1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* $Id: modulop.cc 14402 2011-09-29 17:16:19Z hannes $ */ |
---|
5 | /* |
---|
6 | * ABSTRACT: numbers modulo p (<=32003) |
---|
7 | */ |
---|
8 | |
---|
9 | #include <string.h> |
---|
10 | #include "coeffs.h" |
---|
11 | #include "numbers.h" |
---|
12 | #include "longrat.h" |
---|
13 | #include "mpr_complex.h" |
---|
14 | #include "modulop.h" |
---|
15 | |
---|
16 | int npGen=0; |
---|
17 | long npMapPrime; |
---|
18 | |
---|
19 | #ifdef HAVE_DIV_MOD |
---|
20 | unsigned short *npInvTable=NULL; |
---|
21 | #endif |
---|
22 | |
---|
23 | #if !defined(HAVE_DIV_MOD) || !defined(HAVE_MULT_MOD) |
---|
24 | unsigned short *npExpTable=NULL; |
---|
25 | unsigned short *npLogTable=NULL; |
---|
26 | #endif |
---|
27 | |
---|
28 | |
---|
29 | BOOLEAN npGreaterZero (number k, const coeffs r) |
---|
30 | { |
---|
31 | int h = (int)((long) k); |
---|
32 | return ((int)h !=0) && (h <= (r->npPrimeM>>1)); |
---|
33 | } |
---|
34 | |
---|
35 | //unsigned long npMultMod(unsigned long a, unsigned long b) |
---|
36 | //{ |
---|
37 | // unsigned long c = a*b; |
---|
38 | // c = c % npPrimeM; |
---|
39 | // assume(c == (unsigned long) npMultM((number) a, (number) b)); |
---|
40 | // return c; |
---|
41 | //} |
---|
42 | |
---|
43 | number npMult (number a,number b, const coeffs r) |
---|
44 | { |
---|
45 | if (((long)a == 0) || ((long)b == 0)) |
---|
46 | return (number)0; |
---|
47 | else |
---|
48 | return npMultM(a,b, r); |
---|
49 | } |
---|
50 | |
---|
51 | /*2 |
---|
52 | * create a number from int |
---|
53 | */ |
---|
54 | number npInit (int i, const coeffs r) |
---|
55 | { |
---|
56 | long ii=i; |
---|
57 | long p=(long)ABS(r->ch); |
---|
58 | while (ii < 0L) ii += p; |
---|
59 | while ((ii>1L) && (ii >= p)) ii -= p; |
---|
60 | return (number)ii; |
---|
61 | } |
---|
62 | |
---|
63 | /*2 |
---|
64 | * convert a number to int (-p/2 .. p/2) |
---|
65 | */ |
---|
66 | int npInt(number &n, const coeffs r) |
---|
67 | { |
---|
68 | if ((long)n > (((long)r->ch) >>1)) return (int)((long)n -((long)r->ch)); |
---|
69 | else return (int)((long)n); |
---|
70 | } |
---|
71 | |
---|
72 | number npAdd (number a, number b, const coeffs r) |
---|
73 | { |
---|
74 | return npAddM(a,b, r); |
---|
75 | } |
---|
76 | |
---|
77 | number npSub (number a, number b, const coeffs r) |
---|
78 | { |
---|
79 | return npSubM(a,b,r); |
---|
80 | } |
---|
81 | |
---|
82 | BOOLEAN npIsZero (number a, const coeffs r) |
---|
83 | { |
---|
84 | return 0 == (long)a; |
---|
85 | } |
---|
86 | |
---|
87 | BOOLEAN npIsOne (number a, const coeffs r) |
---|
88 | { |
---|
89 | return 1 == (long)a; |
---|
90 | } |
---|
91 | |
---|
92 | BOOLEAN npIsMOne (number a, const coeffs r) |
---|
93 | { |
---|
94 | return ((r->npPminus1M == (long)a)&&((long)1!=(long)a)); |
---|
95 | } |
---|
96 | |
---|
97 | #ifdef HAVE_DIV_MOD |
---|
98 | #ifdef USE_NTL_XGCD |
---|
99 | //ifdef HAVE_NTL // in ntl.a |
---|
100 | //extern void XGCD(long& d, long& s, long& t, long a, long b); |
---|
101 | #include <NTL/ZZ.h> |
---|
102 | #ifdef NTL_CLIENT |
---|
103 | NTL_CLIENT |
---|
104 | #endif |
---|
105 | #endif |
---|
106 | |
---|
107 | long InvMod(long a, const coeffs R) |
---|
108 | { |
---|
109 | long d, s, t; |
---|
110 | |
---|
111 | #ifdef USE_NTL_XGCD |
---|
112 | XGCD(d, s, t, a, R->npPrimeM); |
---|
113 | assume (d == 1); |
---|
114 | #else |
---|
115 | long u, v, u0, v0, u1, v1, u2, v2, q, r; |
---|
116 | |
---|
117 | assume(a>0); |
---|
118 | u1=1; u2=0; |
---|
119 | u = a; v = R->npPrimeM; |
---|
120 | |
---|
121 | while (v != 0) |
---|
122 | { |
---|
123 | q = u / v; |
---|
124 | r = u % v; |
---|
125 | u = v; |
---|
126 | v = r; |
---|
127 | u0 = u2; |
---|
128 | u2 = u1 - q*u2; |
---|
129 | u1 = u0; |
---|
130 | } |
---|
131 | |
---|
132 | assume(u==1); |
---|
133 | s = u1; |
---|
134 | #endif |
---|
135 | if (s < 0) |
---|
136 | return s + R->npPrimeM; |
---|
137 | else |
---|
138 | return s; |
---|
139 | } |
---|
140 | #endif |
---|
141 | |
---|
142 | inline number npInversM (number c, const coeffs r) |
---|
143 | { |
---|
144 | #ifndef HAVE_DIV_MOD |
---|
145 | return (number)(long)r->npExpTable[r->npPminus1M - r->npLogTable[(long)c]]; |
---|
146 | #else |
---|
147 | long inv=(long)r->npInvTable[(long)c]; |
---|
148 | if (inv==0) |
---|
149 | { |
---|
150 | inv=InvMod((long)c,r); |
---|
151 | r->npInvTable[(long)c]=inv; |
---|
152 | } |
---|
153 | return (number)inv; |
---|
154 | #endif |
---|
155 | } |
---|
156 | |
---|
157 | number npDiv (number a,number b, const coeffs r) |
---|
158 | { |
---|
159 | //#ifdef NV_OPS |
---|
160 | // if (npPrimeM>NV_MAX_PRIME) |
---|
161 | // return nvDiv(a,b); |
---|
162 | //#endif |
---|
163 | if ((long)a==0) |
---|
164 | return (number)0; |
---|
165 | #ifndef HAVE_DIV_MOD |
---|
166 | if ((long)b==0) |
---|
167 | { |
---|
168 | WerrorS(nDivBy0); |
---|
169 | return (number)0; |
---|
170 | } |
---|
171 | else |
---|
172 | { |
---|
173 | int s = r->npLogTable[(long)a] - r->npLogTable[(long)b]; |
---|
174 | if (s < 0) |
---|
175 | s += r->npPminus1M; |
---|
176 | return (number)(long)r->npExpTable[s]; |
---|
177 | } |
---|
178 | #else |
---|
179 | number inv=npInversM(b,r); |
---|
180 | return npMultM(a,inv,r); |
---|
181 | #endif |
---|
182 | } |
---|
183 | number npInvers (number c, const coeffs r) |
---|
184 | { |
---|
185 | if ((long)c==0) |
---|
186 | { |
---|
187 | WerrorS("1/0"); |
---|
188 | return (number)0; |
---|
189 | } |
---|
190 | return npInversM(c,r); |
---|
191 | } |
---|
192 | |
---|
193 | number npNeg (number c, const coeffs r) |
---|
194 | { |
---|
195 | if ((long)c==0) return c; |
---|
196 | return npNegM(c,r); |
---|
197 | } |
---|
198 | |
---|
199 | BOOLEAN npGreater (number a,number b, const coeffs r) |
---|
200 | { |
---|
201 | //return (long)a != (long)b; |
---|
202 | return (long)a > (long)b; |
---|
203 | } |
---|
204 | |
---|
205 | BOOLEAN npEqual (number a,number b, const coeffs r) |
---|
206 | { |
---|
207 | // return (long)a == (long)b; |
---|
208 | return npEqualM(a,b,r); |
---|
209 | } |
---|
210 | |
---|
211 | void npWrite (number &a, const coeffs r) |
---|
212 | { |
---|
213 | if ((long)a>(((long)r->ch) >>1)) StringAppend("-%d",(int)(((long)r->ch)-((long)a))); |
---|
214 | else StringAppend("%d",(int)((long)a)); |
---|
215 | } |
---|
216 | |
---|
217 | void npPower (number a, int i, number * result, const coeffs r) |
---|
218 | { |
---|
219 | if (i==0) |
---|
220 | { |
---|
221 | //npInit(1,result); |
---|
222 | *(long *)result = 1; |
---|
223 | } |
---|
224 | else if (i==1) |
---|
225 | { |
---|
226 | *result = a; |
---|
227 | } |
---|
228 | else |
---|
229 | { |
---|
230 | npPower(a,i-1,result,r); |
---|
231 | *result = npMultM(a,*result,r); |
---|
232 | } |
---|
233 | } |
---|
234 | |
---|
235 | static const char* npEati(const char *s, int *i, const coeffs r) |
---|
236 | { |
---|
237 | |
---|
238 | if (((*s) >= '0') && ((*s) <= '9')) |
---|
239 | { |
---|
240 | unsigned long ii=0L; |
---|
241 | do |
---|
242 | { |
---|
243 | ii *= 10; |
---|
244 | ii += *s++ - '0'; |
---|
245 | if (ii >= (MAX_INT_VAL / 10)) ii = ii % r->npPrimeM; |
---|
246 | } |
---|
247 | while (((*s) >= '0') && ((*s) <= '9')); |
---|
248 | if (ii >= npPrimeM) ii = ii % r->npPrimeM; |
---|
249 | *i=(int)ii; |
---|
250 | } |
---|
251 | else (*i) = 1; |
---|
252 | return s; |
---|
253 | } |
---|
254 | |
---|
255 | const char * npRead (const char *s, number *a, const coeffs r) |
---|
256 | { |
---|
257 | int z; |
---|
258 | int n=1; |
---|
259 | |
---|
260 | s = npEati(s, &z, r); |
---|
261 | if ((*s) == '/') |
---|
262 | { |
---|
263 | s++; |
---|
264 | s = npEati(s, &n, r); |
---|
265 | } |
---|
266 | if (n == 1) |
---|
267 | *a = (number)z; |
---|
268 | else |
---|
269 | { |
---|
270 | if ((z==0)&&(n==0)) WerrorS(nDivBy0); |
---|
271 | else |
---|
272 | { |
---|
273 | #ifdef NV_OPS |
---|
274 | if (r->npPrimeM>NV_MAX_PRIME) |
---|
275 | *a = nvDiv((number)z,(number)n,r); |
---|
276 | else |
---|
277 | #endif |
---|
278 | *a = npDiv((number)z,(number)n,r); |
---|
279 | } |
---|
280 | } |
---|
281 | return s; |
---|
282 | } |
---|
283 | |
---|
284 | /*2 |
---|
285 | * set the charcteristic (allocate and init tables) |
---|
286 | */ |
---|
287 | |
---|
288 | void npSetChar(int c, coeffs r) |
---|
289 | { |
---|
290 | |
---|
291 | // if (c==npPrimeM) return; |
---|
292 | if ((c>1) || (c<(-1))) |
---|
293 | { |
---|
294 | if (c>1) r->npPrimeM = c; |
---|
295 | else r->npPrimeM = -c; |
---|
296 | r->npPminus1M = r->npPrimeM - 1; |
---|
297 | #ifdef NV_OPS |
---|
298 | if (r->npPrimeM >NV_MAX_PRIME) return; |
---|
299 | #endif |
---|
300 | #if !defined(HAVE_DIV_MOD) || !defined(HAVE_MULT_MOD) |
---|
301 | npGen = npExpTable[1]; |
---|
302 | #endif |
---|
303 | } |
---|
304 | } |
---|
305 | |
---|
306 | void npInitChar(int c, coeffs r) |
---|
307 | { |
---|
308 | int i, w; |
---|
309 | |
---|
310 | if ((c>1) || (c<(-1))) |
---|
311 | { |
---|
312 | if (c>1) r->npPrimeM = c; |
---|
313 | else r->npPrimeM = -c; |
---|
314 | r->npPminus1M = r->npPrimeM - 1; |
---|
315 | #ifdef NV_OPS |
---|
316 | if (r->npPrimeM <=NV_MAX_PRIME) |
---|
317 | #endif |
---|
318 | { |
---|
319 | #if !defined(HAVE_DIV_MOD) || !defined(HAVE_MULT_MOD) |
---|
320 | r->npExpTable=(unsigned short *)omAlloc( r->npPrimeM*sizeof(unsigned short) ); |
---|
321 | r->npLogTable=(unsigned short *)omAlloc( r->npPrimeM*sizeof(unsigned short) ); |
---|
322 | r->npExpTable[0] = 1; |
---|
323 | r->npLogTable[0] = 0; |
---|
324 | if (r->npPrimeM > 2) |
---|
325 | { |
---|
326 | w = 1; |
---|
327 | loop |
---|
328 | { |
---|
329 | r->npLogTable[1] = 0; |
---|
330 | w++; |
---|
331 | i = 0; |
---|
332 | loop |
---|
333 | { |
---|
334 | i++; |
---|
335 | r->npExpTable[i] =(int)(((long)w * (long)r->npExpTable[i-1]) |
---|
336 | % r->npPrimeM); |
---|
337 | r->npLogTable[r->npExpTable[i]] = i; |
---|
338 | if (/*(i == npPrimeM - 1 ) ||*/ (r->npExpTable[i] == 1)) |
---|
339 | break; |
---|
340 | } |
---|
341 | if (i == r->npPrimeM - 1) |
---|
342 | break; |
---|
343 | } |
---|
344 | } |
---|
345 | else |
---|
346 | { |
---|
347 | r->npExpTable[1] = 1; |
---|
348 | r->npLogTable[1] = 0; |
---|
349 | } |
---|
350 | #endif |
---|
351 | #ifdef HAVE_DIV_MOD |
---|
352 | r->npInvTable=(unsigned short*)omAlloc0( r->npPrimeM*sizeof(unsigned short) ); |
---|
353 | #endif |
---|
354 | } |
---|
355 | } |
---|
356 | else |
---|
357 | { |
---|
358 | WarnS("nInitChar failed"); |
---|
359 | } |
---|
360 | } |
---|
361 | |
---|
362 | #ifdef LDEBUG |
---|
363 | BOOLEAN npDBTest (number a, const coeffs r, const char *f, const int l) |
---|
364 | { |
---|
365 | if (((long)a<0) || ((long)a>r->npPrimeM)) |
---|
366 | { |
---|
367 | Print("wrong mod p number %ld at %s,%d\n",(long)a,f,l); |
---|
368 | return FALSE; |
---|
369 | } |
---|
370 | return TRUE; |
---|
371 | } |
---|
372 | #endif |
---|
373 | |
---|
374 | number npMap0(number from, const coeffs dst_r) |
---|
375 | { |
---|
376 | return npInit(nlModP(from,dst_r->npPrimeM),dst_r); |
---|
377 | } |
---|
378 | |
---|
379 | number npMapP(number from, const coeffs dst_r) |
---|
380 | { |
---|
381 | long i = (long)from; |
---|
382 | if (i>npMapPrime/2) |
---|
383 | { |
---|
384 | i-=npMapPrime; |
---|
385 | while (i < 0) i+=dst_r->npPrimeM; |
---|
386 | } |
---|
387 | i%=dst_r->npPrimeM; |
---|
388 | return (number)i; |
---|
389 | } |
---|
390 | |
---|
391 | static number npMapLongR(number from, const coeffs dst_r) |
---|
392 | { |
---|
393 | gmp_float *ff=(gmp_float*)from; |
---|
394 | mpf_t *f=ff->_mpfp(); |
---|
395 | number res; |
---|
396 | mpz_ptr dest,ndest; |
---|
397 | int size,i; |
---|
398 | int e,al,bl,in; |
---|
399 | long iz; |
---|
400 | mp_ptr qp,dd,nn; |
---|
401 | |
---|
402 | size = (*f)[0]._mp_size; |
---|
403 | if (size == 0) |
---|
404 | return npInit(0,dst_r); |
---|
405 | if(size<0) |
---|
406 | size = -size; |
---|
407 | |
---|
408 | qp = (*f)[0]._mp_d; |
---|
409 | while(qp[0]==0) |
---|
410 | { |
---|
411 | qp++; |
---|
412 | size--; |
---|
413 | } |
---|
414 | |
---|
415 | if(dst_r->npPrimeM>2) |
---|
416 | e=(*f)[0]._mp_exp-size; |
---|
417 | else |
---|
418 | e=0; |
---|
419 | res = ALLOC_RNUMBER(); |
---|
420 | #if defined(LDEBUG) |
---|
421 | res->debug=123456; |
---|
422 | #endif |
---|
423 | dest = res->z; |
---|
424 | |
---|
425 | if (e<0) |
---|
426 | { |
---|
427 | al = dest->_mp_size = size; |
---|
428 | if (al<2) al = 2; |
---|
429 | dd = (mp_ptr)omAlloc(sizeof(mp_limb_t)*al); |
---|
430 | for (i=0;i<size;i++) dd[i] = qp[i]; |
---|
431 | bl = 1-e; |
---|
432 | nn = (mp_ptr)omAlloc(sizeof(mp_limb_t)*bl); |
---|
433 | nn[bl-1] = 1; |
---|
434 | for (i=bl-2;i>=0;i--) nn[i] = 0; |
---|
435 | ndest = res->n; |
---|
436 | ndest->_mp_d = nn; |
---|
437 | ndest->_mp_alloc = ndest->_mp_size = bl; |
---|
438 | res->s = 0; |
---|
439 | in=mpz_fdiv_ui(ndest,npPrimeM); |
---|
440 | mpz_clear(ndest); |
---|
441 | } |
---|
442 | else |
---|
443 | { |
---|
444 | al = dest->_mp_size = size+e; |
---|
445 | if (al<2) al = 2; |
---|
446 | dd = (mp_ptr)omAlloc(sizeof(mp_limb_t)*al); |
---|
447 | for (i=0;i<size;i++) dd[i+e] = qp[i]; |
---|
448 | for (i=0;i<e;i++) dd[i] = 0; |
---|
449 | res->s = 3; |
---|
450 | } |
---|
451 | |
---|
452 | dest->_mp_d = dd; |
---|
453 | dest->_mp_alloc = al; |
---|
454 | iz=mpz_fdiv_ui(dest,npPrimeM); |
---|
455 | mpz_clear(dest); |
---|
456 | if(res->s==0) |
---|
457 | iz=(long)npDiv((number)iz,(number)in); |
---|
458 | omFreeBin((void *)res, rnumber_bin); |
---|
459 | return (number)iz; |
---|
460 | } |
---|
461 | |
---|
462 | #ifdef HAVE_RINGS |
---|
463 | /*2 |
---|
464 | * convert from a GMP integer |
---|
465 | */ |
---|
466 | number npMapGMP(number from) |
---|
467 | { |
---|
468 | int_number erg = (int_number) omAlloc(sizeof(mpz_t)); // evtl. spaeter mit bin |
---|
469 | mpz_init(erg); |
---|
470 | |
---|
471 | mpz_mod_ui(erg, (int_number) from, npPrimeM); |
---|
472 | number r = (number) mpz_get_si(erg); |
---|
473 | |
---|
474 | mpz_clear(erg); |
---|
475 | omFree((void *) erg); |
---|
476 | return (number) r; |
---|
477 | } |
---|
478 | |
---|
479 | /*2 |
---|
480 | * convert from an machine long |
---|
481 | */ |
---|
482 | number npMapMachineInt(number from) |
---|
483 | { |
---|
484 | long i = (long) (((unsigned long) from) % npPrimeM); |
---|
485 | return (number) i; |
---|
486 | } |
---|
487 | #endif |
---|
488 | |
---|
489 | nMapFunc npSetMap(const coeffs src, const coeffs dst) |
---|
490 | { |
---|
491 | #ifdef HAVE_RINGS |
---|
492 | if (nField_is_Ring_2toM(src)) |
---|
493 | { |
---|
494 | return npMapMachineInt; |
---|
495 | } |
---|
496 | if (nField_is_Ring_Z(src) || nField_is_Ring_PtoM(src) || nField_is_Ring_ModN(src)) |
---|
497 | { |
---|
498 | return npMapGMP; |
---|
499 | } |
---|
500 | #endif |
---|
501 | if (nField_is_Q(src)) |
---|
502 | { |
---|
503 | return npMap0; |
---|
504 | } |
---|
505 | if ( nField_is_Zp(src) ) |
---|
506 | { |
---|
507 | if (n_GetChar(src) == n_GetChar(dst)) |
---|
508 | { |
---|
509 | return ndCopy; |
---|
510 | } |
---|
511 | else |
---|
512 | { |
---|
513 | npMapPrime=n_GetChar(src); |
---|
514 | return npMapP; |
---|
515 | } |
---|
516 | } |
---|
517 | if (nField_is_long_R(src)) |
---|
518 | { |
---|
519 | return npMapLongR; |
---|
520 | } |
---|
521 | return NULL; /* default */ |
---|
522 | } |
---|
523 | |
---|
524 | // ----------------------------------------------------------- |
---|
525 | // operation for very large primes (32003< p < 2^31-1) |
---|
526 | // ---------------------------------------------------------- |
---|
527 | #ifdef NV_OPS |
---|
528 | |
---|
529 | number nvMult (number a,number b, const coeffs r) |
---|
530 | { |
---|
531 | //if (((long)a == 0) || ((long)b == 0)) |
---|
532 | // return (number)0; |
---|
533 | //else |
---|
534 | return nvMultM(a,b); |
---|
535 | } |
---|
536 | |
---|
537 | void nvInpMult(number &a, number b, const ring r) |
---|
538 | { |
---|
539 | number n=nvMultM(a,b); |
---|
540 | a=n; |
---|
541 | } |
---|
542 | |
---|
543 | |
---|
544 | long nvInvMod(long a) |
---|
545 | { |
---|
546 | long s, t; |
---|
547 | |
---|
548 | long u, v, u0, v0, u1, v1, u2, v2, q, r; |
---|
549 | |
---|
550 | u1=1; v1=0; |
---|
551 | u2=0; v2=1; |
---|
552 | u = a; v = R->npPrimeM; |
---|
553 | |
---|
554 | while (v != 0) |
---|
555 | { |
---|
556 | q = u / v; |
---|
557 | r = u % v; |
---|
558 | u = v; |
---|
559 | v = r; |
---|
560 | u0 = u2; |
---|
561 | v0 = v2; |
---|
562 | u2 = u1 - q*u2; |
---|
563 | v2 = v1- q*v2; |
---|
564 | u1 = u0; |
---|
565 | v1 = v0; |
---|
566 | } |
---|
567 | |
---|
568 | s = u1; |
---|
569 | //t = v1; |
---|
570 | if (s < 0) |
---|
571 | return s + R->npPrimeM; |
---|
572 | else |
---|
573 | return s; |
---|
574 | } |
---|
575 | |
---|
576 | inline number nvInversM (number c, const coeffs r) |
---|
577 | { |
---|
578 | long inv=nvInvMod((long)c,r); |
---|
579 | return (number)inv; |
---|
580 | } |
---|
581 | |
---|
582 | number nvDiv (number a,number b, const coeffs r) |
---|
583 | { |
---|
584 | if ((long)a==0) |
---|
585 | return (number)0; |
---|
586 | else if ((long)b==0) |
---|
587 | { |
---|
588 | WerrorS(nDivBy0); |
---|
589 | return (number)0; |
---|
590 | } |
---|
591 | else |
---|
592 | { |
---|
593 | number inv=nvInversM(b,r); |
---|
594 | return nvMultM(a,inv,r); |
---|
595 | } |
---|
596 | } |
---|
597 | number nvInvers (number c, const coeffs r) |
---|
598 | { |
---|
599 | if ((long)c==0) |
---|
600 | { |
---|
601 | WerrorS(nDivBy0); |
---|
602 | return (number)0; |
---|
603 | } |
---|
604 | return nvInversM(c,r); |
---|
605 | } |
---|
606 | void nvPower (number a, int i, number * result, const coeffs r) |
---|
607 | { |
---|
608 | if (i==0) |
---|
609 | { |
---|
610 | //npInit(1,result); |
---|
611 | *(long *)result = 1; |
---|
612 | } |
---|
613 | else if (i==1) |
---|
614 | { |
---|
615 | *result = a; |
---|
616 | } |
---|
617 | else |
---|
618 | { |
---|
619 | nvPower(a,i-1,result,r); |
---|
620 | *result = nvMultM(a,*result,r); |
---|
621 | } |
---|
622 | } |
---|
623 | #endif |
---|