1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* $Id: modulop.cc 14402 2011-09-29 17:16:19Z hannes $ */ |
---|
5 | /* |
---|
6 | * ABSTRACT: numbers modulo p (<=32003) |
---|
7 | */ |
---|
8 | |
---|
9 | #include <string.h> |
---|
10 | #include <kernel/mod2.h> |
---|
11 | #include <omalloc/mylimits.h> |
---|
12 | #include <kernel/structs.h> |
---|
13 | #include <kernel/febase.h> |
---|
14 | #include <omalloc/omalloc.h> |
---|
15 | #include <kernel/numbers.h> |
---|
16 | #include <kernel/longrat.h> |
---|
17 | #include <kernel/mpr_complex.h> |
---|
18 | #include <kernel/ring.h> |
---|
19 | #ifdef HAVE_RINGS |
---|
20 | #include <si_gmp.h> |
---|
21 | #endif |
---|
22 | #include <kernel/modulop.h> |
---|
23 | |
---|
24 | long npPrimeM=0; |
---|
25 | int npGen=0; |
---|
26 | long npPminus1M=0; |
---|
27 | long npMapPrime; |
---|
28 | |
---|
29 | #ifdef HAVE_DIV_MOD |
---|
30 | unsigned short *npInvTable=NULL; |
---|
31 | #endif |
---|
32 | |
---|
33 | #if !defined(HAVE_DIV_MOD) || !defined(HAVE_MULT_MOD) |
---|
34 | unsigned short *npExpTable=NULL; |
---|
35 | unsigned short *npLogTable=NULL; |
---|
36 | #endif |
---|
37 | |
---|
38 | |
---|
39 | BOOLEAN npGreaterZero (number k) |
---|
40 | { |
---|
41 | int h = (int)((long) k); |
---|
42 | return ((int)h !=0) && (h <= (npPrimeM>>1)); |
---|
43 | } |
---|
44 | |
---|
45 | //unsigned long npMultMod(unsigned long a, unsigned long b) |
---|
46 | //{ |
---|
47 | // unsigned long c = a*b; |
---|
48 | // c = c % npPrimeM; |
---|
49 | // assume(c == (unsigned long) npMultM((number) a, (number) b)); |
---|
50 | // return c; |
---|
51 | //} |
---|
52 | |
---|
53 | number npMult (number a,number b) |
---|
54 | { |
---|
55 | if (((long)a == 0) || ((long)b == 0)) |
---|
56 | return (number)0; |
---|
57 | else |
---|
58 | return npMultM(a,b); |
---|
59 | } |
---|
60 | |
---|
61 | /*2 |
---|
62 | * create a number from int |
---|
63 | */ |
---|
64 | number npInit (int i, const ring r) |
---|
65 | { |
---|
66 | long ii=i; |
---|
67 | long p=(long)ABS(r->ch); |
---|
68 | while (ii < 0L) ii += p; |
---|
69 | while ((ii>1L) && (ii >= p)) ii -= p; |
---|
70 | return (number)ii; |
---|
71 | } |
---|
72 | |
---|
73 | /*2 |
---|
74 | * convert a number to int (-p/2 .. p/2) |
---|
75 | */ |
---|
76 | int npInt(number &n, const ring r) |
---|
77 | { |
---|
78 | if ((long)n > (((long)r->ch) >>1)) return (int)((long)n -((long)r->ch)); |
---|
79 | else return (int)((long)n); |
---|
80 | } |
---|
81 | |
---|
82 | number npAdd (number a, number b) |
---|
83 | { |
---|
84 | return npAddM(a,b); |
---|
85 | } |
---|
86 | |
---|
87 | number npSub (number a, number b) |
---|
88 | { |
---|
89 | return npSubM(a,b); |
---|
90 | } |
---|
91 | |
---|
92 | BOOLEAN npIsZero (number a) |
---|
93 | { |
---|
94 | return 0 == (long)a; |
---|
95 | } |
---|
96 | |
---|
97 | BOOLEAN npIsOne (number a) |
---|
98 | { |
---|
99 | return 1 == (long)a; |
---|
100 | } |
---|
101 | |
---|
102 | BOOLEAN npIsMOne (number a) |
---|
103 | { |
---|
104 | return ((npPminus1M == (long)a)&&((long)1!=(long)a)); |
---|
105 | } |
---|
106 | |
---|
107 | #ifdef HAVE_DIV_MOD |
---|
108 | #ifdef USE_NTL_XGCD |
---|
109 | //ifdef HAVE_NTL // in ntl.a |
---|
110 | //extern void XGCD(long& d, long& s, long& t, long a, long b); |
---|
111 | #include <NTL/ZZ.h> |
---|
112 | #ifdef NTL_CLIENT |
---|
113 | NTL_CLIENT |
---|
114 | #endif |
---|
115 | #endif |
---|
116 | |
---|
117 | long InvMod(long a) |
---|
118 | { |
---|
119 | long d, s, t; |
---|
120 | |
---|
121 | #ifdef USE_NTL_XGCD |
---|
122 | XGCD(d, s, t, a, npPrimeM); |
---|
123 | assume (d == 1); |
---|
124 | #else |
---|
125 | long u, v, u0, v0, u1, v1, u2, v2, q, r; |
---|
126 | |
---|
127 | assume(a>0); |
---|
128 | u1=1; u2=0; |
---|
129 | u = a; v = npPrimeM; |
---|
130 | |
---|
131 | while (v != 0) |
---|
132 | { |
---|
133 | q = u / v; |
---|
134 | r = u % v; |
---|
135 | u = v; |
---|
136 | v = r; |
---|
137 | u0 = u2; |
---|
138 | u2 = u1 - q*u2; |
---|
139 | u1 = u0; |
---|
140 | } |
---|
141 | |
---|
142 | assume(u==1); |
---|
143 | s = u1; |
---|
144 | #endif |
---|
145 | if (s < 0) |
---|
146 | return s + npPrimeM; |
---|
147 | else |
---|
148 | return s; |
---|
149 | } |
---|
150 | #endif |
---|
151 | |
---|
152 | static inline number npInversM (number c) |
---|
153 | { |
---|
154 | #ifndef HAVE_DIV_MOD |
---|
155 | return (number)(long)npExpTable[npPminus1M - npLogTable[(long)c]]; |
---|
156 | #else |
---|
157 | long inv=(long)npInvTable[(long)c]; |
---|
158 | if (inv==0) |
---|
159 | { |
---|
160 | inv=InvMod((long)c); |
---|
161 | npInvTable[(long)c]=inv; |
---|
162 | } |
---|
163 | return (number)inv; |
---|
164 | #endif |
---|
165 | } |
---|
166 | |
---|
167 | number npDiv (number a,number b) |
---|
168 | { |
---|
169 | //#ifdef NV_OPS |
---|
170 | // if (npPrimeM>NV_MAX_PRIME) |
---|
171 | // return nvDiv(a,b); |
---|
172 | //#endif |
---|
173 | if ((long)a==0) |
---|
174 | return (number)0; |
---|
175 | #ifndef HAVE_DIV_MOD |
---|
176 | if ((long)b==0) |
---|
177 | { |
---|
178 | WerrorS(nDivBy0); |
---|
179 | return (number)0; |
---|
180 | } |
---|
181 | else |
---|
182 | { |
---|
183 | int s = npLogTable[(long)a] - npLogTable[(long)b]; |
---|
184 | if (s < 0) |
---|
185 | s += npPminus1M; |
---|
186 | return (number)(long)npExpTable[s]; |
---|
187 | } |
---|
188 | #else |
---|
189 | number inv=npInversM(b); |
---|
190 | return npMultM(a,inv); |
---|
191 | #endif |
---|
192 | } |
---|
193 | number npInvers (number c) |
---|
194 | { |
---|
195 | if ((long)c==0) |
---|
196 | { |
---|
197 | WerrorS("1/0"); |
---|
198 | return (number)0; |
---|
199 | } |
---|
200 | return npInversM(c); |
---|
201 | } |
---|
202 | |
---|
203 | number npNeg (number c) |
---|
204 | { |
---|
205 | if ((long)c==0) return c; |
---|
206 | return npNegM(c); |
---|
207 | } |
---|
208 | |
---|
209 | BOOLEAN npGreater (number a,number b) |
---|
210 | { |
---|
211 | //return (long)a != (long)b; |
---|
212 | return (long)a > (long)b; |
---|
213 | } |
---|
214 | |
---|
215 | BOOLEAN npEqual (number a,number b) |
---|
216 | { |
---|
217 | // return (long)a == (long)b; |
---|
218 | return npEqualM(a,b); |
---|
219 | } |
---|
220 | |
---|
221 | void npWrite (number &a, const ring r) |
---|
222 | { |
---|
223 | if ((long)a>(((long)r->ch) >>1)) StringAppend("-%d",(int)(((long)r->ch)-((long)a))); |
---|
224 | else StringAppend("%d",(int)((long)a)); |
---|
225 | } |
---|
226 | |
---|
227 | void npPower (number a, int i, number * result) |
---|
228 | { |
---|
229 | if (i==0) |
---|
230 | { |
---|
231 | //npInit(1,result); |
---|
232 | *(long *)result = 1; |
---|
233 | } |
---|
234 | else if (i==1) |
---|
235 | { |
---|
236 | *result = a; |
---|
237 | } |
---|
238 | else |
---|
239 | { |
---|
240 | npPower(a,i-1,result); |
---|
241 | *result = npMultM(a,*result); |
---|
242 | } |
---|
243 | } |
---|
244 | |
---|
245 | static const char* npEati(const char *s, int *i) |
---|
246 | { |
---|
247 | |
---|
248 | if (((*s) >= '0') && ((*s) <= '9')) |
---|
249 | { |
---|
250 | unsigned long ii=0L; |
---|
251 | do |
---|
252 | { |
---|
253 | ii *= 10; |
---|
254 | ii += *s++ - '0'; |
---|
255 | if (ii >= (MAX_INT_VAL / 10)) ii = ii % npPrimeM; |
---|
256 | } |
---|
257 | while (((*s) >= '0') && ((*s) <= '9')); |
---|
258 | if (ii >= npPrimeM) ii = ii % npPrimeM; |
---|
259 | *i=(int)ii; |
---|
260 | } |
---|
261 | else (*i) = 1; |
---|
262 | return s; |
---|
263 | } |
---|
264 | |
---|
265 | const char * npRead (const char *s, number *a) |
---|
266 | { |
---|
267 | int z; |
---|
268 | int n=1; |
---|
269 | |
---|
270 | s = npEati(s, &z); |
---|
271 | if ((*s) == '/') |
---|
272 | { |
---|
273 | s++; |
---|
274 | s = npEati(s, &n); |
---|
275 | } |
---|
276 | if (n == 1) |
---|
277 | *a = (number)z; |
---|
278 | else |
---|
279 | { |
---|
280 | if ((z==0)&&(n==0)) WerrorS(nDivBy0); |
---|
281 | else |
---|
282 | { |
---|
283 | #ifdef NV_OPS |
---|
284 | if (npPrimeM>NV_MAX_PRIME) |
---|
285 | *a = nvDiv((number)z,(number)n); |
---|
286 | else |
---|
287 | #endif |
---|
288 | *a = npDiv((number)z,(number)n); |
---|
289 | } |
---|
290 | } |
---|
291 | return s; |
---|
292 | } |
---|
293 | |
---|
294 | /*2 |
---|
295 | * the last used charcteristic |
---|
296 | */ |
---|
297 | //int npGetChar() |
---|
298 | //{ |
---|
299 | // return npPrimeM; |
---|
300 | //} |
---|
301 | |
---|
302 | /*2 |
---|
303 | * set the charcteristic (allocate and init tables) |
---|
304 | */ |
---|
305 | |
---|
306 | void npSetChar(int c, ring r) |
---|
307 | { |
---|
308 | |
---|
309 | // if (c==npPrimeM) return; |
---|
310 | if ((c>1) || (c<(-1))) |
---|
311 | { |
---|
312 | if (c>1) npPrimeM = c; |
---|
313 | else npPrimeM = -c; |
---|
314 | npPminus1M = npPrimeM - 1; |
---|
315 | #ifdef NV_OPS |
---|
316 | if (r->cf->npPrimeM >NV_MAX_PRIME) return; |
---|
317 | #endif |
---|
318 | #ifdef HAVE_DIV_MOD |
---|
319 | npInvTable=r->cf->npInvTable; |
---|
320 | #endif |
---|
321 | #if !defined(HAVE_DIV_MOD) || !defined(HAVE_MULT_MOD) |
---|
322 | npExpTable=r->cf->npExpTable; |
---|
323 | npLogTable=r->cf->npLogTable; |
---|
324 | npGen = npExpTable[1]; |
---|
325 | #endif |
---|
326 | } |
---|
327 | else |
---|
328 | { |
---|
329 | npPrimeM=0; |
---|
330 | #ifdef HAVE_DIV_MOD |
---|
331 | npInvTable=NULL; |
---|
332 | #endif |
---|
333 | #if !defined(HAVE_DIV_MOD) || !defined(HAVE_MULT_MOD) |
---|
334 | npExpTable=NULL; |
---|
335 | npLogTable=NULL; |
---|
336 | #endif |
---|
337 | } |
---|
338 | } |
---|
339 | |
---|
340 | void npInitChar(int c, ring r) |
---|
341 | { |
---|
342 | int i, w; |
---|
343 | |
---|
344 | if ((c>1) || (c<(-1))) |
---|
345 | { |
---|
346 | if (c>1) r->cf->npPrimeM = c; |
---|
347 | else r->cf->npPrimeM = -c; |
---|
348 | r->cf->npPminus1M = r->cf->npPrimeM - 1; |
---|
349 | #ifdef NV_OPS |
---|
350 | if (r->cf->npPrimeM <=NV_MAX_PRIME) |
---|
351 | #endif |
---|
352 | { |
---|
353 | #if !defined(HAVE_DIV_MOD) || !defined(HAVE_MULT_MOD) |
---|
354 | r->cf->npExpTable=(unsigned short *)omAlloc( r->cf->npPrimeM*sizeof(unsigned short) ); |
---|
355 | r->cf->npLogTable=(unsigned short *)omAlloc( r->cf->npPrimeM*sizeof(unsigned short) ); |
---|
356 | r->cf->npExpTable[0] = 1; |
---|
357 | r->cf->npLogTable[0] = 0; |
---|
358 | if (r->cf->npPrimeM > 2) |
---|
359 | { |
---|
360 | w = 1; |
---|
361 | loop |
---|
362 | { |
---|
363 | r->cf->npLogTable[1] = 0; |
---|
364 | w++; |
---|
365 | i = 0; |
---|
366 | loop |
---|
367 | { |
---|
368 | i++; |
---|
369 | r->cf->npExpTable[i] =(int)(((long)w * (long)r->cf->npExpTable[i-1]) |
---|
370 | % r->cf->npPrimeM); |
---|
371 | r->cf->npLogTable[r->cf->npExpTable[i]] = i; |
---|
372 | if (/*(i == npPrimeM - 1 ) ||*/ (r->cf->npExpTable[i] == 1)) |
---|
373 | break; |
---|
374 | } |
---|
375 | if (i == r->cf->npPrimeM - 1) |
---|
376 | break; |
---|
377 | } |
---|
378 | } |
---|
379 | else |
---|
380 | { |
---|
381 | r->cf->npExpTable[1] = 1; |
---|
382 | r->cf->npLogTable[1] = 0; |
---|
383 | } |
---|
384 | #endif |
---|
385 | #ifdef HAVE_DIV_MOD |
---|
386 | r->cf->npInvTable=(unsigned short*)omAlloc0( r->cf->npPrimeM*sizeof(unsigned short) ); |
---|
387 | #endif |
---|
388 | } |
---|
389 | } |
---|
390 | else |
---|
391 | { |
---|
392 | WarnS("nInitChar failed"); |
---|
393 | } |
---|
394 | } |
---|
395 | |
---|
396 | #ifdef LDEBUG |
---|
397 | BOOLEAN npDBTest (number a, const char *f, const int l) |
---|
398 | { |
---|
399 | if (((long)a<0) || ((long)a>npPrimeM)) |
---|
400 | { |
---|
401 | Print("wrong mod p number %ld at %s,%d\n",(long)a,f,l); |
---|
402 | return FALSE; |
---|
403 | } |
---|
404 | return TRUE; |
---|
405 | } |
---|
406 | #endif |
---|
407 | |
---|
408 | number npMap0(number from) |
---|
409 | { |
---|
410 | return npInit(nlModP(from,npPrimeM),currRing); |
---|
411 | } |
---|
412 | |
---|
413 | number npMapP(number from) |
---|
414 | { |
---|
415 | long i = (long)from; |
---|
416 | if (i>npMapPrime/2) |
---|
417 | { |
---|
418 | i-=npMapPrime; |
---|
419 | while (i < 0) i+=npPrimeM; |
---|
420 | } |
---|
421 | i%=npPrimeM; |
---|
422 | return (number)i; |
---|
423 | } |
---|
424 | |
---|
425 | static number npMapLongR(number from) |
---|
426 | { |
---|
427 | gmp_float *ff=(gmp_float*)from; |
---|
428 | mpf_t *f=ff->_mpfp(); |
---|
429 | number res; |
---|
430 | mpz_ptr dest,ndest; |
---|
431 | int size,i; |
---|
432 | int e,al,bl,in; |
---|
433 | long iz; |
---|
434 | mp_ptr qp,dd,nn; |
---|
435 | |
---|
436 | size = (*f)[0]._mp_size; |
---|
437 | if (size == 0) |
---|
438 | return npInit(0,currRing); |
---|
439 | if(size<0) |
---|
440 | size = -size; |
---|
441 | |
---|
442 | qp = (*f)[0]._mp_d; |
---|
443 | while(qp[0]==0) |
---|
444 | { |
---|
445 | qp++; |
---|
446 | size--; |
---|
447 | } |
---|
448 | |
---|
449 | if(npPrimeM>2) |
---|
450 | e=(*f)[0]._mp_exp-size; |
---|
451 | else |
---|
452 | e=0; |
---|
453 | res = ALLOC_RNUMBER(); |
---|
454 | #if defined(LDEBUG) |
---|
455 | res->debug=123456; |
---|
456 | #endif |
---|
457 | dest = res->z; |
---|
458 | |
---|
459 | if (e<0) |
---|
460 | { |
---|
461 | al = dest->_mp_size = size; |
---|
462 | if (al<2) al = 2; |
---|
463 | dd = (mp_ptr)omAlloc(sizeof(mp_limb_t)*al); |
---|
464 | for (i=0;i<size;i++) dd[i] = qp[i]; |
---|
465 | bl = 1-e; |
---|
466 | nn = (mp_ptr)omAlloc(sizeof(mp_limb_t)*bl); |
---|
467 | nn[bl-1] = 1; |
---|
468 | for (i=bl-2;i>=0;i--) nn[i] = 0; |
---|
469 | ndest = res->n; |
---|
470 | ndest->_mp_d = nn; |
---|
471 | ndest->_mp_alloc = ndest->_mp_size = bl; |
---|
472 | res->s = 0; |
---|
473 | in=mpz_fdiv_ui(ndest,npPrimeM); |
---|
474 | mpz_clear(ndest); |
---|
475 | } |
---|
476 | else |
---|
477 | { |
---|
478 | al = dest->_mp_size = size+e; |
---|
479 | if (al<2) al = 2; |
---|
480 | dd = (mp_ptr)omAlloc(sizeof(mp_limb_t)*al); |
---|
481 | for (i=0;i<size;i++) dd[i+e] = qp[i]; |
---|
482 | for (i=0;i<e;i++) dd[i] = 0; |
---|
483 | res->s = 3; |
---|
484 | } |
---|
485 | |
---|
486 | dest->_mp_d = dd; |
---|
487 | dest->_mp_alloc = al; |
---|
488 | iz=mpz_fdiv_ui(dest,npPrimeM); |
---|
489 | mpz_clear(dest); |
---|
490 | if(res->s==0) |
---|
491 | iz=(long)npDiv((number)iz,(number)in); |
---|
492 | FREE_RNUMBER(res); |
---|
493 | return (number)iz; |
---|
494 | } |
---|
495 | |
---|
496 | #ifdef HAVE_RINGS |
---|
497 | /*2 |
---|
498 | * convert from a GMP integer |
---|
499 | */ |
---|
500 | number npMapGMP(number from) |
---|
501 | { |
---|
502 | int_number erg = (int_number) omAlloc(sizeof(mpz_t)); // evtl. spaeter mit bin |
---|
503 | mpz_init(erg); |
---|
504 | |
---|
505 | mpz_mod_ui(erg, (int_number) from, npPrimeM); |
---|
506 | number r = (number) mpz_get_si(erg); |
---|
507 | |
---|
508 | mpz_clear(erg); |
---|
509 | omFree((ADDRESS) erg); |
---|
510 | return (number) r; |
---|
511 | } |
---|
512 | |
---|
513 | /*2 |
---|
514 | * convert from an machine long |
---|
515 | */ |
---|
516 | number npMapMachineInt(number from) |
---|
517 | { |
---|
518 | long i = (long) (((unsigned long) from) % npPrimeM); |
---|
519 | return (number) i; |
---|
520 | } |
---|
521 | #endif |
---|
522 | |
---|
523 | nMapFunc npSetMap(const ring src, const ring dst) |
---|
524 | { |
---|
525 | #ifdef HAVE_RINGS |
---|
526 | if (rField_is_Ring_2toM(src)) |
---|
527 | { |
---|
528 | return npMapMachineInt; |
---|
529 | } |
---|
530 | if (rField_is_Ring_Z(src) || rField_is_Ring_PtoM(src) || rField_is_Ring_ModN(src)) |
---|
531 | { |
---|
532 | return npMapGMP; |
---|
533 | } |
---|
534 | #endif |
---|
535 | if (rField_is_Q(src)) |
---|
536 | { |
---|
537 | return npMap0; |
---|
538 | } |
---|
539 | if ( rField_is_Zp(src) ) |
---|
540 | { |
---|
541 | if (rChar(src) == rChar(dst)) |
---|
542 | { |
---|
543 | return ndCopy; |
---|
544 | } |
---|
545 | else |
---|
546 | { |
---|
547 | npMapPrime=rChar(src); |
---|
548 | return npMapP; |
---|
549 | } |
---|
550 | } |
---|
551 | if (rField_is_long_R(src)) |
---|
552 | { |
---|
553 | return npMapLongR; |
---|
554 | } |
---|
555 | return NULL; /* default */ |
---|
556 | } |
---|
557 | |
---|
558 | // ----------------------------------------------------------- |
---|
559 | // operation for very large primes (32003< p < 2^31-1) |
---|
560 | // ---------------------------------------------------------- |
---|
561 | #ifdef NV_OPS |
---|
562 | |
---|
563 | number nvMult (number a,number b) |
---|
564 | { |
---|
565 | //if (((long)a == 0) || ((long)b == 0)) |
---|
566 | // return (number)0; |
---|
567 | //else |
---|
568 | return nvMultM(a,b); |
---|
569 | } |
---|
570 | |
---|
571 | void nvInpMult(number &a, number b, const ring r) |
---|
572 | { |
---|
573 | number n=nvMultM(a,b); |
---|
574 | a=n; |
---|
575 | } |
---|
576 | |
---|
577 | |
---|
578 | long nvInvMod(long a) |
---|
579 | { |
---|
580 | long s, t; |
---|
581 | |
---|
582 | long u, v, u0, v0, u1, v1, u2, v2, q, r; |
---|
583 | |
---|
584 | u1=1; v1=0; |
---|
585 | u2=0; v2=1; |
---|
586 | u = a; v = npPrimeM; |
---|
587 | |
---|
588 | while (v != 0) |
---|
589 | { |
---|
590 | q = u / v; |
---|
591 | r = u % v; |
---|
592 | u = v; |
---|
593 | v = r; |
---|
594 | u0 = u2; |
---|
595 | v0 = v2; |
---|
596 | u2 = u1 - q*u2; |
---|
597 | v2 = v1- q*v2; |
---|
598 | u1 = u0; |
---|
599 | v1 = v0; |
---|
600 | } |
---|
601 | |
---|
602 | s = u1; |
---|
603 | //t = v1; |
---|
604 | if (s < 0) |
---|
605 | return s + npPrimeM; |
---|
606 | else |
---|
607 | return s; |
---|
608 | } |
---|
609 | |
---|
610 | static inline number nvInversM (number c) |
---|
611 | { |
---|
612 | long inv=nvInvMod((long)c); |
---|
613 | return (number)inv; |
---|
614 | } |
---|
615 | |
---|
616 | number nvDiv (number a,number b) |
---|
617 | { |
---|
618 | if ((long)a==0) |
---|
619 | return (number)0; |
---|
620 | else if ((long)b==0) |
---|
621 | { |
---|
622 | WerrorS(nDivBy0); |
---|
623 | return (number)0; |
---|
624 | } |
---|
625 | else |
---|
626 | { |
---|
627 | number inv=nvInversM(b); |
---|
628 | return nvMultM(a,inv); |
---|
629 | } |
---|
630 | } |
---|
631 | number nvInvers (number c) |
---|
632 | { |
---|
633 | if ((long)c==0) |
---|
634 | { |
---|
635 | WerrorS(nDivBy0); |
---|
636 | return (number)0; |
---|
637 | } |
---|
638 | return nvInversM(c); |
---|
639 | } |
---|
640 | void nvPower (number a, int i, number * result) |
---|
641 | { |
---|
642 | if (i==0) |
---|
643 | { |
---|
644 | //npInit(1,result); |
---|
645 | *(long *)result = 1; |
---|
646 | } |
---|
647 | else if (i==1) |
---|
648 | { |
---|
649 | *result = a; |
---|
650 | } |
---|
651 | else |
---|
652 | { |
---|
653 | nvPower(a,i-1,result); |
---|
654 | *result = nvMultM(a,*result); |
---|
655 | } |
---|
656 | } |
---|
657 | #endif |
---|