDELEMS(strat->Shdl)*sizeof(int)); |
---|
332 | omFreeSize((ADDRESS)strat->sevS,IDELEMS(strat->Shdl)*sizeof(unsigned long)); |
---|
333 | omFreeSize((ADDRESS)strat->NotUsedAxis,(currRing->N+1)*sizeof(BOOLEAN)); |
---|
334 | omfree(strat->sevT); |
---|
335 | omfree(strat->S_2_R); |
---|
336 | omfree(strat->R); |
---|
337 | |
---|
338 | if(strat->fromQ) |
---|
339 | { |
---|
340 | for(j=0; j<IDELEMS(strat->Shdl); j++) |
---|
341 | { |
---|
342 | if(strat->fromQ[j]) |
---|
343 | { |
---|
344 | pDelete(&strat->Shdl->m[j]); |
---|
345 | } |
---|
346 | } |
---|
347 | omFreeSize((ADDRESS)strat->fromQ,IDELEMS(strat->Shdl)*sizeof(int)); |
---|
348 | strat->fromQ = NULL; |
---|
349 | } |
---|
350 | /* |
---|
351 | if (TEST_OPT_PROT) |
---|
352 | { |
---|
353 | writeTime("end Interred:"); |
---|
354 | mflush(); |
---|
355 | } |
---|
356 | */ |
---|
357 | ideal shdl=strat->Shdl; |
---|
358 | idSkipZeroes(shdl); |
---|
359 | delete(strat); |
---|
360 | |
---|
361 | return shdl; |
---|
362 | } |
---|
363 | |
---|
364 | #ifdef TIME_TEST |
---|
365 | static void TimeString(clock_t tinput, clock_t tostd, clock_t tif,clock_t tstd, |
---|
366 | clock_t tlf,clock_t tred, clock_t tnw, int step) |
---|
367 | { |
---|
368 | double totm = ((double) (clock() - tinput))/1000000; |
---|
369 | double ostd,mostd, mif, mstd, mlf, mred, mnw, mxif,mxstd,mxlf,mxred,mxnw,tot; |
---|
370 | // double mextra |
---|
371 | Print("\n// total time = %.2f sec", totm); |
---|
372 | Print("\n// tostd = %.2f sec = %.2f", ostd=((double) tostd)/1000000, |
---|
373 | mostd=((((double) tostd)/1000000)/totm)*100); |
---|
374 | Print("\n// tif = %.2f sec = %.2f", ((double) tif)/1000000, |
---|
375 | mif=((((double) tif)/1000000)/totm)*100); |
---|
376 | Print("\n// std = %.2f sec = %.2f", ((double) tstd)/1000000, |
---|
377 | mstd=((((double) tstd)/1000000)/totm)*100); |
---|
378 | Print("\n// lift = %.2f sec = %.2f", ((double) tlf)/1000000, |
---|
379 | mlf=((((double) tlf)/1000000)/totm)*100); |
---|
380 | Print("\n// ired = %.2f sec = %.2f", ((double) tred)/1000000, |
---|
381 | mred=((((double) tred)/1000000)/totm)*100); |
---|
382 | Print("\n// nextw = %.2f sec = %.2f", ((double) tnw)/1000000, |
---|
383 | mnw=((((double) tnw)/1000000)/totm)*100); |
---|
384 | PrintS("\n Time for the last step:"); |
---|
385 | Print("\n// xinfo = %.2f sec = %.2f", ((double) xtif)/1000000, |
---|
386 | mxif=((((double) xtif)/1000000)/totm)*100); |
---|
387 | Print("\n// xstd = %.2f sec = %.2f", ((double) xtstd)/1000000, |
---|
388 | mxstd=((((double) xtstd)/1000000)/totm)*100); |
---|
389 | Print("\n// xlift = %.2f sec = %.2f", ((double) xtlift)/1000000, |
---|
390 | mxlf=((((double) xtlift)/1000000)/totm)*100); |
---|
391 | Print("\n// xired = %.2f sec = %.2f", ((double) xtred)/1000000, |
---|
392 | mxred=((((double) xtred)/1000000)/totm)*100); |
---|
393 | Print("\n// xnextw= %.2f sec = %.2f", ((double) xtnw)/1000000, |
---|
394 | mxnw=((((double) xtnw)/1000000)/totm)*100); |
---|
395 | |
---|
396 | tot=mostd+mif+mstd+mlf+mred+mnw+mxif+mxstd+mxlf+mxred+mxnw; |
---|
397 | double res = (double) 100 - tot; |
---|
398 | Print("\n// &%d&%.2f&%.2f&%.2f&%.2f&%.2f&%.2f&%.2f&%.2f&%.2f&%.2f&%.2f&%.2f&%.2f&%.2f&%.2f(%.2f)\\ \\", |
---|
399 | step, ostd, totm, mostd,mif,mstd,mlf,mred,mnw,mxif,mxstd,mxlf,mxred,mxnw,tot,res, |
---|
400 | ((((double) xtextra)/1000000)/totm)*100); |
---|
401 | } |
---|
402 | |
---|
403 | static void TimeStringFractal(clock_t tinput, clock_t tostd, clock_t tif,clock_t tstd, |
---|
404 | clock_t textra, clock_t tlf,clock_t tred, clock_t tnw) |
---|
405 | { |
---|
406 | |
---|
407 | double totm = ((double) (clock() - tinput))/1000000; |
---|
408 | double ostd, mostd, mif, mstd, mextra, mlf, mred, mnw, tot, res; |
---|
409 | Print("\n// total time = %.2f sec", totm); |
---|
410 | Print("\n// tostd = %.2f sec = %.2f", ostd=((double) tostd)/1000000, |
---|
411 | mostd=((((double) tostd)/1000000)/totm)*100); |
---|
412 | Print("\n// tif = %.2f sec = %.2f", ((double) tif)/1000000, |
---|
413 | mif=((((double) tif)/1000000)/totm)*100); |
---|
414 | Print("\n// std = %.2f sec = %.2f", ((double) tstd)/1000000, |
---|
415 | mstd=((((double) tstd)/1000000)/totm)*100); |
---|
416 | Print("\n// xstd = %.2f sec = %.2f", ((double) textra)/1000000, |
---|
417 | mextra=((((double) textra)/1000000)/totm)*100); |
---|
418 | Print("\n// lift = %.2f sec = %.2f", ((double) tlf)/1000000, |
---|
419 | mlf=((((double) tlf)/1000000)/totm)*100); |
---|
420 | Print("\n// ired = %.2f sec = %.2f", ((double) tred)/1000000, |
---|
421 | mred=((((double) tred)/1000000)/totm)*100); |
---|
422 | Print("\n// nextw = %.2f sec = %.2f", ((double) tnw)/1000000, |
---|
423 | mnw=((((double) tnw)/1000000)/totm)*100); |
---|
424 | tot = mostd+mif+mstd+mextra+mlf+mred+mnw; |
---|
425 | res = (double) 100.00-tot; |
---|
426 | Print("\n// &%.2f &%.2f&%.2f &%.2f &%.2f &%.2f &%.2f &%.2f &%.2f&%.2f&%.2f\\ \\ ", |
---|
427 | ostd,totm,mostd,mif,mstd,mextra,mlf,mred,mnw,tot,res); |
---|
428 | } |
---|
429 | #endif |
---|
430 | |
---|
431 | #ifdef CHECK_IDEAL_MWALK |
---|
432 | static void idString(ideal L, const char* st) |
---|
433 | { |
---|
434 | int i, nL = IDELEMS(L); |
---|
435 | |
---|
436 | Print("\n// ideal %s = ", st); |
---|
437 | for(i=0; i<nL-1; i++) |
---|
438 | { |
---|
439 | Print(" %s, ", pString(L->m[i])); |
---|
440 | } |
---|
441 | Print(" %s;", pString(L->m[nL-1])); |
---|
442 | } |
---|
443 | #endif |
---|
444 | /* |
---|
445 | #if defined(CHECK_IDEAL_MWALK) || defined(ENDWALKS) |
---|
446 | static void headidString(ideal L, char* st) |
---|
447 | { |
---|
448 | int i, nL = IDELEMS(L); |
---|
449 | |
---|
450 | Print("\n// ideal %s = ", st); |
---|
451 | for(i=0; i<nL-1; i++) |
---|
452 | { |
---|
453 | Print(" %s, ", pString(pHead(L->m[i]))); |
---|
454 | } |
---|
455 | Print(" %s;", pString(pHead(L->m[nL-1]))); |
---|
456 | } |
---|
457 | #endif |
---|
458 | |
---|
459 | #if defined(CHECK_IDEAL_MWALK) || defined(ENDWALKS) |
---|
460 | static void idElements(ideal L, char* st) |
---|
461 | { |
---|
462 | int i, nL = IDELEMS(L); |
---|
463 | int *K=(int *)omAlloc(nL*sizeof(int)); |
---|
464 | |
---|
465 | Print("\n// #monoms of %s = ", st); |
---|
466 | for(i=0; i<nL; i++) |
---|
467 | { |
---|
468 | K[i] = pLength(L->m[i]); |
---|
469 | } |
---|
470 | int j, nsame; |
---|
471 | // int nk=0; |
---|
472 | for(i=0; i<nL; i++) |
---|
473 | { |
---|
474 | if(K[i]!=0) |
---|
475 | { |
---|
476 | nsame = 1; |
---|
477 | for(j=i+1; j<nL; j++) |
---|
478 | { |
---|
479 | if(K[j]==K[i]) |
---|
480 | { |
---|
481 | nsame ++; |
---|
482 | K[j]=0; |
---|
483 | } |
---|
484 | } |
---|
485 | if(nsame == 1) |
---|
486 | { |
---|
487 | Print("%d, ",K[i]); |
---|
488 | } |
---|
489 | else |
---|
490 | { |
---|
491 | Print("%d[%d], ", K[i], nsame); |
---|
492 | } |
---|
493 | } |
---|
494 | } |
---|
495 | omFree(K); |
---|
496 | } |
---|
497 | #endif |
---|
498 | */ |
---|
499 | |
---|
500 | static void ivString(intvec* iv, const char* ch) |
---|
501 | { |
---|
502 | int nV = iv->length()-1; |
---|
503 | Print("\n// intvec %s = ", ch); |
---|
504 | |
---|
505 | for(int i=0; i<nV; i++) |
---|
506 | { |
---|
507 | Print("%d, ", (*iv)[i]); |
---|
508 | } |
---|
509 | Print("%d;", (*iv)[nV]); |
---|
510 | } |
---|
511 | |
---|
512 | #ifdef PRINT_VECTORS |
---|
513 | static void MivString(intvec* iva, intvec* ivb, intvec* ivc) |
---|
514 | { |
---|
515 | int nV = iva->length()-1; |
---|
516 | int i; |
---|
517 | PrintS("\n// ("); |
---|
518 | for(i=0; i<nV; i++) |
---|
519 | { |
---|
520 | Print("%d, ", (*iva)[i]); |
---|
521 | } |
---|
522 | Print("%d) ==> (", (*iva)[nV]); |
---|
523 | for(i=0; i<nV; i++) |
---|
524 | { |
---|
525 | Print("%d, ", (*ivb)[i]); |
---|
526 | } |
---|
527 | Print("%d) := (", (*ivb)[nV]); |
---|
528 | |
---|
529 | for(i=0; i<nV; i++) |
---|
530 | { |
---|
531 | Print("%d, ", (*ivc)[i]); |
---|
532 | } |
---|
533 | Print("%d)", (*ivc)[nV]); |
---|
534 | } |
---|
535 | #endif |
---|
536 | |
---|
537 | /******************************************************************** |
---|
538 | * returns gcd of integers a and b * |
---|
539 | ********************************************************************/ |
---|
540 | static inline long gcd(const long a, const long b) |
---|
541 | { |
---|
542 | long r, p0 = a, p1 = b; |
---|
543 | //assume(p0 >= 0 && p1 >= 0); |
---|
544 | if(p0 < 0) |
---|
545 | { |
---|
546 | p0 = -p0; |
---|
547 | } |
---|
548 | if(p1 < 0) |
---|
549 | { |
---|
550 | p1 = -p1; |
---|
551 | } |
---|
552 | while(p1 != 0) |
---|
553 | { |
---|
554 | r = p0 % p1; |
---|
555 | p0 = p1; |
---|
556 | p1 = r; |
---|
557 | } |
---|
558 | return p0; |
---|
559 | } |
---|
560 | |
---|
561 | /***************************************************************************** |
---|
562 | * compute the gcd of the entries of the vectors curr_weight and diff_weight * |
---|
563 | *****************************************************************************/ |
---|
564 | static int simplify_gcd(intvec* curr_weight, intvec* diff_weight) |
---|
565 | { |
---|
566 | int j; |
---|
567 | int nRing = currRing->N; |
---|
568 | int gcd_tmp = (*curr_weight)[0]; |
---|
569 | for (j=1; j<nRing; j++) |
---|
570 | { |
---|
571 | gcd_tmp = gcd(gcd_tmp, (*curr_weight)[j]); |
---|
572 | if(gcd_tmp == 1) |
---|
573 | { |
---|
574 | break; |
---|
575 | } |
---|
576 | } |
---|
577 | if(gcd_tmp != 1) |
---|
578 | { |
---|
579 | for (j=0; j<nRing; j++) |
---|
580 | { |
---|
581 | gcd_tmp = gcd(gcd_tmp, (*diff_weight)[j]); |
---|
582 | if(gcd_tmp == 1) |
---|
583 | { |
---|
584 | break; |
---|
585 | } |
---|
586 | } |
---|
587 | } |
---|
588 | return gcd_tmp; |
---|
589 | } |
---|
590 | |
---|
591 | /********************************************* |
---|
592 | * cancel gcd of integers zaehler and nenner * |
---|
593 | *********************************************/ |
---|
594 | static void cancel(mpz_t zaehler, mpz_t nenner) |
---|
595 | { |
---|
596 | // assume(zaehler >= 0 && nenner > 0); |
---|
597 | mpz_t g; |
---|
598 | mpz_init(g); |
---|
599 | mpz_gcd(g, zaehler, nenner); |
---|
600 | |
---|
601 | mpz_div(zaehler , zaehler, g); |
---|
602 | mpz_div(nenner , nenner, g); |
---|
603 | |
---|
604 | mpz_clear(g); |
---|
605 | } |
---|
606 | |
---|
607 | //unused |
---|
608 | #if 0 |
---|
609 | static int isVectorNeg(intvec* omega) |
---|
610 | { |
---|
611 | int i; |
---|
612 | |
---|
613 | for(i=omega->length(); i>=0; i--) |
---|
614 | { |
---|
615 | if((*omega)[i]<0) |
---|
616 | { |
---|
617 | return 1; |
---|
618 | } |
---|
619 | } |
---|
620 | return 0; |
---|
621 | } |
---|
622 | #endif |
---|
623 | |
---|
624 | /******************************************************************** |
---|
625 | * compute a weight degree of a monomial p w.r.t. a weight_vector * |
---|
626 | ********************************************************************/ |
---|
627 | static inline int MLmWeightedDegree(const poly p, intvec* weight) |
---|
628 | { |
---|
629 | /* 2147483647 is max. integer representation in SINGULAR */ |
---|
630 | mpz_t sing_int; |
---|
631 | mpz_init_set_ui(sing_int, 2147483647); |
---|
632 | |
---|
633 | int i, wgrad; |
---|
634 | |
---|
635 | mpz_t zmul; |
---|
636 | mpz_init(zmul); |
---|
637 | mpz_t zvec; |
---|
638 | mpz_init(zvec); |
---|
639 | mpz_t zsum; |
---|
640 | mpz_init(zsum); |
---|
641 | |
---|
642 | for (i=currRing->N; i>0; i--) |
---|
643 | { |
---|
644 | mpz_set_si(zvec, (*weight)[i-1]); |
---|
645 | mpz_mul_ui(zmul, zvec, pGetExp(p, i)); |
---|
646 | mpz_add(zsum, zsum, zmul); |
---|
647 | } |
---|
648 | |
---|
649 | wgrad = mpz_get_ui(zsum); |
---|
650 | |
---|
651 | if(mpz_cmp(zsum, sing_int)>0) |
---|
652 | { |
---|
653 | if(Overflow_Error == FALSE) |
---|
654 | { |
---|
655 | PrintLn(); |
---|
656 | PrintS("\n// ** OVERFLOW in \"MwalkInitialForm\": "); |
---|
657 | mpz_out_str( stdout, 10, zsum); |
---|
658 | PrintS(" is greater than 2147483647 (max. integer representation)"); |
---|
659 | Overflow_Error = TRUE; |
---|
660 | } |
---|
661 | } |
---|
662 | |
---|
663 | mpz_clear(zmul); |
---|
664 | mpz_clear(zvec); |
---|
665 | mpz_clear(zsum); |
---|
666 | mpz_clear(sing_int); |
---|
667 | |
---|
668 | return wgrad; |
---|
669 | } |
---|
670 | |
---|
671 | /******************************************************************** |
---|
672 | * compute a weight degree of a polynomial p w.r.t. a weight_vector * |
---|
673 | ********************************************************************/ |
---|
674 | static inline int MwalkWeightDegree(poly p, intvec* weight_vector) |
---|
675 | { |
---|
676 | assume(weight_vector->length() >= currRing->N); |
---|
677 | int max = 0, maxtemp; |
---|
678 | |
---|
679 | while(p != NULL) |
---|
680 | { |
---|
681 | maxtemp = MLmWeightedDegree(p, weight_vector); |
---|
682 | pIter(p); |
---|
683 | |
---|
684 | if (maxtemp > max) |
---|
685 | { |
---|
686 | max = maxtemp; |
---|
687 | } |
---|
688 | } |
---|
689 | return max; |
---|
690 | } |
---|
691 | |
---|
692 | |
---|
693 | /******************************************************************** |
---|
694 | * compute a weight degree of a monomial p w.r.t. a weight_vector * |
---|
695 | ********************************************************************/ |
---|
696 | static void MLmWeightedDegree_gmp(mpz_t result, const poly p, intvec* weight) |
---|
697 | { |
---|
698 | /* 2147483647 is max. integer representation in SINGULAR */ |
---|
699 | mpz_t sing_int; |
---|
700 | mpz_init_set_ui(sing_int, 2147483647); |
---|
701 | |
---|
702 | int i; |
---|
703 | |
---|
704 | mpz_t zmul; |
---|
705 | mpz_init(zmul); |
---|
706 | mpz_t zvec; |
---|
707 | mpz_init(zvec); |
---|
708 | mpz_t ztmp; |
---|
709 | mpz_init(ztmp); |
---|
710 | |
---|
711 | for (i=currRing->N; i>0; i--) |
---|
712 | { |
---|
713 | mpz_set_si(zvec, (*weight)[i-1]); |
---|
714 | mpz_mul_ui(zmul, zvec, pGetExp(p, i)); |
---|
715 | mpz_add(ztmp, ztmp, zmul); |
---|
716 | } |
---|
717 | mpz_init_set(result, ztmp); |
---|
718 | mpz_clear(ztmp); |
---|
719 | mpz_clear(sing_int); |
---|
720 | mpz_clear(zvec); |
---|
721 | mpz_clear(zmul); |
---|
722 | } |
---|
723 | |
---|
724 | |
---|
725 | /***************************************************************************** |
---|
726 | * return an initial form of the polynom g w.r.t. a weight vector curr_weight * |
---|
727 | *****************************************************************************/ |
---|
728 | static poly MpolyInitialForm(poly g, intvec* curr_weight) |
---|
729 | { |
---|
730 | if(g == NULL) |
---|
731 | { |
---|
732 | return NULL; |
---|
733 | } |
---|
734 | mpz_t max; mpz_init(max); |
---|
735 | mpz_t maxtmp; mpz_init(maxtmp); |
---|
736 | |
---|
737 | poly hg, in_w_g = NULL; |
---|
738 | |
---|
739 | while(g != NULL) |
---|
740 | { |
---|
741 | hg = g; |
---|
742 | pIter(g); |
---|
743 | MLmWeightedDegree_gmp(maxtmp, hg, curr_weight); |
---|
744 | |
---|
745 | if(mpz_cmp(maxtmp, max)>0) |
---|
746 | { |
---|
747 | mpz_init_set(max, maxtmp); |
---|
748 | pDelete(&in_w_g); |
---|
749 | in_w_g = pHead(hg); |
---|
750 | } |
---|
751 | else |
---|
752 | { |
---|
753 | if(mpz_cmp(maxtmp, max)==0) |
---|
754 | { |
---|
755 | in_w_g = pAdd(in_w_g, pHead(hg)); |
---|
756 | } |
---|
757 | } |
---|
758 | } |
---|
759 | return in_w_g; |
---|
760 | } |
---|
761 | |
---|
762 | /************************************************************************ |
---|
763 | * compute the initial form of an ideal <G> w.r.t. a weight vector iva * |
---|
764 | ************************************************************************/ |
---|
765 | ideal MwalkInitialForm(ideal G, intvec* ivw) |
---|
766 | { |
---|
767 | BOOLEAN nError = Overflow_Error; |
---|
768 | Overflow_Error = FALSE; |
---|
769 | |
---|
770 | int i, nG = IDELEMS(G); |
---|
771 | ideal Gomega = idInit(nG, 1); |
---|
772 | |
---|
773 | for(i=nG-1; i>=0; i--) |
---|
774 | { |
---|
775 | Gomega->m[i] = MpolyInitialForm(G->m[i], ivw); |
---|
776 | } |
---|
777 | if(Overflow_Error == FALSE) |
---|
778 | { |
---|
779 | Overflow_Error = nError; |
---|
780 | } |
---|
781 | return Gomega; |
---|
782 | } |
---|
783 | |
---|
784 | /************************************************************************ |
---|
785 | * test whether the weight vector iv is in the cone of the ideal G * |
---|
786 | * i.e. test whether in(in_w(g)) = in(g) for all g in G * |
---|
787 | ************************************************************************/ |
---|
788 | |
---|
789 | static int test_w_in_ConeCC(ideal G, intvec* iv) |
---|
790 | { |
---|
791 | if(G->m[0] == NULL) |
---|
792 | { |
---|
793 | PrintS("//** the result may be WRONG, i.e. 0!!\n"); |
---|
794 | return 0; |
---|
795 | } |
---|
796 | |
---|
797 | BOOLEAN nError = Overflow_Error; |
---|
798 | Overflow_Error = FALSE; |
---|
799 | |
---|
800 | int i, nG = IDELEMS(G); |
---|
801 | poly mi, gi; |
---|
802 | |
---|
803 | for(i=nG-1; i>=0; i--) |
---|
804 | { |
---|
805 | mi = pHead(MpolyInitialForm(G->m[i], iv)); |
---|
806 | //Print("\n **// test_w_in_ConeCC: lm(initial)= %s \n",pString(mi)); |
---|
807 | gi = pHead(G->m[i]); |
---|
808 | //Print("\n **// test_w_in_ConeCC: lm(ideal)= %s \n",pString(gi)); |
---|
809 | if(mi == NULL) |
---|
810 | { |
---|
811 | pDelete(&mi); |
---|
812 | if(Overflow_Error == FALSE) |
---|
813 | { |
---|
814 | Overflow_Error = nError; |
---|
815 | } |
---|
816 | return 0; |
---|
817 | } |
---|
818 | if(!pLmEqual(mi, gi)) |
---|
819 | { |
---|
820 | pDelete(&mi); |
---|
821 | if(Overflow_Error == FALSE) |
---|
822 | { |
---|
823 | Overflow_Error = nError; |
---|
824 | } |
---|
825 | return 0; |
---|
826 | } |
---|
827 | pDelete(&mi); |
---|
828 | } |
---|
829 | |
---|
830 | if(Overflow_Error == FALSE) |
---|
831 | { |
---|
832 | Overflow_Error = nError; |
---|
833 | } |
---|
834 | return 1; |
---|
835 | } |
---|
836 | |
---|
837 | /*************************************************** |
---|
838 | * compute a least common multiple of two integers * |
---|
839 | ***************************************************/ |
---|
840 | static inline long Mlcm(long &i1, long &i2) |
---|
841 | { |
---|
842 | long temp = gcd(i1, i2); |
---|
843 | return ((i1 / temp)* i2); |
---|
844 | } |
---|
845 | |
---|
846 | |
---|
847 | /*************************************************** |
---|
848 | * return the dot product of two intvecs a and b * |
---|
849 | ***************************************************/ |
---|
850 | static inline long MivDotProduct(intvec* a, intvec* b) |
---|
851 | { |
---|
852 | assume( a->length() == b->length()); |
---|
853 | int i, n = a->length(); |
---|
854 | long result = 0; |
---|
855 | |
---|
856 | for(i=n-1; i>=0; i--) |
---|
857 | { |
---|
858 | result += (*a)[i] * (*b)[i]; |
---|
859 | } |
---|
860 | return result; |
---|
861 | } |
---|
862 | |
---|
863 | /***************************************************** |
---|
864 | * Substract two given intvecs componentwise * |
---|
865 | *****************************************************/ |
---|
866 | static intvec* MivSub(intvec* a, intvec* b) |
---|
867 | { |
---|
868 | assume( a->length() == b->length()); |
---|
869 | int i, n = a->length(); |
---|
870 | intvec* result = new intvec(n); |
---|
871 | |
---|
872 | for(i=n-1; i>=0; i--) |
---|
873 | { |
---|
874 | (*result)[i] = (*a)[i] - (*b)[i]; |
---|
875 | } |
---|
876 | return result; |
---|
877 | } |
---|
878 | |
---|
879 | /***************************************************** |
---|
880 | * return the "intvec" lead exponent of a polynomial * |
---|
881 | *****************************************************/ |
---|
882 | static intvec* MExpPol(poly f) |
---|
883 | { |
---|
884 | int i, nR = currRing->N; |
---|
885 | intvec* result = new intvec(nR); |
---|
886 | |
---|
887 | for(i=nR-1; i>=0; i--) |
---|
888 | { |
---|
889 | (*result)[i] = pGetExp(f,i+1); |
---|
890 | } |
---|
891 | return result; |
---|
892 | } |
---|
893 | |
---|
894 | /***************************************************** |
---|
895 | * Compare two given intvecs and return 1, if they * |
---|
896 | * are the same, otherwise 0 * |
---|
897 | *****************************************************/ |
---|
898 | int MivSame(intvec* u , intvec* v) |
---|
899 | { |
---|
900 | assume(u->length() == v->length()); |
---|
901 | |
---|
902 | int i, niv = u->length(); |
---|
903 | |
---|
904 | for (i=0; i<niv; i++) |
---|
905 | { |
---|
906 | if ((*u)[i] != (*v)[i]) |
---|
907 | { |
---|
908 | return 0; |
---|
909 | } |
---|
910 | } |
---|
911 | return 1; |
---|
912 | } |
---|
913 | |
---|
914 | /****************************************************** |
---|
915 | * Compare 3 given intvecs and return 0, if the first * |
---|
916 | * and the second are the same. Return 1, if the * |
---|
917 | * the second and the third are the same, otherwise 2 * |
---|
918 | ******************************************************/ |
---|
919 | int M3ivSame(intvec* temp, intvec* u , intvec* v) |
---|
920 | { |
---|
921 | assume(temp->length() == u->length() && u->length() == v->length()); |
---|
922 | |
---|
923 | if((MivSame(temp, u)) == 1) |
---|
924 | { |
---|
925 | return 0; |
---|
926 | } |
---|
927 | if((MivSame(temp, v)) == 1) |
---|
928 | { |
---|
929 | return 1; |
---|
930 | } |
---|
931 | return 2; |
---|
932 | } |
---|
933 | |
---|
934 | /***************************************************** |
---|
935 | * compute a Groebner basis of an ideal * |
---|
936 | *****************************************************/ |
---|
937 | static ideal MstdCC(ideal G) |
---|
938 | { |
---|
939 | BITSET save1,save2; |
---|
940 | SI_SAVE_OPT(save1,save2); |
---|
941 | si_opt_1|=(Sy_bit(OPT_REDTAIL)|Sy_bit(OPT_REDSB)); |
---|
942 | ideal G1 = kStd(G, NULL, testHomog, NULL); |
---|
943 | SI_RESTORE_OPT(save1,save2); |
---|
944 | |
---|
945 | idSkipZeroes(G1); |
---|
946 | return G1; |
---|
947 | } |
---|
948 | |
---|
949 | /***************************************************** |
---|
950 | * compute a Groebner basis of an homogeneous ideal * |
---|
951 | *****************************************************/ |
---|
952 | static ideal MstdhomCC(ideal G) |
---|
953 | { |
---|
954 | BITSET save1,save2; |
---|
955 | SI_SAVE_OPT(save1,save2); |
---|
956 | si_opt_1|=(Sy_bit(OPT_REDTAIL)|Sy_bit(OPT_REDSB)); |
---|
957 | ideal G1 = kStd(G, NULL, isHomog, NULL); |
---|
958 | SI_RESTORE_OPT(save1,save2); |
---|
959 | |
---|
960 | idSkipZeroes(G1); |
---|
961 | return G1; |
---|
962 | } |
---|
963 | |
---|
964 | |
---|
965 | /***************************************************************************** |
---|
966 | * create a weight matrix order as intvec of an extra weight vector (a(iv),lp)* |
---|
967 | ******************************************************************************/ |
---|
968 | intvec* MivMatrixOrder(intvec* iv) |
---|
969 | { |
---|
970 | int i, nR = iv->length(); |
---|
971 | |
---|
972 | intvec* ivm = new intvec(nR*nR); |
---|
973 | |
---|
974 | for(i=0; i<nR; i++) |
---|
975 | { |
---|
976 | (*ivm)[i] = (*iv)[i]; |
---|
977 | } |
---|
978 | for(i=1; i<nR; i++) |
---|
979 | { |
---|
980 | (*ivm)[i*nR+i-1] = 1; |
---|
981 | } |
---|
982 | return ivm; |
---|
983 | } |
---|
984 | |
---|
985 | /********************************************************************************* |
---|
986 | * create a weight matrix order as intvec of an extra weight vector (a(iv),M(iw)) * |
---|
987 | **********************************************************************************/ |
---|
988 | intvec* MivMatrixOrderRefine(intvec* iv, intvec* iw) |
---|
989 | { |
---|
990 | assume((iv->length())*(iv->length()) == iw->length()); |
---|
991 | int i,j, nR = iv->length(); |
---|
992 | |
---|
993 | intvec* ivm = new intvec(nR*nR); |
---|
994 | |
---|
995 | for(i=0; i<nR; i++) |
---|
996 | { |
---|
997 | (*ivm)[i] = (*iv)[i]; |
---|
998 | } |
---|
999 | for(i=1; i<nR; i++) |
---|
1000 | { |
---|
1001 | for(j=0; j<nR; j++) |
---|
1002 | { |
---|
1003 | (*ivm)[j+i*nR] = (*iw)[j+i*nR]; |
---|
1004 | } |
---|
1005 | } |
---|
1006 | return ivm; |
---|
1007 | } |
---|
1008 | |
---|
1009 | /******************************* |
---|
1010 | * return intvec = (1, ..., 1) * |
---|
1011 | *******************************/ |
---|
1012 | intvec* Mivdp(int nR) |
---|
1013 | { |
---|
1014 | int i; |
---|
1015 | intvec* ivm = new intvec(nR); |
---|
1016 | |
---|
1017 | for(i=nR-1; i>=0; i--) |
---|
1018 | { |
---|
1019 | (*ivm)[i] = 1; |
---|
1020 | } |
---|
1021 | return ivm; |
---|
1022 | } |
---|
1023 | |
---|
1024 | /********************************** |
---|
1025 | * return intvvec = (1,0, ..., 0) * |
---|
1026 | **********************************/ |
---|
1027 | intvec* Mivlp(int nR) |
---|
1028 | { |
---|
1029 | intvec* ivm = new intvec(nR); |
---|
1030 | (*ivm)[0] = 1; |
---|
1031 | |
---|
1032 | return ivm; |
---|
1033 | } |
---|
1034 | |
---|
1035 | //unused |
---|
1036 | /***************************************************************************** |
---|
1037 | * print the max total degree and the max coefficient of G * |
---|
1038 | *****************************************************************************/ |
---|
1039 | /* |
---|
1040 | static void checkComplexity(ideal G, char* cG) |
---|
1041 | { |
---|
1042 | int nV = currRing->N; |
---|
1043 | int nG = IDELEMS(G); |
---|
1044 | intvec* ivUnit = Mivdp(nV); |
---|
1045 | int i, tmpdeg, maxdeg=0; |
---|
1046 | number tmpcoeff , maxcoeff=currRing->cf->nNULL; |
---|
1047 | poly p; |
---|
1048 | for(i=nG-1; i>=0; i--) |
---|
1049 | { |
---|
1050 | tmpdeg = MwalkWeightDegree(G->m[i], ivUnit); |
---|
1051 | if(tmpdeg > maxdeg ) |
---|
1052 | { |
---|
1053 | maxdeg = tmpdeg; |
---|
1054 | } |
---|
1055 | } |
---|
1056 | |
---|
1057 | for(i=nG-1; i>=0; i--) |
---|
1058 | { |
---|
1059 | p = pCopy(G->m[i]); |
---|
1060 | while(p != NULL) |
---|
1061 | { |
---|
1062 | //tmpcoeff = pGetCoeff(pHead(p)); |
---|
1063 | tmpcoeff = pGetCoeff(p); |
---|
1064 | if(nGreater(tmpcoeff,maxcoeff)) |
---|
1065 | { |
---|
1066 | maxcoeff = nCopy(tmpcoeff); |
---|
1067 | } |
---|
1068 | pIter(p); |
---|
1069 | } |
---|
1070 | pDelete(&p); |
---|
1071 | } |
---|
1072 | p = pNSet(maxcoeff); |
---|
1073 | char* pStr = pString(p); |
---|
1074 | delete ivUnit; |
---|
1075 | Print("// max total degree of %s = %d\n",cG, maxdeg); |
---|
1076 | Print("// max coefficient of %s = %s", cG, pStr);//ing(p)); |
---|
1077 | Print(" which consists of %d digits", (int)strlen(pStr)); |
---|
1078 | PrintLn(); |
---|
1079 | } |
---|
1080 | */ |
---|
1081 | |
---|
1082 | /***************************************************************************** |
---|
1083 | * If target_ord = intmat(A1, ..., An) then calculate the perturbation * |
---|
1084 | * vectors * |
---|
1085 | * tau_p_dep = inveps^(p_deg-1)*A1 + inveps^(p_deg-2)*A2 +... + A_p_deg * |
---|
1086 | * where * |
---|
1087 | * inveps > totaldegree(G)*(max(A2)+...+max(A_p_deg)) * |
---|
1088 | * intmat target_ord is an integer order matrix of the monomial ordering of * |
---|
1089 | * basering. * |
---|
1090 | * This programm computes a perturbated vector with a p_deg perturbation * |
---|
1091 | * degree which smaller than the numbers of variables * |
---|
1092 | ******************************************************************************/ |
---|
1093 | intvec* MPertVectors(ideal G, intvec* ivtarget, int pdeg) |
---|
1094 | { |
---|
1095 | // ivtarget is a matrix order of a degree reverse lex. order |
---|
1096 | int nV = currRing->N; |
---|
1097 | //assume(pdeg <= nV && pdeg >= 0); |
---|
1098 | |
---|
1099 | int i, j, nG = IDELEMS(G); |
---|
1100 | intvec* v_null = new intvec(nV); |
---|
1101 | |
---|
1102 | // Check that the perturbed degree is valid |
---|
1103 | if(pdeg > nV || pdeg <= 0) |
---|
1104 | { |
---|
1105 | WerrorS("//** The perturbed degree is wrong!!"); |
---|
1106 | return v_null; |
---|
1107 | } |
---|
1108 | delete v_null; |
---|
1109 | |
---|
1110 | if(pdeg == 1) |
---|
1111 | { |
---|
1112 | return ivtarget; |
---|
1113 | } |
---|
1114 | mpz_t *pert_vector = (mpz_t*)omAlloc(nV*sizeof(mpz_t)); |
---|
1115 | mpz_t *pert_vector1 = (mpz_t*)omAlloc(nV*sizeof(mpz_t)); |
---|
1116 | |
---|
1117 | for(i=0; i<nV; i++) |
---|
1118 | { |
---|
1119 | mpz_init_set_si(pert_vector[i], (*ivtarget)[i]); |
---|
1120 | mpz_init_set_si(pert_vector1[i], (*ivtarget)[i]); |
---|
1121 | } |
---|
1122 | // Calculate max1 = Max(A2)+Max(A3)+...+Max(Apdeg), |
---|
1123 | // where the Ai are the i-te rows of the matrix target_ord. |
---|
1124 | int ntemp, maxAi, maxA=0; |
---|
1125 | for(i=1; i<pdeg; i++) |
---|
1126 | { |
---|
1127 | maxAi = (*ivtarget)[i*nV]; |
---|
1128 | if(maxAi<0) |
---|
1129 | { |
---|
1130 | maxAi = -maxAi; |
---|
1131 | } |
---|
1132 | for(j=i*nV+1; j<(i+1)*nV; j++) |
---|
1133 | { |
---|
1134 | ntemp = (*ivtarget)[j]; |
---|
1135 | if(ntemp < 0) |
---|
1136 | { |
---|
1137 | ntemp = -ntemp; |
---|
1138 | } |
---|
1139 | if(ntemp > maxAi) |
---|
1140 | { |
---|
1141 | maxAi = ntemp; |
---|
1142 | } |
---|
1143 | } |
---|
1144 | maxA += maxAi; |
---|
1145 | } |
---|
1146 | |
---|
1147 | // Calculate inveps = 1/eps, where 1/eps > totaldeg(p)*max1 for all p in G. |
---|
1148 | |
---|
1149 | intvec* ivUnit = Mivdp(nV); |
---|
1150 | |
---|
1151 | mpz_t tot_deg; mpz_init(tot_deg); |
---|
1152 | mpz_t maxdeg; mpz_init(maxdeg); |
---|
1153 | mpz_t inveps; mpz_init(inveps); |
---|
1154 | |
---|
1155 | |
---|
1156 | for(i=nG-1; i>=0; i--) |
---|
1157 | { |
---|
1158 | mpz_set_ui(maxdeg, MwalkWeightDegree(G->m[i], ivUnit)); |
---|
1159 | if (mpz_cmp(maxdeg, tot_deg) > 0 ) |
---|
1160 | { |
---|
1161 | mpz_set(tot_deg, maxdeg); |
---|
1162 | } |
---|
1163 | } |
---|
1164 | |
---|
1165 | delete ivUnit; |
---|
1166 | mpz_mul_ui(inveps, tot_deg, maxA); |
---|
1167 | mpz_add_ui(inveps, inveps, 1); |
---|
1168 | |
---|
1169 | |
---|
1170 | // takes "small" inveps |
---|
1171 | #ifdef INVEPS_SMALL_IN_MPERTVECTOR |
---|
1172 | if(mpz_cmp_ui(inveps, pdeg)>0 && pdeg > 3) |
---|
1173 | { |
---|
1174 | // Print("\n// choose the\"small\" inverse epsilon := %d / %d = ", mpz_get_si(inveps), pdeg); |
---|
1175 | mpz_fdiv_q_ui(inveps, inveps, pdeg); |
---|
1176 | // mpz_out_str(stdout, 10, inveps); |
---|
1177 | } |
---|
1178 | #else |
---|
1179 | // PrintS("\n// the \"big\" inverse epsilon: "); |
---|
1180 | mpz_out_str(stdout, 10, inveps); |
---|
1181 | #endif |
---|
1182 | |
---|
1183 | // pert(A1) = inveps^(pdeg-1)*A1 + inveps^(pdeg-2)*A2+...+A_pdeg, |
---|
1184 | // pert_vector := A1 |
---|
1185 | for( i=1; i < pdeg; i++ ) |
---|
1186 | { |
---|
1187 | for(j=0; j<nV; j++) |
---|
1188 | { |
---|
1189 | mpz_mul(pert_vector[j], pert_vector[j], inveps); |
---|
1190 | if((*ivtarget)[i*nV+j]<0) |
---|
1191 | { |
---|
1192 | mpz_sub_ui(pert_vector[j], pert_vector[j],-(*ivtarget)[i*nV+j]); |
---|
1193 | } |
---|
1194 | else |
---|
1195 | { |
---|
1196 | mpz_add_ui(pert_vector[j], pert_vector[j],(*ivtarget)[i*nV+j]); |
---|
1197 | } |
---|
1198 | } |
---|
1199 | } |
---|
1200 | |
---|
1201 | // 2147483647 is max. integer representation in SINGULAR |
---|
1202 | mpz_t sing_int; |
---|
1203 | mpz_init_set_ui(sing_int, 2147483647); |
---|
1204 | |
---|
1205 | mpz_t check_int; |
---|
1206 | mpz_init_set_ui(check_int, 100000); |
---|
1207 | |
---|
1208 | mpz_t ztemp; |
---|
1209 | mpz_init(ztemp); |
---|
1210 | mpz_set(ztemp, pert_vector[0]); |
---|
1211 | for(i=1; i<nV; i++) |
---|
1212 | { |
---|
1213 | mpz_gcd(ztemp, ztemp, pert_vector[i]); |
---|
1214 | if(mpz_cmp_si(ztemp, 1) == 0) |
---|
1215 | { |
---|
1216 | break; |
---|
1217 | } |
---|
1218 | } |
---|
1219 | if(mpz_cmp_si(ztemp, 1) != 0) |
---|
1220 | { |
---|
1221 | for(i=0; i<nV; i++) |
---|
1222 | { |
---|
1223 | mpz_divexact(pert_vector[i], pert_vector[i], ztemp); |
---|
1224 | } |
---|
1225 | } |
---|
1226 | |
---|
1227 | for(i=0; i<nV; i++) |
---|
1228 | { |
---|
1229 | if(mpz_cmp(pert_vector[i], check_int)>=0) |
---|
1230 | { |
---|
1231 | for(j=0; j<nV; j++) |
---|
1232 | { |
---|
1233 | mpz_fdiv_q_ui(pert_vector1[j], pert_vector[j], 100); |
---|
1234 | } |
---|
1235 | } |
---|
1236 | } |
---|
1237 | |
---|
1238 | intvec* result = new intvec(nV); |
---|
1239 | |
---|
1240 | int ntrue=0; |
---|
1241 | |
---|
1242 | for(i=0; i<nV; i++) |
---|
1243 | { |
---|
1244 | (*result)[i] = mpz_get_si(pert_vector1[i]); |
---|
1245 | if(mpz_cmp(pert_vector1[i], sing_int)>=0) |
---|
1246 | { |
---|
1247 | ntrue++; |
---|
1248 | } |
---|
1249 | } |
---|
1250 | if(ntrue > 0 || test_w_in_ConeCC(G,result)==0) |
---|
1251 | { |
---|
1252 | ntrue=0; |
---|
1253 | for(i=0; i<nV; i++) |
---|
1254 | { |
---|
1255 | (*result)[i] = mpz_get_si(pert_vector[i]); |
---|
1256 | if(mpz_cmp(pert_vector[i], sing_int)>=0) |
---|
1257 | { |
---|
1258 | ntrue++; |
---|
1259 | if(Overflow_Error == FALSE) |
---|
1260 | { |
---|
1261 | Overflow_Error = TRUE; |
---|
1262 | PrintS("\n// ** OVERFLOW in \"MPertvectors\": "); |
---|
1263 | mpz_out_str( stdout, 10, pert_vector[i]); |
---|
1264 | PrintS(" is greater than 2147483647 (max. integer representation)"); |
---|
1265 | Print("\n// So vector[%d] := %d is wrong!!", i+1, (*result)[i]); |
---|
1266 | } |
---|
1267 | } |
---|
1268 | } |
---|
1269 | |
---|
1270 | if(Overflow_Error == TRUE) |
---|
1271 | { |
---|
1272 | ivString(result, "pert_vector"); |
---|
1273 | Print("\n// %d element(s) of it is overflow!!", ntrue); |
---|
1274 | } |
---|
1275 | } |
---|
1276 | |
---|
1277 | mpz_clear(ztemp); |
---|
1278 | mpz_clear(sing_int); |
---|
1279 | mpz_clear(check_int); |
---|
1280 | omFree(pert_vector); |
---|
1281 | omFree(pert_vector1); |
---|
1282 | mpz_clear(tot_deg); |
---|
1283 | mpz_clear(maxdeg); |
---|
1284 | mpz_clear(inveps); |
---|
1285 | |
---|
1286 | rComplete(currRing); |
---|
1287 | for(j=0; j<IDELEMS(G); j++) |
---|
1288 | { |
---|
1289 | poly p=G->m[j]; |
---|
1290 | while(p!=NULL) |
---|
1291 | { |
---|
1292 | p_Setm(p,currRing); pIter(p); |
---|
1293 | } |
---|
1294 | } |
---|
1295 | return result; |
---|
1296 | } |
---|
1297 | |
---|
1298 | /***************************************************************************** |
---|
1299 | * The following procedure returns * |
---|
1300 | * Pert(A1) = 1/eps^(pdeg-1)*A_1 + 1/eps^(pdeg-2)*A_2+...+A_pdeg, * |
---|
1301 | * where the A_i are the i-th rows of the matrix target_ord and * |
---|
1302 | * 1/eps > deg(p)*(max(A_2) + max(A_3)+...+max(A_pdeg)) * |
---|
1303 | *****************************************************************************/ |
---|
1304 | intvec* MPertVectorslp(ideal G, intvec* ivtarget, int pdeg) |
---|
1305 | { |
---|
1306 | // ivtarget is a matrix order of the lex. order |
---|
1307 | int nV = currRing->N; |
---|
1308 | //assume(pdeg <= nV && pdeg >= 0); |
---|
1309 | |
---|
1310 | int i, j, nG = IDELEMS(G); |
---|
1311 | intvec* pert_vector = new intvec(nV); |
---|
1312 | |
---|
1313 | //Checking that the perturbated degree is valid |
---|
1314 | if(pdeg > nV || pdeg <= 0) |
---|
1315 | { |
---|
1316 | WerrorS("//** The perturbed degree is wrong!!"); |
---|
1317 | return pert_vector; |
---|
1318 | } |
---|
1319 | for(i=0; i<nV; i++) |
---|
1320 | { |
---|
1321 | (*pert_vector)[i]=(*ivtarget)[i]; |
---|
1322 | } |
---|
1323 | if(pdeg == 1) |
---|
1324 | { |
---|
1325 | return pert_vector; |
---|
1326 | } |
---|
1327 | // Calculate max1 = Max(A2)+Max(A3)+...+Max(Apdeg), |
---|
1328 | // where the Ai are the i-te rows of the matrix target_ord. |
---|
1329 | int ntemp, maxAi, maxA=0; |
---|
1330 | for(i=1; i<pdeg; i++) |
---|
1331 | { |
---|
1332 | maxAi = (*ivtarget)[i*nV]; |
---|
1333 | for(j=i*nV+1; j<(i+1)*nV; j++) |
---|
1334 | { |
---|
1335 | ntemp = (*ivtarget)[j]; |
---|
1336 | if(ntemp > maxAi) |
---|
1337 | { |
---|
1338 | maxAi = ntemp; |
---|
1339 | } |
---|
1340 | } |
---|
1341 | maxA += maxAi; |
---|
1342 | } |
---|
1343 | |
---|
1344 | // Calculate inveps := 1/eps, where 1/eps > deg(p)*max1 for all p in G. |
---|
1345 | int inveps, tot_deg = 0, maxdeg; |
---|
1346 | |
---|
1347 | intvec* ivUnit = Mivdp(nV);//19.02 |
---|
1348 | for(i=nG-1; i>=0; i--) |
---|
1349 | { |
---|
1350 | // maxdeg = pTotaldegree(G->m[i], currRing); //it's wrong for ex1,2,rose |
---|
1351 | maxdeg = MwalkWeightDegree(G->m[i], ivUnit); |
---|
1352 | if (maxdeg > tot_deg ) |
---|
1353 | { |
---|
1354 | tot_deg = maxdeg; |
---|
1355 | } |
---|
1356 | } |
---|
1357 | delete ivUnit; |
---|
1358 | |
---|
1359 | inveps = (tot_deg * maxA) + 1; |
---|
1360 | |
---|
1361 | #ifdef INVEPS_SMALL_IN_FRACTAL |
---|
1362 | // Print("\n// choose the\"small\" inverse epsilon := %d / %d = ", inveps, pdeg); |
---|
1363 | if(inveps > pdeg && pdeg > 3) |
---|
1364 | { |
---|
1365 | inveps = inveps / pdeg; |
---|
1366 | } |
---|
1367 | // Print(" %d", inveps); |
---|
1368 | #else |
---|
1369 | PrintS("\n// the \"big\" inverse epsilon %d", inveps); |
---|
1370 | #endif |
---|
1371 | |
---|
1372 | // Pert(A1) = inveps^(pdeg-1)*A1 + inveps^(pdeg-2)*A2+...+A_pdeg |
---|
1373 | for ( i=1; i < pdeg; i++ ) |
---|
1374 | { |
---|
1375 | for(j=0; j<nV; j++) |
---|
1376 | { |
---|
1377 | (*pert_vector)[j] = inveps*((*pert_vector)[j]) + (*ivtarget)[i*nV+j]; |
---|
1378 | } |
---|
1379 | } |
---|
1380 | |
---|
1381 | int temp = (*pert_vector)[0]; |
---|
1382 | for(i=1; i<nV; i++) |
---|
1383 | { |
---|
1384 | temp = gcd(temp, (*pert_vector)[i]); |
---|
1385 | if(temp == 1) |
---|
1386 | { |
---|
1387 | break; |
---|
1388 | } |
---|
1389 | } |
---|
1390 | if(temp != 1) |
---|
1391 | { |
---|
1392 | for(i=0; i<nV; i++) |
---|
1393 | { |
---|
1394 | (*pert_vector)[i] = (*pert_vector)[i] / temp; |
---|
1395 | } |
---|
1396 | } |
---|
1397 | |
---|
1398 | intvec* result = pert_vector; |
---|
1399 | delete pert_vector; |
---|
1400 | return result; |
---|
1401 | } |
---|
1402 | |
---|
1403 | /***************************************************************************** |
---|
1404 | * define a lexicographic order matrix as intvec * |
---|
1405 | *****************************************************************************/ |
---|
1406 | intvec* MivMatrixOrderlp(int nV) |
---|
1407 | { |
---|
1408 | int i; |
---|
1409 | intvec* ivM = new intvec(nV*nV); |
---|
1410 | |
---|
1411 | for(i=0; i<nV; i++) |
---|
1412 | { |
---|
1413 | (*ivM)[i*nV + i] = 1; |
---|
1414 | } |
---|
1415 | return(ivM); |
---|
1416 | } |
---|
1417 | |
---|
1418 | |
---|
1419 | /***************************************************************************** |
---|
1420 | * define a reverse lexicographic order (dp) matrix as intvec * |
---|
1421 | *****************************************************************************/ |
---|
1422 | intvec* MivMatrixOrderdp(int nV) |
---|
1423 | { |
---|
1424 | int i; |
---|
1425 | intvec* ivM = new intvec(nV*nV); |
---|
1426 | |
---|
1427 | for(i=0; i<nV; i++) |
---|
1428 | { |
---|
1429 | (*ivM)[i] = 1; |
---|
1430 | } |
---|
1431 | for(i=1; i<nV; i++) |
---|
1432 | { |
---|
1433 | (*ivM)[(i+1)*nV - i] = -1; |
---|
1434 | } |
---|
1435 | return(ivM); |
---|
1436 | } |
---|
1437 | |
---|
1438 | /***************************************************************************** |
---|
1439 | * creates an intvec of the monomial order Wp(ivstart) * |
---|
1440 | *****************************************************************************/ |
---|
1441 | intvec* MivWeightOrderlp(intvec* ivstart) |
---|
1442 | { |
---|
1443 | int i; |
---|
1444 | int nV = ivstart->length(); |
---|
1445 | intvec* ivM = new intvec(nV*nV); |
---|
1446 | |
---|
1447 | for(i=0; i<nV; i++) |
---|
1448 | { |
---|
1449 | (*ivM)[i] = (*ivstart)[i]; |
---|
1450 | } |
---|
1451 | for(i=1; i<nV; i++) |
---|
1452 | { |
---|
1453 | (*ivM)[i*nV + i-1] = 1; |
---|
1454 | } |
---|
1455 | return(ivM); |
---|
1456 | } |
---|
1457 | |
---|
1458 | /***************************************************************************** |
---|
1459 | * creates an intvec of the monomial order dp(ivstart) * |
---|
1460 | *****************************************************************************/ |
---|
1461 | intvec* MivWeightOrderdp(intvec* ivstart) |
---|
1462 | { |
---|
1463 | int i; |
---|
1464 | int nV = ivstart->length(); |
---|
1465 | intvec* ivM = new intvec(nV*nV); |
---|
1466 | |
---|
1467 | for(i=0; i<nV; i++) |
---|
1468 | { |
---|
1469 | (*ivM)[i] = (*ivstart)[i]; |
---|
1470 | } |
---|
1471 | for(i=0; i<nV; i++) |
---|
1472 | { |
---|
1473 | (*ivM)[nV+i] = 1; |
---|
1474 | } |
---|
1475 | for(i=2; i<nV; i++) |
---|
1476 | { |
---|
1477 | (*ivM)[(i+1)*nV - i] = -1; |
---|
1478 | } |
---|
1479 | return(ivM); |
---|
1480 | } |
---|
1481 | |
---|
1482 | //unused |
---|
1483 | /* |
---|
1484 | static intvec* MatrixOrderdp(int nV) |
---|
1485 | { |
---|
1486 | int i; |
---|
1487 | intvec* ivM = new intvec(nV*nV); |
---|
1488 | |
---|
1489 | for(i=0; i<nV; i++) |
---|
1490 | { |
---|
1491 | (*ivM)[i] = 1; |
---|
1492 | } |
---|
1493 | for(i=1; i<nV; i++) |
---|
1494 | { |
---|
1495 | (*ivM)[(i+1)*nV - i] = -1; |
---|
1496 | } |
---|
1497 | return(ivM); |
---|
1498 | } |
---|
1499 | */ |
---|
1500 | |
---|
1501 | intvec* MivUnit(int nV) |
---|
1502 | { |
---|
1503 | int i; |
---|
1504 | intvec* ivM = new intvec(nV); |
---|
1505 | for(i=nV-1; i>=0; i--) |
---|
1506 | { |
---|
1507 | (*ivM)[i] = 1; |
---|
1508 | } |
---|
1509 | return(ivM); |
---|
1510 | } |
---|
1511 | |
---|
1512 | |
---|
1513 | /************************************************************************ |
---|
1514 | * compute a perturbed weight vector of a matrix order w.r.t. an ideal * |
---|
1515 | *************************************************************************/ |
---|
1516 | int Xnlev; |
---|
1517 | intvec* Mfpertvector(ideal G, intvec* ivtarget) |
---|
1518 | { |
---|
1519 | int i, j, nG = IDELEMS(G); |
---|
1520 | int nV = currRing->N; |
---|
1521 | int niv = nV*nV; |
---|
1522 | |
---|
1523 | |
---|
1524 | // Calculate maxA = Max(A2) + Max(A3) + ... + Max(AnV), |
---|
1525 | // where the Ai are the i-te rows of the matrix 'targer_ord'. |
---|
1526 | int ntemp, maxAi, maxA=0; |
---|
1527 | for(i=1; i<nV; i++) |
---|
1528 | { |
---|
1529 | maxAi = (*ivtarget)[i*nV]; |
---|
1530 | if(maxAi<0) |
---|
1531 | { |
---|
1532 | maxAi = -maxAi; |
---|
1533 | } |
---|
1534 | for(j=i*nV+1; j<(i+1)*nV; j++) |
---|
1535 | { |
---|
1536 | ntemp = (*ivtarget)[j]; |
---|
1537 | if(ntemp < 0) |
---|
1538 | { |
---|
1539 | ntemp = -ntemp; |
---|
1540 | } |
---|
1541 | if(ntemp > maxAi) |
---|
1542 | { |
---|
1543 | maxAi = ntemp; |
---|
1544 | } |
---|
1545 | } |
---|
1546 | maxA = maxA + maxAi; |
---|
1547 | } |
---|
1548 | intvec* ivUnit = Mivdp(nV); |
---|
1549 | |
---|
1550 | // Calculate inveps = 1/eps, where 1/eps > deg(p)*maxA for all p in G. |
---|
1551 | mpz_t tot_deg; mpz_init(tot_deg); |
---|
1552 | mpz_t maxdeg; mpz_init(maxdeg); |
---|
1553 | mpz_t inveps; mpz_init(inveps); |
---|
1554 | |
---|
1555 | |
---|
1556 | for(i=nG-1; i>=0; i--) |
---|
1557 | { |
---|
1558 | mpz_set_ui(maxdeg, MwalkWeightDegree(G->m[i], ivUnit)); |
---|
1559 | if (mpz_cmp(maxdeg, tot_deg) > 0 ) |
---|
1560 | { |
---|
1561 | mpz_set(tot_deg, maxdeg); |
---|
1562 | } |
---|
1563 | } |
---|
1564 | |
---|
1565 | delete ivUnit; |
---|
1566 | //inveps = (tot_deg * maxA) + 1; |
---|
1567 | mpz_mul_ui(inveps, tot_deg, maxA); |
---|
1568 | mpz_add_ui(inveps, inveps, 1); |
---|
1569 | |
---|
1570 | // takes "small" inveps |
---|
1571 | #ifdef INVEPS_SMALL_IN_FRACTAL |
---|
1572 | if(mpz_cmp_ui(inveps, nV)>0 && nV > 3) |
---|
1573 | { |
---|
1574 | mpz_cdiv_q_ui(inveps, inveps, nV); |
---|
1575 | } |
---|
1576 | // choose the small inverse epsilon |
---|
1577 | #endif |
---|
1578 | |
---|
1579 | // PrintLn(); mpz_out_str(stdout, 10, inveps); |
---|
1580 | |
---|
1581 | // Calculate the perturbed target orders: |
---|
1582 | mpz_t *ivtemp=(mpz_t *)omAlloc(nV*sizeof(mpz_t)); |
---|
1583 | mpz_t *pert_vector=(mpz_t *)omAlloc(niv*sizeof(mpz_t)); |
---|
1584 | |
---|
1585 | for(i=0; i < nV; i++) |
---|
1586 | { |
---|
1587 | mpz_init_set_si(ivtemp[i], (*ivtarget)[i]); |
---|
1588 | mpz_init_set_si(pert_vector[i], (*ivtarget)[i]); |
---|
1589 | } |
---|
1590 | |
---|
1591 | mpz_t ztmp; mpz_init(ztmp); |
---|
1592 | // BOOLEAN isneg = FALSE; |
---|
1593 | |
---|
1594 | for(i=1; i<nV; i++) |
---|
1595 | { |
---|
1596 | for(j=0; j<nV; j++) |
---|
1597 | { |
---|
1598 | mpz_mul(ztmp, inveps, ivtemp[j]); |
---|
1599 | if((*ivtarget)[i*nV+j]<0) |
---|
1600 | { |
---|
1601 | mpz_sub_ui(ivtemp[j], ztmp, -(*ivtarget)[i*nV+j]); |
---|
1602 | } |
---|
1603 | else |
---|
1604 | { |
---|
1605 | mpz_add_ui(ivtemp[j], ztmp,(*ivtarget)[i*nV+j]); |
---|
1606 | } |
---|
1607 | } |
---|
1608 | |
---|
1609 | for(j=0; j<nV; j++) |
---|
1610 | { |
---|
1611 | mpz_init_set(pert_vector[i*nV+j],ivtemp[j]); |
---|
1612 | } |
---|
1613 | } |
---|
1614 | |
---|
1615 | // 2147483647 is max. integer representation in SINGULAR |
---|
1616 | mpz_t sing_int; |
---|
1617 | mpz_init_set_ui(sing_int, 2147483647); |
---|
1618 | |
---|
1619 | intvec* result = new intvec(niv); |
---|
1620 | intvec* result1 = new intvec(niv); |
---|
1621 | BOOLEAN nflow = FALSE; |
---|
1622 | |
---|
1623 | // computes gcd |
---|
1624 | mpz_set(ztmp, pert_vector[0]); |
---|
1625 | for(i=0; i<niv; i++) |
---|
1626 | { |
---|
1627 | mpz_gcd(ztmp, ztmp, pert_vector[i]); |
---|
1628 | if(mpz_cmp_si(ztmp, 1)==0) |
---|
1629 | { |
---|
1630 | break; |
---|
1631 | } |
---|
1632 | } |
---|
1633 | |
---|
1634 | for(i=0; i<niv; i++) |
---|
1635 | { |
---|
1636 | mpz_divexact(pert_vector[i], pert_vector[i], ztmp); |
---|
1637 | (* result)[i] = mpz_get_si(pert_vector[i]); |
---|
1638 | } |
---|
1639 | |
---|
1640 | CHECK_OVERFLOW: |
---|
1641 | |
---|
1642 | for(i=0; i<niv; i++) |
---|
1643 | { |
---|
1644 | if(mpz_cmp(pert_vector[i], sing_int)>0) |
---|
1645 | { |
---|
1646 | if(nflow == FALSE) |
---|
1647 | { |
---|
1648 | Xnlev = i / nV; |
---|
1649 | nflow = TRUE; |
---|
1650 | Overflow_Error = TRUE; |
---|
1651 | Print("\n// Xlev = %d and the %d-th element is", Xnlev, i+1); |
---|
1652 | PrintS("\n// ** OVERFLOW in \"Mfpertvector\": "); |
---|
1653 | mpz_out_str( stdout, 10, pert_vector[i]); |
---|
1654 | PrintS(" is greater than 2147483647 (max. integer representation)"); |
---|
1655 | Print("\n// So vector[%d] := %d is wrong!!", i+1, (*result)[i]); |
---|
1656 | } |
---|
1657 | } |
---|
1658 | } |
---|
1659 | if(Overflow_Error == TRUE) |
---|
1660 | { |
---|
1661 | ivString(result, "new_vector"); |
---|
1662 | } |
---|
1663 | omFree(pert_vector); |
---|
1664 | omFree(ivtemp); |
---|
1665 | mpz_clear(ztmp); |
---|
1666 | mpz_clear(tot_deg); |
---|
1667 | mpz_clear(maxdeg); |
---|
1668 | mpz_clear(inveps); |
---|
1669 | mpz_clear(sing_int); |
---|
1670 | |
---|
1671 | rComplete(currRing); |
---|
1672 | for(j=0; j<IDELEMS(G); j++) |
---|
1673 | { |
---|
1674 | poly p=G->m[j]; |
---|
1675 | while(p!=NULL) |
---|
1676 | { |
---|
1677 | p_Setm(p,currRing); |
---|
1678 | pIter(p); |
---|
1679 | } |
---|
1680 | } |
---|
1681 | return result; |
---|
1682 | } |
---|
1683 | |
---|
1684 | /**************************************************************** |
---|
1685 | * Multiplication of two ideals element by element * |
---|
1686 | * i.e. Let be A := (a_i) and B := (b_i), return C := (a_i*b_i) * |
---|
1687 | * destroy A, keeps B * |
---|
1688 | ****************************************************************/ |
---|
1689 | static ideal MidMult(ideal A, ideal B) |
---|
1690 | { |
---|
1691 | int mA = IDELEMS(A), mB = IDELEMS(B); |
---|
1692 | |
---|
1693 | if(A==NULL || B==NULL) |
---|
1694 | { |
---|
1695 | return NULL; |
---|
1696 | } |
---|
1697 | if(mB < mA) |
---|
1698 | { |
---|
1699 | mA = mB; |
---|
1700 | } |
---|
1701 | ideal result = idInit(mA, 1); |
---|
1702 | |
---|
1703 | int i, k=0; |
---|
1704 | for(i=0; i<mA; i++) |
---|
1705 | { |
---|
1706 | result->m[k] = pMult(A->m[i], pCopy(B->m[i])); |
---|
1707 | A->m[i]=NULL; |
---|
1708 | if (result->m[k]!=NULL) |
---|
1709 | { |
---|
1710 | k++; |
---|
1711 | } |
---|
1712 | } |
---|
1713 | |
---|
1714 | idDelete(&A); |
---|
1715 | idSkipZeroes(result); |
---|
1716 | return result; |
---|
1717 | } |
---|
1718 | |
---|
1719 | /********************************************************************* |
---|
1720 | * G is a red. Groebner basis w.r.t. <_1 * |
---|
1721 | * Gomega is an initial form ideal of <G> w.r.t. a weight vector w * |
---|
1722 | * M is a subideal of <Gomega> and M selft is a red. Groebner basis * |
---|
1723 | * of the ideal <Gomega> w.r.t. <_w * |
---|
1724 | * Let m_i = h1.gw1 + ... + hs.gws for each m_i in M; gwi in Gomega * |
---|
1725 | * return F with n(F) = n(M) and f_i = h1.g1 + ... + hs.gs for each i* |
---|
1726 | ********************************************************************/ |
---|
1727 | static ideal MLifttwoIdeal(ideal Gw, ideal M, ideal G) |
---|
1728 | { |
---|
1729 | ideal Mtmp = idLift(Gw, M, NULL, FALSE, TRUE, TRUE, NULL); |
---|
1730 | |
---|
1731 | // If Gw is a GB, then isSB = TRUE, otherwise FALSE |
---|
1732 | // So, it is better, if one tests whether Gw is a GB |
---|
1733 | // in ideals.cc: |
---|
1734 | // idLift (ideal mod, ideal submod,ideal * rest, BOOLEAN goodShape, |
---|
1735 | // BOOLEAN isSB,BOOLEAN divide,matrix * unit) |
---|
1736 | |
---|
1737 | // Let be Mtmp = {m1,...,ms}, where mi=sum hij.in_gj, for all i=1,...,s |
---|
1738 | // We compute F = {f1,...,fs}, where fi=sum hij.gj |
---|
1739 | int i, j, nM = IDELEMS(Mtmp); |
---|
1740 | ideal idpol, idLG; |
---|
1741 | ideal F = idInit(nM, 1); |
---|
1742 | |
---|
1743 | for(i=0; i<nM; i++) |
---|
1744 | { |
---|
1745 | idpol = idVec2Ideal(Mtmp->m[i]); |
---|
1746 | idLG = MidMult(idpol, G); |
---|
1747 | idpol = NULL; |
---|
1748 | F->m[i] = NULL; |
---|
1749 | for(j=IDELEMS(idLG)-1; j>=0; j--) |
---|
1750 | { |
---|
1751 | F->m[i] = pAdd(F->m[i], idLG->m[j]); |
---|
1752 | idLG->m[j]=NULL; |
---|
1753 | } |
---|
1754 | idDelete(&idLG); |
---|
1755 | } |
---|
1756 | idDelete(&Mtmp); |
---|
1757 | return F; |
---|
1758 | } |
---|
1759 | |
---|
1760 | //unused |
---|
1761 | /* |
---|
1762 | static void checkidealCC(ideal G, char* Ch) |
---|
1763 | { |
---|
1764 | int i,nmon=0,ntmp; |
---|
1765 | int nG = IDELEMS(G); |
---|
1766 | int n = nG-1; |
---|
1767 | Print("\n//** Ideal %s besteht aus %d Polynomen mit ", Ch, nG); |
---|
1768 | |
---|
1769 | for(i=0; i<nG; i++) |
---|
1770 | { |
---|
1771 | ntmp = pLength(G->m[i]); |
---|
1772 | nmon += ntmp; |
---|
1773 | |
---|
1774 | if(i != n) |
---|
1775 | { |
---|
1776 | Print("%d, ", ntmp); |
---|
1777 | } |
---|
1778 | else |
---|
1779 | { |
---|
1780 | Print(" bzw. %d ", ntmp); |
---|
1781 | } |
---|
1782 | } |
---|
1783 | PrintS(" Monomen.\n"); |
---|
1784 | Print("//** %s besitzt %d Monome.", Ch, nmon); |
---|
1785 | PrintLn(); |
---|
1786 | } |
---|
1787 | */ |
---|
1788 | |
---|
1789 | //unused |
---|
1790 | /* |
---|
1791 | static void HeadidString(ideal L, char* st) |
---|
1792 | { |
---|
1793 | int i, nL = IDELEMS(L)-1; |
---|
1794 | |
---|
1795 | Print("// The head terms of the ideal %s = ", st); |
---|
1796 | for(i=0; i<nL; i++) |
---|
1797 | { |
---|
1798 | Print(" %s, ", pString(pHead(L->m[i]))); |
---|
1799 | } |
---|
1800 | Print(" %s;\n", pString(pHead(L->m[nL]))); |
---|
1801 | } |
---|
1802 | |
---|
1803 | */ |
---|
1804 | static inline int MivComp(intvec* iva, intvec* ivb) |
---|
1805 | { |
---|
1806 | assume(iva->length() == ivb->length()); |
---|
1807 | int i; |
---|
1808 | for(i=iva->length()-1; i>=0; i--) |
---|
1809 | { |
---|
1810 | if((*iva)[i] - (*ivb)[i] != 0) |
---|
1811 | { |
---|
1812 | return 0; |
---|
1813 | } |
---|
1814 | } |
---|
1815 | return 1; |
---|
1816 | } |
---|
1817 | |
---|
1818 | /********************************************** |
---|
1819 | * Look for the smallest absolut value in vec * |
---|
1820 | **********************************************/ |
---|
1821 | static int MivAbsMax(intvec* vec) |
---|
1822 | { |
---|
1823 | int i,k; |
---|
1824 | if((*vec)[0] < 0) |
---|
1825 | { |
---|
1826 | k = -(*vec)[0]; |
---|
1827 | } |
---|
1828 | else |
---|
1829 | { |
---|
1830 | k = (*vec)[0]; |
---|
1831 | } |
---|
1832 | for(i=1; i < (vec->length()); i++) |
---|
1833 | { |
---|
1834 | if((*vec)[i] < 0) |
---|
1835 | { |
---|
1836 | if(-(*vec)[i] > k) |
---|
1837 | { |
---|
1838 | k = -(*vec)[i]; |
---|
1839 | } |
---|
1840 | } |
---|
1841 | else |
---|
1842 | { |
---|
1843 | if((*vec)[i] > k) |
---|
1844 | { |
---|
1845 | k = (*vec)[i]; |
---|
1846 | } |
---|
1847 | } |
---|
1848 | } |
---|
1849 | return k; |
---|
1850 | } |
---|
1851 | |
---|
1852 | |
---|
1853 | /************************************************************** |
---|
1854 | * Look for the position of the smallest absolut value in vec * |
---|
1855 | **************************************************************/ |
---|
1856 | static int MivAbsMaxArg(intvec* vec) |
---|
1857 | { |
---|
1858 | int k = MivAbsMax(vec); |
---|
1859 | int i=0; |
---|
1860 | while(1) |
---|
1861 | { |
---|
1862 | if((*vec)[i] == k || (*vec)[i] == -k) |
---|
1863 | { |
---|
1864 | break; |
---|
1865 | } |
---|
1866 | i++; |
---|
1867 | } |
---|
1868 | return i; |
---|
1869 | } |
---|
1870 | |
---|
1871 | |
---|
1872 | /********************************************************************** |
---|
1873 | * Compute a next weight vector between curr_weight and target_weight * |
---|
1874 | * with respect to an ideal <G>. * |
---|
1875 | **********************************************************************/ |
---|
1876 | /* |
---|
1877 | static intvec* MwalkNextWeightCC(intvec* curr_weight, intvec* target_weight, |
---|
1878 | ideal G) |
---|
1879 | { |
---|
1880 | BOOLEAN nError = Overflow_Error; |
---|
1881 | Overflow_Error = FALSE; |
---|
1882 | |
---|
1883 | assume(currRing != NULL && curr_weight != NULL && |
---|
1884 | target_weight != NULL && G != NULL); |
---|
1885 | |
---|
1886 | int nRing = currRing->N; |
---|
1887 | int checkRed, j, nG = IDELEMS(G); |
---|
1888 | intvec* ivtemp; |
---|
1889 | |
---|
1890 | mpz_t t_zaehler, t_nenner; |
---|
1891 | mpz_init(t_zaehler); |
---|
1892 | mpz_init(t_nenner); |
---|
1893 | |
---|
1894 | mpz_t s_zaehler, s_nenner, temp, MwWd; |
---|
1895 | mpz_init(s_zaehler); |
---|
1896 | mpz_init(s_nenner); |
---|
1897 | mpz_init(temp); |
---|
1898 | mpz_init(MwWd); |
---|
1899 | |
---|
1900 | mpz_t sing_int; |
---|
1901 | mpz_init(sing_int); |
---|
1902 | mpz_set_si(sing_int, 2147483647); |
---|
1903 | |
---|
1904 | mpz_t sing_int_half; |
---|
1905 | mpz_init(sing_int_half); |
---|
1906 | mpz_set_si(sing_int_half, 3*(1073741824/2)); |
---|
1907 | |
---|
1908 | mpz_t deg_w0_p1, deg_d0_p1; |
---|
1909 | mpz_init(deg_w0_p1); |
---|
1910 | mpz_init(deg_d0_p1); |
---|
1911 | |
---|
1912 | mpz_t sztn, sntz; |
---|
1913 | mpz_init(sztn); |
---|
1914 | mpz_init(sntz); |
---|
1915 | |
---|
1916 | mpz_t t_null; |
---|
1917 | mpz_init(t_null); |
---|
1918 | |
---|
1919 | mpz_t ggt; |
---|
1920 | mpz_init(ggt); |
---|
1921 | |
---|
1922 | mpz_t dcw; |
---|
1923 | mpz_init(dcw); |
---|
1924 | |
---|
1925 | int gcd_tmp; |
---|
1926 | intvec* diff_weight = MivSub(target_weight, curr_weight); |
---|
1927 | |
---|
1928 | intvec* diff_weight1 = MivSub(target_weight, curr_weight); |
---|
1929 | poly g; |
---|
1930 | |
---|
1931 | for (j=0; j<nG; j++) |
---|
1932 | { |
---|
1933 | g = G->m[j]; |
---|
1934 | if (g != NULL) |
---|
1935 | { |
---|
1936 | ivtemp = MExpPol(g); |
---|
1937 | mpz_set_si(deg_w0_p1, MivDotProduct(ivtemp, curr_weight)); |
---|
1938 | mpz_set_si(deg_d0_p1, MivDotProduct(ivtemp, diff_weight)); |
---|
1939 | delete ivtemp; |
---|
1940 | |
---|
1941 | pIter(g); |
---|
1942 | while (g != NULL) |
---|
1943 | { |
---|
1944 | ivtemp = MExpPol(g); |
---|
1945 | mpz_set_si(MwWd, MivDotProduct(ivtemp, curr_weight)); |
---|
1946 | mpz_sub(s_zaehler, deg_w0_p1, MwWd); |
---|
1947 | if(mpz_cmp(s_zaehler, t_null) != 0) |
---|
1948 | { |
---|
1949 | mpz_set_si(MwWd, MivDotProduct(ivtemp, diff_weight)); |
---|
1950 | mpz_sub(s_nenner, MwWd, deg_d0_p1); |
---|
1951 | // check for 0 < s <= 1 |
---|
1952 | if( (mpz_cmp(s_zaehler,t_null) > 0 && |
---|
1953 | mpz_cmp(s_nenner, s_zaehler)>=0) || |
---|
1954 | (mpz_cmp(s_zaehler, t_null) < 0 && |
---|
1955 | mpz_cmp(s_nenner, s_zaehler)<=0)) |
---|
1956 | { |
---|
1957 | // make both positive |
---|
1958 | if (mpz_cmp(s_zaehler, t_null) < 0) |
---|
1959 | { |
---|
1960 | mpz_neg(s_zaehler, s_zaehler); |
---|
1961 | mpz_neg(s_nenner, s_nenner); |
---|
1962 | } |
---|
1963 | |
---|
1964 | //compute a simple fraction of s |
---|
1965 | cancel(s_zaehler, s_nenner); |
---|
1966 | |
---|
1967 | if(mpz_cmp(t_nenner, t_null) != 0) |
---|
1968 | { |
---|
1969 | mpz_mul(sztn, s_zaehler, t_nenner); |
---|
1970 | mpz_mul(sntz, s_nenner, t_zaehler); |
---|
1971 | |
---|
1972 | if(mpz_cmp(sztn,sntz) < 0) |
---|
1973 | { |
---|
1974 | mpz_add(t_nenner, t_null, s_nenner); |
---|
1975 | mpz_add(t_zaehler,t_null, s_zaehler); |
---|
1976 | } |
---|
1977 | } |
---|
1978 | else |
---|
1979 | { |
---|
1980 | mpz_add(t_nenner, t_null, s_nenner); |
---|
1981 | mpz_add(t_zaehler,t_null, s_zaehler); |
---|
1982 | } |
---|
1983 | } |
---|
1984 | } |
---|
1985 | pIter(g); |
---|
1986 | delete ivtemp; |
---|
1987 | } |
---|
1988 | } |
---|
1989 | } |
---|
1990 | //Print("\n// Alloc Size = %d \n", nRing*sizeof(mpz_t)); |
---|
1991 | mpz_t *vec=(mpz_t*)omAlloc(nRing*sizeof(mpz_t)); |
---|
1992 | |
---|
1993 | |
---|
1994 | // there is no 0<t<1 and define the next weight vector that is equal |
---|
1995 | // to the current weight vector |
---|
1996 | if(mpz_cmp(t_nenner, t_null) == 0) |
---|
1997 | { |
---|
1998 | #ifndef SING_NDEBUG |
---|
1999 | Print("\n//MwalkNextWeightCC: t_nenner=0\n"); |
---|
2000 | #endif |
---|
2001 | delete diff_weight; |
---|
2002 | diff_weight = ivCopy(curr_weight);//take memory |
---|
2003 | goto FINISH; |
---|
2004 | } |
---|
2005 | |
---|
2006 | // define the target vector as the next weight vector, if t = 1 |
---|
2007 | if(mpz_cmp_si(t_nenner, 1)==0 && mpz_cmp_si(t_zaehler,1)==0) |
---|
2008 | { |
---|
2009 | delete diff_weight; |
---|
2010 | diff_weight = ivCopy(target_weight); //this takes memory |
---|
2011 | goto FINISH; |
---|
2012 | } |
---|
2013 | |
---|
2014 | checkRed = 0; |
---|
2015 | |
---|
2016 | SIMPLIFY_GCD: |
---|
2017 | |
---|
2018 | // simplify the vectors curr_weight and diff_weight (C-int) |
---|
2019 | gcd_tmp = (*curr_weight)[0]; |
---|
2020 | |
---|
2021 | for (j=1; j<nRing; j++) |
---|
2022 | { |
---|
2023 | gcd_tmp = gcd(gcd_tmp, (*curr_weight)[j]); |
---|
2024 | if(gcd_tmp == 1) |
---|
2025 | { |
---|
2026 | break; |
---|
2027 | } |
---|
2028 | } |
---|
2029 | if(gcd_tmp != 1) |
---|
2030 | { |
---|
2031 | for (j=0; j<nRing; j++) |
---|
2032 | { |
---|
2033 | gcd_tmp = gcd(gcd_tmp, (*diff_weight)[j]); |
---|
2034 | if(gcd_tmp == 1) |
---|
2035 | { |
---|
2036 | break; |
---|
2037 | } |
---|
2038 | } |
---|
2039 | } |
---|
2040 | if(gcd_tmp != 1) |
---|
2041 | { |
---|
2042 | for (j=0; j<nRing; j++) |
---|
2043 | { |
---|
2044 | (*curr_weight)[j] = (*curr_weight)[j]/gcd_tmp; |
---|
2045 | (*diff_weight)[j] = (*diff_weight)[j]/gcd_tmp; |
---|
2046 | } |
---|
2047 | } |
---|
2048 | if(checkRed > 0) |
---|
2049 | { |
---|
2050 | for (j=0; j<nRing; j++) |
---|
2051 | { |
---|
2052 | mpz_set_si(vec[j], (*diff_weight)[j]); |
---|
2053 | } |
---|
2054 | goto TEST_OVERFLOW; |
---|
2055 | } |
---|
2056 | |
---|
2057 | #ifdef NEXT_VECTORS_CC |
---|
2058 | Print("\n// gcd of the weight vectors (current and target) = %d", gcd_tmp); |
---|
2059 | ivString(curr_weight, "new cw"); |
---|
2060 | ivString(diff_weight, "new dw"); |
---|
2061 | |
---|
2062 | PrintS("\n// t_zaehler: "); mpz_out_str( stdout, 10, t_zaehler); |
---|
2063 | PrintS(", t_nenner: "); mpz_out_str( stdout, 10, t_nenner); |
---|
2064 | #endif |
---|
2065 | |
---|
2066 | // construct a new weight vector and check whether vec[j] is overflow, |
---|
2067 | // i.e. vec[j] > 2^31. |
---|
2068 | // If vec[j] doesn't overflow, define a weight vector. Otherwise, |
---|
2069 | // report that overflow appears. In the second case, test whether the |
---|
2070 | // the correctness of the new vector plays an important role |
---|
2071 | |
---|
2072 | for (j=0; j<nRing; j++) |
---|
2073 | { |
---|
2074 | mpz_set_si(dcw, (*curr_weight)[j]); |
---|
2075 | mpz_mul(s_nenner, t_nenner, dcw); |
---|
2076 | |
---|
2077 | if( (*diff_weight)[j]>0) |
---|
2078 | { |
---|
2079 | mpz_mul_ui(s_zaehler, t_zaehler, (*diff_weight)[j]); |
---|
2080 | } |
---|
2081 | else |
---|
2082 | { |
---|
2083 | mpz_mul_ui(s_zaehler, t_zaehler, -(*diff_weight)[j]); |
---|
2084 | mpz_neg(s_zaehler, s_zaehler); |
---|
2085 | } |
---|
2086 | mpz_add(sntz, s_nenner, s_zaehler); |
---|
2087 | mpz_init_set(vec[j], sntz); |
---|
2088 | |
---|
2089 | #ifdef NEXT_VECTORS_CC |
---|
2090 | Print("\n// j = %d ==> ", j); |
---|
2091 | PrintS("("); |
---|
2092 | mpz_out_str( stdout, 10, t_nenner); |
---|
2093 | Print(" * %d)", (*curr_weight)[j]); |
---|
2094 | Print(" + ("); mpz_out_str( stdout, 10, t_zaehler); |
---|
2095 | Print(" * %d) = ", (*diff_weight)[j]); |
---|
2096 | mpz_out_str( stdout, 10, s_nenner); |
---|
2097 | PrintS(" + "); |
---|
2098 | mpz_out_str( stdout, 10, s_zaehler); |
---|
2099 | PrintS(" = "); mpz_out_str( stdout, 10, sntz); |
---|
2100 | Print(" ==> vector[%d]: ", j); mpz_out_str(stdout, 10, vec[j]); |
---|
2101 | #endif |
---|
2102 | |
---|
2103 | if(j==0) |
---|
2104 | { |
---|
2105 | mpz_set(ggt, sntz); |
---|
2106 | } |
---|
2107 | else |
---|
2108 | { |
---|
2109 | if(mpz_cmp_si(ggt,1) != 0) |
---|
2110 | { |
---|
2111 | mpz_gcd(ggt, ggt, sntz); |
---|
2112 | } |
---|
2113 | } |
---|
2114 | } |
---|
2115 | // reduce the vector with the gcd |
---|
2116 | if(mpz_cmp_si(ggt,1) != 0) |
---|
2117 | { |
---|
2118 | for (j=0; j<nRing; j++) |
---|
2119 | { |
---|
2120 | mpz_divexact(vec[j], vec[j], ggt); |
---|
2121 | } |
---|
2122 | } |
---|
2123 | #ifdef NEXT_VECTORS_CC |
---|
2124 | PrintS("\n// gcd of elements of the vector: "); |
---|
2125 | mpz_out_str( stdout, 10, ggt); |
---|
2126 | #endif |
---|
2127 | |
---|
2128 | for(j=0; j<nRing; j++) |
---|
2129 | { |
---|
2130 | if(mpz_cmp(vec[j], sing_int_half) >= 0) |
---|
2131 | { |
---|
2132 | goto REDUCTION; |
---|
2133 | } |
---|
2134 | } |
---|
2135 | checkRed = 1; |
---|
2136 | for (j=0; j<nRing; j++) |
---|
2137 | { |
---|
2138 | (*diff_weight)[j] = mpz_get_si(vec[j]); |
---|
2139 | } |
---|
2140 | goto SIMPLIFY_GCD; |
---|
2141 | |
---|
2142 | REDUCTION: |
---|
2143 | checkRed = 1; |
---|
2144 | for (j=0; j<nRing; j++) |
---|
2145 | { |
---|
2146 | (*diff_weight1)[j] = mpz_get_si(vec[j]); |
---|
2147 | } |
---|
2148 | while(test_w_in_ConeCC(G,diff_weight1)) |
---|
2149 | { |
---|
2150 | for(j=0; j<nRing; j++) |
---|
2151 | { |
---|
2152 | (*diff_weight)[j] = (*diff_weight1)[j]; |
---|
2153 | mpz_set_si(vec[j], (*diff_weight)[j]); |
---|
2154 | } |
---|
2155 | for(j=0; j<nRing; j++) |
---|
2156 | { |
---|
2157 | (*diff_weight1)[j] = floor(0.1*(*diff_weight)[j] + 0.5); |
---|
2158 | } |
---|
2159 | } |
---|
2160 | if(MivAbsMax(diff_weight)>10000) |
---|
2161 | { |
---|
2162 | for(j=0; j<nRing; j++) |
---|
2163 | { |
---|
2164 | (*diff_weight1)[j] = (*diff_weight)[j]; |
---|
2165 | } |
---|
2166 | j = 0; |
---|
2167 | while(test_w_in_ConeCC(G,diff_weight1)) |
---|
2168 | { |
---|
2169 | (*diff_weight)[j] = (*diff_weight1)[j]; |
---|
2170 | mpz_set_si(vec[j], (*diff_weight)[j]); |
---|
2171 | j = MivAbsMaxArg(diff_weight1); |
---|
2172 | (*diff_weight1)[j] = floor(0.1*(*diff_weight1)[j] + 0.5); |
---|
2173 | } |
---|
2174 | goto SIMPLIFY_GCD; |
---|
2175 | } |
---|
2176 | |
---|
2177 | TEST_OVERFLOW: |
---|
2178 | |
---|
2179 | for (j=0; j<nRing; j++) |
---|
2180 | { |
---|
2181 | if(mpz_cmp(vec[j], sing_int)>=0) |
---|
2182 | { |
---|
2183 | if(Overflow_Error == FALSE) |
---|
2184 | { |
---|
2185 | Overflow_Error = TRUE; |
---|
2186 | PrintS("\n// ** OVERFLOW in \"MwalkNextWeightCC\": "); |
---|
2187 | mpz_out_str( stdout, 10, vec[j]); |
---|
2188 | PrintS(" is greater than 2147483647 (max. integer representation)\n"); |
---|
2189 | //Print("// So vector[%d] := %d is wrong!!\n",j+1, vec[j]);// vec[j] is mpz_t |
---|
2190 | } |
---|
2191 | } |
---|
2192 | } |
---|
2193 | |
---|
2194 | FINISH: |
---|
2195 | delete diff_weight1; |
---|
2196 | mpz_clear(t_zaehler); |
---|
2197 | mpz_clear(t_nenner); |
---|
2198 | mpz_clear(s_zaehler); |
---|
2199 | mpz_clear(s_nenner); |
---|
2200 | mpz_clear(sntz); |
---|
2201 | mpz_clear(sztn); |
---|
2202 | mpz_clear(temp); |
---|
2203 | mpz_clear(MwWd); |
---|
2204 | mpz_clear(deg_w0_p1); |
---|
2205 | mpz_clear(deg_d0_p1); |
---|
2206 | mpz_clear(ggt); |
---|
2207 | omFree(vec); |
---|
2208 | mpz_clear(sing_int_half); |
---|
2209 | mpz_clear(sing_int); |
---|
2210 | mpz_clear(dcw); |
---|
2211 | mpz_clear(t_null); |
---|
2212 | |
---|
2213 | if(Overflow_Error == FALSE) |
---|
2214 | { |
---|
2215 | Overflow_Error = nError; |
---|
2216 | } |
---|
2217 | rComplete(currRing); |
---|
2218 | for(j=0; j<IDELEMS(G); j++) |
---|
2219 | { |
---|
2220 | poly p=G->m[j]; |
---|
2221 | while(p!=NULL) |
---|
2222 | { |
---|
2223 | p_Setm(p,currRing); |
---|
2224 | pIter(p); |
---|
2225 | } |
---|
2226 | } |
---|
2227 | return diff_weight; |
---|
2228 | } |
---|
2229 | */ |
---|
2230 | /********************************************************************** |
---|
2231 | * Compute a next weight vector between curr_weight and target_weight * |
---|
2232 | * with respect to an ideal <G>. * |
---|
2233 | **********************************************************************/ |
---|
2234 | static intvec* MwalkNextWeightCC(intvec* curr_weight, intvec* target_weight, |
---|
2235 | ideal G) |
---|
2236 | { |
---|
2237 | BOOLEAN nError = Overflow_Error; |
---|
2238 | Overflow_Error = FALSE; |
---|
2239 | |
---|
2240 | assume(currRing != NULL && curr_weight != NULL && |
---|
2241 | target_weight != NULL && G != NULL); |
---|
2242 | |
---|
2243 | int nRing = currRing->N; |
---|
2244 | int checkRed, j, nG = IDELEMS(G); |
---|
2245 | intvec* ivtemp; |
---|
2246 | |
---|
2247 | mpz_t t_zaehler, t_nenner; |
---|
2248 | mpz_init(t_zaehler); |
---|
2249 | mpz_init(t_nenner); |
---|
2250 | |
---|
2251 | mpz_t s_zaehler, s_nenner, temp, MwWd; |
---|
2252 | mpz_init(s_zaehler); |
---|
2253 | mpz_init(s_nenner); |
---|
2254 | mpz_init(temp); |
---|
2255 | mpz_init(MwWd); |
---|
2256 | |
---|
2257 | mpz_t sing_int; |
---|
2258 | mpz_init(sing_int); |
---|
2259 | mpz_set_si(sing_int, 2147483647); |
---|
2260 | |
---|
2261 | mpz_t sing_int_half; |
---|
2262 | mpz_init(sing_int_half); |
---|
2263 | mpz_set_si(sing_int_half, 3*(1073741824/2)); |
---|
2264 | |
---|
2265 | mpz_t deg_w0_p1, deg_d0_p1; |
---|
2266 | mpz_init(deg_w0_p1); |
---|
2267 | mpz_init(deg_d0_p1); |
---|
2268 | |
---|
2269 | mpz_t sztn, sntz; |
---|
2270 | mpz_init(sztn); |
---|
2271 | mpz_init(sntz); |
---|
2272 | |
---|
2273 | mpz_t t_null; |
---|
2274 | mpz_init(t_null); |
---|
2275 | |
---|
2276 | mpz_t ggt; |
---|
2277 | mpz_init(ggt); |
---|
2278 | |
---|
2279 | mpz_t dcw; |
---|
2280 | mpz_init(dcw); |
---|
2281 | |
---|
2282 | int gcd_tmp; |
---|
2283 | //intvec* diff_weight = MivSub(target_weight, curr_weight); |
---|
2284 | |
---|
2285 | intvec* diff_weight1 = new intvec(nRing); //MivSub(target_weight, curr_weight); |
---|
2286 | poly g; |
---|
2287 | |
---|
2288 | // reduce the size of the entries of the current weight vector |
---|
2289 | if(TEST_OPT_REDSB) |
---|
2290 | { |
---|
2291 | for (j=0; j<nRing; j++) |
---|
2292 | { |
---|
2293 | (*diff_weight1)[j] = (*curr_weight)[j]; |
---|
2294 | } |
---|
2295 | while(MivAbsMax(diff_weight1)>10000 && test_w_in_ConeCC(G,diff_weight1)==1) |
---|
2296 | { |
---|
2297 | for(j=0; j<nRing; j++) |
---|
2298 | { |
---|
2299 | (*curr_weight)[j] = (*diff_weight1)[j]; |
---|
2300 | } |
---|
2301 | for(j=0; j<nRing; j++) |
---|
2302 | { |
---|
2303 | (*diff_weight1)[j] = floor(0.1*(*diff_weight1)[j] + 0.5); |
---|
2304 | } |
---|
2305 | } |
---|
2306 | |
---|
2307 | if(MivAbsMax(curr_weight)>100000) |
---|
2308 | { |
---|
2309 | for(j=0; j<nRing; j++) |
---|
2310 | { |
---|
2311 | (*diff_weight1)[j] = (*curr_weight)[j]; |
---|
2312 | } |
---|
2313 | j = 0; |
---|
2314 | while(test_w_in_ConeCC(G,diff_weight1)==1 && MivAbsMax(diff_weight1)>1000) |
---|
2315 | { |
---|
2316 | (*curr_weight)[j] = (*diff_weight1)[j]; |
---|
2317 | j = MivAbsMaxArg(diff_weight1); |
---|
2318 | (*diff_weight1)[j] = floor(0.1*(*diff_weight1)[j] + 0.5); |
---|
2319 | } |
---|
2320 | } |
---|
2321 | |
---|
2322 | } |
---|
2323 | intvec* diff_weight = MivSub(target_weight, curr_weight); |
---|
2324 | |
---|
2325 | // compute a suitable next weight vector |
---|
2326 | for (j=0; j<nG; j++) |
---|
2327 | { |
---|
2328 | g = G->m[j]; |
---|
2329 | if (g != NULL) |
---|
2330 | { |
---|
2331 | ivtemp = MExpPol(g); |
---|
2332 | mpz_set_si(deg_w0_p1, MivDotProduct(ivtemp, curr_weight)); |
---|
2333 | mpz_set_si(deg_d0_p1, MivDotProduct(ivtemp, diff_weight)); |
---|
2334 | delete ivtemp; |
---|
2335 | |
---|
2336 | pIter(g); |
---|
2337 | while (g != NULL) |
---|
2338 | { |
---|
2339 | ivtemp = MExpPol(g); |
---|
2340 | mpz_set_si(MwWd, MivDotProduct(ivtemp, curr_weight)); |
---|
2341 | mpz_sub(s_zaehler, deg_w0_p1, MwWd); |
---|
2342 | if(mpz_cmp(s_zaehler, t_null) != 0) |
---|
2343 | { |
---|
2344 | mpz_set_si(MwWd, MivDotProduct(ivtemp, diff_weight)); |
---|
2345 | mpz_sub(s_nenner, MwWd, deg_d0_p1); |
---|
2346 | // check for 0 < s <= 1 |
---|
2347 | if( (mpz_cmp(s_zaehler,t_null) > 0 && |
---|
2348 | mpz_cmp(s_nenner, s_zaehler)>=0) || |
---|
2349 | (mpz_cmp(s_zaehler, t_null) < 0 && |
---|
2350 | mpz_cmp(s_nenner, s_zaehler)<=0)) |
---|
2351 | { |
---|
2352 | // make both positive |
---|
2353 | if (mpz_cmp(s_zaehler, t_null) < 0) |
---|
2354 | { |
---|
2355 | mpz_neg(s_zaehler, s_zaehler); |
---|
2356 | mpz_neg(s_nenner, s_nenner); |
---|
2357 | } |
---|
2358 | |
---|
2359 | //compute a simple fraction of s |
---|
2360 | cancel(s_zaehler, s_nenner); |
---|
2361 | |
---|
2362 | if(mpz_cmp(t_nenner, t_null) != 0) |
---|
2363 | { |
---|
2364 | mpz_mul(sztn, s_zaehler, t_nenner); |
---|
2365 | mpz_mul(sntz, s_nenner, t_zaehler); |
---|
2366 | |
---|
2367 | if(mpz_cmp(sztn,sntz) < 0) |
---|
2368 | { |
---|
2369 | mpz_add(t_nenner, t_null, s_nenner); |
---|
2370 | mpz_add(t_zaehler,t_null, s_zaehler); |
---|
2371 | } |
---|
2372 | } |
---|
2373 | else |
---|
2374 | { |
---|
2375 | mpz_add(t_nenner, t_null, s_nenner); |
---|
2376 | mpz_add(t_zaehler,t_null, s_zaehler); |
---|
2377 | } |
---|
2378 | } |
---|
2379 | } |
---|
2380 | pIter(g); |
---|
2381 | delete ivtemp; |
---|
2382 | } |
---|
2383 | } |
---|
2384 | } |
---|
2385 | //Print("\n// Alloc Size = %d \n", nRing*sizeof(mpz_t)); |
---|
2386 | mpz_t *vec=(mpz_t*)omAlloc(nRing*sizeof(mpz_t)); |
---|
2387 | |
---|
2388 | |
---|
2389 | // there is no 0<t<1 and define the next weight vector that is equal |
---|
2390 | // to the current weight vector |
---|
2391 | if(mpz_cmp(t_nenner, t_null) == 0) |
---|
2392 | { |
---|
2393 | #ifndef SING_NDEBUG |
---|
2394 | Print("\n//MwalkNextWeightCC: t_nenner=0\n"); |
---|
2395 | #endif |
---|
2396 | delete diff_weight; |
---|
2397 | diff_weight = ivCopy(curr_weight);//take memory |
---|
2398 | goto FINISH; |
---|
2399 | } |
---|
2400 | |
---|
2401 | // define the target vector as the next weight vector, if t = 1 |
---|
2402 | if(mpz_cmp_si(t_nenner, 1)==0 && mpz_cmp_si(t_zaehler,1)==0) |
---|
2403 | { |
---|
2404 | delete diff_weight; |
---|
2405 | diff_weight = ivCopy(target_weight); //this takes memory |
---|
2406 | goto FINISH; |
---|
2407 | } |
---|
2408 | |
---|
2409 | //checkRed = 0; |
---|
2410 | |
---|
2411 | SIMPLIFY_GCD: |
---|
2412 | |
---|
2413 | // simplify the vectors curr_weight and diff_weight (C-int) |
---|
2414 | gcd_tmp = (*curr_weight)[0]; |
---|
2415 | |
---|
2416 | for (j=1; j<nRing; j++) |
---|
2417 | { |
---|
2418 | gcd_tmp = gcd(gcd_tmp, (*curr_weight)[j]); |
---|
2419 | if(gcd_tmp == 1) |
---|
2420 | { |
---|
2421 | break; |
---|
2422 | } |
---|
2423 | } |
---|
2424 | if(gcd_tmp != 1) |
---|
2425 | { |
---|
2426 | for (j=0; j<nRing; j++) |
---|
2427 | { |
---|
2428 | gcd_tmp = gcd(gcd_tmp, (*diff_weight)[j]); |
---|
2429 | if(gcd_tmp == 1) |
---|
2430 | { |
---|
2431 | break; |
---|
2432 | } |
---|
2433 | } |
---|
2434 | } |
---|
2435 | if(gcd_tmp != 1) |
---|
2436 | { |
---|
2437 | for (j=0; j<nRing; j++) |
---|
2438 | { |
---|
2439 | (*curr_weight)[j] = (*curr_weight)[j]/gcd_tmp; |
---|
2440 | (*diff_weight)[j] = (*diff_weight)[j]/gcd_tmp; |
---|
2441 | } |
---|
2442 | } |
---|
2443 | if(checkRed > 0) |
---|
2444 | { |
---|
2445 | for (j=0; j<nRing; j++) |
---|
2446 | { |
---|
2447 | mpz_set_si(vec[j], (*diff_weight)[j]); |
---|
2448 | } |
---|
2449 | goto TEST_OVERFLOW; |
---|
2450 | } |
---|
2451 | |
---|
2452 | #ifdef NEXT_VECTORS_CC |
---|
2453 | Print("\n// gcd of the weight vectors (current and target) = %d", gcd_tmp); |
---|
2454 | ivString(curr_weight, "new cw"); |
---|
2455 | ivString(diff_weight, "new dw"); |
---|
2456 | |
---|
2457 | PrintS("\n// t_zaehler: "); mpz_out_str( stdout, 10, t_zaehler); |
---|
2458 | PrintS(", t_nenner: "); mpz_out_str( stdout, 10, t_nenner); |
---|
2459 | #endif |
---|
2460 | |
---|
2461 | // construct a new weight vector and check whether vec[j] is overflow, i.e. vec[j] > 2^31. |
---|
2462 | // If vec[j] doesn't overflow, define a weight vector. Otherwise, report that overflow |
---|
2463 | // appears. In the second case, test whether the the correctness of the new vector plays |
---|
2464 | // an important role |
---|
2465 | |
---|
2466 | for (j=0; j<nRing; j++) |
---|
2467 | { |
---|
2468 | mpz_set_si(dcw, (*curr_weight)[j]); |
---|
2469 | mpz_mul(s_nenner, t_nenner, dcw); |
---|
2470 | |
---|
2471 | if( (*diff_weight)[j]>0) |
---|
2472 | { |
---|
2473 | mpz_mul_ui(s_zaehler, t_zaehler, (*diff_weight)[j]); |
---|
2474 | } |
---|
2475 | else |
---|
2476 | { |
---|
2477 | mpz_mul_ui(s_zaehler, t_zaehler, -(*diff_weight)[j]); |
---|
2478 | mpz_neg(s_zaehler, s_zaehler); |
---|
2479 | } |
---|
2480 | mpz_add(sntz, s_nenner, s_zaehler); |
---|
2481 | mpz_init_set(vec[j], sntz); |
---|
2482 | |
---|
2483 | #ifdef NEXT_VECTORS_CC |
---|
2484 | Print("\n// j = %d ==> ", j); |
---|
2485 | PrintS("("); |
---|
2486 | mpz_out_str( stdout, 10, t_nenner); |
---|
2487 | Print(" * %d)", (*curr_weight)[j]); |
---|
2488 | Print(" + ("); mpz_out_str( stdout, 10, t_zaehler); |
---|
2489 | Print(" * %d) = ", (*diff_weight)[j]); |
---|
2490 | mpz_out_str( stdout, 10, s_nenner); |
---|
2491 | PrintS(" + "); |
---|
2492 | mpz_out_str( stdout, 10, s_zaehler); |
---|
2493 | PrintS(" = "); mpz_out_str( stdout, 10, sntz); |
---|
2494 | Print(" ==> vector[%d]: ", j); mpz_out_str(stdout, 10, vec[j]); |
---|
2495 | #endif |
---|
2496 | |
---|
2497 | if(j==0) |
---|
2498 | { |
---|
2499 | mpz_set(ggt, sntz); |
---|
2500 | } |
---|
2501 | else |
---|
2502 | { |
---|
2503 | if(mpz_cmp_si(ggt,1) != 0) |
---|
2504 | { |
---|
2505 | mpz_gcd(ggt, ggt, sntz); |
---|
2506 | } |
---|
2507 | } |
---|
2508 | } |
---|
2509 | // reduce the vector with the gcd |
---|
2510 | if(mpz_cmp_si(ggt,1) != 0) |
---|
2511 | { |
---|
2512 | for (j=0; j<nRing; j++) |
---|
2513 | { |
---|
2514 | mpz_divexact(vec[j], vec[j], ggt); |
---|
2515 | } |
---|
2516 | } |
---|
2517 | #ifdef NEXT_VECTORS_CC |
---|
2518 | PrintS("\n// gcd of elements of the vector: "); |
---|
2519 | mpz_out_str( stdout, 10, ggt); |
---|
2520 | #endif |
---|
2521 | |
---|
2522 | for (j=0; j<nRing; j++) |
---|
2523 | { |
---|
2524 | (*diff_weight)[j] = mpz_get_si(vec[j]); |
---|
2525 | } |
---|
2526 | |
---|
2527 | TEST_OVERFLOW: |
---|
2528 | |
---|
2529 | for (j=0; j<nRing; j++) |
---|
2530 | { |
---|
2531 | if(mpz_cmp(vec[j], sing_int)>=0) |
---|
2532 | { |
---|
2533 | if(Overflow_Error == FALSE) |
---|
2534 | { |
---|
2535 | Overflow_Error = TRUE; |
---|
2536 | PrintS("\n// ** OVERFLOW in \"MwalkNextWeightCC\": "); |
---|
2537 | mpz_out_str( stdout, 10, vec[j]); |
---|
2538 | PrintS(" is greater than 2147483647 (max. integer representation)\n"); |
---|
2539 | Print("// So vector[%d] := %d is wrong!!\n",j+1, vec[j]);// vec[j] is mpz_t |
---|
2540 | } |
---|
2541 | } |
---|
2542 | } |
---|
2543 | |
---|
2544 | FINISH: |
---|
2545 | delete diff_weight1; |
---|
2546 | mpz_clear(t_zaehler); |
---|
2547 | mpz_clear(t_nenner); |
---|
2548 | mpz_clear(s_zaehler); |
---|
2549 | mpz_clear(s_nenner); |
---|
2550 | mpz_clear(sntz); |
---|
2551 | mpz_clear(sztn); |
---|
2552 | mpz_clear(temp); |
---|
2553 | mpz_clear(MwWd); |
---|
2554 | mpz_clear(deg_w0_p1); |
---|
2555 | mpz_clear(deg_d0_p1); |
---|
2556 | mpz_clear(ggt); |
---|
2557 | omFree(vec); |
---|
2558 | mpz_clear(sing_int_half); |
---|
2559 | mpz_clear(sing_int); |
---|
2560 | mpz_clear(dcw); |
---|
2561 | mpz_clear(t_null); |
---|
2562 | |
---|
2563 | if(Overflow_Error == FALSE) |
---|
2564 | { |
---|
2565 | Overflow_Error = nError; |
---|
2566 | } |
---|
2567 | rComplete(currRing); |
---|
2568 | for(j=0; j<IDELEMS(G); j++) |
---|
2569 | { |
---|
2570 | poly p=G->m[j]; |
---|
2571 | while(p!=NULL) |
---|
2572 | { |
---|
2573 | p_Setm(p,currRing); |
---|
2574 | pIter(p); |
---|
2575 | } |
---|
2576 | } |
---|
2577 | return diff_weight; |
---|
2578 | } |
---|
2579 | |
---|
2580 | |
---|
2581 | /********************************************************************** |
---|
2582 | * Compute an intermediate weight vector from iva to ivb w.r.t. * |
---|
2583 | * the reduced Groebner basis G. * |
---|
2584 | * Return NULL, if it is equal to iva or iva = avb. * |
---|
2585 | **********************************************************************/ |
---|
2586 | intvec* MkInterRedNextWeight(intvec* iva, intvec* ivb, ideal G) |
---|
2587 | { |
---|
2588 | intvec* tmp = new intvec(iva->length()); |
---|
2589 | intvec* result; |
---|
2590 | |
---|
2591 | if(G == NULL) |
---|
2592 | { |
---|
2593 | return tmp; |
---|
2594 | } |
---|
2595 | if(MivComp(iva, ivb) == 1) |
---|
2596 | { |
---|
2597 | return tmp; |
---|
2598 | } |
---|
2599 | result = MwalkNextWeightCC(iva, ivb, G); |
---|
2600 | |
---|
2601 | if(MivComp(result, iva) == 1) |
---|
2602 | { |
---|
2603 | delete result; |
---|
2604 | return tmp; |
---|
2605 | } |
---|
2606 | |
---|
2607 | delete tmp; |
---|
2608 | return result; |
---|
2609 | } |
---|
2610 | |
---|
2611 | /******************************************************************** |
---|
2612 | * define and execute a new ring which order is (a(vb),a(va),lp,C) * |
---|
2613 | * ******************************************************************/ |
---|
2614 | static void VMrHomogeneous(intvec* va, intvec* vb) |
---|
2615 | { |
---|
2616 | |
---|
2617 | if ((currRing->ppNoether)!=NULL) |
---|
2618 | { |
---|
2619 | pDelete(&(currRing->ppNoether)); |
---|
2620 | } |
---|
2621 | if (((sLastPrinted.rtyp>BEGIN_RING) && (sLastPrinted.rtyp<END_RING)) || |
---|
2622 | ((sLastPrinted.rtyp==LIST_CMD)&&(lRingDependend((lists)sLastPrinted.data)))) |
---|
2623 | { |
---|
2624 | sLastPrinted.CleanUp(); |
---|
2625 | } |
---|
2626 | |
---|
2627 | ring r = (ring) omAlloc0Bin(sip_sring_bin); |
---|
2628 | int i, nv = currRing->N; |
---|
2629 | |
---|
2630 | r->cf = currRing->cf; |
---|
2631 | r->N = currRing->N; |
---|
2632 | int nb = 4; |
---|
2633 | |
---|
2634 | |
---|
2635 | //names |
---|
2636 | char* Q; // In order to avoid the corrupted memory, do not change. |
---|
2637 | r->names = (char **) omAlloc0(nv * sizeof(char_ptr)); |
---|
2638 | for(i=0; i<nv; i++) |
---|
2639 | { |
---|
2640 | Q = currRing->names[i]; |
---|
2641 | r->names[i] = omStrDup(Q); |
---|
2642 | } |
---|
2643 | |
---|
2644 | //weights: entries for 3 blocks: NULL Made:??? |
---|
2645 | r->wvhdl = (int **)omAlloc0(nb * sizeof(int_ptr)); |
---|
2646 | r->wvhdl[0] = (int*) omAlloc(nv*sizeof(int)); |
---|
2647 | r->wvhdl[1] = (int*) omAlloc((nv-1)*sizeof(int)); |
---|
2648 | |
---|
2649 | for(i=0; i<nv-1; i++) |
---|
2650 | { |
---|
2651 | r->wvhdl[1][i] = (*vb)[i]; |
---|
2652 | r->wvhdl[0][i] = (*va)[i]; |
---|
2653 | } |
---|
2654 | r->wvhdl[0][nv] = (*va)[nv]; |
---|
2655 | |
---|
2656 | // order: (1..1),a,lp,C |
---|
2657 | r->order = (int *) omAlloc(nb * sizeof(int *)); |
---|
2658 | r->block0 = (int *)omAlloc0(nb * sizeof(int *)); |
---|
2659 | r->block1 = (int *)omAlloc0(nb * sizeof(int *)); |
---|
2660 | |
---|
2661 | // ringorder a for the first block: var 1..nv |
---|
2662 | r->order[0] = ringorder_a; |
---|
2663 | r->block0[0] = 1; |
---|
2664 | r->block1[0] = nv; |
---|
2665 | |
---|
2666 | // ringorder a for the second block: var 2..nv |
---|
2667 | r->order[1] = ringorder_a; |
---|
2668 | r->block0[1] = 2; |
---|
2669 | r->block1[1] = nv; |
---|
2670 | |
---|
2671 | // ringorder lp for the third block: var 2..nv |
---|
2672 | r->order[2] = ringorder_lp; |
---|
2673 | r->block0[2] = 2; |
---|
2674 | r->block1[2] = nv; |
---|
2675 | |
---|
2676 | // ringorder C for the 4th block |
---|
2677 | // it is very important within "idLift", |
---|
2678 | // especially, by ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
2679 | // therefore, nb must be (nBlocks(currRing) + 1) |
---|
2680 | r->order[3] = ringorder_C; |
---|
2681 | |
---|
2682 | // polynomial ring |
---|
2683 | r->OrdSgn = 1; |
---|
2684 | |
---|
2685 | // complete ring intializations |
---|
2686 | |
---|
2687 | rComplete(r); |
---|
2688 | |
---|
2689 | rChangeCurrRing(r); |
---|
2690 | } |
---|
2691 | |
---|
2692 | |
---|
2693 | /************************************************************** |
---|
2694 | * define and execute a new ring which order is (a(va),lp,C) * |
---|
2695 | * ************************************************************/ |
---|
2696 | static ring VMrDefault(intvec* va) |
---|
2697 | { |
---|
2698 | |
---|
2699 | if ((currRing->ppNoether)!=NULL) |
---|
2700 | { |
---|
2701 | pDelete(&(currRing->ppNoether)); |
---|
2702 | } |
---|
2703 | if (((sLastPrinted.rtyp>BEGIN_RING) && (sLastPrinted.rtyp<END_RING)) || |
---|
2704 | ((sLastPrinted.rtyp==LIST_CMD)&&(lRingDependend((lists)sLastPrinted.data)))) |
---|
2705 | { |
---|
2706 | sLastPrinted.CleanUp(); |
---|
2707 | } |
---|
2708 | |
---|
2709 | ring r = (ring) omAlloc0Bin(sip_sring_bin); |
---|
2710 | int i, nv = currRing->N; |
---|
2711 | |
---|
2712 | r->cf = currRing->cf; |
---|
2713 | r->N = currRing->N; |
---|
2714 | |
---|
2715 | int nb = 4; |
---|
2716 | |
---|
2717 | //names |
---|
2718 | char* Q; // In order to avoid the corrupted memory, do not change. |
---|
2719 | r->names = (char **) omAlloc0(nv * sizeof(char_ptr)); |
---|
2720 | for(i=0; i<nv; i++) |
---|
2721 | { |
---|
2722 | Q = currRing->names[i]; |
---|
2723 | r->names[i] = omStrDup(Q); |
---|
2724 | } |
---|
2725 | |
---|
2726 | /*weights: entries for 3 blocks: NULL Made:???*/ |
---|
2727 | r->wvhdl = (int **)omAlloc0(nb * sizeof(int_ptr)); |
---|
2728 | r->wvhdl[0] = (int*) omAlloc(nv*sizeof(int)); |
---|
2729 | for(i=0; i<nv; i++) |
---|
2730 | r->wvhdl[0][i] = (*va)[i]; |
---|
2731 | |
---|
2732 | /* order: a,lp,C,0 */ |
---|
2733 | r->order = (int *) omAlloc(nb * sizeof(int *)); |
---|
2734 | r->block0 = (int *)omAlloc0(nb * sizeof(int *)); |
---|
2735 | r->block1 = (int *)omAlloc0(nb * sizeof(int *)); |
---|
2736 | |
---|
2737 | // ringorder a for the first block: var 1..nv |
---|
2738 | r->order[0] = ringorder_a; |
---|
2739 | r->block0[0] = 1; |
---|
2740 | r->block1[0] = nv; |
---|
2741 | |
---|
2742 | // ringorder lp for the second block: var 1..nv |
---|
2743 | r->order[1] = ringorder_lp; |
---|
2744 | r->block0[1] = 1; |
---|
2745 | r->block1[1] = nv; |
---|
2746 | |
---|
2747 | // ringorder C for the third block |
---|
2748 | // it is very important within "idLift", |
---|
2749 | // especially, by ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
2750 | // therefore, nb must be (nBlocks(currRing) + 1) |
---|
2751 | r->order[2] = ringorder_C; |
---|
2752 | |
---|
2753 | // the last block: everything is 0 |
---|
2754 | r->order[3] = 0; |
---|
2755 | |
---|
2756 | // polynomial ring |
---|
2757 | r->OrdSgn = 1; |
---|
2758 | |
---|
2759 | // complete ring intializations |
---|
2760 | |
---|
2761 | rComplete(r); |
---|
2762 | return r; |
---|
2763 | //rChangeCurrRing(r); |
---|
2764 | } |
---|
2765 | |
---|
2766 | /**************************************************************** |
---|
2767 | * define and execute a new ring with ordering (a(va),Wp(vb),C) * |
---|
2768 | * **************************************************************/ |
---|
2769 | static ring VMrRefine(intvec* va, intvec* vb) |
---|
2770 | { |
---|
2771 | |
---|
2772 | if ((currRing->ppNoether)!=NULL) |
---|
2773 | { |
---|
2774 | pDelete(&(currRing->ppNoether)); |
---|
2775 | } |
---|
2776 | if (((sLastPrinted.rtyp>BEGIN_RING) && (sLastPrinted.rtyp<END_RING)) || |
---|
2777 | ((sLastPrinted.rtyp==LIST_CMD)&&(lRingDependend((lists)sLastPrinted.data)))) |
---|
2778 | { |
---|
2779 | sLastPrinted.CleanUp(); |
---|
2780 | } |
---|
2781 | |
---|
2782 | ring r = (ring) omAlloc0Bin(sip_sring_bin); |
---|
2783 | int i, nv = currRing->N; |
---|
2784 | |
---|
2785 | r->cf = currRing->cf; |
---|
2786 | r->N = currRing->N; |
---|
2787 | //int nb = nBlocks(currRing) + 1; |
---|
2788 | int nb = 4; |
---|
2789 | |
---|
2790 | //names |
---|
2791 | char* Q; // In order to avoid the corrupted memory, do not change. |
---|
2792 | r->names = (char **) omAlloc0(nv * sizeof(char_ptr)); |
---|
2793 | for(i=0; i<nv; i++) |
---|
2794 | { |
---|
2795 | Q = currRing->names[i]; |
---|
2796 | r->names[i] = omStrDup(Q); |
---|
2797 | } |
---|
2798 | |
---|
2799 | //weights: entries for 3 blocks: NULL Made:??? |
---|
2800 | r->wvhdl = (int **)omAlloc0(nb * sizeof(int_ptr)); |
---|
2801 | r->wvhdl[0] = (int*) omAlloc(nv*sizeof(int)); |
---|
2802 | r->wvhdl[1] = (int*) omAlloc(nv*sizeof(int)); |
---|
2803 | |
---|
2804 | for(i=0; i<nv; i++) |
---|
2805 | { |
---|
2806 | r->wvhdl[0][i] = (*va)[i]; |
---|
2807 | r->wvhdl[1][i] = (*vb)[i]; |
---|
2808 | } |
---|
2809 | r->wvhdl[2]=NULL; |
---|
2810 | r->wvhdl[3]=NULL; |
---|
2811 | |
---|
2812 | // order: (1..1),a,lp,C |
---|
2813 | r->order = (int *) omAlloc(nb * sizeof(int *)); |
---|
2814 | r->block0 = (int *)omAlloc0(nb * sizeof(int *)); |
---|
2815 | r->block1 = (int *)omAlloc0(nb * sizeof(int *)); |
---|
2816 | |
---|
2817 | // ringorder a for the first block: var 1..nv |
---|
2818 | r->order[0] = ringorder_a; |
---|
2819 | r->block0[0] = 1; |
---|
2820 | r->block1[0] = nv; |
---|
2821 | |
---|
2822 | // ringorder Wp for the second block: var 1..nv |
---|
2823 | r->order[1] = ringorder_Wp; |
---|
2824 | r->block0[1] = 1; |
---|
2825 | r->block1[1] = nv; |
---|
2826 | |
---|
2827 | // ringorder lp for the third block: var 1..nv |
---|
2828 | r->order[2] = ringorder_C; |
---|
2829 | r->block0[2] = 1; |
---|
2830 | r->block1[2] = nv; |
---|
2831 | |
---|
2832 | // ringorder C for the 4th block |
---|
2833 | // it is very important within "idLift", |
---|
2834 | // especially, by ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
2835 | // therefore, nb must be (nBlocks(currRing) + 1) |
---|
2836 | r->order[3] = 0; |
---|
2837 | |
---|
2838 | // polynomial ring |
---|
2839 | r->OrdSgn = 1; |
---|
2840 | |
---|
2841 | // complete ring intializations |
---|
2842 | |
---|
2843 | rComplete(r); |
---|
2844 | |
---|
2845 | //rChangeCurrRing(r); |
---|
2846 | return r; |
---|
2847 | } |
---|
2848 | |
---|
2849 | /***************************************************** |
---|
2850 | * define and execute a new ring with ordering (M,C) * |
---|
2851 | *****************************************************/ |
---|
2852 | static ring VMatrDefault(intvec* va) |
---|
2853 | { |
---|
2854 | |
---|
2855 | if ((currRing->ppNoether)!=NULL) |
---|
2856 | { |
---|
2857 | pDelete(&(currRing->ppNoether)); |
---|
2858 | } |
---|
2859 | if (((sLastPrinted.rtyp>BEGIN_RING) && (sLastPrinted.rtyp<END_RING)) || |
---|
2860 | ((sLastPrinted.rtyp==LIST_CMD)&&(lRingDependend((lists)sLastPrinted.data)))) |
---|
2861 | { |
---|
2862 | sLastPrinted.CleanUp(); |
---|
2863 | } |
---|
2864 | |
---|
2865 | ring r = (ring) omAlloc0Bin(sip_sring_bin); |
---|
2866 | int i, nv = currRing->N; |
---|
2867 | |
---|
2868 | r->cf = currRing->cf; |
---|
2869 | r->N = currRing->N; |
---|
2870 | |
---|
2871 | int nb = 4; |
---|
2872 | |
---|
2873 | //names |
---|
2874 | char* Q; // In order to avoid the corrupted memory, do not change. |
---|
2875 | r->names = (char **) omAlloc0(nv * sizeof(char_ptr)); |
---|
2876 | for(i=0; i<nv; i++) |
---|
2877 | { |
---|
2878 | Q = currRing->names[i]; |
---|
2879 | r->names[i] = omStrDup(Q); |
---|
2880 | } |
---|
2881 | |
---|
2882 | /*weights: entries for 3 blocks: NULL Made:???*/ |
---|
2883 | r->wvhdl = (int **)omAlloc0(nb * sizeof(int_ptr)); |
---|
2884 | r->wvhdl[0] = (int*) omAlloc(nv*nv*sizeof(int)); |
---|
2885 | r->wvhdl[1] =NULL; // (int*) omAlloc(nv*sizeof(int)); |
---|
2886 | r->wvhdl[2]=NULL; |
---|
2887 | r->wvhdl[3]=NULL; |
---|
2888 | for(i=0; i<nv*nv; i++) |
---|
2889 | r->wvhdl[0][i] = (*va)[i]; |
---|
2890 | |
---|
2891 | /* order: a,lp,C,0 */ |
---|
2892 | r->order = (int *) omAlloc(nb * sizeof(int *)); |
---|
2893 | r->block0 = (int *)omAlloc0(nb * sizeof(int *)); |
---|
2894 | r->block1 = (int *)omAlloc0(nb * sizeof(int *)); |
---|
2895 | |
---|
2896 | // ringorder a for the first block: var 1..nv |
---|
2897 | r->order[0] = ringorder_M; |
---|
2898 | r->block0[0] = 1; |
---|
2899 | r->block1[0] = nv; |
---|
2900 | |
---|
2901 | // ringorder C for the second block |
---|
2902 | r->order[1] = ringorder_C; |
---|
2903 | r->block0[1] = 1; |
---|
2904 | r->block1[1] = nv; |
---|
2905 | |
---|
2906 | |
---|
2907 | // ringorder C for the third block: var 1..nv |
---|
2908 | r->order[2] = ringorder_C; |
---|
2909 | r->block0[2] = 1; |
---|
2910 | r->block1[2] = nv; |
---|
2911 | |
---|
2912 | |
---|
2913 | // the last block: everything is 0 |
---|
2914 | r->order[3] = 0; |
---|
2915 | |
---|
2916 | // polynomial ring |
---|
2917 | r->OrdSgn = 1; |
---|
2918 | |
---|
2919 | // complete ring intializations |
---|
2920 | |
---|
2921 | rComplete(r); |
---|
2922 | |
---|
2923 | //rChangeCurrRing(r); |
---|
2924 | return r; |
---|
2925 | } |
---|
2926 | |
---|
2927 | /*********************************************************** |
---|
2928 | * define and execute a new ring with ordering (a(vb),M,C) * |
---|
2929 | ***********************************************************/ |
---|
2930 | static ring VMatrRefine(intvec* va, intvec* vb) |
---|
2931 | { |
---|
2932 | |
---|
2933 | if ((currRing->ppNoether)!=NULL) |
---|
2934 | { |
---|
2935 | pDelete(&(currRing->ppNoether)); |
---|
2936 | } |
---|
2937 | if (((sLastPrinted.rtyp>BEGIN_RING) && (sLastPrinted.rtyp<END_RING)) || |
---|
2938 | ((sLastPrinted.rtyp==LIST_CMD)&&(lRingDependend((lists)sLastPrinted.data)))) |
---|
2939 | { |
---|
2940 | sLastPrinted.CleanUp(); |
---|
2941 | } |
---|
2942 | |
---|
2943 | ring r = (ring) omAlloc0Bin(sip_sring_bin); |
---|
2944 | int i, nv = currRing->N; |
---|
2945 | int nvs = nv*nv; |
---|
2946 | r->cf = currRing->cf; |
---|
2947 | r->N = currRing->N; |
---|
2948 | |
---|
2949 | int nb = 4; |
---|
2950 | |
---|
2951 | //names |
---|
2952 | char* Q; // In order to avoid the corrupted memory, do not change. |
---|
2953 | r->names = (char **) omAlloc0(nv * sizeof(char_ptr)); |
---|
2954 | for(i=0; i<nv; i++) |
---|
2955 | { |
---|
2956 | Q = currRing->names[i]; |
---|
2957 | r->names[i] = omStrDup(Q); |
---|
2958 | } |
---|
2959 | |
---|
2960 | /*weights: entries for 3 blocks: NULL Made:???*/ |
---|
2961 | r->wvhdl = (int **)omAlloc0(nb * sizeof(int_ptr)); |
---|
2962 | r->wvhdl[0] = (int*) omAlloc(nv*sizeof(int)); |
---|
2963 | r->wvhdl[1] = (int*) omAlloc(nvs*sizeof(int)); |
---|
2964 | r->wvhdl[2]=NULL; |
---|
2965 | r->wvhdl[3]=NULL; |
---|
2966 | for(i=0; i<nvs; i++) |
---|
2967 | { |
---|
2968 | r->wvhdl[1][i] = (*va)[i]; |
---|
2969 | } |
---|
2970 | for(i=0; i<nv; i++) |
---|
2971 | { |
---|
2972 | r->wvhdl[0][i] = (*vb)[i]; |
---|
2973 | } |
---|
2974 | /* order: a,lp,C,0 */ |
---|
2975 | r->order = (int *) omAlloc(nb * sizeof(int *)); |
---|
2976 | r->block0 = (int *)omAlloc0(nb * sizeof(int *)); |
---|
2977 | r->block1 = (int *)omAlloc0(nb * sizeof(int *)); |
---|
2978 | |
---|
2979 | // ringorder a for the first block: var 1..nv |
---|
2980 | r->order[0] = ringorder_a; |
---|
2981 | r->block0[0] = 1; |
---|
2982 | r->block1[0] = nv; |
---|
2983 | |
---|
2984 | // ringorder M for the second block: var 1..nv |
---|
2985 | r->order[1] = ringorder_M; |
---|
2986 | r->block0[1] = 1; |
---|
2987 | r->block1[1] = nv; |
---|
2988 | |
---|
2989 | // ringorder C for the third block: var 1..nv |
---|
2990 | r->order[2] = ringorder_C; |
---|
2991 | r->block0[2] = 1; |
---|
2992 | r->block1[2] = nv; |
---|
2993 | |
---|
2994 | |
---|
2995 | // the last block: everything is 0 |
---|
2996 | r->order[3] = 0; |
---|
2997 | |
---|
2998 | // polynomial ring |
---|
2999 | r->OrdSgn = 1; |
---|
3000 | |
---|
3001 | // complete ring intializations |
---|
3002 | |
---|
3003 | rComplete(r); |
---|
3004 | |
---|
3005 | //rChangeCurrRing(r); |
---|
3006 | return r; |
---|
3007 | } |
---|
3008 | |
---|
3009 | /********************************************************************** |
---|
3010 | * define and execute a new ring which order is a lexicographic order * |
---|
3011 | ***********************************************************************/ |
---|
3012 | static void VMrDefaultlp(void) |
---|
3013 | { |
---|
3014 | |
---|
3015 | if ((currRing->ppNoether)!=NULL) |
---|
3016 | { |
---|
3017 | pDelete(&(currRing->ppNoether)); |
---|
3018 | } |
---|
3019 | if (((sLastPrinted.rtyp>BEGIN_RING) && (sLastPrinted.rtyp<END_RING)) || |
---|
3020 | ((sLastPrinted.rtyp==LIST_CMD)&&(lRingDependend((lists)sLastPrinted.data)))) |
---|
3021 | |
---|
3022 | { |
---|
3023 | sLastPrinted.CleanUp(); |
---|
3024 | } |
---|
3025 | |
---|
3026 | ring r = (ring) omAlloc0Bin(sip_sring_bin); |
---|
3027 | int i, nv = currRing->N; |
---|
3028 | |
---|
3029 | r->cf = currRing->cf; |
---|
3030 | r->N = currRing->N; |
---|
3031 | int nb = rBlocks(currRing) + 1; |
---|
3032 | |
---|
3033 | // names |
---|
3034 | char* Q; // to avoid the corrupted memory, do not change!! |
---|
3035 | r->names = (char **) omAlloc0(nv * sizeof(char_ptr)); |
---|
3036 | for(i=0; i<nv; i++) |
---|
3037 | { |
---|
3038 | Q = currRing->names[i]; |
---|
3039 | r->names[i] = omStrDup(Q); |
---|
3040 | } |
---|
3041 | |
---|
3042 | /*weights: entries for 3 blocks: NULL Made:???*/ |
---|
3043 | |
---|
3044 | r->wvhdl = (int **)omAlloc0(nb * sizeof(int_ptr)); |
---|
3045 | |
---|
3046 | /* order: lp,C,0 */ |
---|
3047 | r->order = (int *) omAlloc(nb * sizeof(int *)); |
---|
3048 | r->block0 = (int *)omAlloc0(nb * sizeof(int *)); |
---|
3049 | r->block1 = (int *)omAlloc0(nb * sizeof(int *)); |
---|
3050 | |
---|
3051 | /* ringorder lp for the first block: var 1..nv */ |
---|
3052 | r->order[0] = ringorder_lp; |
---|
3053 | r->block0[0] = 1; |
---|
3054 | r->block1[0] = nv; |
---|
3055 | |
---|
3056 | /* ringorder C for the second block */ |
---|
3057 | r->order[1] = ringorder_C; |
---|
3058 | |
---|
3059 | /* the last block: everything is 0 */ |
---|
3060 | r->order[2] = 0; |
---|
3061 | |
---|
3062 | /*polynomial ring*/ |
---|
3063 | r->OrdSgn = 1; |
---|
3064 | |
---|
3065 | /* complete ring intializations */ |
---|
3066 | |
---|
3067 | rComplete(r); |
---|
3068 | |
---|
3069 | rChangeCurrRing(r); |
---|
3070 | } |
---|
3071 | |
---|
3072 | /*************************************************** |
---|
3073 | * define a ring with parameters und change to it * |
---|
3074 | * DefRingPar and DefRingParlp corrupt still memory * |
---|
3075 | ****************************************************/ |
---|
3076 | static void DefRingPar(intvec* va) |
---|
3077 | { |
---|
3078 | int i, nv = currRing->N; |
---|
3079 | int nb = rBlocks(currRing) + 1; |
---|
3080 | |
---|
3081 | ring res=(ring)omAllocBin(sip_sring_bin); |
---|
3082 | |
---|
3083 | memcpy(res,currRing,sizeof(ip_sring)); |
---|
3084 | |
---|
3085 | res->VarOffset = NULL; |
---|
3086 | res->ref=0; |
---|
3087 | |
---|
3088 | res->cf = currRing->cf; currRing->cf->ref++; |
---|
3089 | |
---|
3090 | |
---|
3091 | /*weights: entries for 3 blocks: NULL Made:???*/ |
---|
3092 | res->wvhdl = (int **)omAlloc0(nb * sizeof(int_ptr)); |
---|
3093 | res->wvhdl[0] = (int*) omAlloc(nv*sizeof(int)); |
---|
3094 | for(i=0; i<nv; i++) |
---|
3095 | res->wvhdl[0][i] = (*va)[i]; |
---|
3096 | |
---|
3097 | /* order: a,lp,C,0 */ |
---|
3098 | |
---|
3099 | res->order = (int *) omAlloc(nb * sizeof(int *)); |
---|
3100 | res->block0 = (int *)omAlloc0(nb * sizeof(int *)); |
---|
3101 | res->block1 = (int *)omAlloc0(nb * sizeof(int *)); |
---|
3102 | |
---|
3103 | // ringorder a for the first block: var 1..nv |
---|
3104 | res->order[0] = ringorder_a; |
---|
3105 | res->block0[0] = 1; |
---|
3106 | res->block1[0] = nv; |
---|
3107 | |
---|
3108 | // ringorder lp for the second block: var 1..nv |
---|
3109 | res->order[1] = ringorder_lp; |
---|
3110 | res->block0[1] = 1; |
---|
3111 | res->block1[1] = nv; |
---|
3112 | |
---|
3113 | // ringorder C for the third block |
---|
3114 | // it is very important within "idLift", |
---|
3115 | // especially, by ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
3116 | // therefore, nb must be (nBlocks(currRing) + 1) |
---|
3117 | res->order[2] = ringorder_C; |
---|
3118 | |
---|
3119 | // the last block: everything is 0 |
---|
3120 | res->order[3] = 0; |
---|
3121 | |
---|
3122 | // polynomial ring |
---|
3123 | res->OrdSgn = 1; |
---|
3124 | |
---|
3125 | |
---|
3126 | res->names = (char **)omAlloc0(nv * sizeof(char_ptr)); |
---|
3127 | for (i=nv-1; i>=0; i--) |
---|
3128 | { |
---|
3129 | res->names[i] = omStrDup(currRing->names[i]); |
---|
3130 | } |
---|
3131 | // complete ring intializations |
---|
3132 | rComplete(res); |
---|
3133 | |
---|
3134 | // clean up history |
---|
3135 | if (sLastPrinted.RingDependend()) |
---|
3136 | { |
---|
3137 | sLastPrinted.CleanUp(); |
---|
3138 | } |
---|
3139 | |
---|
3140 | |
---|
3141 | // execute the created ring |
---|
3142 | rChangeCurrRing(res); |
---|
3143 | } |
---|
3144 | |
---|
3145 | |
---|
3146 | static void DefRingParlp(void) |
---|
3147 | { |
---|
3148 | int i, nv = currRing->N; |
---|
3149 | |
---|
3150 | ring r=(ring)omAllocBin(sip_sring_bin); |
---|
3151 | |
---|
3152 | memcpy(r,currRing,sizeof(ip_sring)); |
---|
3153 | |
---|
3154 | r->VarOffset = NULL; |
---|
3155 | r->ref=0; |
---|
3156 | |
---|
3157 | r->cf = currRing->cf; currRing->cf->ref++; |
---|
3158 | |
---|
3159 | |
---|
3160 | r->cf = currRing->cf; |
---|
3161 | r->N = currRing->N; |
---|
3162 | int nb = rBlocks(currRing) + 1; |
---|
3163 | |
---|
3164 | // names |
---|
3165 | char* Q; |
---|
3166 | r->names = (char **) omAlloc0(nv * sizeof(char_ptr)); |
---|
3167 | for(i=nv-1; i>=0; i--) |
---|
3168 | { |
---|
3169 | Q = currRing->names[i]; |
---|
3170 | r->names[i] = omStrDup(Q); |
---|
3171 | } |
---|
3172 | |
---|
3173 | /*weights: entries for 3 blocks: NULL Made:???*/ |
---|
3174 | |
---|
3175 | r->wvhdl = (int **)omAlloc0(nb * sizeof(int_ptr)); |
---|
3176 | |
---|
3177 | /* order: lp,C,0 */ |
---|
3178 | r->order = (int *) omAlloc(nb * sizeof(int *)); |
---|
3179 | r->block0 = (int *)omAlloc0(nb * sizeof(int *)); |
---|
3180 | r->block1 = (int *)omAlloc0(nb * sizeof(int *)); |
---|
3181 | |
---|
3182 | /* ringorder lp for the first block: var 1..nv */ |
---|
3183 | r->order[0] = ringorder_lp; |
---|
3184 | r->block0[0] = 1; |
---|
3185 | r->block1[0] = nv; |
---|
3186 | |
---|
3187 | /* ringorder C for the second block */ |
---|
3188 | r->order[1] = ringorder_C; |
---|
3189 | |
---|
3190 | /* the last block: everything is 0 */ |
---|
3191 | r->order[2] = 0; |
---|
3192 | |
---|
3193 | /*polynomial ring*/ |
---|
3194 | r->OrdSgn = 1; |
---|
3195 | |
---|
3196 | |
---|
3197 | // if (rParameter(currRing)!=NULL) |
---|
3198 | // { |
---|
3199 | // r->cf->extRing->qideal->m[0]=p_Copy(currRing->cf->extRing->qideal->m[0], currRing->cf->extRing); |
---|
3200 | // int l=rPar(currRing); |
---|
3201 | // r->cf->extRing->names=(char **)omAlloc(l*sizeof(char_ptr)); |
---|
3202 | // |
---|
3203 | // for(i=l-1;i>=0;i--) |
---|
3204 | // { |
---|
3205 | // rParameter(r)[i]=omStrDup(rParameter(currRing)[i]); |
---|
3206 | // } |
---|
3207 | // } |
---|
3208 | |
---|
3209 | // complete ring intializations |
---|
3210 | |
---|
3211 | rComplete(r); |
---|
3212 | |
---|
3213 | // clean up history |
---|
3214 | if (sLastPrinted.RingDependend()) |
---|
3215 | { |
---|
3216 | sLastPrinted.CleanUp(); |
---|
3217 | } |
---|
3218 | |
---|
3219 | // execute the created ring |
---|
3220 | rChangeCurrRing(r); |
---|
3221 | } |
---|
3222 | |
---|
3223 | /************************************************************* |
---|
3224 | * check whether one or more components of a vector are zero * |
---|
3225 | *************************************************************/ |
---|
3226 | static int isNolVector(intvec* hilb) |
---|
3227 | { |
---|
3228 | int i; |
---|
3229 | for(i=hilb->length()-1; i>=0; i--) |
---|
3230 | { |
---|
3231 | if((* hilb)[i]==0) |
---|
3232 | { |
---|
3233 | return 1; |
---|
3234 | } |
---|
3235 | } |
---|
3236 | return 0; |
---|
3237 | } |
---|
3238 | |
---|
3239 | /************************************************************* |
---|
3240 | * check whether one or more components of a vector are <= 0 * |
---|
3241 | *************************************************************/ |
---|
3242 | static int isNegNolVector(intvec* hilb) |
---|
3243 | { |
---|
3244 | int i; |
---|
3245 | for(i=hilb->length()-1; i>=0; i--) |
---|
3246 | { |
---|
3247 | if((* hilb)[i]<=0) |
---|
3248 | { |
---|
3249 | return 1; |
---|
3250 | } |
---|
3251 | } |
---|
3252 | return 0; |
---|
3253 | } |
---|
3254 | |
---|
3255 | /************************************************************************** |
---|
3256 | * Gomega is the initial ideal of G w. r. t. the current weight vector * |
---|
3257 | * curr_weight. Check whether curr_weight lies on a border of the Groebner * |
---|
3258 | * cone, i. e. check whether a monomial is divisible by a leading monomial * |
---|
3259 | ***************************************************************************/ |
---|
3260 | static ideal middleOfCone(ideal G, ideal Gomega) |
---|
3261 | { |
---|
3262 | BOOLEAN middle = FALSE; |
---|
3263 | int i,j,N = IDELEMS(Gomega); |
---|
3264 | poly p,lm,factor1,factor2; |
---|
3265 | |
---|
3266 | ideal Go = idCopy(G); |
---|
3267 | |
---|
3268 | // check whether leading monomials of G and Gomega coincide |
---|
3269 | // and return NULL if not |
---|
3270 | for(i=0; i<N; i++) |
---|
3271 | { |
---|
3272 | if(!pIsConstant(pSub(pCopy(Gomega->m[i]),pCopy(pHead(G->m[i]))))) |
---|
3273 | { |
---|
3274 | idDelete(&Go); |
---|
3275 | return NULL; |
---|
3276 | } |
---|
3277 | } |
---|
3278 | for(i=0; i<N; i++) |
---|
3279 | { |
---|
3280 | for(j=0; j<N; j++) |
---|
3281 | { |
---|
3282 | if(i!=j) |
---|
3283 | { |
---|
3284 | p = pCopy(Gomega->m[i]); |
---|
3285 | lm = pCopy(Gomega->m[j]); |
---|
3286 | pIter(p); |
---|
3287 | while(p!=NULL) |
---|
3288 | { |
---|
3289 | if(pDivisibleBy(lm,p)) |
---|
3290 | { |
---|
3291 | if(middle == FALSE) |
---|
3292 | { |
---|
3293 | middle = TRUE; |
---|
3294 | } |
---|
3295 | factor1 = singclap_pdivide(pHead(p),lm,currRing); |
---|
3296 | factor2 = pMult(pCopy(factor1),pCopy(Go->m[j])); |
---|
3297 | pDelete(&factor1); |
---|
3298 | Go->m[i] = pAdd((Go->m[i]),pNeg(pCopy(factor2))); |
---|
3299 | pDelete(&factor2); |
---|
3300 | } |
---|
3301 | pIter(p); |
---|
3302 | } |
---|
3303 | pDelete(&lm); |
---|
3304 | pDelete(&p); |
---|
3305 | } |
---|
3306 | } |
---|
3307 | } |
---|
3308 | |
---|
3309 | if(middle == TRUE) |
---|
3310 | { |
---|
3311 | return Go; |
---|
3312 | } |
---|
3313 | idDelete(&Go); |
---|
3314 | return NULL; |
---|
3315 | } |
---|
3316 | |
---|
3317 | /****************************** Februar 2002 **************************** |
---|
3318 | * G is a Groebner basis w.r.t. (a(curr_weight),lp) and * |
---|
3319 | * we compute a GB of <G> w.r.t. the lex. order by the perturbation walk * |
---|
3320 | * its perturbation degree is tp_deg * |
---|
3321 | * We call the following subfunction LastGB, if * |
---|
3322 | * the computed intermediate weight vector or * |
---|
3323 | * if the perturbed target weight vector does NOT lie n the correct cone * |
---|
3324 | **************************************************************************/ |
---|
3325 | |
---|
3326 | static ideal LastGB(ideal G, intvec* curr_weight,int tp_deg) |
---|
3327 | { |
---|
3328 | BOOLEAN nError = Overflow_Error; |
---|
3329 | Overflow_Error = FALSE; |
---|
3330 | |
---|
3331 | int i, nV = currRing->N; |
---|
3332 | int nwalk=0, endwalks=0, nnwinC=1; |
---|
3333 | int nlast = 0; |
---|
3334 | ideal Gomega, M, F, Gomega1, Gomega2, M1,F1,result,ssG; |
---|
3335 | ring newRing, oldRing, TargetRing; |
---|
3336 | intvec* iv_M_lp; |
---|
3337 | intvec* target_weight; |
---|
3338 | intvec* iv_lp = Mivlp(nV); //define (1,0,...,0) |
---|
3339 | intvec* pert_target_vector; |
---|
3340 | intvec* ivNull = new intvec(nV); |
---|
3341 | intvec* extra_curr_weight = new intvec(nV); |
---|
3342 | intvec* next_weight; |
---|
3343 | |
---|
3344 | #ifndef BUCHBERGER_ALG |
---|
3345 | intvec* hilb_func; |
---|
3346 | #endif |
---|
3347 | |
---|
3348 | // to avoid (1,0,...,0) as the target vector |
---|
3349 | intvec* last_omega = new intvec(nV); |
---|
3350 | for(i=nV-1; i>0; i--) |
---|
3351 | { |
---|
3352 | (*last_omega)[i] = 1; |
---|
3353 | } |
---|
3354 | (*last_omega)[0] = 10000; |
---|
3355 | |
---|
3356 | ring EXXRing = currRing; |
---|
3357 | |
---|
3358 | // compute a pertubed weight vector of the target weight vector |
---|
3359 | if(tp_deg > 1 && tp_deg <= nV) |
---|
3360 | { |
---|
3361 | //..25.03.03 VMrDefaultlp();// VMrDefault(target_weight); |
---|
3362 | if (rParameter (currRing) != NULL) |
---|
3363 | { |
---|
3364 | DefRingParlp(); |
---|
3365 | } |
---|
3366 | else |
---|
3367 | { |
---|
3368 | VMrDefaultlp(); |
---|
3369 | } |
---|
3370 | TargetRing = currRing; |
---|
3371 | ssG = idrMoveR(G,EXXRing,currRing); |
---|
3372 | iv_M_lp = MivMatrixOrderlp(nV); |
---|
3373 | //target_weight = MPertVectorslp(ssG, iv_M_lp, tp_deg); |
---|
3374 | target_weight = MPertVectors(ssG, iv_M_lp, tp_deg); |
---|
3375 | delete iv_M_lp; |
---|
3376 | pert_target_vector = target_weight; |
---|
3377 | |
---|
3378 | rChangeCurrRing(EXXRing); |
---|
3379 | G = idrMoveR(ssG, TargetRing,currRing); |
---|
3380 | } |
---|
3381 | else |
---|
3382 | { |
---|
3383 | target_weight = Mivlp(nV); |
---|
3384 | } |
---|
3385 | //Print("\n// ring r%d_%d = %s;\n", tp_deg, nwalk, rString(currRing)); |
---|
3386 | |
---|
3387 | while(1) |
---|
3388 | { |
---|
3389 | nwalk++; |
---|
3390 | nstep++; |
---|
3391 | to=clock(); |
---|
3392 | // compute a next weight vector |
---|
3393 | next_weight = MkInterRedNextWeight(curr_weight,target_weight, G); |
---|
3394 | xtnw=xtnw+clock()-to; |
---|
3395 | |
---|
3396 | #ifdef PRINT_VECTORS |
---|
3397 | MivString(curr_weight, target_weight, next_weight); |
---|
3398 | #endif |
---|
3399 | |
---|
3400 | if(Overflow_Error == TRUE) |
---|
3401 | { |
---|
3402 | newRing = currRing; |
---|
3403 | nnwinC = 0; |
---|
3404 | if(tp_deg == 1) |
---|
3405 | { |
---|
3406 | nlast = 1; |
---|
3407 | } |
---|
3408 | delete next_weight; |
---|
3409 | |
---|
3410 | //idElements(G, "G"); |
---|
3411 | //Print("\n// ring r%d_%d = %s;\n", tp_deg, nwalk, rString(currRing)); |
---|
3412 | |
---|
3413 | break; |
---|
3414 | } |
---|
3415 | |
---|
3416 | if(MivComp(next_weight, ivNull) == 1) |
---|
3417 | { |
---|
3418 | //Print("\n// ring r%d_%d = %s;\n", tp_deg, nwalk, rString(currRing)); |
---|
3419 | newRing = currRing; |
---|
3420 | delete next_weight; |
---|
3421 | break; |
---|
3422 | } |
---|
3423 | |
---|
3424 | if(MivComp(next_weight, target_weight) == 1) |
---|
3425 | endwalks = 1; |
---|
3426 | |
---|
3427 | for(i=nV-1; i>=0; i--) |
---|
3428 | { |
---|
3429 | (*extra_curr_weight)[i] = (*curr_weight)[i]; |
---|
3430 | } |
---|
3431 | /* 06.11.01 NOT Changed */ |
---|
3432 | for(i=nV-1; i>=0; i--) |
---|
3433 | { |
---|
3434 | (*curr_weight)[i] = (*next_weight)[i]; |
---|
3435 | } |
---|
3436 | oldRing = currRing; |
---|
3437 | to=clock(); |
---|
3438 | // compute an initial form ideal of <G> w.r.t. "curr_vector" |
---|
3439 | Gomega = MwalkInitialForm(G, curr_weight); |
---|
3440 | xtif=xtif+clock()-to; |
---|
3441 | |
---|
3442 | #ifdef ENDWALKS |
---|
3443 | if(endwalks == 1) |
---|
3444 | { |
---|
3445 | Print("\n// ring r%d_%d = %s;\n", tp_deg, nwalk, rString(currRing)); |
---|
3446 | /* |
---|
3447 | idElements(Gomega, "Gw"); |
---|
3448 | headidString(Gomega, "Gw"); |
---|
3449 | */ |
---|
3450 | } |
---|
3451 | #endif |
---|
3452 | |
---|
3453 | #ifndef BUCHBERGER_ALG |
---|
3454 | if(isNolVector(curr_weight) == 0) |
---|
3455 | { |
---|
3456 | hilb_func = hFirstSeries(Gomega,NULL,NULL,curr_weight,currRing); |
---|
3457 | } |
---|
3458 | else |
---|
3459 | { |
---|
3460 | hilb_func = hFirstSeries(Gomega,NULL,NULL,last_omega,currRing); |
---|
3461 | } |
---|
3462 | #endif // BUCHBERGER_ALG |
---|
3463 | |
---|
3464 | /* define a new ring that its ordering is "(a(curr_weight),lp) */ |
---|
3465 | //..25.03.03 VMrDefault(curr_weight); |
---|
3466 | if (rParameter (currRing) != NULL) |
---|
3467 | { |
---|
3468 | DefRingPar(curr_weight); |
---|
3469 | } |
---|
3470 | else |
---|
3471 | { |
---|
3472 | rChangeCurrRing(VMrDefault(curr_weight)); |
---|
3473 | } |
---|
3474 | newRing = currRing; |
---|
3475 | Gomega1 = idrMoveR(Gomega, oldRing,currRing); |
---|
3476 | |
---|
3477 | to=clock(); |
---|
3478 | /* compute a reduced Groebner basis of <Gomega> w.r.t. "newRing" */ |
---|
3479 | #ifdef BUCHBERGER_ALG |
---|
3480 | M = MstdhomCC(Gomega1); |
---|
3481 | #else |
---|
3482 | M=kStd(Gomega1,NULL,isHomog,NULL,hilb_func,0,NULL,curr_weight); |
---|
3483 | delete hilb_func; |
---|
3484 | #endif // BUCHBERGER_ALG |
---|
3485 | xtstd=xtstd+clock()-to; |
---|
3486 | /* change the ring to oldRing */ |
---|
3487 | rChangeCurrRing(oldRing); |
---|
3488 | M1 = idrMoveR(M, newRing,currRing); |
---|
3489 | Gomega2 = idrMoveR(Gomega1, newRing,currRing); |
---|
3490 | |
---|
3491 | to=clock(); |
---|
3492 | /* compute a reduced Groebner basis of <G> w.r.t. "newRing" */ |
---|
3493 | F = MLifttwoIdeal(Gomega2, M1, G); |
---|
3494 | xtlift=xtlift+clock()-to; |
---|
3495 | |
---|
3496 | idDelete(&M1); |
---|
3497 | idDelete(&G); |
---|
3498 | |
---|
3499 | /* change the ring to newRing */ |
---|
3500 | rChangeCurrRing(newRing); |
---|
3501 | F1 = idrMoveR(F, oldRing,currRing); |
---|
3502 | |
---|
3503 | to=clock(); |
---|
3504 | /* reduce the Groebner basis <G> w.r.t. new ring */ |
---|
3505 | G = kInterRedCC(F1, NULL); |
---|
3506 | xtred=xtred+clock()-to; |
---|
3507 | idDelete(&F1); |
---|
3508 | |
---|
3509 | if(endwalks == 1) |
---|
3510 | { |
---|
3511 | //Print("\n// ring r%d_%d = %s;\n", tp_deg, nwalk, rString(currRing)); |
---|
3512 | break; |
---|
3513 | } |
---|
3514 | |
---|
3515 | delete next_weight; |
---|
3516 | }//while |
---|
3517 | |
---|
3518 | delete ivNull; |
---|
3519 | |
---|
3520 | if(tp_deg != 1) |
---|
3521 | { |
---|
3522 | //..25.03.03 VMrDefaultlp();//define and execute the ring "lp" |
---|
3523 | if (rParameter (currRing) != NULL) |
---|
3524 | { |
---|
3525 | DefRingParlp(); |
---|
3526 | } |
---|
3527 | else |
---|
3528 | { |
---|
3529 | VMrDefaultlp(); |
---|
3530 | } |
---|
3531 | F1 = idrMoveR(G, newRing,currRing); |
---|
3532 | |
---|
3533 | if(nnwinC == 0 || test_w_in_ConeCC(F1, pert_target_vector) != 1) |
---|
3534 | { |
---|
3535 | oldRing = currRing; |
---|
3536 | rChangeCurrRing(newRing); |
---|
3537 | G = idrMoveR(F1, oldRing,currRing); |
---|
3538 | Print("\n// takes %d steps and calls the recursion of level %d:", |
---|
3539 | nwalk, tp_deg-1); |
---|
3540 | |
---|
3541 | F1 = LastGB(G,curr_weight, tp_deg-1); |
---|
3542 | } |
---|
3543 | |
---|
3544 | TargetRing = currRing; |
---|
3545 | rChangeCurrRing(EXXRing); |
---|
3546 | result = idrMoveR(F1, TargetRing,currRing); |
---|
3547 | } |
---|
3548 | else |
---|
3549 | { |
---|
3550 | if(nlast == 1) |
---|
3551 | { |
---|
3552 | //OMEGA_OVERFLOW_LASTGB: |
---|
3553 | /* |
---|
3554 | if(MivSame(curr_weight, iv_lp) == 1) |
---|
3555 | if (rParameter(currRing) != NULL) |
---|
3556 | DefRingParlp(); |
---|
3557 | else |
---|
3558 | VMrDefaultlp(); |
---|
3559 | else |
---|
3560 | if (rParameter(currRing) != NULL) |
---|
3561 | DefRingPar(curr_weight); |
---|
3562 | else |
---|
3563 | VMrDefault(curr_weight); |
---|
3564 | */ |
---|
3565 | |
---|
3566 | //..25.03.03 VMrDefaultlp();//define and execute the ring "lp" |
---|
3567 | if (rParameter (currRing) != NULL) |
---|
3568 | { |
---|
3569 | DefRingParlp(); |
---|
3570 | } |
---|
3571 | else |
---|
3572 | { |
---|
3573 | VMrDefaultlp(); |
---|
3574 | } |
---|
3575 | |
---|
3576 | F1 = idrMoveR(G, newRing,currRing); |
---|
3577 | //Print("\n// Apply \"std\" in ring r%d_%d = %s;\n", tp_deg, nwalk, rString(currRing)); |
---|
3578 | |
---|
3579 | G = MstdCC(F1); |
---|
3580 | idDelete(&F1); |
---|
3581 | newRing = currRing; |
---|
3582 | } |
---|
3583 | |
---|
3584 | rChangeCurrRing(EXXRing); |
---|
3585 | result = idrMoveR(G, newRing,currRing); |
---|
3586 | } |
---|
3587 | delete target_weight; |
---|
3588 | delete last_omega; |
---|
3589 | delete iv_lp; |
---|
3590 | |
---|
3591 | if(Overflow_Error == FALSE) |
---|
3592 | { |
---|
3593 | Overflow_Error = nError; |
---|
3594 | } |
---|
3595 | return(result); |
---|
3596 | } |
---|
3597 | |
---|
3598 | /********************************************************** |
---|
3599 | * check whether a polynomial of G has least 3 monomials * |
---|
3600 | **********************************************************/ |
---|
3601 | static int lengthpoly(ideal G) |
---|
3602 | { |
---|
3603 | int i; |
---|
3604 | for(i=IDELEMS(G)-1; i>=0; i--) |
---|
3605 | { |
---|
3606 | if((G->m[i]!=NULL) /* len >=0 */ |
---|
3607 | && (G->m[i]->next!=NULL) /* len >=1 */ |
---|
3608 | && (G->m[i]->next->next!=NULL) /* len >=2 */ |
---|
3609 | && (G->m[i]->next->next->next!=NULL) /* len >=3 */) |
---|
3610 | { |
---|
3611 | return 1; |
---|
3612 | } |
---|
3613 | } |
---|
3614 | return 0; |
---|
3615 | } |
---|
3616 | |
---|
3617 | /***************************************** |
---|
3618 | * return maximal polynomial length of G * |
---|
3619 | *****************************************/ |
---|
3620 | static int maxlengthpoly(ideal G) |
---|
3621 | { |
---|
3622 | int i,k,length=0; |
---|
3623 | for(i=IDELEMS(G)-1; i>=0; i--) |
---|
3624 | { |
---|
3625 | k = pLength(G->m[i]); |
---|
3626 | if(k>length) |
---|
3627 | { |
---|
3628 | length = k; |
---|
3629 | } |
---|
3630 | } |
---|
3631 | return length; |
---|
3632 | } |
---|
3633 | |
---|
3634 | /********************************************************* |
---|
3635 | * check whether a polynomial of G has least 2 monomials * |
---|
3636 | **********************************************************/ |
---|
3637 | static int islengthpoly2(ideal G) |
---|
3638 | { |
---|
3639 | int i; |
---|
3640 | for(i=IDELEMS(G)-1; i>=0; i--) |
---|
3641 | { |
---|
3642 | if((G->m[i]!=NULL) /* len >=0 */ |
---|
3643 | && (G->m[i]->next!=NULL) /* len >=1 */ |
---|
3644 | && (G->m[i]->next->next!=NULL)) /* len >=2 */ |
---|
3645 | { |
---|
3646 | return 1; |
---|
3647 | } |
---|
3648 | } |
---|
3649 | return 0; |
---|
3650 | } |
---|
3651 | |
---|
3652 | |
---|
3653 | |
---|
3654 | /* Implementation of the improved Groebner walk algorithm which is written |
---|
3655 | by Quoc-Nam Tran (2000). |
---|
3656 | One perturbs the original target weight vector, only if |
---|
3657 | the next intermediate weight vector is equal to the current target weight |
---|
3658 | vector. This must be repeated until the wanted reduced Groebner basis |
---|
3659 | to reach. |
---|
3660 | If the numbers of variables is big enough, the representation of the origin |
---|
3661 | weight vector may be very big. Therefore, it is possible the intermediate |
---|
3662 | weight vector doesn't stay in the correct Groebner cone. |
---|
3663 | In this case we have just a reduced Groebner basis of the given ideal |
---|
3664 | with respect to another monomial order. Then we have to compute |
---|
3665 | a wanted reduced Groebner basis of it with respect to the given order. |
---|
3666 | At the following subroutine we use the improved Buchberger algorithm or |
---|
3667 | the changed perturbation walk algorithm with a decrased degree. |
---|
3668 | */ |
---|
3669 | |
---|
3670 | /*************************************** |
---|
3671 | * return the initial term of an ideal * |
---|
3672 | ***************************************/ |
---|
3673 | static ideal idHeadCC(ideal h) |
---|
3674 | { |
---|
3675 | int i, nH =IDELEMS(h); |
---|
3676 | |
---|
3677 | ideal m = idInit(nH,h->rank); |
---|
3678 | |
---|
3679 | for (i=nH-1;i>=0; i--) |
---|
3680 | { |
---|
3681 | if (h->m[i]!=NULL) |
---|
3682 | { |
---|
3683 | m->m[i]=pHead(h->m[i]); |
---|
3684 | } |
---|
3685 | } |
---|
3686 | return m; |
---|
3687 | } |
---|
3688 | |
---|
3689 | /********************************************** |
---|
3690 | * check whether two head-ideals are the same * |
---|
3691 | **********************************************/ |
---|
3692 | static inline int test_G_GB_walk(ideal H0, ideal H1) |
---|
3693 | { |
---|
3694 | int i, nG = IDELEMS(H0); |
---|
3695 | |
---|
3696 | if(nG != IDELEMS(H1)) |
---|
3697 | { |
---|
3698 | return 0; |
---|
3699 | } |
---|
3700 | for(i=nG-1; i>=0; i--) |
---|
3701 | { |
---|
3702 | /* |
---|
3703 | poly t; |
---|
3704 | if((t=pSub(pCopy(H0->m[i]), pCopy(H1->m[i]))) != NULL) |
---|
3705 | { |
---|
3706 | pDelete(&t); |
---|
3707 | return 0; |
---|
3708 | } |
---|
3709 | pDelete(&t); |
---|
3710 | */ |
---|
3711 | if(!pEqualPolys(H0->m[i],H1->m[i])) |
---|
3712 | { |
---|
3713 | return 0; |
---|
3714 | } |
---|
3715 | } |
---|
3716 | return 1; |
---|
3717 | } |
---|
3718 | |
---|
3719 | //unused |
---|
3720 | /***************************************************** |
---|
3721 | * find the maximal total degree of polynomials in G * |
---|
3722 | *****************************************************/ |
---|
3723 | /* |
---|
3724 | static int Trandegreebound(ideal G) |
---|
3725 | { |
---|
3726 | int i, nG = IDELEMS(G); |
---|
3727 | // int np=1; |
---|
3728 | int nV = currRing->N; |
---|
3729 | int degtmp, result = 0; |
---|
3730 | intvec* ivUnit = Mivdp(nV); |
---|
3731 | |
---|
3732 | for(i=nG-1; i>=0; i--) |
---|
3733 | { |
---|
3734 | // find the maximal total degree of the polynomial G[i] |
---|
3735 | degtmp = MwalkWeightDegree(G->m[i], ivUnit); |
---|
3736 | if(degtmp > result) |
---|
3737 | { |
---|
3738 | result = degtmp; |
---|
3739 | } |
---|
3740 | } |
---|
3741 | delete ivUnit; |
---|
3742 | return result; |
---|
3743 | } |
---|
3744 | */ |
---|
3745 | |
---|
3746 | //unused |
---|
3747 | /************************************************************************ |
---|
3748 | * perturb the weight vector iva w.r.t. the ideal G. * |
---|
3749 | * the monomial order of the current ring is the w_1 weight lex. order * |
---|
3750 | * define w := d^(n-1)w_1+ d^(n-2)w_2, ...+ dw_(n-1)+ w_n * |
---|
3751 | * where d := 1 + max{totdeg(g):g in G}*m, or * |
---|
3752 | * d := (2*maxdeg*maxdeg + (nV+1)*maxdeg)*m; * |
---|
3753 | ************************************************************************/ |
---|
3754 | #if 0 |
---|
3755 | static intvec* TranPertVector(ideal G, intvec* iva) |
---|
3756 | { |
---|
3757 | BOOLEAN nError = Overflow_Error; |
---|
3758 | Overflow_Error = FALSE; |
---|
3759 | |
---|
3760 | int i, j; |
---|
3761 | // int nG = IDELEMS(G); |
---|
3762 | int nV = currRing->N; |
---|
3763 | |
---|
3764 | // define the sequence which expresses the current monomial ordering |
---|
3765 | // w_1 = iva; w_2 = (1,0,..,0); w_n = (0,...,0,1,0) |
---|
3766 | intvec* ivMat = MivMatrixOrder(iva); |
---|
3767 | |
---|
3768 | int mtmp, m=(*iva)[0]; |
---|
3769 | |
---|
3770 | for(i=ivMat->length(); i>=0; i--) |
---|
3771 | { |
---|
3772 | mtmp = (*ivMat)[i]; |
---|
3773 | if(mtmp <0) |
---|
3774 | { |
---|
3775 | mtmp = -mtmp; |
---|
3776 | } |
---|
3777 | if(mtmp > m) |
---|
3778 | { |
---|
3779 | m = mtmp; |
---|
3780 | } |
---|
3781 | } |
---|
3782 | |
---|
3783 | // define the maximal total degree of polynomials of G |
---|
3784 | mpz_t ndeg; |
---|
3785 | mpz_init(ndeg); |
---|
3786 | |
---|
3787 | // 12 Juli 03 |
---|
3788 | #ifndef UPPER_BOUND |
---|
3789 | mpz_set_si(ndeg, Trandegreebound(G)+1); |
---|
3790 | #else |
---|
3791 | mpz_t ztmp; |
---|
3792 | mpz_init(ztmp); |
---|
3793 | |
---|
3794 | mpz_t maxdeg; |
---|
3795 | mpz_init_set_si(maxdeg, Trandegreebound(G)); |
---|
3796 | |
---|
3797 | //ndeg = (2*maxdeg*maxdeg + (nV+1)*maxdeg)*m;//Kalkbrenner (1999) |
---|
3798 | mpz_pow_ui(ztmp, maxdeg, 2); |
---|
3799 | mpz_mul_ui(ztmp, ztmp, 2); |
---|
3800 | mpz_mul_ui(maxdeg, maxdeg, nV+1); |
---|
3801 | mpz_add(ndeg, ztmp, maxdeg); |
---|
3802 | mpz_mul_ui(ndeg, ndeg, m); |
---|
3803 | |
---|
3804 | mpz_clear(ztmp); |
---|
3805 | |
---|
3806 | //PrintS("\n// with the new upper degree bound (2d^2+(n+1)d)*m "); |
---|
3807 | //Print("\n// where d = %d, n = %d and bound = %d", maxdeg, nV, ndeg); |
---|
3808 | #endif //UPPER_BOUND |
---|
3809 | |
---|
3810 | #ifdef INVEPS_SMALL_IN_TRAN |
---|
3811 | if(mpz_cmp_ui(ndeg, nV)>0 && nV > 3) |
---|
3812 | { |
---|
3813 | mpz_cdiv_q_ui(ndeg, ndeg, nV); |
---|
3814 | } |
---|
3815 | //PrintS("\n// choose the \"small\" inverse epsilon:"); |
---|
3816 | //mpz_out_str(stdout, 10, ndeg); |
---|
3817 | #endif |
---|
3818 | mpz_t deg_tmp; |
---|
3819 | mpz_init_set(deg_tmp, ndeg); |
---|
3820 | |
---|
3821 | mpz_t *ivres=( mpz_t *) omAlloc(nV*sizeof(mpz_t)); |
---|
3822 | mpz_init_set_si(ivres[nV-1],1); |
---|
3823 | |
---|
3824 | for(i=nV-2; i>=0; i--) |
---|
3825 | { |
---|
3826 | mpz_init_set(ivres[i], deg_tmp); |
---|
3827 | mpz_mul(deg_tmp, deg_tmp, ndeg); |
---|
3828 | } |
---|
3829 | |
---|
3830 | mpz_t *ivtmp=(mpz_t *)omAlloc(nV*sizeof(mpz_t)); |
---|
3831 | for(i=0; i<nV; i++) |
---|
3832 | { |
---|
3833 | mpz_init(ivtmp[i]); |
---|
3834 | } |
---|
3835 | mpz_t sing_int; |
---|
3836 | mpz_init_set_ui(sing_int, 2147483647); |
---|
3837 | |
---|
3838 | intvec* repr_vector = new intvec(nV); |
---|
3839 | |
---|
3840 | // define ivtmp := ndeg^(n-1).w_1 + ndeg^(n-2).w_2 + ... + w_n |
---|
3841 | for(i=0; i<nV; i++) |
---|
3842 | { |
---|
3843 | for(j=0; j<nV; j++) |
---|
3844 | { |
---|
3845 | if( (*ivMat)[i*nV+j] >= 0 ) |
---|
3846 | { |
---|
3847 | mpz_mul_ui(ivres[i], ivres[i], (*ivMat)[i*nV+j]); |
---|
3848 | } |
---|
3849 | else |
---|
3850 | { |
---|
3851 | mpz_mul_ui(ivres[i], ivres[i], -(*ivMat)[i*nV+j]); |
---|
3852 | mpz_neg(ivres[i], ivres[i]); |
---|
3853 | } |
---|
3854 | mpz_add(ivtmp[j], ivtmp[j], ivres[i]); |
---|
3855 | } |
---|
3856 | } |
---|
3857 | delete ivMat; |
---|
3858 | |
---|
3859 | int ntrue=0; |
---|
3860 | for(i=0; i<nV; i++) |
---|
3861 | { |
---|
3862 | (*repr_vector)[i] = mpz_get_si(ivtmp[i]); |
---|
3863 | if(mpz_cmp(ivtmp[i], sing_int)>=0) |
---|
3864 | { |
---|
3865 | ntrue++; |
---|
3866 | if(Overflow_Error == FALSE) |
---|
3867 | { |
---|
3868 | Overflow_Error = TRUE; |
---|
3869 | |
---|
3870 | PrintS("\n// ** OVERFLOW in \"Repr.Vector\": "); |
---|
3871 | mpz_out_str( stdout, 10, ivtmp[i]); |
---|
3872 | PrintS(" is greater than 2147483647 (max. integer representation)"); |
---|
3873 | Print("\n// So vector[%d] := %d is wrong!!\n",i+1,(*repr_vector)[i]); |
---|
3874 | } |
---|
3875 | } |
---|
3876 | } |
---|
3877 | if(Overflow_Error == TRUE) |
---|
3878 | { |
---|
3879 | ivString(repr_vector, "repvector"); |
---|
3880 | Print("\n// %d element(s) of it are overflow!!", ntrue); |
---|
3881 | } |
---|
3882 | |
---|
3883 | if(Overflow_Error == FALSE) |
---|
3884 | Overflow_Error=nError; |
---|
3885 | |
---|
3886 | omFree(ivres); |
---|
3887 | omFree(ivtmp); |
---|
3888 | |
---|
3889 | mpz_clear(sing_int); |
---|
3890 | mpz_clear(deg_tmp); |
---|
3891 | mpz_clear(ndeg); |
---|
3892 | |
---|
3893 | return repr_vector; |
---|
3894 | } |
---|
3895 | #endif |
---|
3896 | |
---|
3897 | //unused |
---|
3898 | #if 0 |
---|
3899 | static intvec* TranPertVector_lp(ideal G) |
---|
3900 | { |
---|
3901 | BOOLEAN nError = Overflow_Error; |
---|
3902 | Overflow_Error = FALSE; |
---|
3903 | // int j, nG = IDELEMS(G); |
---|
3904 | int i; |
---|
3905 | int nV = currRing->N; |
---|
3906 | |
---|
3907 | // define the maximal total degree of polynomials of G |
---|
3908 | mpz_t ndeg; |
---|
3909 | mpz_init(ndeg); |
---|
3910 | |
---|
3911 | // 12 Juli 03 |
---|
3912 | #ifndef UPPER_BOUND |
---|
3913 | mpz_set_si(ndeg, Trandegreebound(G)+1); |
---|
3914 | #else |
---|
3915 | mpz_t ztmp; |
---|
3916 | mpz_init(ztmp); |
---|
3917 | |
---|
3918 | mpz_t maxdeg; |
---|
3919 | mpz_init_set_si(maxdeg, Trandegreebound(G)); |
---|
3920 | |
---|
3921 | //ndeg = (2*maxdeg*maxdeg + (nV+1)*maxdeg);//Kalkbrenner (1999) |
---|
3922 | mpz_pow_ui(ztmp, maxdeg, 2); |
---|
3923 | mpz_mul_ui(ztmp, ztmp, 2); |
---|
3924 | mpz_mul_ui(maxdeg, maxdeg, nV+1); |
---|
3925 | mpz_add(ndeg, ztmp, maxdeg); |
---|
3926 | // PrintS("\n// with the new upper degree bound (2d^2+(n+1)d)*m "); |
---|
3927 | // Print("\n// where d = %d, n = %d and bound = %d", |
---|
3928 | // mpz_get_si(maxdeg), nV, mpz_get_si(ndeg)); |
---|
3929 | |
---|
3930 | mpz_clear(ztmp); |
---|
3931 | |
---|
3932 | #endif |
---|
3933 | |
---|
3934 | #ifdef INVEPS_SMALL_IN_TRAN |
---|
3935 | if(mpz_cmp_ui(ndeg, nV)>0 && nV > 3) |
---|
3936 | mpz_cdiv_q_ui(ndeg, ndeg, nV); |
---|
3937 | |
---|
3938 | //PrintS("\n// choose the \"small\" inverse epsilon:"); |
---|
3939 | // mpz_out_str(stdout, 10, ndeg); |
---|
3940 | #endif |
---|
3941 | |
---|
3942 | mpz_t deg_tmp; |
---|
3943 | mpz_init_set(deg_tmp, ndeg); |
---|
3944 | |
---|
3945 | mpz_t *ivres=(mpz_t *)omAlloc(nV*sizeof(mpz_t)); |
---|
3946 | mpz_init_set_si(ivres[nV-1], 1); |
---|
3947 | |
---|
3948 | for(i=nV-2; i>=0; i--) |
---|
3949 | { |
---|
3950 | mpz_init_set(ivres[i], deg_tmp); |
---|
3951 | mpz_mul(deg_tmp, deg_tmp, ndeg); |
---|
3952 | } |
---|
3953 | |
---|
3954 | mpz_t sing_int; |
---|
3955 | mpz_init_set_ui(sing_int, 2147483647); |
---|
3956 | |
---|
3957 | intvec* repr_vector = new intvec(nV); |
---|
3958 | int ntrue=0; |
---|
3959 | for(i=0; i<nV; i++) |
---|
3960 | { |
---|
3961 | (*repr_vector)[i] = mpz_get_si(ivres[i]); |
---|
3962 | |
---|
3963 | if(mpz_cmp(ivres[i], sing_int)>=0) |
---|
3964 | { |
---|
3965 | ntrue++; |
---|
3966 | if(Overflow_Error == FALSE) |
---|
3967 | { |
---|
3968 | Overflow_Error = TRUE; |
---|
3969 | PrintS("\n// ** OVERFLOW in \"Repr.Vector\": "); |
---|
3970 | mpz_out_str( stdout, 10, ivres[i]); |
---|
3971 | PrintS(" is greater than 2147483647 (max. integer representation)"); |
---|
3972 | Print("\n// So vector[%d] := %d is wrong!!\n",i+1,(*repr_vector)[i]); |
---|
3973 | } |
---|
3974 | } |
---|
3975 | } |
---|
3976 | if(Overflow_Error == TRUE) |
---|
3977 | { |
---|
3978 | ivString(repr_vector, "repvector"); |
---|
3979 | Print("\n// %d element(s) of it are overflow!!", ntrue); |
---|
3980 | } |
---|
3981 | if(Overflow_Error == FALSE) |
---|
3982 | Overflow_Error = nError; |
---|
3983 | |
---|
3984 | omFree(ivres); |
---|
3985 | |
---|
3986 | mpz_clear(ndeg); |
---|
3987 | mpz_clear(sing_int); |
---|
3988 | |
---|
3989 | return repr_vector; |
---|
3990 | } |
---|
3991 | #endif |
---|
3992 | |
---|
3993 | //unused |
---|
3994 | #if 0 |
---|
3995 | static intvec* RepresentationMatrix_Dp(ideal G, intvec* M) |
---|
3996 | { |
---|
3997 | BOOLEAN nError = Overflow_Error; |
---|
3998 | Overflow_Error = FALSE; |
---|
3999 | |
---|
4000 | int i, j; |
---|
4001 | int nV = currRing->N; |
---|
4002 | |
---|
4003 | intvec* ivUnit = Mivdp(nV); |
---|
4004 | int degtmp, maxdeg = 0; |
---|
4005 | |
---|
4006 | for(i=IDELEMS(G)-1; i>=0; i--) |
---|
4007 | { |
---|
4008 | // find the maximal total degree of the polynomial G[i] |
---|
4009 | degtmp = MwalkWeightDegree(G->m[i], ivUnit); |
---|
4010 | if(degtmp > maxdeg) |
---|
4011 | maxdeg = degtmp; |
---|
4012 | } |
---|
4013 | |
---|
4014 | mpz_t ztmp; |
---|
4015 | mpz_init_set_si(ztmp, maxdeg); |
---|
4016 | mpz_t *ivres=(mpz_t *)omAlloc(nV*sizeof(mpz_t)); |
---|
4017 | mpz_init_set_si(ivres[nV-1], 1); // (*ivres)[nV-1] = 1; |
---|
4018 | |
---|
4019 | for(i=nV-2; i>=0; i--) |
---|
4020 | { |
---|
4021 | mpz_init_set(ivres[i], ztmp); //(*ivres)[i] = ztmp; |
---|
4022 | mpz_mul_ui(ztmp, ztmp, maxdeg); //ztmp *=maxdeg; |
---|
4023 | } |
---|
4024 | |
---|
4025 | mpz_t *ivtmp=(mpz_t*)omAlloc(nV*sizeof(mpz_t)); |
---|
4026 | for(i=0; i<nV; i++) |
---|
4027 | mpz_init(ivtmp[i]); |
---|
4028 | |
---|
4029 | // define ivtmp := ndeg^(n-1).w_1 + ndeg^(n-2).w_2 + ... + w_n |
---|
4030 | for(i=0; i<nV; i++) |
---|
4031 | for(j=0; j<nV; j++) |
---|
4032 | { |
---|
4033 | if((*M)[i*nV+j] < 0) |
---|
4034 | { |
---|
4035 | mpz_mul_ui(ztmp, ivres[i], -(*M)[i*nV+j]); |
---|
4036 | mpz_neg(ztmp, ztmp); |
---|
4037 | } |
---|
4038 | else |
---|
4039 | mpz_mul_ui(ztmp, ivres[i], (*M)[i*nV+j]); |
---|
4040 | |
---|
4041 | mpz_add(ivtmp[j], ivtmp[j], ztmp); |
---|
4042 | } |
---|
4043 | delete ivres; |
---|
4044 | mpz_t sing_int; |
---|
4045 | mpz_init_set_ui(sing_int, 2147483647); |
---|
4046 | |
---|
4047 | int ntrue=0; |
---|
4048 | intvec* repvector = new intvec(nV); |
---|
4049 | for(i=0; i<nV; i++) |
---|
4050 | { |
---|
4051 | (*repvector)[i] = mpz_get_si(ivtmp[i]); |
---|
4052 | if(mpz_cmp(ivtmp[i], sing_int)>0) |
---|
4053 | { |
---|
4054 | ntrue++; |
---|
4055 | if(Overflow_Error == FALSE) |
---|
4056 | { |
---|
4057 | Overflow_Error = TRUE; |
---|
4058 | PrintS("\n// ** OVERFLOW in \"Repr.Matrix\": "); |
---|
4059 | mpz_out_str( stdout, 10, ivtmp[i]); |
---|
4060 | PrintS(" is greater than 2147483647 (max. integer representation)"); |
---|
4061 | Print("\n// So vector[%d] := %d is wrong!!\n",i+1,(*repvector)[i]); |
---|
4062 | } |
---|
4063 | } |
---|
4064 | } |
---|
4065 | if(Overflow_Error == TRUE) |
---|
4066 | { |
---|
4067 | ivString(repvector, "repvector"); |
---|
4068 | Print("\n// %d element(s) of it are overflow!!", ntrue); |
---|
4069 | } |
---|
4070 | |
---|
4071 | if(Overflow_Error == FALSE) |
---|
4072 | Overflow_Error = nError; |
---|
4073 | |
---|
4074 | mpz_clear(sing_int); |
---|
4075 | mpz_clear(ztmp); |
---|
4076 | omFree(ivtmp); |
---|
4077 | omFree(ivres); |
---|
4078 | return repvector; |
---|
4079 | } |
---|
4080 | #endif |
---|
4081 | |
---|
4082 | /***************************************************************************** |
---|
4083 | * The following subroutine is the implementation of our first improved * |
---|
4084 | * Groebner walk algorithm, i.e. the first altervative algorithm. * |
---|
4085 | * First we use the Grobner walk algorithm and then we call the changed * |
---|
4086 | * perturbation walk algorithm with decreased degree, if an intermediate * |
---|
4087 | * weight vector is equal to the current target weight vector. * |
---|
4088 | * This call will be only repeated until we get the wanted reduced Groebner * |
---|
4089 | * basis or n times, where n is the numbers of variables. * |
---|
4090 | *****************************************************************************/ |
---|
4091 | |
---|
4092 | // npwinc = 0, if curr_weight doesn't stay in the correct Groebner cone |
---|
4093 | static ideal Rec_LastGB(ideal G, intvec* curr_weight, |
---|
4094 | intvec* orig_target_weight, int tp_deg, int npwinc) |
---|
4095 | { |
---|
4096 | BOOLEAN nError = Overflow_Error; |
---|
4097 | Overflow_Error = FALSE; |
---|
4098 | // BOOLEAN nOverflow_Error = FALSE; |
---|
4099 | |
---|
4100 | clock_t tproc=0; |
---|
4101 | clock_t tinput = clock(); |
---|
4102 | |
---|
4103 | int i, nV = currRing->N; |
---|
4104 | int nwalk=0, endwalks=0, nnwinC=1; |
---|
4105 | int nlast = 0; |
---|
4106 | ideal Gomega, M, F, Gomega1, Gomega2, M1,F1,result,ssG; |
---|
4107 | ring newRing, oldRing, TargetRing; |
---|
4108 | intvec* iv_M_lp; |
---|
4109 | intvec* target_weight; |
---|
4110 | intvec* ivNull = new intvec(nV); //define (0,...,0) |
---|
4111 | ring EXXRing = currRing; |
---|
4112 | //int NEG=0; //19 juni 03 |
---|
4113 | intvec* next_weight; |
---|
4114 | #ifndef BUCHBERGER_ALG |
---|
4115 | //08 Juli 03 |
---|
4116 | intvec* hilb_func; |
---|
4117 | #endif |
---|
4118 | // to avoid (1,0,...,0) as the target vector |
---|
4119 | intvec* last_omega = new intvec(nV); |
---|
4120 | for(i=nV-1; i>0; i--) |
---|
4121 | (*last_omega)[i] = 1; |
---|
4122 | (*last_omega)[0] = 10000; |
---|
4123 | |
---|
4124 | BOOLEAN isGB = FALSE; |
---|
4125 | |
---|
4126 | // compute a pertubed weight vector of the target weight vector |
---|
4127 | if(tp_deg > 1 && tp_deg <= nV) |
---|
4128 | { |
---|
4129 | ideal H0 = idHeadCC(G); |
---|
4130 | |
---|
4131 | if (rParameter (currRing) != NULL) |
---|
4132 | { |
---|
4133 | DefRingParlp(); |
---|
4134 | } |
---|
4135 | else |
---|
4136 | { |
---|
4137 | VMrDefaultlp(); |
---|
4138 | } |
---|
4139 | TargetRing = currRing; |
---|
4140 | ssG = idrMoveR(G,EXXRing,currRing); |
---|
4141 | |
---|
4142 | ideal H0_tmp = idrMoveR(H0,EXXRing,currRing); |
---|
4143 | ideal H1 = idHeadCC(ssG); |
---|
4144 | |
---|
4145 | // Apply Lemma 2.2 in Collart et. al (1997) to check whether cone(k-1) is equal to cone(k) |
---|
4146 | if(test_G_GB_walk(H0_tmp,H1)==1) |
---|
4147 | { |
---|
4148 | idDelete(&H0_tmp); |
---|
4149 | idDelete(&H1); |
---|
4150 | G = ssG; |
---|
4151 | ssG = NULL; |
---|
4152 | newRing = currRing; |
---|
4153 | delete ivNull; |
---|
4154 | |
---|
4155 | if(npwinc != 0) |
---|
4156 | { |
---|
4157 | goto LastGB_Finish; |
---|
4158 | } |
---|
4159 | else |
---|
4160 | { |
---|
4161 | isGB = TRUE; |
---|
4162 | goto KSTD_Finish; |
---|
4163 | } |
---|
4164 | } |
---|
4165 | idDelete(&H0_tmp); |
---|
4166 | idDelete(&H1); |
---|
4167 | |
---|
4168 | iv_M_lp = MivMatrixOrderlp(nV); |
---|
4169 | target_weight = MPertVectors(ssG, iv_M_lp, tp_deg); |
---|
4170 | delete iv_M_lp; |
---|
4171 | //PrintS("\n// Input is not GB!!"); |
---|
4172 | rChangeCurrRing(EXXRing); |
---|
4173 | G = idrMoveR(ssG, TargetRing,currRing); |
---|
4174 | |
---|
4175 | if(Overflow_Error == TRUE) |
---|
4176 | { |
---|
4177 | //nOverflow_Error = Overflow_Error; |
---|
4178 | //NEG = 1; |
---|
4179 | newRing = currRing; |
---|
4180 | goto JUNI_STD; |
---|
4181 | } |
---|
4182 | } |
---|
4183 | |
---|
4184 | while(1) |
---|
4185 | { |
---|
4186 | nwalk ++; |
---|
4187 | nstep++; |
---|
4188 | |
---|
4189 | if(nwalk==1) |
---|
4190 | { |
---|
4191 | goto FIRST_STEP; |
---|
4192 | } |
---|
4193 | to=clock(); |
---|
4194 | // compute an initial form ideal of <G> w.r.t. "curr_vector" |
---|
4195 | Gomega = MwalkInitialForm(G, curr_weight); |
---|
4196 | xtif=xtif+clock()-to; |
---|
4197 | |
---|
4198 | #ifndef BUCHBERGER_ALG |
---|
4199 | if(isNolVector(curr_weight) == 0) |
---|
4200 | { |
---|
4201 | hilb_func = hFirstSeries(Gomega,NULL,NULL,curr_weight,currRing); |
---|
4202 | } |
---|
4203 | else |
---|
4204 | { |
---|
4205 | hilb_func = hFirstSeries(Gomega,NULL,NULL,last_omega,currRing); |
---|
4206 | } |
---|
4207 | #endif // BUCHBERGER_ALG |
---|
4208 | |
---|
4209 | oldRing = currRing; |
---|
4210 | |
---|
4211 | // defiNe a new ring that its ordering is "(a(curr_weight),lp) |
---|
4212 | if (rParameter(currRing) != NULL) |
---|
4213 | { |
---|
4214 | DefRingPar(curr_weight); |
---|
4215 | } |
---|
4216 | else |
---|
4217 | { |
---|
4218 | rChangeCurrRing(VMrDefault(curr_weight)); |
---|
4219 | } |
---|
4220 | newRing = currRing; |
---|
4221 | Gomega1 = idrMoveR(Gomega, oldRing,currRing); |
---|
4222 | to=clock(); |
---|
4223 | // compute a reduced Groebner basis of <Gomega> w.r.t. "newRing" |
---|
4224 | #ifdef BUCHBERGER_ALG |
---|
4225 | M = MstdhomCC(Gomega1); |
---|
4226 | #else |
---|
4227 | M=kStd(Gomega1,NULL,isHomog,NULL,hilb_func,0,NULL,curr_weight); |
---|
4228 | delete hilb_func; |
---|
4229 | #endif // BUCHBERGER_ALG |
---|
4230 | xtstd=xtstd+clock()-to; |
---|
4231 | // change the ring to oldRing |
---|
4232 | rChangeCurrRing(oldRing); |
---|
4233 | M1 = idrMoveR(M, newRing,currRing); |
---|
4234 | Gomega2 = idrMoveR(Gomega1, newRing,currRing); |
---|
4235 | |
---|
4236 | to=clock(); |
---|
4237 | // compute a reduced Groebner basis of <G> w.r.t. "newRing" by the lifting process |
---|
4238 | F = MLifttwoIdeal(Gomega2, M1, G); |
---|
4239 | xtlift=xtlift+clock()-to; |
---|
4240 | idDelete(&M1); |
---|
4241 | idDelete(&Gomega2); |
---|
4242 | idDelete(&G); |
---|
4243 | |
---|
4244 | // change the ring to newRing |
---|
4245 | rChangeCurrRing(newRing); |
---|
4246 | F1 = idrMoveR(F, oldRing,currRing); |
---|
4247 | |
---|
4248 | to=clock(); |
---|
4249 | // reduce the Groebner basis <G> w.r.t. new ring |
---|
4250 | G = kInterRedCC(F1, NULL); |
---|
4251 | xtred=xtred+clock()-to; |
---|
4252 | idDelete(&F1); |
---|
4253 | |
---|
4254 | if(endwalks == 1) |
---|
4255 | { |
---|
4256 | break; |
---|
4257 | } |
---|
4258 | FIRST_STEP: |
---|
4259 | to=clock(); |
---|
4260 | Overflow_Error = FALSE; |
---|
4261 | // compute a next weight vector |
---|
4262 | next_weight = MkInterRedNextWeight(curr_weight,target_weight, G); |
---|
4263 | xtnw=xtnw+clock()-to; |
---|
4264 | #ifdef PRINT_VECTORS |
---|
4265 | MivString(curr_weight, target_weight, next_weight); |
---|
4266 | #endif |
---|
4267 | |
---|
4268 | if(Overflow_Error == TRUE) |
---|
4269 | { |
---|
4270 | //PrintS("\n// ** The next vector does NOT stay in Cone!!\n"); |
---|
4271 | #ifdef TEST_OVERFLOW |
---|
4272 | goto LastGB_Finish; |
---|
4273 | #endif |
---|
4274 | |
---|
4275 | nnwinC = 0; |
---|
4276 | if(tp_deg == nV) |
---|
4277 | { |
---|
4278 | nlast = 1; |
---|
4279 | } |
---|
4280 | delete next_weight; |
---|
4281 | break; |
---|
4282 | } |
---|
4283 | |
---|
4284 | if(MivComp(next_weight, ivNull) == 1) |
---|
4285 | { |
---|
4286 | //newRing = currRing; |
---|
4287 | delete next_weight; |
---|
4288 | break; |
---|
4289 | } |
---|
4290 | |
---|
4291 | if(MivComp(next_weight, target_weight) == 1) |
---|
4292 | { |
---|
4293 | if(tp_deg == nV) |
---|
4294 | { |
---|
4295 | endwalks = 1; |
---|
4296 | } |
---|
4297 | else |
---|
4298 | { |
---|
4299 | // REC_LAST_GB_ALT2: |
---|
4300 | //nOverflow_Error = Overflow_Error; |
---|
4301 | tproc=tproc+clock()-tinput; |
---|
4302 | |
---|
4303 | Print("\n// takes %d steps and calls \"Rec_LastGB\" (%d):", |
---|
4304 | nwalk, tp_deg+1); |
---|
4305 | |
---|
4306 | G = Rec_LastGB(G,curr_weight, orig_target_weight, tp_deg+1,nnwinC); |
---|
4307 | newRing = currRing; |
---|
4308 | delete next_weight; |
---|
4309 | break; |
---|
4310 | } |
---|
4311 | } |
---|
4312 | |
---|
4313 | for(i=nV-1; i>=0; i--) |
---|
4314 | { |
---|
4315 | (*curr_weight)[i] = (*next_weight)[i]; |
---|
4316 | } |
---|
4317 | delete next_weight; |
---|
4318 | }//while |
---|
4319 | |
---|
4320 | delete ivNull; |
---|
4321 | |
---|
4322 | if(tp_deg != nV) |
---|
4323 | { |
---|
4324 | newRing = currRing; |
---|
4325 | |
---|
4326 | if (rParameter(currRing) != NULL) |
---|
4327 | { |
---|
4328 | DefRingParlp(); |
---|
4329 | } |
---|
4330 | else |
---|
4331 | { |
---|
4332 | VMrDefaultlp(); |
---|
4333 | } |
---|
4334 | F1 = idrMoveR(G, newRing,currRing); |
---|
4335 | |
---|
4336 | if(nnwinC == 0 || test_w_in_ConeCC(F1, target_weight) != 1 ) |
---|
4337 | { |
---|
4338 | // nOverflow_Error = Overflow_Error; |
---|
4339 | Print("\n// takes %d steps and calls \"Rec_LastGB (%d):", tp_deg+1); |
---|
4340 | tproc=tproc+clock()-tinput; |
---|
4341 | F1 = Rec_LastGB(F1,curr_weight, orig_target_weight, tp_deg+1,nnwinC); |
---|
4342 | } |
---|
4343 | delete target_weight; |
---|
4344 | |
---|
4345 | TargetRing = currRing; |
---|
4346 | rChangeCurrRing(EXXRing); |
---|
4347 | result = idrMoveR(F1, TargetRing,currRing); |
---|
4348 | } |
---|
4349 | else |
---|
4350 | { |
---|
4351 | if(nlast == 1) |
---|
4352 | { |
---|
4353 | JUNI_STD: |
---|
4354 | |
---|
4355 | newRing = currRing; |
---|
4356 | if (rParameter(currRing) != NULL) |
---|
4357 | { |
---|
4358 | DefRingParlp(); |
---|
4359 | } |
---|
4360 | else |
---|
4361 | { |
---|
4362 | VMrDefaultlp(); |
---|
4363 | } |
---|
4364 | KSTD_Finish: |
---|
4365 | if(isGB == FALSE) |
---|
4366 | { |
---|
4367 | F1 = idrMoveR(G, newRing,currRing); |
---|
4368 | } |
---|
4369 | else |
---|
4370 | { |
---|
4371 | F1 = G; |
---|
4372 | } |
---|
4373 | to=clock(); |
---|
4374 | // Print("\n// apply the Buchberger's alg in ring = %s",rString(currRing)); |
---|
4375 | // idElements(F1, "F1"); |
---|
4376 | G = MstdCC(F1); |
---|
4377 | xtextra=xtextra+clock()-to; |
---|
4378 | |
---|
4379 | |
---|
4380 | idDelete(&F1); |
---|
4381 | newRing = currRing; |
---|
4382 | } |
---|
4383 | |
---|
4384 | LastGB_Finish: |
---|
4385 | rChangeCurrRing(EXXRing); |
---|
4386 | result = idrMoveR(G, newRing,currRing); |
---|
4387 | } |
---|
4388 | |
---|
4389 | if(Overflow_Error == FALSE) |
---|
4390 | { |
---|
4391 | Overflow_Error=nError; |
---|
4392 | } |
---|
4393 | #ifdef TIME_TEST |
---|
4394 | Print("\n// \"Rec_LastGB\" (%d) took %d steps and %.2f sec.Overflow_Error (%d)", tp_deg, nwalk, ((double) tproc)/1000000, nOverflow_Error); |
---|
4395 | #endif |
---|
4396 | return(result); |
---|
4397 | } |
---|
4398 | |
---|
4399 | /* The following subroutine is the implementation of our second improved |
---|
4400 | Groebner walk algorithm, i.e. the second altervative algorithm. |
---|
4401 | First we use the Grobner walk algorithm and then we call the changed |
---|
4402 | perturbation walk algorithm with increased degree, if an intermediate |
---|
4403 | weight vector is equal to the current target weight vector. |
---|
4404 | This call will be only repeated until we get the wanted reduced Groebner |
---|
4405 | basis or n times, where n is the numbers of variables. |
---|
4406 | */ |
---|
4407 | |
---|
4408 | /****************************** |
---|
4409 | * walk + recursive LastGB * |
---|
4410 | ******************************/ |
---|
4411 | ideal MAltwalk2(ideal Go, intvec* curr_weight, intvec* target_weight) |
---|
4412 | { |
---|
4413 | Set_Error(FALSE); |
---|
4414 | Overflow_Error = FALSE; |
---|
4415 | //BOOLEAN nOverflow_Error = FALSE; |
---|
4416 | //Print("// pSetm_Error = (%d)", ErrorCheck()); |
---|
4417 | #ifdef TIME_TEST |
---|
4418 | xtif=0; xtstd=0; xtlift=0; xtred=0; xtnw=0; xtextra=0; |
---|
4419 | xftinput = clock(); |
---|
4420 | clock_t tostd, tproc; |
---|
4421 | #endif |
---|
4422 | nstep = 0; |
---|
4423 | int i, nV = currRing->N; |
---|
4424 | int nwalk=0, endwalks=0; |
---|
4425 | // int nhilb = 1; |
---|
4426 | ideal Gomega, M, F, Gomega1, Gomega2, M1, F1, G; |
---|
4427 | //ideal G1; |
---|
4428 | //ring endRing; |
---|
4429 | ring newRing, oldRing; |
---|
4430 | intvec* ivNull = new intvec(nV); |
---|
4431 | intvec* next_weight; |
---|
4432 | //intvec* extra_curr_weight = new intvec(nV); |
---|
4433 | //intvec* hilb_func; |
---|
4434 | intvec* exivlp = Mivlp(nV); |
---|
4435 | ring XXRing = currRing; |
---|
4436 | |
---|
4437 | //Print("\n// ring r_input = %s;", rString(currRing)); |
---|
4438 | #ifdef TIME_TEST |
---|
4439 | to = clock(); |
---|
4440 | #endif |
---|
4441 | /* compute the reduced Groebner basis of the given ideal w.r.t. |
---|
4442 | a "fast" monomial order, e.g. degree reverse lex. order (dp) */ |
---|
4443 | G = MstdCC(Go); |
---|
4444 | #ifdef TIME_TEST |
---|
4445 | tostd=clock()-to; |
---|
4446 | |
---|
4447 | Print("\n// Computation of the first std took = %.2f sec", |
---|
4448 | ((double) tostd)/1000000); |
---|
4449 | #endif |
---|
4450 | if(currRing->order[0] == ringorder_a) |
---|
4451 | { |
---|
4452 | goto NEXT_VECTOR; |
---|
4453 | } |
---|
4454 | while(1) |
---|
4455 | { |
---|
4456 | nwalk ++; |
---|
4457 | nstep ++; |
---|
4458 | #ifdef TIME_TEST |
---|
4459 | to = clock(); |
---|
4460 | #endif |
---|
4461 | /* compute an initial form ideal of <G> w.r.t. "curr_vector" */ |
---|
4462 | Gomega = MwalkInitialForm(G, curr_weight); |
---|
4463 | #ifdef TIME_TEST |
---|
4464 | xtif=xtif+clock()-to; |
---|
4465 | #endif |
---|
4466 | /* |
---|
4467 | if(Overflow_Error == TRUE) |
---|
4468 | { |
---|
4469 | for(i=nV-1; i>=0; i--) |
---|
4470 | (*curr_weight)[i] = (*extra_curr_weight)[i]; |
---|
4471 | delete extra_curr_weight; |
---|
4472 | goto LAST_GB_ALT2; |
---|
4473 | } |
---|
4474 | */ |
---|
4475 | oldRing = currRing; |
---|
4476 | |
---|
4477 | /* define a new ring that its ordering is "(a(curr_weight),lp) */ |
---|
4478 | if (rParameter(currRing) != NULL) |
---|
4479 | { |
---|
4480 | DefRingPar(curr_weight); |
---|
4481 | } |
---|
4482 | else |
---|
4483 | { |
---|
4484 | rChangeCurrRing(VMrDefault(curr_weight)); |
---|
4485 | } |
---|
4486 | newRing = currRing; |
---|
4487 | Gomega1 = idrMoveR(Gomega, oldRing,currRing); |
---|
4488 | #ifdef TIME_TEST |
---|
4489 | to = clock(); |
---|
4490 | #endif |
---|
4491 | /* compute a reduced Groebner basis of <Gomega> w.r.t. "newRing" */ |
---|
4492 | M = MstdhomCC(Gomega1); |
---|
4493 | #ifdef TIME_TEST |
---|
4494 | xtstd=xtstd+clock()-to; |
---|
4495 | #endif |
---|
4496 | /* change the ring to oldRing */ |
---|
4497 | rChangeCurrRing(oldRing); |
---|
4498 | M1 = idrMoveR(M, newRing,currRing); |
---|
4499 | Gomega2 = idrMoveR(Gomega1, newRing,currRing); |
---|
4500 | #ifdef TIME_TEST |
---|
4501 | to = clock(); |
---|
4502 | #endif |
---|
4503 | /* compute the reduced Groebner basis of <G> w.r.t. "newRing" |
---|
4504 | by the liftig process */ |
---|
4505 | F = MLifttwoIdeal(Gomega2, M1, G); |
---|
4506 | #ifdef TIME_TEST |
---|
4507 | xtlift=xtlift+clock()-to; |
---|
4508 | #endif |
---|
4509 | idDelete(&M1); |
---|
4510 | idDelete(&Gomega2); |
---|
4511 | idDelete(&G); |
---|
4512 | |
---|
4513 | /* change the ring to newRing */ |
---|
4514 | rChangeCurrRing(newRing); |
---|
4515 | F1 = idrMoveR(F, oldRing,currRing); |
---|
4516 | #ifdef TIME_TEST |
---|
4517 | to = clock(); |
---|
4518 | #endif |
---|
4519 | /* reduce the Groebner basis <G> w.r.t. newRing */ |
---|
4520 | G = kInterRedCC(F1, NULL); |
---|
4521 | #ifdef TIME_TEST |
---|
4522 | xtred=xtred+clock()-to; |
---|
4523 | #endif |
---|
4524 | idDelete(&F1); |
---|
4525 | |
---|
4526 | if(endwalks == 1) |
---|
4527 | break; |
---|
4528 | |
---|
4529 | NEXT_VECTOR: |
---|
4530 | #ifdef TIME_TEST |
---|
4531 | to = clock(); |
---|
4532 | #endif |
---|
4533 | /* compute a next weight vector */ |
---|
4534 | next_weight = MkInterRedNextWeight(curr_weight,target_weight, G); |
---|
4535 | #ifdef TIME_TEST |
---|
4536 | xtnw=xtnw+clock()-to; |
---|
4537 | #endif |
---|
4538 | #ifdef PRINT_VECTORS |
---|
4539 | MivString(curr_weight, target_weight, next_weight); |
---|
4540 | #endif |
---|
4541 | |
---|
4542 | if(Overflow_Error == TRUE) |
---|
4543 | { |
---|
4544 | /* |
---|
4545 | ivString(next_weight, "omega"); |
---|
4546 | PrintS("\n// ** The weight vector does NOT stay in Cone!!\n"); |
---|
4547 | */ |
---|
4548 | #ifdef TEST_OVERFLOW |
---|
4549 | goto TEST_OVERFLOW_OI; |
---|
4550 | #endif |
---|
4551 | |
---|
4552 | newRing = currRing; |
---|
4553 | if (rParameter(currRing) != NULL) |
---|
4554 | { |
---|
4555 | DefRingPar(target_weight); |
---|
4556 | } |
---|
4557 | else |
---|
4558 | { |
---|
4559 | rChangeCurrRing(VMrDefault(target_weight)); // Aenderung |
---|
4560 | } |
---|
4561 | F1 = idrMoveR(G, newRing,currRing); |
---|
4562 | G = MstdCC(F1); |
---|
4563 | idDelete(&F1); |
---|
4564 | newRing = currRing; |
---|
4565 | break; |
---|
4566 | } |
---|
4567 | |
---|
4568 | if(MivComp(next_weight, ivNull) == 1) |
---|
4569 | { |
---|
4570 | newRing = currRing; |
---|
4571 | delete next_weight; |
---|
4572 | break; |
---|
4573 | } |
---|
4574 | |
---|
4575 | if(MivComp(next_weight, target_weight) == 1) |
---|
4576 | { |
---|
4577 | if(MivSame(target_weight, exivlp)==1) |
---|
4578 | { |
---|
4579 | // LAST_GB_ALT2: |
---|
4580 | //nOverflow_Error = Overflow_Error; |
---|
4581 | #ifdef TIME_TEST |
---|
4582 | tproc = clock()-xftinput; |
---|
4583 | #endif |
---|
4584 | //Print("\n// takes %d steps and calls the recursion of level 2:", nwalk); |
---|
4585 | /* call the changed perturbation walk algorithm with degree 2 */ |
---|
4586 | G = Rec_LastGB(G, curr_weight, target_weight, 2,1); |
---|
4587 | newRing = currRing; |
---|
4588 | delete next_weight; |
---|
4589 | break; |
---|
4590 | } |
---|
4591 | endwalks = 1; |
---|
4592 | } |
---|
4593 | |
---|
4594 | for(i=nV-1; i>=0; i--) |
---|
4595 | { |
---|
4596 | //(*extra_curr_weight)[i] = (*curr_weight)[i]; |
---|
4597 | (*curr_weight)[i] = (*next_weight)[i]; |
---|
4598 | } |
---|
4599 | delete next_weight; |
---|
4600 | } |
---|
4601 | #ifdef TEST_OVERFLOW |
---|
4602 | TEST_OVERFLOW_OI: |
---|
4603 | #endif |
---|
4604 | rChangeCurrRing(XXRing); |
---|
4605 | G = idrMoveR(G, newRing,currRing); |
---|
4606 | delete ivNull; |
---|
4607 | delete exivlp; |
---|
4608 | |
---|
4609 | #ifdef TIME_TEST |
---|
4610 | Print("\n// \"Main procedure\" took %d steps dnd %.2f sec. Overflow_Error (%d)", |
---|
4611 | nwalk, ((double) tproc)/1000000, nOverflow_Error); |
---|
4612 | |
---|
4613 | TimeStringFractal(xftinput, tostd, xtif, xtstd, xtextra,xtlift, xtred,xtnw); |
---|
4614 | |
---|
4615 | Print("\n// pSetm_Error = (%d)", ErrorCheck()); |
---|
4616 | //Print("\n// Overflow_Error? (%d)", nOverflow_Error); |
---|
4617 | Print("\n// Awalk2 took %d steps!!", nstep); |
---|
4618 | #endif |
---|
4619 | |
---|
4620 | return(G); |
---|
4621 | } |
---|
4622 | |
---|
4623 | |
---|
4624 | /************************************** |
---|
4625 | * perturb the matrix order of "lex" * |
---|
4626 | **************************************/ |
---|
4627 | static intvec* NewVectorlp(ideal I) |
---|
4628 | { |
---|
4629 | int nV = currRing->N; |
---|
4630 | intvec* iv_wlp = MivMatrixOrderlp(nV); |
---|
4631 | intvec* result = Mfpertvector(I, iv_wlp); |
---|
4632 | delete iv_wlp; |
---|
4633 | return result; |
---|
4634 | } |
---|
4635 | |
---|
4636 | int ngleich; |
---|
4637 | intvec* Xsigma; |
---|
4638 | intvec* Xtau; |
---|
4639 | int xn; |
---|
4640 | intvec* Xivinput; |
---|
4641 | intvec* Xivlp; |
---|
4642 | |
---|
4643 | |
---|
4644 | /******************************** |
---|
4645 | * compute a next weight vector * |
---|
4646 | ********************************/ |
---|
4647 | static intvec* MWalkRandomNextWeight(ideal G, intvec* orig_M, intvec* target_weight, |
---|
4648 | int weight_rad, int pert_deg) |
---|
4649 | { |
---|
4650 | assume(currRing != NULL && orig_M != NULL && |
---|
4651 | target_weight != NULL && G->m[0] != NULL); |
---|
4652 | |
---|
4653 | //BOOLEAN nError = Overflow_Error; |
---|
4654 | Overflow_Error = FALSE; |
---|
4655 | |
---|
4656 | BOOLEAN found_random_weight = FALSE; |
---|
4657 | int i,nV = currRing->N; |
---|
4658 | intvec* curr_weight = new intvec(nV); |
---|
4659 | |
---|
4660 | for(i=0; i<nV; i++) |
---|
4661 | { |
---|
4662 | (*curr_weight)[i] = (*orig_M)[i]; |
---|
4663 | } |
---|
4664 | |
---|
4665 | int k=0,weight_norm; |
---|
4666 | intvec* next_weight; |
---|
4667 | intvec* next_weight1 = MkInterRedNextWeight(curr_weight,target_weight,G); |
---|
4668 | intvec* next_weight2 = new intvec(nV); |
---|
4669 | intvec* next_weight22 = new intvec(nV); |
---|
4670 | intvec* result = new intvec(nV); |
---|
4671 | intvec* curr_weight1; |
---|
4672 | ideal G_test, G_test1, G_test2; |
---|
4673 | |
---|
4674 | //try to find a random next weight vector "next_weight2" |
---|
4675 | if(weight_rad > 0){ while(k<10) |
---|
4676 | { |
---|
4677 | weight_norm = 0; |
---|
4678 | while(weight_norm == 0) |
---|
4679 | { |
---|
4680 | |
---|
4681 | for(i=0; i<nV; i++) |
---|
4682 | { |
---|
4683 | (*next_weight2)[i] = rand() % 60000 - 30000; |
---|
4684 | weight_norm = weight_norm + (*next_weight2)[i]*(*next_weight2)[i]; |
---|
4685 | } |
---|
4686 | weight_norm = 1 + floor(sqrt(weight_norm)); |
---|
4687 | } |
---|
4688 | |
---|
4689 | for(i=0; i<nV; i++) |
---|
4690 | { |
---|
4691 | if((*next_weight2)[i] < 0) |
---|
4692 | { |
---|
4693 | (*next_weight2)[i] = 1 + (*curr_weight)[i] + floor(weight_rad*(*next_weight2)[i]/weight_norm); |
---|
4694 | } |
---|
4695 | else |
---|
4696 | { |
---|
4697 | (*next_weight2)[i] = (*curr_weight)[i] + floor(weight_rad*(*next_weight2)[i]/weight_norm); |
---|
4698 | } |
---|
4699 | } |
---|
4700 | |
---|
4701 | if(test_w_in_ConeCC(G,next_weight2) == 1) |
---|
4702 | { |
---|
4703 | if(maxlengthpoly(MwalkInitialForm(G,next_weight2))<2) |
---|
4704 | { |
---|
4705 | next_weight2 = MkInterRedNextWeight(next_weight2,target_weight,G); |
---|
4706 | } |
---|
4707 | /* |
---|
4708 | if(MivAbsMax(next_weight2)>1147483647) |
---|
4709 | { |
---|
4710 | for(i=0; i<nV; i++) |
---|
4711 | { |
---|
4712 | (*next_weight22)[i] = (*next_weight2)[i]; |
---|
4713 | } |
---|
4714 | i = 0; |
---|
4715 | // reduce the size of the maximal entry of the vector |
---|
4716 | while(test_w_in_ConeCC(G,next_weight22) == 1) |
---|
4717 | { |
---|
4718 | (*next_weight2)[i] = (*next_weight22)[i]; |
---|
4719 | i = MivAbsMaxArg(next_weight22); |
---|
4720 | (*next_weight22)[i] = floor(0.1*(*next_weight22)[i] + 0.5); |
---|
4721 | } |
---|
4722 | delete next_weight22; |
---|
4723 | } |
---|
4724 | */ |
---|
4725 | G_test2 = MwalkInitialForm(G, next_weight2); |
---|
4726 | found_random_weight = TRUE; |
---|
4727 | break; |
---|
4728 | } |
---|
4729 | k++; |
---|
4730 | }} |
---|
4731 | Print("\n MWalkRandomNextWeight: compute perurbation...\n"); |
---|
4732 | // compute "perturbed" next weight vector |
---|
4733 | if(pert_deg > 1) |
---|
4734 | { |
---|
4735 | curr_weight1 = MPertVectors(G,orig_M,pert_deg); |
---|
4736 | next_weight = MkInterRedNextWeight(curr_weight1,target_weight,G); |
---|
4737 | delete curr_weight1; |
---|
4738 | } |
---|
4739 | else |
---|
4740 | { |
---|
4741 | next_weight = MkInterRedNextWeight(curr_weight,target_weight,G); |
---|
4742 | } |
---|
4743 | if(MivSame(curr_weight,next_weight)==1 || Overflow_Error == TRUE) |
---|
4744 | { |
---|
4745 | Overflow_Error = FALSE; |
---|
4746 | delete next_weight; |
---|
4747 | next_weight = MkInterRedNextWeight(curr_weight,target_weight,G); |
---|
4748 | } |
---|
4749 | G_test=MwalkInitialForm(G,next_weight); |
---|
4750 | G_test1=MwalkInitialForm(G,next_weight1); |
---|
4751 | Print("\n MWalkRandomNextWeight: finished...\n"); |
---|
4752 | // compare next weights |
---|
4753 | if(Overflow_Error == FALSE) |
---|
4754 | { |
---|
4755 | if(found_random_weight == TRUE) |
---|
4756 | { |
---|
4757 | // random next weight vector found |
---|
4758 | if(G_test1->m[0] != NULL && maxlengthpoly(G_test1) < maxlengthpoly(G_test)) |
---|
4759 | { |
---|
4760 | if(G_test2->m[0] != NULL && maxlengthpoly(G_test2) < maxlengthpoly(G_test1)) |
---|
4761 | { |
---|
4762 | for(i=0; i<nV; i++) |
---|
4763 | { |
---|
4764 | (*result)[i] = (*next_weight2)[i]; |
---|
4765 | } |
---|
4766 | } |
---|
4767 | else |
---|
4768 | { |
---|
4769 | for(i=0; i<nV; i++) |
---|
4770 | { |
---|
4771 | (*result)[i] = (*next_weight1)[i]; |
---|
4772 | } |
---|
4773 | } |
---|
4774 | } |
---|
4775 | else |
---|
4776 | { |
---|
4777 | if(G_test2->m[0] != NULL && maxlengthpoly(G_test2) < maxlengthpoly(G_test)) |
---|
4778 | { |
---|
4779 | for(i=0; i<nV; i++) |
---|
4780 | { |
---|
4781 | (*result)[i] = (*next_weight2)[i]; |
---|
4782 | } |
---|
4783 | } |
---|
4784 | else |
---|
4785 | { |
---|
4786 | for(i=0; i<nV; i++) |
---|
4787 | { |
---|
4788 | (*result)[i] = (*next_weight)[i]; |
---|
4789 | } |
---|
4790 | } |
---|
4791 | } |
---|
4792 | } |
---|
4793 | else |
---|
4794 | { |
---|
4795 | // no random next weight vector found |
---|
4796 | if(G_test1->m[0] != NULL && maxlengthpoly(G_test1) < maxlengthpoly(G_test)) |
---|
4797 | { |
---|
4798 | for(i=0; i<nV; i++) |
---|
4799 | { |
---|
4800 | (*result)[i] = (*next_weight1)[i]; |
---|
4801 | } |
---|
4802 | } |
---|
4803 | else |
---|
4804 | { |
---|
4805 | for(i=0; i<nV; i++) |
---|
4806 | { |
---|
4807 | (*result)[i] = (*next_weight)[i]; |
---|
4808 | } |
---|
4809 | } |
---|
4810 | } |
---|
4811 | } |
---|
4812 | else |
---|
4813 | { |
---|
4814 | Overflow_Error = FALSE; |
---|
4815 | if(found_random_weight == TRUE) |
---|
4816 | { |
---|
4817 | if(G_test2->m[0] != NULL && maxlengthpoly(G_test2) < maxlengthpoly(G_test)) |
---|
4818 | { |
---|
4819 | for(i=1; i<nV; i++) |
---|
4820 | { |
---|
4821 | (*result)[i] = (*next_weight2)[i]; |
---|
4822 | } |
---|
4823 | } |
---|
4824 | else |
---|
4825 | { |
---|
4826 | for(i=0; i<nV; i++) |
---|
4827 | { |
---|
4828 | (*result)[i] = (*next_weight)[i]; |
---|
4829 | } |
---|
4830 | } |
---|
4831 | } |
---|
4832 | else |
---|
4833 | { |
---|
4834 | for(i=0; i<nV; i++) |
---|
4835 | { |
---|
4836 | (*result)[i] = (*next_weight)[i]; |
---|
4837 | } |
---|
4838 | } |
---|
4839 | } |
---|
4840 | // delete curr_weight1; |
---|
4841 | delete next_weight; |
---|
4842 | delete next_weight2; |
---|
4843 | idDelete(&G_test); |
---|
4844 | idDelete(&G_test1); |
---|
4845 | if(found_random_weight == TRUE) |
---|
4846 | { |
---|
4847 | idDelete(&G_test2); |
---|
4848 | } |
---|
4849 | if(test_w_in_ConeCC(G, result) == 1 && MivSame(curr_weight,result)==0) |
---|
4850 | { |
---|
4851 | delete curr_weight; |
---|
4852 | delete next_weight1; |
---|
4853 | return result; |
---|
4854 | } |
---|
4855 | else |
---|
4856 | { |
---|
4857 | delete curr_weight; |
---|
4858 | delete result; |
---|
4859 | return next_weight1; |
---|
4860 | } |
---|
4861 | } |
---|
4862 | |
---|
4863 | |
---|
4864 | /*************************************************************************** |
---|
4865 | * The procedur REC_GB_Mwalk computes a GB for <G> w.r.t. the weight order * |
---|
4866 | * otw, where G is a reduced GB w.r.t. the weight order cw. * |
---|
4867 | * The new procedure Mwalk calls REC_GB. * |
---|
4868 | ***************************************************************************/ |
---|
4869 | static ideal REC_GB_Mwalk(ideal G, intvec* curr_weight, intvec* orig_target_weight, |
---|
4870 | int tp_deg, int npwinc) |
---|
4871 | { |
---|
4872 | BOOLEAN nError = Overflow_Error; |
---|
4873 | Overflow_Error = FALSE; |
---|
4874 | |
---|
4875 | int i, nV = currRing->N; |
---|
4876 | int nwalk=0, endwalks=0, nnwinC=1, nlast = 0; |
---|
4877 | ideal Gomega, M, F, Gomega1, Gomega2, M1,F1,result,ssG; |
---|
4878 | ring newRing, oldRing, TargetRing; |
---|
4879 | intvec* target_weight; |
---|
4880 | intvec* ivNull = new intvec(nV); |
---|
4881 | #ifndef BUCHBERGER_ALG |
---|
4882 | intvec* hilb_func; |
---|
4883 | // to avoid (1,0,...,0) as the target vector |
---|
4884 | intvec* last_omega = new intvec(nV); |
---|
4885 | for(i=nV-1; i>0; i--) |
---|
4886 | { |
---|
4887 | (*last_omega)[i] = 1; |
---|
4888 | } |
---|
4889 | (*last_omega)[0] = 10000; |
---|
4890 | #endif |
---|
4891 | BOOLEAN isGB = FALSE; |
---|
4892 | |
---|
4893 | ring EXXRing = currRing; |
---|
4894 | |
---|
4895 | // compute a pertubed weight vector of the target weight vector |
---|
4896 | if(tp_deg > 1 && tp_deg <= nV) |
---|
4897 | { |
---|
4898 | ideal H0 = idHeadCC(G); |
---|
4899 | if (rParameter(currRing) != NULL) |
---|
4900 | { |
---|
4901 | DefRingPar(orig_target_weight); |
---|
4902 | } |
---|
4903 | else |
---|
4904 | { |
---|
4905 | rChangeCurrRing(VMrDefault(orig_target_weight)); |
---|
4906 | } |
---|
4907 | TargetRing = currRing; |
---|
4908 | ssG = idrMoveR(G,EXXRing,currRing); |
---|
4909 | |
---|
4910 | ideal H0_tmp = idrMoveR(H0,EXXRing,currRing); |
---|
4911 | ideal H1 = idHeadCC(ssG); |
---|
4912 | id_Delete(&H0,EXXRing); |
---|
4913 | |
---|
4914 | if(test_G_GB_walk(H0_tmp,H1)==1) |
---|
4915 | { |
---|
4916 | //Print("\n//REC_GB_Mwalk: input in %d-th recursive is a GB!\n",tp_deg); |
---|
4917 | idDelete(&H0_tmp); |
---|
4918 | idDelete(&H1); |
---|
4919 | G = ssG; |
---|
4920 | ssG = NULL; |
---|
4921 | newRing = currRing; |
---|
4922 | delete ivNull; |
---|
4923 | if(npwinc == 0) |
---|
4924 | { |
---|
4925 | isGB = TRUE; |
---|
4926 | goto KSTD_Finish; |
---|
4927 | } |
---|
4928 | else |
---|
4929 | { |
---|
4930 | goto LastGB_Finish; |
---|
4931 | } |
---|
4932 | } |
---|
4933 | idDelete(&H0_tmp); |
---|
4934 | idDelete(&H1); |
---|
4935 | |
---|
4936 | target_weight = MPertVectors(ssG, MivMatrixOrder(orig_target_weight), tp_deg); |
---|
4937 | |
---|
4938 | rChangeCurrRing(EXXRing); |
---|
4939 | G = idrMoveR(ssG, TargetRing,currRing); |
---|
4940 | } |
---|
4941 | |
---|
4942 | while(1) |
---|
4943 | { |
---|
4944 | nwalk ++; |
---|
4945 | nstep++; |
---|
4946 | if(nwalk == 1) |
---|
4947 | { |
---|
4948 | goto NEXT_STEP; |
---|
4949 | } |
---|
4950 | //Print("\n//REC_GB_Mwalk: Entering the %d-th step in the %d-th recursive:\n",nwalk,tp_deg); |
---|
4951 | to = clock(); |
---|
4952 | // compute an initial form ideal of <G> w.r.t. "curr_vector" |
---|
4953 | Gomega = MwalkInitialForm(G, curr_weight); |
---|
4954 | xtif = xtif + clock()-to; |
---|
4955 | |
---|
4956 | #ifndef BUCHBERGER_ALG |
---|
4957 | if(isNolVector(curr_weight) == 0) |
---|
4958 | { |
---|
4959 | hilb_func = hFirstSeries(Gomega,NULL,NULL,curr_weight,currRing); |
---|
4960 | } |
---|
4961 | else |
---|
4962 | { |
---|
4963 | hilb_func = hFirstSeries(Gomega,NULL,NULL,last_omega,currRing); |
---|
4964 | } |
---|
4965 | #endif |
---|
4966 | |
---|
4967 | oldRing = currRing; |
---|
4968 | |
---|
4969 | // define a new ring with ordering "(a(curr_weight),lp) |
---|
4970 | if (rParameter(currRing) != NULL) |
---|
4971 | { |
---|
4972 | DefRingPar(curr_weight); |
---|
4973 | } |
---|
4974 | else |
---|
4975 | { |
---|
4976 | rChangeCurrRing(VMrDefault(curr_weight)); |
---|
4977 | } |
---|
4978 | newRing = currRing; |
---|
4979 | Gomega1 = idrMoveR(Gomega, oldRing,currRing); |
---|
4980 | |
---|
4981 | to = clock(); |
---|
4982 | // compute a reduced Groebner basis of <Gomega> w.r.t. "newRing" |
---|
4983 | #ifdef BUCHBERGER_ALG |
---|
4984 | M = MstdhomCC(Gomega1); |
---|
4985 | #else |
---|
4986 | M=kStd(Gomega1,NULL,isHomog,NULL,hilb_func,0,NULL,curr_weight); |
---|
4987 | delete hilb_func; |
---|
4988 | #endif |
---|
4989 | xtstd = xtstd + clock() - to; |
---|
4990 | |
---|
4991 | // change the ring to oldRing |
---|
4992 | rChangeCurrRing(oldRing); |
---|
4993 | |
---|
4994 | M1 = idrMoveR(M, newRing,currRing); |
---|
4995 | Gomega2 = idrMoveR(Gomega1, newRing,currRing); |
---|
4996 | |
---|
4997 | to = clock(); |
---|
4998 | F = MLifttwoIdeal(Gomega2, M1, G); |
---|
4999 | xtlift = xtlift + clock() -to; |
---|
5000 | |
---|
5001 | idDelete(&M1); |
---|
5002 | idDelete(&Gomega2); |
---|
5003 | idDelete(&G); |
---|
5004 | |
---|
5005 | |
---|
5006 | // change the ring to newRing |
---|
5007 | rChangeCurrRing(newRing); |
---|
5008 | F1 = idrMoveR(F, oldRing,currRing); |
---|
5009 | |
---|
5010 | to = clock(); |
---|
5011 | // reduce the Groebner basis <G> w.r.t. new ring |
---|
5012 | G = kInterRedCC(F1, NULL); |
---|
5013 | xtred = xtred + clock() -to; |
---|
5014 | |
---|
5015 | idDelete(&F1); |
---|
5016 | |
---|
5017 | if(endwalks == 1) |
---|
5018 | { |
---|
5019 | break; |
---|
5020 | } |
---|
5021 | NEXT_STEP: |
---|
5022 | to = clock(); |
---|
5023 | // compute a next weight vector |
---|
5024 | intvec* next_weight = MkInterRedNextWeight(curr_weight,target_weight, G); |
---|
5025 | |
---|
5026 | |
---|
5027 | xtnw = xtnw + clock() - to; |
---|
5028 | |
---|
5029 | #ifdef PRINT_VECTORS |
---|
5030 | MivString(curr_weight, target_weight, next_weight); |
---|
5031 | #endif |
---|
5032 | |
---|
5033 | if(Overflow_Error == TRUE) |
---|
5034 | { |
---|
5035 | //PrintS("\n//REC_GB_Mwalk: The computed vector does NOT stay in the correct cone!!\n"); |
---|
5036 | nnwinC = 0; |
---|
5037 | if(tp_deg == nV) |
---|
5038 | { |
---|
5039 | nlast = 1; |
---|
5040 | } |
---|
5041 | delete next_weight; |
---|
5042 | break; |
---|
5043 | } |
---|
5044 | if(MivComp(next_weight, ivNull) == 1) |
---|
5045 | { |
---|
5046 | newRing = currRing; |
---|
5047 | delete next_weight; |
---|
5048 | break; |
---|
5049 | } |
---|
5050 | |
---|
5051 | if(MivComp(next_weight, target_weight) == 1) |
---|
5052 | { |
---|
5053 | if(tp_deg == nV) |
---|
5054 | { |
---|
5055 | endwalks = 1; |
---|
5056 | } |
---|
5057 | else |
---|
5058 | { |
---|
5059 | G = REC_GB_Mwalk(G,curr_weight, orig_target_weight, tp_deg+1,nnwinC); |
---|
5060 | newRing = currRing; |
---|
5061 | delete next_weight; |
---|
5062 | break; |
---|
5063 | } |
---|
5064 | } |
---|
5065 | |
---|
5066 | for(i=nV-1; i>=0; i--) |
---|
5067 | { |
---|
5068 | (*curr_weight)[i] = (*next_weight)[i]; |
---|
5069 | } |
---|
5070 | delete next_weight; |
---|
5071 | } |
---|
5072 | |
---|
5073 | delete ivNull; |
---|
5074 | |
---|
5075 | if(tp_deg != nV) |
---|
5076 | { |
---|
5077 | newRing = currRing; |
---|
5078 | |
---|
5079 | if (rParameter(currRing) != NULL) |
---|
5080 | { |
---|
5081 | DefRingPar(orig_target_weight); |
---|
5082 | } |
---|
5083 | else |
---|
5084 | { |
---|
5085 | rChangeCurrRing(VMrDefault(orig_target_weight)); |
---|
5086 | } |
---|
5087 | F1 = idrMoveR(G, newRing,currRing); |
---|
5088 | |
---|
5089 | if(nnwinC == 0) |
---|
5090 | { |
---|
5091 | F1 = REC_GB_Mwalk(F1,curr_weight, orig_target_weight, tp_deg+1,nnwinC); |
---|
5092 | } |
---|
5093 | else |
---|
5094 | { |
---|
5095 | if(test_w_in_ConeCC(F1, target_weight) != 1) |
---|
5096 | { |
---|
5097 | F1 = REC_GB_Mwalk(F1,curr_weight, orig_target_weight,tp_deg+1,nnwinC); |
---|
5098 | } |
---|
5099 | } |
---|
5100 | delete target_weight; |
---|
5101 | |
---|
5102 | TargetRing = currRing; |
---|
5103 | rChangeCurrRing(EXXRing); |
---|
5104 | result = idrMoveR(F1, TargetRing,currRing); |
---|
5105 | } |
---|
5106 | else |
---|
5107 | { |
---|
5108 | if(nlast == 1) |
---|
5109 | { |
---|
5110 | if (rParameter(currRing) != NULL) |
---|
5111 | { |
---|
5112 | DefRingPar(orig_target_weight); |
---|
5113 | } |
---|
5114 | else |
---|
5115 | { |
---|
5116 | rChangeCurrRing(VMrDefault(orig_target_weight)); |
---|
5117 | } |
---|
5118 | KSTD_Finish: |
---|
5119 | if(isGB == FALSE) |
---|
5120 | { |
---|
5121 | F1 = idrMoveR(G, newRing,currRing); |
---|
5122 | } |
---|
5123 | else |
---|
5124 | { |
---|
5125 | F1 = G; |
---|
5126 | } |
---|
5127 | to=clock(); |
---|
5128 | // apply Buchberger alg to compute a red. GB of F1 |
---|
5129 | G = MstdCC(F1); |
---|
5130 | xtextra=clock()-to; |
---|
5131 | idDelete(&F1); |
---|
5132 | newRing = currRing; |
---|
5133 | } |
---|
5134 | |
---|
5135 | LastGB_Finish: |
---|
5136 | rChangeCurrRing(EXXRing); |
---|
5137 | result = idrMoveR(G, newRing,currRing); |
---|
5138 | } |
---|
5139 | |
---|
5140 | if(Overflow_Error == FALSE) |
---|
5141 | { |
---|
5142 | Overflow_Error = nError; |
---|
5143 | } |
---|
5144 | #ifndef BUCHBERGER_ALG |
---|
5145 | delete last_omega; |
---|
5146 | #endif |
---|
5147 | return(result); |
---|
5148 | } |
---|
5149 | |
---|
5150 | |
---|
5151 | // THE NEW GROEBNER WALK ALGORITHM |
---|
5152 | // Groebnerwalk with a recursive "second" alternative GW, called REC_GB_Mwalk that only computes the last reduced GB |
---|
5153 | ideal MwalkAlt(ideal Go, intvec* curr_weight, intvec* target_weight) |
---|
5154 | { |
---|
5155 | Set_Error(FALSE); |
---|
5156 | Overflow_Error = FALSE; |
---|
5157 | //Print("// pSetm_Error = (%d)", ErrorCheck()); |
---|
5158 | |
---|
5159 | clock_t tinput, tostd, tif=0, tstd=0, tlift=0, tred=0, tnw=0; |
---|
5160 | xtif=0; xtstd=0; xtlift=0; xtred=0; xtnw=0; |
---|
5161 | tinput = clock(); |
---|
5162 | clock_t tim; |
---|
5163 | nstep=0; |
---|
5164 | int i; |
---|
5165 | int nV = currRing->N; |
---|
5166 | int nwalk=0; |
---|
5167 | int endwalks=0; |
---|
5168 | |
---|
5169 | ideal Gomega, M, F, Gomega1, Gomega2, M1, F1, G; |
---|
5170 | |
---|
5171 | ring newRing, oldRing; |
---|
5172 | intvec* ivNull = new intvec(nV); |
---|
5173 | intvec* exivlp = Mivlp(nV); |
---|
5174 | #ifndef BUCHBERGER_ALG |
---|
5175 | intvec* hilb_func; |
---|
5176 | #endif |
---|
5177 | intvec* tmp_weight = new intvec(nV); |
---|
5178 | for(i=nV-1; i>=0; i--) |
---|
5179 | (*tmp_weight)[i] = (*curr_weight)[i]; |
---|
5180 | |
---|
5181 | // to avoid (1,0,...,0) as the target vector |
---|
5182 | intvec* last_omega = new intvec(nV); |
---|
5183 | for(i=nV-1; i>0; i--) |
---|
5184 | (*last_omega)[i] = 1; |
---|
5185 | (*last_omega)[0] = 10000; |
---|
5186 | |
---|
5187 | ring XXRing = currRing; |
---|
5188 | |
---|
5189 | to = clock(); |
---|
5190 | // the monomial ordering of this current ring would be "dp" |
---|
5191 | G = MstdCC(Go); |
---|
5192 | tostd = clock()-to; |
---|
5193 | |
---|
5194 | if(currRing->order[0] == ringorder_a) |
---|
5195 | goto NEXT_VECTOR; |
---|
5196 | |
---|
5197 | while(1) |
---|
5198 | { |
---|
5199 | nwalk ++; |
---|
5200 | nstep ++; |
---|
5201 | to = clock(); |
---|
5202 | // compute an initial form ideal of <G> w.r.t. "curr_vector" |
---|
5203 | Gomega = MwalkInitialForm(G, curr_weight); |
---|
5204 | tif = tif + clock()-to; |
---|
5205 | oldRing = currRing; |
---|
5206 | |
---|
5207 | if(endwalks == 1) |
---|
5208 | { |
---|
5209 | /* compute a reduced Groebner basis of Gomega w.r.t. >>_cw by |
---|
5210 | the recursive changed perturbation walk alg. */ |
---|
5211 | tim = clock(); |
---|
5212 | #ifdef CHECK_IDEAL_MWALK |
---|
5213 | Print("\n// **** Groebnerwalk took %d steps and ", nwalk); |
---|
5214 | PrintS("\n// **** call the rec. Pert. Walk to compute a red GB of:"); |
---|
5215 | idString(Gomega, "Gomega"); |
---|
5216 | #endif |
---|
5217 | |
---|
5218 | if(MivSame(exivlp, target_weight)==1) |
---|
5219 | M = REC_GB_Mwalk(idCopy(Gomega), tmp_weight, curr_weight, 2,1); |
---|
5220 | else |
---|
5221 | goto NORMAL_GW; |
---|
5222 | #ifdef TIME_TEST |
---|
5223 | Print("\n// time for the last std(Gw) = %.2f sec", |
---|
5224 | ((double) (clock()-tim)/1000000)); |
---|
5225 | #endif |
---|
5226 | /* |
---|
5227 | #ifdef CHECK_IDEAL_MWALK |
---|
5228 | idElements(Gomega, "G_omega"); |
---|
5229 | headidString(Gomega, "Gw"); |
---|
5230 | idElements(M, "M"); |
---|
5231 | //headidString(M, "M"); |
---|
5232 | #endif |
---|
5233 | */ |
---|
5234 | to = clock(); |
---|
5235 | F = MLifttwoIdeal(Gomega, M, G); |
---|
5236 | xtlift = xtlift + clock() - to; |
---|
5237 | |
---|
5238 | idDelete(&Gomega); |
---|
5239 | idDelete(&M); |
---|
5240 | idDelete(&G); |
---|
5241 | |
---|
5242 | oldRing = currRing; |
---|
5243 | |
---|
5244 | // create a new ring newRing |
---|
5245 | if (rParameter(currRing) != NULL) |
---|
5246 | { |
---|
5247 | DefRingPar(curr_weight); |
---|
5248 | } |
---|
5249 | else |
---|
5250 | { |
---|
5251 | rChangeCurrRing(VMrDefault(curr_weight)); |
---|
5252 | } |
---|
5253 | newRing = currRing; |
---|
5254 | F1 = idrMoveR(F, oldRing,currRing); |
---|
5255 | } |
---|
5256 | else |
---|
5257 | { |
---|
5258 | NORMAL_GW: |
---|
5259 | #ifndef BUCHBERGER_ALG |
---|
5260 | if(isNolVector(curr_weight) == 0) |
---|
5261 | { |
---|
5262 | hilb_func = hFirstSeries(Gomega,NULL,NULL,curr_weight,currRing); |
---|
5263 | } |
---|
5264 | else |
---|
5265 | { |
---|
5266 | hilb_func = hFirstSeries(Gomega,NULL,NULL,last_omega,currRing); |
---|
5267 | } |
---|
5268 | #endif // BUCHBERGER_ALG |
---|
5269 | |
---|
5270 | // define a new ring that its ordering is "(a(curr_weight),lp) |
---|
5271 | if (rParameter(currRing) != NULL) |
---|
5272 | { |
---|
5273 | DefRingPar(curr_weight); |
---|
5274 | } |
---|
5275 | else |
---|
5276 | { |
---|
5277 | rChangeCurrRing(VMrDefault(curr_weight)); |
---|
5278 | } |
---|
5279 | newRing = currRing; |
---|
5280 | Gomega1 = idrMoveR(Gomega, oldRing,currRing); |
---|
5281 | |
---|
5282 | to = clock(); |
---|
5283 | // compute a reduced Groebner basis of <Gomega> w.r.t. "newRing" |
---|
5284 | #ifdef BUCHBERGER_ALG |
---|
5285 | M = MstdhomCC(Gomega1); |
---|
5286 | #else |
---|
5287 | M=kStd(Gomega1,NULL,isHomog,NULL,hilb_func,0,NULL,curr_weight); |
---|
5288 | delete hilb_func; |
---|
5289 | #endif |
---|
5290 | tstd = tstd + clock() - to; |
---|
5291 | |
---|
5292 | // change the ring to oldRing |
---|
5293 | rChangeCurrRing(oldRing); |
---|
5294 | M1 = idrMoveR(M, newRing,currRing); |
---|
5295 | Gomega2 = idrMoveR(Gomega1, newRing,currRing); |
---|
5296 | |
---|
5297 | to = clock(); |
---|
5298 | // compute a representation of the generators of submod (M) with respect |
---|
5299 | // to those of mod (Gomega). |
---|
5300 | // Gomega is a reduced Groebner basis w.r.t. the current ring. |
---|
5301 | F = MLifttwoIdeal(Gomega2, M1, G); |
---|
5302 | tlift = tlift + clock() - to; |
---|
5303 | |
---|
5304 | idDelete(&M1); |
---|
5305 | idDelete(&Gomega2); |
---|
5306 | idDelete(&G); |
---|
5307 | |
---|
5308 | // change the ring to newRing |
---|
5309 | rChangeCurrRing(newRing); |
---|
5310 | F1 = idrMoveR(F, oldRing,currRing); |
---|
5311 | } |
---|
5312 | |
---|
5313 | to = clock(); |
---|
5314 | // reduce the Groebner basis <G> w.r.t. new ring |
---|
5315 | G = kInterRedCC(F1, NULL); |
---|
5316 | if(endwalks != 1) |
---|
5317 | { |
---|
5318 | tred = tred + clock() - to; |
---|
5319 | } |
---|
5320 | else |
---|
5321 | { |
---|
5322 | xtred = xtred + clock() - to; |
---|
5323 | } |
---|
5324 | idDelete(&F1); |
---|
5325 | if(endwalks == 1) |
---|
5326 | { |
---|
5327 | break; |
---|
5328 | } |
---|
5329 | NEXT_VECTOR: |
---|
5330 | to = clock(); |
---|
5331 | // compute a next weight vector |
---|
5332 | intvec* next_weight = MkInterRedNextWeight(curr_weight,target_weight,G); |
---|
5333 | tnw = tnw + clock() - to; |
---|
5334 | #ifdef PRINT_VECTORS |
---|
5335 | MivString(curr_weight, target_weight, next_weight); |
---|
5336 | #endif |
---|
5337 | |
---|
5338 | //if(test_w_in_ConeCC(G, next_weight) != 1) |
---|
5339 | if(Overflow_Error == TRUE) |
---|
5340 | { |
---|
5341 | newRing = currRing; |
---|
5342 | PrintS("\n// ** The computed vector does NOT stay in Cone!!\n"); |
---|
5343 | |
---|
5344 | if (rParameter(currRing) != NULL) |
---|
5345 | { |
---|
5346 | DefRingPar(target_weight); |
---|
5347 | } |
---|
5348 | else |
---|
5349 | { |
---|
5350 | rChangeCurrRing(VMrDefault(target_weight)); |
---|
5351 | } |
---|
5352 | F1 = idrMoveR(G, newRing,currRing); |
---|
5353 | G = MstdCC(F1); |
---|
5354 | idDelete(&F1); |
---|
5355 | |
---|
5356 | newRing = currRing; |
---|
5357 | break; |
---|
5358 | } |
---|
5359 | |
---|
5360 | if(MivComp(next_weight, ivNull) == 1) |
---|
5361 | { |
---|
5362 | newRing = currRing; |
---|
5363 | delete next_weight; |
---|
5364 | break; |
---|
5365 | } |
---|
5366 | if(MivComp(next_weight, target_weight) == 1) |
---|
5367 | { |
---|
5368 | endwalks = 1; |
---|
5369 | } |
---|
5370 | for(i=nV-1; i>=0; i--) |
---|
5371 | { |
---|
5372 | (*tmp_weight)[i] = (*curr_weight)[i]; |
---|
5373 | (*curr_weight)[i] = (*next_weight)[i]; |
---|
5374 | } |
---|
5375 | delete next_weight; |
---|
5376 | } |
---|
5377 | rChangeCurrRing(XXRing); |
---|
5378 | G = idrMoveR(G, newRing,currRing); |
---|
5379 | |
---|
5380 | delete tmp_weight; |
---|
5381 | delete ivNull; |
---|
5382 | delete exivlp; |
---|
5383 | |
---|
5384 | #ifdef TIME_TEST |
---|
5385 | TimeString(tinput, tostd, tif, tstd, tlift, tred, tnw, nstep); |
---|
5386 | |
---|
5387 | Print("\n// pSetm_Error = (%d)", ErrorCheck()); |
---|
5388 | Print("\n// Overflow_Error? (%d)\n", Overflow_Error); |
---|
5389 | #endif |
---|
5390 | return(G); |
---|
5391 | } |
---|
5392 | |
---|
5393 | /******************************* |
---|
5394 | * THE GROEBNER WALK ALGORITHM * |
---|
5395 | *******************************/ |
---|
5396 | ideal Mwalk(ideal Go, intvec* orig_M, intvec* target_M, |
---|
5397 | ring baseRing, int reduction, int printout) |
---|
5398 | { |
---|
5399 | // save current options |
---|
5400 | BITSET save1 = si_opt_1; |
---|
5401 | if(reduction == 0) |
---|
5402 | { |
---|
5403 | si_opt_1 &= (~Sy_bit(OPT_REDSB)); // no reduced Groebner basis |
---|
5404 | si_opt_1 &= (~Sy_bit(OPT_REDTAIL)); // not tail reductions |
---|
5405 | } |
---|
5406 | Set_Error(FALSE); |
---|
5407 | Overflow_Error = FALSE; |
---|
5408 | //BOOLEAN endwalks = FALSE; |
---|
5409 | #ifdef TIME_TEST |
---|
5410 | clock_t tinput, tostd, tif=0, tstd=0, tlift=0, tred=0, tnw=0; |
---|
5411 | xtif=0; xtstd=0; xtlift=0; xtred=0; xtnw=0; |
---|
5412 | tinput = clock(); |
---|
5413 | clock_t tim; |
---|
5414 | #endif |
---|
5415 | nstep=0; |
---|
5416 | int i,nwalk; |
---|
5417 | int nV = baseRing->N; |
---|
5418 | |
---|
5419 | ideal Gomega, M, F, FF, Gomega1, Gomega2, M1; |
---|
5420 | ring newRing; |
---|
5421 | ring XXRing = baseRing; |
---|
5422 | ring targetRing; |
---|
5423 | intvec* ivNull = new intvec(nV); |
---|
5424 | intvec* curr_weight = new intvec(nV); |
---|
5425 | intvec* target_weight = new intvec(nV); |
---|
5426 | intvec* exivlp = Mivlp(nV); |
---|
5427 | /* |
---|
5428 | intvec* tmp_weight = new intvec(nV); |
---|
5429 | for(i=0; i<nV; i++) |
---|
5430 | { |
---|
5431 | (*tmp_weight)[i] = (*orig_M)[i]; |
---|
5432 | } |
---|
5433 | */ |
---|
5434 | for(i=0; i<nV; i++) |
---|
5435 | { |
---|
5436 | (*curr_weight)[i] = (*orig_M)[i]; |
---|
5437 | (*target_weight)[i] = (*target_M)[i]; |
---|
5438 | } |
---|
5439 | #ifndef BUCHBERGER_ALG |
---|
5440 | intvec* hilb_func; |
---|
5441 | // to avoid (1,0,...,0) as the target vector |
---|
5442 | intvec* last_omega = new intvec(nV); |
---|
5443 | for(i=nV-1; i>0; i--) |
---|
5444 | { |
---|
5445 | (*last_omega)[i] = 1; |
---|
5446 | } |
---|
5447 | (*last_omega)[0] = 10000; |
---|
5448 | #endif |
---|
5449 | rComplete(currRing); |
---|
5450 | #ifdef CHECK_IDEAL_MWALK |
---|
5451 | if(printout > 2) |
---|
5452 | { |
---|
5453 | idString(Go,"//** Mwalk: Go"); |
---|
5454 | } |
---|
5455 | #endif |
---|
5456 | |
---|
5457 | if(target_M->length() == nV) |
---|
5458 | { |
---|
5459 | // define the target ring |
---|
5460 | targetRing = VMrDefault(target_weight); |
---|
5461 | } |
---|
5462 | else |
---|
5463 | { |
---|
5464 | targetRing = VMatrDefault(target_M); |
---|
5465 | } |
---|
5466 | if(orig_M->length() == nV) |
---|
5467 | { |
---|
5468 | // define a new ring with ordering "(a(curr_weight),lp) |
---|
5469 | newRing = VMrDefault(curr_weight); |
---|
5470 | } |
---|
5471 | else |
---|
5472 | { |
---|
5473 | newRing = VMatrDefault(orig_M); |
---|
5474 | } |
---|
5475 | rChangeCurrRing(newRing); |
---|
5476 | |
---|
5477 | #ifdef TIME_TEST |
---|
5478 | to = clock(); |
---|
5479 | #endif |
---|
5480 | ideal G = MstdCC(idrMoveR(Go,baseRing,currRing)); |
---|
5481 | #ifdef TIME_TEST |
---|
5482 | tostd = clock()-to; |
---|
5483 | #endif |
---|
5484 | |
---|
5485 | baseRing = currRing; |
---|
5486 | nwalk = 0; |
---|
5487 | |
---|
5488 | while(1) |
---|
5489 | { |
---|
5490 | nwalk ++; |
---|
5491 | nstep ++; |
---|
5492 | //compute an initial form ideal of <G> w.r.t. "curr_vector" |
---|
5493 | #ifdef TIME_TEST |
---|
5494 | to = clock(); |
---|
5495 | #endif |
---|
5496 | Gomega = MwalkInitialForm(G, curr_weight); |
---|
5497 | #ifdef TIME_TEST |
---|
5498 | tif = tif + clock()-to; |
---|
5499 | #endif |
---|
5500 | |
---|
5501 | #ifdef CHECK_IDEAL_MWALK |
---|
5502 | if(printout > 1) |
---|
5503 | { |
---|
5504 | idString(Gomega,"//** Mwalk: Gomega"); |
---|
5505 | } |
---|
5506 | #endif |
---|
5507 | |
---|
5508 | if(reduction == 0) |
---|
5509 | { |
---|
5510 | FF = middleOfCone(G,Gomega); |
---|
5511 | if(FF != NULL) |
---|
5512 | { |
---|
5513 | idDelete(&G); |
---|
5514 | G = idCopy(FF); |
---|
5515 | idDelete(&FF); |
---|
5516 | goto NEXT_VECTOR; |
---|
5517 | } |
---|
5518 | } |
---|
5519 | |
---|
5520 | #ifndef BUCHBERGER_ALG |
---|
5521 | if(isNolVector(curr_weight) == 0) |
---|
5522 | { |
---|
5523 | hilb_func = hFirstSeries(Gomega,NULL,NULL,curr_weight,currRing); |
---|
5524 | } |
---|
5525 | else |
---|
5526 | { |
---|
5527 | hilb_func = hFirstSeries(Gomega,NULL,NULL,last_omega,currRing); |
---|
5528 | } |
---|
5529 | #endif |
---|
5530 | |
---|
5531 | if(nwalk == 1) |
---|
5532 | { |
---|
5533 | if(orig_M->length() == nV) |
---|
5534 | { |
---|
5535 | // define a new ring with ordering "(a(curr_weight),lp) |
---|
5536 | newRing = VMrDefault(curr_weight); |
---|
5537 | } |
---|
5538 | else |
---|
5539 | { |
---|
5540 | newRing = VMatrDefault(orig_M); |
---|
5541 | } |
---|
5542 | } |
---|
5543 | else |
---|
5544 | { |
---|
5545 | if(target_M->length() == nV) |
---|
5546 | { |
---|
5547 | //define a new ring with ordering "(a(curr_weight),lp)" |
---|
5548 | newRing = VMrDefault(curr_weight); |
---|
5549 | } |
---|
5550 | else |
---|
5551 | { |
---|
5552 | //define a new ring with matrix ordering |
---|
5553 | newRing = VMatrRefine(target_M,curr_weight); |
---|
5554 | } |
---|
5555 | } |
---|
5556 | rChangeCurrRing(newRing); |
---|
5557 | Gomega1 = idrMoveR(Gomega, baseRing,currRing); |
---|
5558 | idDelete(&Gomega); |
---|
5559 | // compute a reduced Groebner basis of <Gomega> w.r.t. "newRing" |
---|
5560 | #ifdef TIME_TEST |
---|
5561 | to = clock(); |
---|
5562 | #endif |
---|
5563 | #ifndef BUCHBERGER_ALG |
---|
5564 | M=kStd(Gomega1,NULL,isHomog,NULL,hilb_func,0,NULL,curr_weight); |
---|
5565 | delete hilb_func; |
---|
5566 | #else |
---|
5567 | M = kStd(Gomega1,NULL,testHomog,NULL,NULL,0,0,NULL); |
---|
5568 | #endif |
---|
5569 | #ifdef TIME_TEST |
---|
5570 | tstd = tstd + clock() - to; |
---|
5571 | #endif |
---|
5572 | idSkipZeroes(M); |
---|
5573 | #ifdef CHECK_IDEAL_MWALK |
---|
5574 | if(printout > 2) |
---|
5575 | { |
---|
5576 | idString(M, "//** Mwalk: M"); |
---|
5577 | } |
---|
5578 | #endif |
---|
5579 | //change the ring to baseRing |
---|
5580 | rChangeCurrRing(baseRing); |
---|
5581 | M1 = idrMoveR(M, newRing,currRing); |
---|
5582 | idDelete(&M); |
---|
5583 | Gomega2 = idrMoveR(Gomega1, newRing,currRing); |
---|
5584 | idDelete(&Gomega1); |
---|
5585 | #ifdef TIME_TEST |
---|
5586 | to = clock(); |
---|
5587 | #endif |
---|
5588 | // compute a representation of the generators of submod (M) with respect to those of mod (Gomega), |
---|
5589 | // where Gomega is a reduced Groebner basis w.r.t. the current ring |
---|
5590 | F = MLifttwoIdeal(Gomega2, M1, G); |
---|
5591 | #ifdef TIME_TEST |
---|
5592 | tlift = tlift + clock() - to; |
---|
5593 | #endif |
---|
5594 | #ifdef CHECK_IDEAL_MWALK |
---|
5595 | if(printout > 2) |
---|
5596 | { |
---|
5597 | idString(F, "//** Mwalk: F"); |
---|
5598 | } |
---|
5599 | #endif |
---|
5600 | idDelete(&Gomega2); |
---|
5601 | idDelete(&M1); |
---|
5602 | |
---|
5603 | rChangeCurrRing(newRing); // change the ring to newRing |
---|
5604 | G = idrMoveR(F,baseRing,currRing); |
---|
5605 | idDelete(&F); |
---|
5606 | idSkipZeroes(G); |
---|
5607 | |
---|
5608 | #ifdef CHECK_IDEAL_MWALK |
---|
5609 | if(printout > 2) |
---|
5610 | { |
---|
5611 | idString(G, "//** Mwalk: G"); |
---|
5612 | } |
---|
5613 | #endif |
---|
5614 | |
---|
5615 | rChangeCurrRing(targetRing); |
---|
5616 | G = idrMoveR(G,newRing,currRing); |
---|
5617 | // test whether target cone is reached |
---|
5618 | if(reduction !=0 && test_w_in_ConeCC(G,curr_weight) == 1) |
---|
5619 | { |
---|
5620 | baseRing = currRing; |
---|
5621 | break; |
---|
5622 | //endwalks = TRUE; |
---|
5623 | } |
---|
5624 | |
---|
5625 | rChangeCurrRing(newRing); |
---|
5626 | G = idrMoveR(G,targetRing,currRing); |
---|
5627 | baseRing = currRing; |
---|
5628 | |
---|
5629 | NEXT_VECTOR: |
---|
5630 | #ifdef TIME_TEST |
---|
5631 | to = clock(); |
---|
5632 | #endif |
---|
5633 | intvec* next_weight = MwalkNextWeightCC(curr_weight,target_weight,G); |
---|
5634 | #ifdef TIME_TEST |
---|
5635 | tnw = tnw + clock() - to; |
---|
5636 | #endif |
---|
5637 | #ifdef PRINT_VECTORS |
---|
5638 | if(printout > 0) |
---|
5639 | { |
---|
5640 | MivString(curr_weight, target_weight, next_weight); |
---|
5641 | } |
---|
5642 | #endif |
---|
5643 | if(MivComp(target_weight,curr_weight) == 1)// || endwalks == TRUE) |
---|
5644 | { |
---|
5645 | /* |
---|
5646 | #ifdef CHECK_IDEAL_MWALK |
---|
5647 | if(printout > 0) |
---|
5648 | { |
---|
5649 | PrintS("\n//** Mwalk: entering last cone.\n"); |
---|
5650 | } |
---|
5651 | #endif |
---|
5652 | |
---|
5653 | Gomega = MwalkInitialForm(G, curr_weight); // compute an initial form ideal of <G> w.r.t. "curr_vector" |
---|
5654 | if(target_M->length() == nV) |
---|
5655 | { |
---|
5656 | newRing = VMrDefault(target_weight); // define a new ring with ordering "(a(curr_weight),lp) |
---|
5657 | } |
---|
5658 | else |
---|
5659 | { |
---|
5660 | newRing = VMatrDefault(target_M); |
---|
5661 | } |
---|
5662 | rChangeCurrRing(newRing); |
---|
5663 | Gomega1 = idrMoveR(Gomega, baseRing,currRing); |
---|
5664 | idDelete(&Gomega); |
---|
5665 | #ifdef CHECK_IDEAL_MWALK |
---|
5666 | if(printout > 1) |
---|
5667 | { |
---|
5668 | idString(Gomega1, "//** Mwalk: Gomega"); |
---|
5669 | } |
---|
5670 | PrintS("\n //** Mwalk: kStd(Gomega)"); |
---|
5671 | #endif |
---|
5672 | M = kStd(Gomega1,NULL,testHomog,NULL,NULL,0,0,NULL); |
---|
5673 | #ifdef CHECK_IDEAL_MWALK |
---|
5674 | if(printout > 1) |
---|
5675 | { |
---|
5676 | idString(M,"//** Mwalk: M"); |
---|
5677 | } |
---|
5678 | #endif |
---|
5679 | rChangeCurrRing(baseRing); |
---|
5680 | M1 = idrMoveR(M, newRing,currRing); |
---|
5681 | idDelete(&M); |
---|
5682 | Gomega2 = idrMoveR(Gomega1, newRing,currRing); |
---|
5683 | idDelete(&Gomega1); |
---|
5684 | //PrintS("\n //** Mwalk: MLifttwoIdeal"); |
---|
5685 | F = MLifttwoIdeal(Gomega2, M1, G); |
---|
5686 | #ifdef CHECK_IDEAL_MWALK |
---|
5687 | if(printout > 2) |
---|
5688 | { |
---|
5689 | idString(F,"//** Mwalk: F"); |
---|
5690 | } |
---|
5691 | #endif |
---|
5692 | idDelete(&Gomega2); |
---|
5693 | idDelete(&M1); |
---|
5694 | rChangeCurrRing(newRing); // change the ring to newRing |
---|
5695 | G = idrMoveR(F,baseRing,currRing); |
---|
5696 | idDelete(&F); |
---|
5697 | baseRing = currRing; |
---|
5698 | idSkipZeroes(G); |
---|
5699 | #ifdef TIME_TEST |
---|
5700 | to = clock(); |
---|
5701 | #endif |
---|
5702 | //PrintS("\n //**Mwalk: Interreduce"); |
---|
5703 | //interreduce the Groebner basis <G> w.r.t. currRing |
---|
5704 | //G = kInterRedCC(G,NULL); |
---|
5705 | #ifdef TIME_TEST |
---|
5706 | tred = tred + clock() - to; |
---|
5707 | #endif |
---|
5708 | idSkipZeroes(G); |
---|
5709 | delete next_weight; |
---|
5710 | */ |
---|
5711 | break; |
---|
5712 | } |
---|
5713 | |
---|
5714 | for(i=nV-1; i>=0; i--) |
---|
5715 | { |
---|
5716 | //(*tmp_weight)[i] = (*curr_weight)[i]; |
---|
5717 | (*curr_weight)[i] = (*next_weight)[i]; |
---|
5718 | } |
---|
5719 | delete next_weight; |
---|
5720 | } |
---|
5721 | rChangeCurrRing(XXRing); |
---|
5722 | ideal result = idrMoveR(G,baseRing,currRing); |
---|
5723 | idDelete(&Go); |
---|
5724 | idDelete(&G); |
---|
5725 | //delete tmp_weight; |
---|
5726 | delete ivNull; |
---|
5727 | delete exivlp; |
---|
5728 | #ifndef BUCHBERGER_ALG |
---|
5729 | delete last_omega; |
---|
5730 | #endif |
---|
5731 | #ifdef TIME_TEST |
---|
5732 | TimeString(tinput, tostd, tif, tstd, tlift, tred, tnw, nstep); |
---|
5733 | //Print("\n// pSetm_Error = (%d)", ErrorCheck()); |
---|
5734 | //Print("\n// Overflow_Error? (%d)\n", Overflow_Error); |
---|
5735 | #endif |
---|
5736 | Print("\n//** Mwalk: Groebner Walk took %d steps.\n", nstep); |
---|
5737 | si_opt_1 = save1; //set original options |
---|
5738 | return(result); |
---|
5739 | } |
---|
5740 | |
---|
5741 | // THE RANDOM WALK ALGORITHM |
---|
5742 | ideal Mrwalk(ideal Go, intvec* orig_M, intvec* target_M, int weight_rad, int pert_deg, |
---|
5743 | int reduction, int printout) |
---|
5744 | { |
---|
5745 | BITSET save1 = si_opt_1; // save current options |
---|
5746 | if(reduction == 0) |
---|
5747 | { |
---|
5748 | si_opt_1 &= (~Sy_bit(OPT_REDSB)); // no reduced Groebner basis |
---|
5749 | si_opt_1 &= (~Sy_bit(OPT_REDTAIL)); // not tail reductions |
---|
5750 | } |
---|
5751 | |
---|
5752 | Set_Error(FALSE); |
---|
5753 | Overflow_Error = FALSE; |
---|
5754 | BOOLEAN endwalks = FALSE; |
---|
5755 | #ifdef TIME_TEST |
---|
5756 | clock_t tinput, tostd, tif=0, tstd=0, tlift=0, tred=0, tnw=0; |
---|
5757 | xtif=0; xtstd=0; xtlift=0; xtred=0; xtnw=0; |
---|
5758 | tinput = clock(); |
---|
5759 | clock_t tim; |
---|
5760 | #endif |
---|
5761 | nstep=0; |
---|
5762 | int i,nwalk;//polylength; |
---|
5763 | int nV = currRing->N; |
---|
5764 | |
---|
5765 | //check that weight radius is valid |
---|
5766 | if(weight_rad < 0) |
---|
5767 | { |
---|
5768 | Werror("Invalid radius.\n"); |
---|
5769 | return NULL; |
---|
5770 | } |
---|
5771 | |
---|
5772 | //check that perturbation degree is valid |
---|
5773 | if(pert_deg > nV || pert_deg < 1) |
---|
5774 | { |
---|
5775 | Werror("Invalid perturbation degree.\n"); |
---|
5776 | return NULL; |
---|
5777 | } |
---|
5778 | |
---|
5779 | ideal Gomega, M, F,FF, Gomega1, Gomega2, M1; |
---|
5780 | ring newRing; |
---|
5781 | ring targetRing; |
---|
5782 | ring baseRing = currRing; |
---|
5783 | ring XXRing = currRing; |
---|
5784 | intvec* iv_M; |
---|
5785 | intvec* ivNull = new intvec(nV); |
---|
5786 | intvec* curr_weight = new intvec(nV); |
---|
5787 | intvec* target_weight = new intvec(nV); |
---|
5788 | intvec* next_weight= new intvec(nV); |
---|
5789 | |
---|
5790 | for(i=0; i<nV; i++) |
---|
5791 | { |
---|
5792 | (*curr_weight)[i] = (*orig_M)[i]; |
---|
5793 | (*target_weight)[i] = (*target_M)[i]; |
---|
5794 | } |
---|
5795 | |
---|
5796 | #ifndef BUCHBERGER_ALG |
---|
5797 | intvec* hilb_func; |
---|
5798 | // to avoid (1,0,...,0) as the target vector |
---|
5799 | intvec* last_omega = new intvec(nV); |
---|
5800 | for(i=nV-1; i>0; i--) |
---|
5801 | { |
---|
5802 | (*last_omega)[i] = 1; |
---|
5803 | } |
---|
5804 | (*last_omega)[0] = 10000; |
---|
5805 | #endif |
---|
5806 | rComplete(currRing); |
---|
5807 | |
---|
5808 | if(target_M->length() == nV) |
---|
5809 | { |
---|
5810 | targetRing = VMrDefault(target_weight); // define the target ring |
---|
5811 | } |
---|
5812 | else |
---|
5813 | { |
---|
5814 | targetRing = VMatrDefault(target_M); |
---|
5815 | } |
---|
5816 | if(orig_M->length() == nV) |
---|
5817 | { |
---|
5818 | newRing = VMrDefault(curr_weight); // define a new ring with ordering "(a(curr_weight),lp) |
---|
5819 | } |
---|
5820 | else |
---|
5821 | { |
---|
5822 | newRing = VMatrDefault(orig_M); |
---|
5823 | } |
---|
5824 | rChangeCurrRing(newRing); |
---|
5825 | #ifdef TIME_TEST |
---|
5826 | to = clock(); |
---|
5827 | #endif |
---|
5828 | ideal G = MstdCC(idrMoveR(Go,baseRing,currRing)); |
---|
5829 | #ifdef TIME_TEST |
---|
5830 | tostd = clock()-to; |
---|
5831 | #endif |
---|
5832 | baseRing = currRing; |
---|
5833 | nwalk = 0; |
---|
5834 | |
---|
5835 | #ifdef TIME_TEST |
---|
5836 | to = clock(); |
---|
5837 | #endif |
---|
5838 | Gomega = MwalkInitialForm(G, curr_weight); // compute an initial form ideal of <G> w.r.t. "curr_vector" |
---|
5839 | #ifdef TIME_TEST |
---|
5840 | tif = tif + clock()-to; //time for computing initial form ideal |
---|
5841 | #endif |
---|
5842 | |
---|
5843 | while(1) |
---|
5844 | { |
---|
5845 | nwalk ++; |
---|
5846 | nstep ++; |
---|
5847 | #ifdef CHECK_IDEAL_MWALK |
---|
5848 | if(printout > 1) |
---|
5849 | { |
---|
5850 | idString(Gomega,"//** Mrwalk: Gomega"); |
---|
5851 | } |
---|
5852 | #endif |
---|
5853 | if(reduction == 0) |
---|
5854 | { |
---|
5855 | FF = middleOfCone(G,Gomega); |
---|
5856 | if(FF != NULL) |
---|
5857 | { |
---|
5858 | idDelete(&G); |
---|
5859 | G = idCopy(FF); |
---|
5860 | idDelete(&FF); |
---|
5861 | goto NEXT_VECTOR; |
---|
5862 | } |
---|
5863 | } |
---|
5864 | #ifndef BUCHBERGER_ALG |
---|
5865 | if(isNolVector(curr_weight) == 0) |
---|
5866 | { |
---|
5867 | hilb_func = hFirstSeries(Gomega,NULL,NULL,curr_weight,currRing); |
---|
5868 | } |
---|
5869 | else |
---|
5870 | { |
---|
5871 | hilb_func = hFirstSeries(Gomega,NULL,NULL,last_omega,currRing); |
---|
5872 | } |
---|
5873 | #endif |
---|
5874 | if(nwalk == 1) |
---|
5875 | { |
---|
5876 | if(orig_M->length() == nV) |
---|
5877 | { |
---|
5878 | newRing = VMrDefault(curr_weight); // define a new ring with ordering "(a(curr_weight),lp) |
---|
5879 | } |
---|
5880 | else |
---|
5881 | { |
---|
5882 | newRing = VMatrDefault(orig_M); |
---|
5883 | } |
---|
5884 | } |
---|
5885 | else |
---|
5886 | { |
---|
5887 | if(target_M->length() == nV) |
---|
5888 | { |
---|
5889 | newRing = VMrDefault(curr_weight); // define a new ring with ordering "(a(curr_weight),lp) |
---|
5890 | } |
---|
5891 | else |
---|
5892 | { |
---|
5893 | newRing = VMatrRefine(target_M,curr_weight); |
---|
5894 | } |
---|
5895 | } |
---|
5896 | rChangeCurrRing(newRing); |
---|
5897 | Gomega1 = idrMoveR(Gomega, baseRing,currRing); |
---|
5898 | idDelete(&Gomega); |
---|
5899 | // compute a reduced Groebner basis of <Gomega> w.r.t. "newRing" |
---|
5900 | #ifdef TIME_TEST |
---|
5901 | to = clock(); |
---|
5902 | #endif |
---|
5903 | #ifndef BUCHBERGER_ALG |
---|
5904 | M=kStd(Gomega1,NULL,isHomog,NULL,hilb_func,0,NULL,curr_weight); |
---|
5905 | delete hilb_func; |
---|
5906 | #else |
---|
5907 | M = kStd(Gomega1,NULL,testHomog,NULL,NULL,0,0,NULL); |
---|
5908 | #endif |
---|
5909 | #ifdef TIME_TEST |
---|
5910 | tstd = tstd + clock() - to; |
---|
5911 | #endif |
---|
5912 | idSkipZeroes(M); |
---|
5913 | #ifdef CHECK_IDEAL_MWALK |
---|
5914 | if(printout > 2) |
---|
5915 | { |
---|
5916 | idString(M, "//** Mrwalk: M"); |
---|
5917 | } |
---|
5918 | #endif |
---|
5919 | //change the ring to baseRing |
---|
5920 | rChangeCurrRing(baseRing); |
---|
5921 | M1 = idrMoveR(M, newRing,currRing); |
---|
5922 | idDelete(&M); |
---|
5923 | Gomega2 = idrMoveR(Gomega1, newRing,currRing); |
---|
5924 | idDelete(&Gomega1); |
---|
5925 | #ifdef TIME_TEST |
---|
5926 | to = clock(); |
---|
5927 | #endif |
---|
5928 | // compute a representation of the generators of submod (M) with respect to those of mod (Gomega), |
---|
5929 | // where Gomega is a reduced Groebner basis w.r.t. the current ring |
---|
5930 | F = MLifttwoIdeal(Gomega2, M1, G); |
---|
5931 | #ifdef TIME_TEST |
---|
5932 | tlift = tlift + clock() - to; |
---|
5933 | #endif |
---|
5934 | #ifdef CHECK_IDEAL_MWALK |
---|
5935 | if(printout > 2) |
---|
5936 | { |
---|
5937 | idString(F,"//** Mrwalk: F"); |
---|
5938 | } |
---|
5939 | #endif |
---|
5940 | idDelete(&Gomega2); |
---|
5941 | idDelete(&M1); |
---|
5942 | rChangeCurrRing(newRing); // change the ring to newRing |
---|
5943 | G = idrMoveR(F,baseRing,currRing); |
---|
5944 | idDelete(&F); |
---|
5945 | baseRing = currRing; |
---|
5946 | #ifdef TIME_TEST |
---|
5947 | to = clock(); |
---|
5948 | tstd = tstd + clock() - to; |
---|
5949 | #endif |
---|
5950 | idSkipZeroes(G); |
---|
5951 | #ifdef CHECK_IDEAL_MWALK |
---|
5952 | if(printout > 2) |
---|
5953 | { |
---|
5954 | idString(G,"//** Mrwalk: G"); |
---|
5955 | } |
---|
5956 | #endif |
---|
5957 | |
---|
5958 | rChangeCurrRing(targetRing); |
---|
5959 | G = idrMoveR(G,newRing,currRing); |
---|
5960 | |
---|
5961 | // test whether target cone is reached |
---|
5962 | if(reduction !=0 && test_w_in_ConeCC(G,curr_weight) == 1) |
---|
5963 | { |
---|
5964 | baseRing = currRing; |
---|
5965 | break; |
---|
5966 | } |
---|
5967 | |
---|
5968 | rChangeCurrRing(newRing); |
---|
5969 | G = idrMoveR(G,targetRing,currRing); |
---|
5970 | baseRing = currRing; |
---|
5971 | |
---|
5972 | NEXT_VECTOR: |
---|
5973 | #ifdef TIME_TEST |
---|
5974 | to = clock(); |
---|
5975 | #endif |
---|
5976 | next_weight = MwalkNextWeightCC(curr_weight,target_weight,G); |
---|
5977 | #ifdef TIME_TEST |
---|
5978 | tnw = tnw + clock() - to; |
---|
5979 | #endif |
---|
5980 | |
---|
5981 | #ifdef TIME_TEST |
---|
5982 | to = clock(); |
---|
5983 | #endif |
---|
5984 | Gomega = MwalkInitialForm(G, next_weight); // compute an initial form ideal of <G> w.r.t. "curr_vector" |
---|
5985 | #ifdef TIME_TEST |
---|
5986 | tif = tif + clock()-to; //time for computing initial form ideal |
---|
5987 | #endif |
---|
5988 | |
---|
5989 | //lengthpoly(Gomega) = 1 if there is a polynomial in Gomega with at least 3 monomials and 0 otherwise |
---|
5990 | //polylength = lengthpoly(Gomega); |
---|
5991 | if(lengthpoly(Gomega) > 0) |
---|
5992 | { |
---|
5993 | //there is a polynomial in Gomega with at least 3 monomials, |
---|
5994 | //low-dimensional facet of the cone |
---|
5995 | delete next_weight; |
---|
5996 | if(target_M->length() == nV) |
---|
5997 | { |
---|
5998 | iv_M = MivMatrixOrder(curr_weight); |
---|
5999 | } |
---|
6000 | else |
---|
6001 | { |
---|
6002 | iv_M = MivMatrixOrderRefine(curr_weight,target_M); |
---|
6003 | } |
---|
6004 | #ifdef TIME_TEST |
---|
6005 | to = clock(); |
---|
6006 | #endif |
---|
6007 | next_weight = MWalkRandomNextWeight(G, iv_M, target_weight, weight_rad, pert_deg); |
---|
6008 | #ifdef TIME_TEST |
---|
6009 | tnw = tnw + clock() - to; |
---|
6010 | #endif |
---|
6011 | idDelete(&Gomega); |
---|
6012 | #ifdef TIME_TEST |
---|
6013 | to = clock(); |
---|
6014 | #endif |
---|
6015 | Gomega = MwalkInitialForm(G, next_weight); |
---|
6016 | #ifdef TIME_TEST |
---|
6017 | tif = tif + clock()-to; //time for computing initial form ideal |
---|
6018 | #endif |
---|
6019 | delete iv_M; |
---|
6020 | } |
---|
6021 | |
---|
6022 | // test whether target weight vector is reached |
---|
6023 | if(MivComp(next_weight, ivNull) == 1 || MivComp(target_weight,curr_weight) == 1) |
---|
6024 | { |
---|
6025 | baseRing = currRing; |
---|
6026 | delete next_weight; |
---|
6027 | break; |
---|
6028 | } |
---|
6029 | |
---|
6030 | #ifdef PRINT_VECTORS |
---|
6031 | if(printout > 0) |
---|
6032 | { |
---|
6033 | MivString(curr_weight, target_weight, next_weight); |
---|
6034 | } |
---|
6035 | #endif |
---|
6036 | |
---|
6037 | for(i=nV-1; i>=0; i--) |
---|
6038 | { |
---|
6039 | (*curr_weight)[i] = (*next_weight)[i]; |
---|
6040 | } |
---|
6041 | delete next_weight; |
---|
6042 | } |
---|
6043 | baseRing = currRing; |
---|
6044 | rChangeCurrRing(XXRing); |
---|
6045 | ideal result = idrMoveR(G,baseRing,currRing); |
---|
6046 | idDelete(&G); |
---|
6047 | delete ivNull; |
---|
6048 | #ifndef BUCHBERGER_ALG |
---|
6049 | delete last_omega; |
---|
6050 | #endif |
---|
6051 | Print("\n//** Mrwalk: Groebner Walk took %d steps.\n", nstep); |
---|
6052 | #ifdef TIME_TEST |
---|
6053 | TimeString(tinput, tostd, tif, tstd, tlift, tred, tnw, nstep); |
---|
6054 | //Print("\n// pSetm_Error = (%d)", ErrorCheck()); |
---|
6055 | //Print("\n// Overflow_Error? (%d)\n", Overflow_Error); |
---|
6056 | #endif |
---|
6057 | si_opt_1 = save1; //set original options |
---|
6058 | return(result); |
---|
6059 | } |
---|
6060 | |
---|
6061 | /**************************************************************/ |
---|
6062 | /* Implementation of the perturbation walk algorithm */ |
---|
6063 | /**************************************************************/ |
---|
6064 | /* If the perturbed target weight vector or an intermediate weight vector |
---|
6065 | doesn't stay in the correct Groebner cone, we have only |
---|
6066 | a reduced Groebner basis for the given ideal with respect to |
---|
6067 | a monomial order which differs to the given order. |
---|
6068 | Then we have to compute the wanted reduced Groebner basis for it. |
---|
6069 | For this, we can use |
---|
6070 | 1) the improved Buchberger algorithm or |
---|
6071 | 2) the changed perturbation walk algorithm with a decreased degree. |
---|
6072 | */ |
---|
6073 | // if nP = 0 use kStd, else call LastGB |
---|
6074 | ideal Mpwalk(ideal Go, int op_deg, int tp_deg,intvec* curr_weight, |
---|
6075 | intvec* target_weight, int nP, int reduction, int printout) |
---|
6076 | { |
---|
6077 | BITSET save1 = si_opt_1; // save current options |
---|
6078 | if(reduction == 0) |
---|
6079 | { |
---|
6080 | si_opt_1 &= (~Sy_bit(OPT_REDSB)); // no reduced Groebner basis |
---|
6081 | si_opt_1 &= (~Sy_bit(OPT_REDTAIL)); // not tail reductions |
---|
6082 | } |
---|
6083 | Set_Error(FALSE ); |
---|
6084 | Overflow_Error = FALSE; |
---|
6085 | //Print("// pSetm_Error = (%d)", ErrorCheck()); |
---|
6086 | #ifdef TIME_TEST |
---|
6087 | clock_t tinput, tostd, tif=0, tstd=0, tlift=0, tred=0, tnw=0; |
---|
6088 | xtextra=0; |
---|
6089 | xtif=0; xtstd=0; xtlift=0; xtred=0; xtnw=0; |
---|
6090 | tinput = clock(); |
---|
6091 | |
---|
6092 | clock_t tim; |
---|
6093 | #endif |
---|
6094 | nstep = 0; |
---|
6095 | int i, ntwC=1, ntestw=1, nV = currRing->N; |
---|
6096 | |
---|
6097 | //check that perturbation degree is valid |
---|
6098 | if(op_deg < 1 || tp_deg < 1 || op_deg > nV || tp_deg > nV) |
---|
6099 | { |
---|
6100 | Werror("Invalid perturbation degree.\n"); |
---|
6101 | return NULL; |
---|
6102 | } |
---|
6103 | |
---|
6104 | BOOLEAN endwalks = FALSE; |
---|
6105 | ideal Gomega, M, F, FF, G, Gomega1, Gomega2, M1,F1,Eresult,ssG; |
---|
6106 | ring newRing, oldRing, TargetRing; |
---|
6107 | intvec* iv_M_dp; |
---|
6108 | intvec* iv_M_lp; |
---|
6109 | intvec* exivlp = Mivlp(nV); |
---|
6110 | intvec* orig_target = target_weight; |
---|
6111 | intvec* pert_target_vector = target_weight; |
---|
6112 | intvec* ivNull = new intvec(nV); |
---|
6113 | intvec* iv_dp = MivUnit(nV);// define (1,1,...,1) |
---|
6114 | #ifndef BUCHBERGER_ALG |
---|
6115 | intvec* hilb_func; |
---|
6116 | #endif |
---|
6117 | intvec* next_weight; |
---|
6118 | |
---|
6119 | // to avoid (1,0,...,0) as the target vector |
---|
6120 | intvec* last_omega = new intvec(nV); |
---|
6121 | for(i=nV-1; i>0; i--) |
---|
6122 | (*last_omega)[i] = 1; |
---|
6123 | (*last_omega)[0] = 10000; |
---|
6124 | |
---|
6125 | ring XXRing = currRing; |
---|
6126 | #ifdef TIME_TEST |
---|
6127 | to = clock(); |
---|
6128 | #endif |
---|
6129 | // perturbs the original vector |
---|
6130 | if(MivComp(curr_weight, iv_dp) == 1) //rOrdStr(currRing) := "dp" |
---|
6131 | { |
---|
6132 | G = MstdCC(Go); |
---|
6133 | #ifdef TIME_TEST |
---|
6134 | tostd = clock()-to; |
---|
6135 | #endif |
---|
6136 | if(op_deg != 1){ |
---|
6137 | iv_M_dp = MivMatrixOrderdp(nV); |
---|
6138 | //ivString(iv_M_dp, "iv_M_dp"); |
---|
6139 | curr_weight = MPertVectors(G, iv_M_dp, op_deg); |
---|
6140 | } |
---|
6141 | } |
---|
6142 | else |
---|
6143 | { |
---|
6144 | //define ring order := (a(curr_weight),lp); |
---|
6145 | if (rParameter(currRing) != NULL) |
---|
6146 | DefRingPar(curr_weight); |
---|
6147 | else |
---|
6148 | rChangeCurrRing(VMrDefault(curr_weight)); |
---|
6149 | |
---|
6150 | G = idrMoveR(Go, XXRing,currRing); |
---|
6151 | G = MstdCC(G); |
---|
6152 | #ifdef TIME_TEST |
---|
6153 | tostd = clock()-to; |
---|
6154 | #endif |
---|
6155 | if(op_deg != 1){ |
---|
6156 | iv_M_dp = MivMatrixOrder(curr_weight); |
---|
6157 | curr_weight = MPertVectors(G, iv_M_dp, op_deg); |
---|
6158 | } |
---|
6159 | } |
---|
6160 | delete iv_dp; |
---|
6161 | if(op_deg != 1) delete iv_M_dp; |
---|
6162 | |
---|
6163 | ring HelpRing = currRing; |
---|
6164 | |
---|
6165 | // perturbs the target weight vector |
---|
6166 | if(tp_deg > 1 && tp_deg <= nV) |
---|
6167 | { |
---|
6168 | if (rParameter(currRing) != NULL) |
---|
6169 | DefRingPar(target_weight); |
---|
6170 | else |
---|
6171 | rChangeCurrRing(VMrDefault(target_weight)); |
---|
6172 | |
---|
6173 | TargetRing = currRing; |
---|
6174 | ssG = idrMoveR(G,HelpRing,currRing); |
---|
6175 | if(MivSame(target_weight, exivlp) == 1) |
---|
6176 | { |
---|
6177 | iv_M_lp = MivMatrixOrderlp(nV); |
---|
6178 | target_weight = MPertVectors(ssG, iv_M_lp, tp_deg); |
---|
6179 | } |
---|
6180 | else |
---|
6181 | { |
---|
6182 | iv_M_lp = MivMatrixOrder(target_weight); |
---|
6183 | target_weight = MPertVectors(ssG, iv_M_lp, tp_deg); |
---|
6184 | } |
---|
6185 | delete iv_M_lp; |
---|
6186 | pert_target_vector = target_weight; |
---|
6187 | rChangeCurrRing(HelpRing); |
---|
6188 | G = idrMoveR(ssG, TargetRing,currRing); |
---|
6189 | } |
---|
6190 | if(printout > 0) |
---|
6191 | { |
---|
6192 | Print("\n//** Mpwalk: Perturbation Walk of degree (%d,%d):",op_deg,tp_deg); |
---|
6193 | #ifdef PRINT_VECTORS |
---|
6194 | ivString(curr_weight, "//** Mpwalk: new current weight"); |
---|
6195 | ivString(target_weight, "//** Mpwalk: new target weight"); |
---|
6196 | #endif |
---|
6197 | } |
---|
6198 | while(1) |
---|
6199 | { |
---|
6200 | nstep ++; |
---|
6201 | #ifdef TIME_TEST |
---|
6202 | to = clock(); |
---|
6203 | #endif |
---|
6204 | // compute an initial form ideal of <G> w.r.t. the weight vector |
---|
6205 | // "curr_weight" |
---|
6206 | Gomega = MwalkInitialForm(G, curr_weight); |
---|
6207 | #ifdef TIME_TEST |
---|
6208 | tif = tif + clock()-to; |
---|
6209 | #endif |
---|
6210 | #ifdef CHECK_IDEAL_MWALK |
---|
6211 | if(printout > 1) |
---|
6212 | { |
---|
6213 | idString(Gomega,"//** Mpwalk: Gomega"); |
---|
6214 | } |
---|
6215 | #endif |
---|
6216 | if(reduction == 0 && nstep > 1) |
---|
6217 | { |
---|
6218 | /* |
---|
6219 | // check whether weight vector is in the interior of the cone |
---|
6220 | while(1) |
---|
6221 | { |
---|
6222 | FF = middleOfCone(G,Gomega); |
---|
6223 | if(FF != NULL) |
---|
6224 | { |
---|
6225 | idDelete(&G); |
---|
6226 | G = idCopy(FF); |
---|
6227 | idDelete(&FF); |
---|
6228 | next_weight = MwalkNextWeightCC(curr_weight,target_weight,G); |
---|
6229 | #ifdef PRINT_VECTORS |
---|
6230 | if(printout > 0) |
---|
6231 | { |
---|
6232 | MivString(curr_weight, target_weight, next_weight); |
---|
6233 | } |
---|
6234 | #endif |
---|
6235 | } |
---|
6236 | else |
---|
6237 | { |
---|
6238 | break; |
---|
6239 | } |
---|
6240 | for(i=nV-1; i>=0; i--) |
---|
6241 | { |
---|
6242 | (*curr_weight)[i] = (*next_weight)[i]; |
---|
6243 | } |
---|
6244 | Gomega = MwalkInitialForm(G, curr_weight); |
---|
6245 | #ifdef CHECK_IDEAL_MWALK |
---|
6246 | if(printout > 1) |
---|
6247 | { |
---|
6248 | idString(Gomega,"//** Mpwalk: Gomega"); |
---|
6249 | } |
---|
6250 | #endif |
---|
6251 | } |
---|
6252 | */ |
---|
6253 | FF = middleOfCone(G,Gomega); |
---|
6254 | if(FF != NULL) |
---|
6255 | { |
---|
6256 | idDelete(&G); |
---|
6257 | G = idCopy(FF); |
---|
6258 | idDelete(&FF); |
---|
6259 | goto NEXT_VECTOR; |
---|
6260 | } |
---|
6261 | } |
---|
6262 | |
---|
6263 | #ifdef ENDWALKS |
---|
6264 | if(endwalks == TRUE) |
---|
6265 | { |
---|
6266 | Print("\n// ring r%d = %s;\n", nstep, rString(currRing)); |
---|
6267 | /* |
---|
6268 | idElements(G, "G"); |
---|
6269 | headidString(G, "G"); |
---|
6270 | */ |
---|
6271 | } |
---|
6272 | #endif |
---|
6273 | |
---|
6274 | #ifndef BUCHBERGER_ALG |
---|
6275 | if(isNolVector(curr_weight) == 0) |
---|
6276 | hilb_func = hFirstSeries(Gomega,NULL,NULL,curr_weight,currRing); |
---|
6277 | else |
---|
6278 | hilb_func = hFirstSeries(Gomega,NULL,NULL,last_omega,currRing); |
---|
6279 | #endif // BUCHBERGER_ALG |
---|
6280 | |
---|
6281 | oldRing = currRing; |
---|
6282 | |
---|
6283 | // define a new ring with ordering "(a(curr_weight),lp) |
---|
6284 | if (rParameter(currRing) != NULL) |
---|
6285 | DefRingPar(curr_weight); |
---|
6286 | else |
---|
6287 | rChangeCurrRing(VMrDefault(curr_weight)); |
---|
6288 | |
---|
6289 | newRing = currRing; |
---|
6290 | Gomega1 = idrMoveR(Gomega, oldRing,currRing); |
---|
6291 | |
---|
6292 | #ifdef ENDWALKS |
---|
6293 | if(endwalks==TRUE) |
---|
6294 | { |
---|
6295 | Print("\n// ring r%d = %s;\n", nstep, rString(currRing)); |
---|
6296 | /* |
---|
6297 | idElements(Gomega1, "Gw"); |
---|
6298 | headidString(Gomega1, "headGw"); |
---|
6299 | */ |
---|
6300 | PrintS("\n// compute a rGB of Gw:\n"); |
---|
6301 | #ifndef BUCHBERGER_ALG |
---|
6302 | ivString(hilb_func, "w"); |
---|
6303 | #endif |
---|
6304 | } |
---|
6305 | #endif |
---|
6306 | #ifdef TIME_TEST |
---|
6307 | tim = clock(); |
---|
6308 | to = clock(); |
---|
6309 | #endif |
---|
6310 | // compute a reduced Groebner basis of <Gomega> w.r.t. "newRing" |
---|
6311 | #ifdef BUCHBERGER_ALG |
---|
6312 | M = MstdhomCC(Gomega1); |
---|
6313 | #else |
---|
6314 | M=kStd(Gomega1,NULL,isHomog,NULL,hilb_func,0,NULL,curr_weight); |
---|
6315 | delete hilb_func; |
---|
6316 | #endif |
---|
6317 | |
---|
6318 | if(endwalks == TRUE) |
---|
6319 | { |
---|
6320 | #ifdef TIME_TEST |
---|
6321 | xtstd = xtstd+clock()-to; |
---|
6322 | #endif |
---|
6323 | #ifdef ENDWALKS |
---|
6324 | Print("\n// time for the last std(Gw) = %.2f sec\n", |
---|
6325 | ((double) clock())/1000000 -((double)tim) /1000000); |
---|
6326 | #endif |
---|
6327 | } |
---|
6328 | else |
---|
6329 | { |
---|
6330 | #ifdef TIME_TEST |
---|
6331 | tstd=tstd+clock()-to; |
---|
6332 | #endif |
---|
6333 | } |
---|
6334 | #ifdef CHECK_IDEAL_MWALK |
---|
6335 | if(printout > 2) |
---|
6336 | { |
---|
6337 | idString(M,"//** Mpwalk: M"); |
---|
6338 | } |
---|
6339 | #endif |
---|
6340 | // change the ring to oldRing |
---|
6341 | rChangeCurrRing(oldRing); |
---|
6342 | M1 = idrMoveR(M, newRing,currRing); |
---|
6343 | Gomega2 = idrMoveR(Gomega1, newRing,currRing); |
---|
6344 | #ifdef TIME_TEST |
---|
6345 | to=clock(); |
---|
6346 | #endif |
---|
6347 | /* compute a representation of the generators of submod (M) |
---|
6348 | with respect to those of mod (Gomega). |
---|
6349 | Gomega is a reduced Groebner basis w.r.t. the current ring */ |
---|
6350 | F = MLifttwoIdeal(Gomega2, M1, G); |
---|
6351 | #ifdef TIME_TEST |
---|
6352 | if(endwalks == FALSE) |
---|
6353 | tlift = tlift+clock()-to; |
---|
6354 | else |
---|
6355 | xtlift=clock()-to; |
---|
6356 | #endif |
---|
6357 | #ifdef CHECK_IDEAL_MWALK |
---|
6358 | if(printout > 2) |
---|
6359 | { |
---|
6360 | idString(F,"//** Mpwalk: F"); |
---|
6361 | } |
---|
6362 | #endif |
---|
6363 | |
---|
6364 | idDelete(&M1); |
---|
6365 | idDelete(&Gomega2); |
---|
6366 | idDelete(&G); |
---|
6367 | |
---|
6368 | // change the ring to newRing |
---|
6369 | rChangeCurrRing(newRing); |
---|
6370 | if(reduction == 0) |
---|
6371 | { |
---|
6372 | G = idrMoveR(F,oldRing,currRing); |
---|
6373 | } |
---|
6374 | else |
---|
6375 | { |
---|
6376 | F1 = idrMoveR(F, oldRing,currRing); |
---|
6377 | if(printout > 2) |
---|
6378 | { |
---|
6379 | PrintS("\n //** Mpwalk: reduce the Groebner basis.\n"); |
---|
6380 | } |
---|
6381 | #ifdef TIME_TEST |
---|
6382 | to=clock(); |
---|
6383 | #endif |
---|
6384 | G = kInterRedCC(F1, NULL); |
---|
6385 | #ifdef TIME_TEST |
---|
6386 | if(endwalks == FALSE) |
---|
6387 | tred = tred+clock()-to; |
---|
6388 | else |
---|
6389 | xtred=clock()-to; |
---|
6390 | #endif |
---|
6391 | idDelete(&F1); |
---|
6392 | } |
---|
6393 | if(endwalks == TRUE) |
---|
6394 | break; |
---|
6395 | |
---|
6396 | NEXT_VECTOR: |
---|
6397 | #ifdef TIME_TEST |
---|
6398 | to=clock(); |
---|
6399 | #endif |
---|
6400 | // compute a next weight vector |
---|
6401 | next_weight = MkInterRedNextWeight(curr_weight,target_weight, G); |
---|
6402 | #ifdef TIME_TEST |
---|
6403 | tnw=tnw+clock()-to; |
---|
6404 | #endif |
---|
6405 | #ifdef PRINT_VECTORS |
---|
6406 | if(printout > 0) |
---|
6407 | { |
---|
6408 | MivString(curr_weight, target_weight, next_weight); |
---|
6409 | } |
---|
6410 | #endif |
---|
6411 | |
---|
6412 | if(Overflow_Error == TRUE) |
---|
6413 | { |
---|
6414 | ntwC = 0; |
---|
6415 | //ntestomega = 1; |
---|
6416 | //Print("\n// ring r%d = %s;\n", nstep, rString(currRing)); |
---|
6417 | //idElements(G, "G"); |
---|
6418 | delete next_weight; |
---|
6419 | goto FINISH_160302; |
---|
6420 | } |
---|
6421 | if(MivComp(next_weight, ivNull) == 1){ |
---|
6422 | newRing = currRing; |
---|
6423 | delete next_weight; |
---|
6424 | //Print("\n// ring r%d = %s;\n", nstep, rString(currRing)); |
---|
6425 | break; |
---|
6426 | } |
---|
6427 | if(MivComp(next_weight, target_weight) == 1) |
---|
6428 | endwalks = TRUE; |
---|
6429 | |
---|
6430 | for(i=nV-1; i>=0; i--) |
---|
6431 | (*curr_weight)[i] = (*next_weight)[i]; |
---|
6432 | |
---|
6433 | delete next_weight; |
---|
6434 | }//end of while-loop |
---|
6435 | |
---|
6436 | if(tp_deg != 1) |
---|
6437 | { |
---|
6438 | FINISH_160302: |
---|
6439 | if(MivSame(orig_target, exivlp) == 1) |
---|
6440 | if (rParameter(currRing) != NULL) |
---|
6441 | DefRingParlp(); |
---|
6442 | else |
---|
6443 | VMrDefaultlp(); |
---|
6444 | else |
---|
6445 | if (rParameter(currRing) != NULL) |
---|
6446 | DefRingPar(orig_target); |
---|
6447 | else |
---|
6448 | rChangeCurrRing(VMrDefault(orig_target)); |
---|
6449 | |
---|
6450 | TargetRing=currRing; |
---|
6451 | F1 = idrMoveR(G, newRing,currRing); |
---|
6452 | /* |
---|
6453 | #ifdef CHECK_IDEAL_MWALK |
---|
6454 | headidString(G, "G"); |
---|
6455 | #endif |
---|
6456 | */ |
---|
6457 | |
---|
6458 | // check whether the pertubed target vector stays in the correct cone |
---|
6459 | if(ntwC != 0){ |
---|
6460 | ntestw = test_w_in_ConeCC(F1, pert_target_vector); |
---|
6461 | } |
---|
6462 | |
---|
6463 | if( ntestw != 1 || ntwC == 0) |
---|
6464 | { |
---|
6465 | if(ntestw != 1 && printout >2) |
---|
6466 | { |
---|
6467 | ivString(pert_target_vector, "tau"); |
---|
6468 | PrintS("\n// ** perturbed target vector doesn't stay in cone!!"); |
---|
6469 | Print("\n// ring r%d = %s;\n", nstep, rString(currRing)); |
---|
6470 | //idElements(F1, "G"); |
---|
6471 | } |
---|
6472 | // LastGB is "better" than the kStd subroutine |
---|
6473 | to=clock(); |
---|
6474 | ideal eF1; |
---|
6475 | if(nP == 0 || tp_deg == 1 || MivSame(orig_target, exivlp) != 1){ |
---|
6476 | // PrintS("\n// ** calls \"std\" to compute a GB"); |
---|
6477 | eF1 = MstdCC(F1); |
---|
6478 | idDelete(&F1); |
---|
6479 | } |
---|
6480 | else { |
---|
6481 | // PrintS("\n// ** calls \"LastGB\" to compute a GB"); |
---|
6482 | rChangeCurrRing(newRing); |
---|
6483 | ideal F2 = idrMoveR(F1, TargetRing,currRing); |
---|
6484 | eF1 = LastGB(F2, curr_weight, tp_deg-1); |
---|
6485 | F2=NULL; |
---|
6486 | } |
---|
6487 | xtextra=clock()-to; |
---|
6488 | ring exTargetRing = currRing; |
---|
6489 | |
---|
6490 | rChangeCurrRing(XXRing); |
---|
6491 | Eresult = idrMoveR(eF1, exTargetRing,currRing); |
---|
6492 | } |
---|
6493 | else{ |
---|
6494 | rChangeCurrRing(XXRing); |
---|
6495 | Eresult = idrMoveR(F1, TargetRing,currRing); |
---|
6496 | } |
---|
6497 | } |
---|
6498 | else { |
---|
6499 | rChangeCurrRing(XXRing); |
---|
6500 | Eresult = idrMoveR(G, newRing,currRing); |
---|
6501 | } |
---|
6502 | si_opt_1 = save1; //set original options, e. g. option(RedSB) |
---|
6503 | delete ivNull; |
---|
6504 | if(tp_deg != 1) |
---|
6505 | delete target_weight; |
---|
6506 | |
---|
6507 | if(op_deg != 1 ) |
---|
6508 | delete curr_weight; |
---|
6509 | |
---|
6510 | delete exivlp; |
---|
6511 | delete last_omega; |
---|
6512 | |
---|
6513 | #ifdef TIME_TEST |
---|
6514 | TimeStringFractal(tinput, tostd, tif+xtif, tstd+xtstd,0, tlift+xtlift, tred+xtred, |
---|
6515 | tnw+xtnw); |
---|
6516 | |
---|
6517 | //Print("\n// pSetm_Error = (%d)", ErrorCheck()); |
---|
6518 | //Print("\n// It took %d steps and Overflow_Error? (%d)\n", nstep, Overflow_Error); |
---|
6519 | #endif |
---|
6520 | Print("\n//** Mpwalk: Perturbation Walk took %d steps.\n", nstep); |
---|
6521 | return(Eresult); |
---|
6522 | } |
---|
6523 | |
---|
6524 | /******************************************************* |
---|
6525 | * THE PERTURBATION WALK ALGORITHM WITH RANDOM ELEMENT * |
---|
6526 | *******************************************************/ |
---|
6527 | ideal Mprwalk(ideal Go, intvec* orig_M, intvec* target_M, int weight_rad, |
---|
6528 | int op_deg, int tp_deg, int nP, int reduction, int printout) |
---|
6529 | { |
---|
6530 | BITSET save1 = si_opt_1; // save current options |
---|
6531 | if(reduction == 0) |
---|
6532 | { |
---|
6533 | si_opt_1 &= (~Sy_bit(OPT_REDSB)); // no reduced Groebner basis |
---|
6534 | si_opt_1 &= (~Sy_bit(OPT_REDTAIL)); // not tail reductions |
---|
6535 | } |
---|
6536 | Set_Error(FALSE); |
---|
6537 | Overflow_Error = FALSE; |
---|
6538 | //Print("// pSetm_Error = (%d)", ErrorCheck()); |
---|
6539 | #ifdef TIME_TEST |
---|
6540 | clock_t tinput, tostd, tif=0, tstd=0, tlift=0, tred=0, tnw=0; |
---|
6541 | xtextra=0; |
---|
6542 | xtif=0; xtstd=0; xtlift=0; xtred=0; xtnw=0; |
---|
6543 | tinput = clock(); |
---|
6544 | |
---|
6545 | clock_t tim; |
---|
6546 | #endif |
---|
6547 | nstep = 0; |
---|
6548 | int i, ntwC=1, ntestw=1, nV = currRing->N; //polylength |
---|
6549 | |
---|
6550 | //check that weight radius is valid |
---|
6551 | if(weight_rad < 0) |
---|
6552 | { |
---|
6553 | Werror("Invalid radius.\n"); |
---|
6554 | return NULL; |
---|
6555 | } |
---|
6556 | |
---|
6557 | //check that perturbation degree is valid |
---|
6558 | if(op_deg < 1 || tp_deg < 1 || op_deg > nV || tp_deg > nV) |
---|
6559 | { |
---|
6560 | Werror("Invalid perturbation degree.\n"); |
---|
6561 | return NULL; |
---|
6562 | } |
---|
6563 | |
---|
6564 | BOOLEAN endwalks = FALSE; |
---|
6565 | |
---|
6566 | ideal Gomega, M, F, FF, G, Gomega1, Gomega2, M1,F1,Eresult,ssG; |
---|
6567 | ring newRing, oldRing, TargetRing; |
---|
6568 | intvec* iv_M; |
---|
6569 | intvec* iv_M_dp; |
---|
6570 | intvec* iv_M_lp; |
---|
6571 | intvec* exivlp = Mivlp(nV); |
---|
6572 | intvec* curr_weight = new intvec(nV); |
---|
6573 | intvec* target_weight = new intvec(nV); |
---|
6574 | for(i=0; i<nV; i++) |
---|
6575 | { |
---|
6576 | (*curr_weight)[i] = (*orig_M)[i]; |
---|
6577 | (*target_weight)[i] = (*target_M)[i]; |
---|
6578 | } |
---|
6579 | intvec* orig_target = target_weight; |
---|
6580 | intvec* pert_target_vector = target_weight; |
---|
6581 | intvec* ivNull = new intvec(nV); |
---|
6582 | intvec* iv_dp = MivUnit(nV);// define (1,1,...,1) |
---|
6583 | #ifndef BUCHBERGER_ALG |
---|
6584 | intvec* hilb_func; |
---|
6585 | #endif |
---|
6586 | intvec* next_weight; |
---|
6587 | |
---|
6588 | // to avoid (1,0,...,0) as the target vector |
---|
6589 | intvec* last_omega = new intvec(nV); |
---|
6590 | for(i=nV-1; i>0; i--) |
---|
6591 | (*last_omega)[i] = 1; |
---|
6592 | (*last_omega)[0] = 10000; |
---|
6593 | |
---|
6594 | ring XXRing = currRing; |
---|
6595 | |
---|
6596 | // perturbs the original vector |
---|
6597 | if(orig_M->length() == nV) |
---|
6598 | { |
---|
6599 | if(MivComp(curr_weight, iv_dp) == 1) //rOrdStr(currRing) := "dp" |
---|
6600 | { |
---|
6601 | #ifdef TIME_TEST |
---|
6602 | to = clock(); |
---|
6603 | #endif |
---|
6604 | G = MstdCC(Go); |
---|
6605 | #ifdef TIME_TEST |
---|
6606 | tostd = clock()-to; |
---|
6607 | #endif |
---|
6608 | if(op_deg != 1) |
---|
6609 | { |
---|
6610 | iv_M_dp = MivMatrixOrderdp(nV); |
---|
6611 | curr_weight = MPertVectors(G, iv_M_dp, op_deg); |
---|
6612 | } |
---|
6613 | } |
---|
6614 | else |
---|
6615 | { |
---|
6616 | //define ring order := (a(curr_weight),lp); |
---|
6617 | if (rParameter(currRing) != NULL) |
---|
6618 | DefRingPar(curr_weight); |
---|
6619 | else |
---|
6620 | rChangeCurrRing(VMrDefault(curr_weight)); |
---|
6621 | |
---|
6622 | G = idrMoveR(Go, XXRing,currRing); |
---|
6623 | #ifdef TIME_TEST |
---|
6624 | to = clock(); |
---|
6625 | #endif |
---|
6626 | G = MstdCC(G); |
---|
6627 | #ifdef TIME_TEST |
---|
6628 | tostd = clock()-to; |
---|
6629 | #endif |
---|
6630 | if(op_deg != 1) |
---|
6631 | { |
---|
6632 | iv_M_dp = MivMatrixOrder(curr_weight); |
---|
6633 | curr_weight = MPertVectors(G, iv_M_dp, op_deg); |
---|
6634 | } |
---|
6635 | } |
---|
6636 | } |
---|
6637 | else |
---|
6638 | { |
---|
6639 | rChangeCurrRing(VMatrDefault(orig_M)); |
---|
6640 | G = idrMoveR(Go, XXRing,currRing); |
---|
6641 | #ifdef TIME_TEST |
---|
6642 | to = clock(); |
---|
6643 | #endif |
---|
6644 | G = MstdCC(G); |
---|
6645 | #ifdef TIME_TEST |
---|
6646 | tostd = clock()-to; |
---|
6647 | #endif |
---|
6648 | if(op_deg != 1) |
---|
6649 | { |
---|
6650 | curr_weight = MPertVectors(G, orig_M, op_deg); |
---|
6651 | } |
---|
6652 | } |
---|
6653 | |
---|
6654 | delete iv_dp; |
---|
6655 | if(op_deg != 1) delete iv_M_dp; |
---|
6656 | |
---|
6657 | ring HelpRing = currRing; |
---|
6658 | |
---|
6659 | // perturbs the target weight vector |
---|
6660 | if(target_M->length() == nV) |
---|
6661 | { |
---|
6662 | if(tp_deg > 1 && tp_deg <= nV) |
---|
6663 | { |
---|
6664 | if (rParameter(currRing) != NULL) |
---|
6665 | DefRingPar(target_weight); |
---|
6666 | else |
---|
6667 | rChangeCurrRing(VMrDefault(target_weight)); |
---|
6668 | |
---|
6669 | TargetRing = currRing; |
---|
6670 | ssG = idrMoveR(G,HelpRing,currRing); |
---|
6671 | if(MivSame(target_weight, exivlp) == 1) |
---|
6672 | { |
---|
6673 | iv_M_lp = MivMatrixOrderlp(nV); |
---|
6674 | target_weight = MPertVectors(ssG, iv_M_lp, tp_deg); |
---|
6675 | } |
---|
6676 | else |
---|
6677 | { |
---|
6678 | iv_M_lp = MivMatrixOrder(target_weight); |
---|
6679 | target_weight = MPertVectors(ssG, iv_M_lp, tp_deg); |
---|
6680 | } |
---|
6681 | delete iv_M_lp; |
---|
6682 | pert_target_vector = target_weight; |
---|
6683 | rChangeCurrRing(HelpRing); |
---|
6684 | G = idrMoveR(ssG, TargetRing,currRing); |
---|
6685 | } |
---|
6686 | } |
---|
6687 | else |
---|
6688 | { |
---|
6689 | if(tp_deg > 1 && tp_deg <= nV) |
---|
6690 | { |
---|
6691 | rChangeCurrRing(VMatrDefault(target_M)); |
---|
6692 | TargetRing = currRing; |
---|
6693 | ssG = idrMoveR(G,HelpRing,currRing); |
---|
6694 | target_weight = MPertVectors(ssG, target_M, tp_deg); |
---|
6695 | } |
---|
6696 | } |
---|
6697 | if(printout > 0) |
---|
6698 | { |
---|
6699 | Print("\n//** Mprwalk: Random Perturbation Walk of degree (%d,%d):",op_deg,tp_deg); |
---|
6700 | ivString(curr_weight, "//** Mprwalk: new current weight"); |
---|
6701 | ivString(target_weight, "//** Mprwalk: new target weight"); |
---|
6702 | } |
---|
6703 | |
---|
6704 | #ifdef TIME_TEST |
---|
6705 | to = clock(); |
---|
6706 | #endif |
---|
6707 | Gomega = MwalkInitialForm(G, curr_weight); // compute an initial form ideal of <G> w.r.t. "curr_vector" |
---|
6708 | #ifdef TIME_TEST |
---|
6709 | tif = tif + clock()-to; //time for computing initial form ideal |
---|
6710 | #endif |
---|
6711 | |
---|
6712 | while(1) |
---|
6713 | { |
---|
6714 | nstep ++; |
---|
6715 | #ifdef CHECK_IDEAL_MWALK |
---|
6716 | if(printout > 1) |
---|
6717 | { |
---|
6718 | idString(Gomega,"//** Mprwalk: Gomega"); |
---|
6719 | } |
---|
6720 | #endif |
---|
6721 | |
---|
6722 | if(reduction == 0 && nstep > 1) |
---|
6723 | { |
---|
6724 | /* |
---|
6725 | // check whether weight vector is in the interior of the cone |
---|
6726 | while(1) |
---|
6727 | { |
---|
6728 | FF = middleOfCone(G,Gomega); |
---|
6729 | if(FF != NULL) |
---|
6730 | { |
---|
6731 | idDelete(&G); |
---|
6732 | G = idCopy(FF); |
---|
6733 | idDelete(&FF); |
---|
6734 | next_weight = MwalkNextWeightCC(curr_weight,target_weight,G); |
---|
6735 | #ifdef PRINT_VECTORS |
---|
6736 | if(printout > 0) |
---|
6737 | { |
---|
6738 | MivString(curr_weight, target_weight, next_weight); |
---|
6739 | } |
---|
6740 | #endif |
---|
6741 | } |
---|
6742 | else |
---|
6743 | { |
---|
6744 | break; |
---|
6745 | } |
---|
6746 | for(i=nV-1; i>=0; i--) |
---|
6747 | { |
---|
6748 | (*curr_weight)[i] = (*next_weight)[i]; |
---|
6749 | } |
---|
6750 | Gomega = MwalkInitialForm(G, curr_weight); |
---|
6751 | #ifdef CHECK_IDEAL_MWALK |
---|
6752 | if(printout > 1) |
---|
6753 | { |
---|
6754 | idString(Gomega,"//** Mprwalk: Gomega"); |
---|
6755 | } |
---|
6756 | #endif |
---|
6757 | } |
---|
6758 | */ |
---|
6759 | FF = middleOfCone(G,Gomega); |
---|
6760 | if(FF != NULL) |
---|
6761 | { |
---|
6762 | idDelete(&G); |
---|
6763 | G = idCopy(FF); |
---|
6764 | idDelete(&FF); |
---|
6765 | goto NEXT_VECTOR; |
---|
6766 | } |
---|
6767 | } |
---|
6768 | |
---|
6769 | #ifdef ENDWALKS |
---|
6770 | if(endwalks == TRUE) |
---|
6771 | { |
---|
6772 | Print("\n// ring r%d = %s;\n", nstep, rString(currRing)); |
---|
6773 | /* |
---|
6774 | idElements(G, "G"); |
---|
6775 | headidString(G, "G"); |
---|
6776 | */ |
---|
6777 | } |
---|
6778 | #endif |
---|
6779 | |
---|
6780 | #ifndef BUCHBERGER_ALG |
---|
6781 | if(isNolVector(curr_weight) == 0) |
---|
6782 | hilb_func = hFirstSeries(Gomega,NULL,NULL,curr_weight,currRing); |
---|
6783 | else |
---|
6784 | hilb_func = hFirstSeries(Gomega,NULL,NULL,last_omega,currRing); |
---|
6785 | #endif // BUCHBERGER_ALG |
---|
6786 | |
---|
6787 | oldRing = currRing; |
---|
6788 | |
---|
6789 | if(target_M->length() == nV) |
---|
6790 | { |
---|
6791 | // define a new ring with ordering "(a(curr_weight),lp) |
---|
6792 | if (rParameter(currRing) != NULL) |
---|
6793 | DefRingPar(curr_weight); |
---|
6794 | else |
---|
6795 | rChangeCurrRing(VMrDefault(curr_weight)); |
---|
6796 | } |
---|
6797 | else |
---|
6798 | { |
---|
6799 | rChangeCurrRing(VMatrRefine(target_M,curr_weight)); |
---|
6800 | } |
---|
6801 | newRing = currRing; |
---|
6802 | Gomega1 = idrMoveR(Gomega, oldRing,currRing); |
---|
6803 | #ifdef ENDWALKS |
---|
6804 | if(endwalks == TRUE) |
---|
6805 | { |
---|
6806 | Print("\n// ring r%d = %s;\n", nstep, rString(currRing)); |
---|
6807 | /* |
---|
6808 | idElements(Gomega1, "Gw"); |
---|
6809 | headidString(Gomega1, "headGw"); |
---|
6810 | */ |
---|
6811 | PrintS("\n// compute a rGB of Gw:\n"); |
---|
6812 | |
---|
6813 | #ifndef BUCHBERGER_ALG |
---|
6814 | ivString(hilb_func, "w"); |
---|
6815 | #endif |
---|
6816 | } |
---|
6817 | #endif |
---|
6818 | #ifdef TIME_TEST |
---|
6819 | tim = clock(); |
---|
6820 | to = clock(); |
---|
6821 | #endif |
---|
6822 | // compute a reduced Groebner basis of <Gomega> w.r.t. "newRing" |
---|
6823 | #ifdef BUCHBERGER_ALG |
---|
6824 | M = MstdhomCC(Gomega1); |
---|
6825 | #else |
---|
6826 | M=kStd(Gomega1,NULL,isHomog,NULL,hilb_func,0,NULL,curr_weight); |
---|
6827 | delete hilb_func; |
---|
6828 | #endif |
---|
6829 | #ifdef CHECK_IDEAL_MWALK |
---|
6830 | if(printout > 2) |
---|
6831 | { |
---|
6832 | idString(M,"//** Mprwalk: M"); |
---|
6833 | } |
---|
6834 | #endif |
---|
6835 | #ifdef TIME_TEST |
---|
6836 | if(endwalks == TRUE) |
---|
6837 | { |
---|
6838 | xtstd = xtstd+clock()-to; |
---|
6839 | #ifdef ENDWALKS |
---|
6840 | Print("\n// time for the last std(Gw) = %.2f sec\n", |
---|
6841 | ((double) clock())/1000000 -((double)tim) /1000000); |
---|
6842 | #endif |
---|
6843 | } |
---|
6844 | else |
---|
6845 | tstd=tstd+clock() |
---|