1 | LIB "tst.lib"; |
---|
2 | tst_init(); |
---|
3 | tst_ignore("CVS ID $Id: monodromy_l.tst,v 1.8 1999-06-16 18:40:23 mschulze Exp $"); |
---|
4 | |
---|
5 | LIB "monodrmy.lib"; |
---|
6 | |
---|
7 | list unimodal= |
---|
8 | "P[8]","x,y,z","x3+y3+z3+xyz", |
---|
9 | "X[9]","x,y","x4+y4+x2y2", |
---|
10 | "J[10]","x,y","x3+y6+x2y2", |
---|
11 | "T[3,4,5]","x,y,z","x3+y4+z5+xyz", |
---|
12 | "T[3,4,6]","x,y,z","x3+y4+z6+xyz", |
---|
13 | "T[4,5,6]","x,y,z","x4+y5+z6+xyz", |
---|
14 | "E[12]","x,y","x3+y7+xy5", |
---|
15 | "E[13]","x,y","x3+xy5+y8", |
---|
16 | "E[14]","x,y","x3+y8+xy6", |
---|
17 | "Z[11]","x,y","x3y+y5+xy4", |
---|
18 | "Z[12]","x,y","x3y+xy4+x2y32", |
---|
19 | "Z[13]","x,y","x3y+y6+xy5", |
---|
20 | "W[12]","x,y","x4+y5+x2y3", |
---|
21 | "W[13]","x,y","x4+xy4+y6", |
---|
22 | "Q[10]","x,y,z","x3+y4+yz2+xy3", |
---|
23 | "Q[11]","x,y,z","x3+y2z+xz3+z5", |
---|
24 | "Q[12]","x,y,z","x3+y5+yz2+xy4", |
---|
25 | "S[11]","x,y,z","x4+y2z+xz2+x3z", |
---|
26 | "S[12]","x,y,z","x2y+y2z+xz3+z5", |
---|
27 | "U[12]","x,y,z","x3+y3+z4+xyz2"; |
---|
28 | |
---|
29 | list bimodal= |
---|
30 | //"J[3,0]","x,y","x3+x2y3+y9+xy7", |
---|
31 | "J[3,1]","x,y","x3+x2y3+y10", |
---|
32 | "J[3,2]","x,y","x3+x2y3+y11", |
---|
33 | //"Z[1,0]","x,y","x3y+x2y3+xy6+y7", |
---|
34 | "Z[1,1]","x,y","x3y+x2y3+y8", |
---|
35 | "Z[1,2]","x,y","x3y+x2y3+y9", |
---|
36 | "W[1,0]","x,y","x4+x2y3+y6", |
---|
37 | "W[1,1]","x,y","x4+x2y3+y7", |
---|
38 | "W[1,2]","x,y","x4+x2y3+y8", |
---|
39 | "W#[1,1]","x,y","(x2+y3)^2+xy5", |
---|
40 | "W#[1,2]","x,y","(x2+y3)^2+x2y4", |
---|
41 | "W#[1,3]","x,y","(x2+y3)^2+xy6", |
---|
42 | //"W#[1,4]","x,y","(x2+y3)^2+x2y5", |
---|
43 | "Q[2,0]","x,y,z","x3+yz2+x2y2+xy4", |
---|
44 | "Q[2,1]","x,y,z","x3+yz2+x2y2+y7", |
---|
45 | "Q[2,2]","x,y,z","x3+yz2+x2y2+y8", |
---|
46 | "S[1,0]","x,y,z","x2z+yz2+y5+zy3", |
---|
47 | "S[1,1]","x,y,z","x2z+yz2+x2y2+y6", |
---|
48 | "S[1,2]","x,y,z","x2z+yz2+x2y2+y7", |
---|
49 | "S#[1,1]","x,y,z","x2z+yz2+zy3+xy4", |
---|
50 | "S#[1,2]","x,y,z","x2z+yz2+zy3+x2y3", |
---|
51 | "S#[1,3]","x,y,z","x2z+yz2+zy3+xy5", |
---|
52 | //"S#[1,4]","x,y,z","x2z+yz2+zy3+x2y4", |
---|
53 | "U[1,0]","x,y,z","x3+xz2+xy3+y3z", |
---|
54 | "U[1,1]","x,y,z","x3+xz2+xy3+y2z2", |
---|
55 | "U[1,2]","x,y,z","x3+xz2+xy3+y4z", |
---|
56 | "U[1,3]","x,y,z","x3+xz2+xy3+y3z2", |
---|
57 | "U[1,4]","x,y,z","x3+xz2+xy3+y5z", |
---|
58 | "E[18]","x,y","x3+y10+xy7", |
---|
59 | "E[19]","x,y","x3+xy7+y11", |
---|
60 | "E[20]","x,y","x3+y11+xy8", |
---|
61 | "Z[17]","x,y","x3y+y8+xy6", |
---|
62 | "Z[18]","x,y","x3y+xy6+y9", |
---|
63 | "Z[19]","x,y","x3y+y9+xy7", |
---|
64 | "W[17]","x,y","x4+xy5+y7", |
---|
65 | "W[18]","x,y","x4+y7+x2y4", |
---|
66 | "Q[16]","x,y,z","x3+yz2+y7+xy5", |
---|
67 | //"Q[17]","x,y,z","x2z+yz2+xy5+y8", |
---|
68 | "Q[18]","x,y,z","x3+yz2+y8+xy6", |
---|
69 | "S[16]","x,y,z","x2z+yz2+xy4+y6", |
---|
70 | "S[17]","x,y,z","x2z+yz2+y6+zy4", |
---|
71 | "U[16]","x,y,z","x3+xz2+y5+x2y2"; |
---|
72 | |
---|
73 | proc tst_monodromy(list data) |
---|
74 | { |
---|
75 | int i; |
---|
76 | string s,typ; |
---|
77 | for(i=1;i<=size(data);i=i+3) |
---|
78 | { |
---|
79 | s="typ=\""+data[i]+"\";"; |
---|
80 | execute(s); |
---|
81 | s="ring R=0,("+data[i+1]+"),ds;"; |
---|
82 | execute(s); |
---|
83 | export(R); |
---|
84 | s="poly f="+data[i+2]+";"; |
---|
85 | execute(s); |
---|
86 | typ; |
---|
87 | jordan(monodromy(f)); |
---|
88 | tst_status(); |
---|
89 | kill R; |
---|
90 | } |
---|
91 | } |
---|
92 | |
---|
93 | tst_monodromy(unimodal); |
---|
94 | |
---|
95 | tst_status(1); $ |
---|