@comment -*-texinfo-*- @comment $Id: plumath.doc,v 1.21 2005-03-08 13:50:34 levandov Exp $ @comment this file contains the mathematical background of Singular:Plural @c The following directives are necessary for proper compilation @c with emacs (C-c C-e C-r). Please keep it as it is. Since it @c is wrapped in `@ignore' and `@end ignore' it does not harm `tex' or @c `makeinfo' but is a great help in editing this file (emacs @c ignores the `@ignore'). @ignore %**start \input texinfo.tex @setfilename plumath.info @c @menu @c * G-algebras:: @c * Groebner bases @value{PSUFFIX}:: @c * Hilbert function @value{PSUFFIX}:: @c * Syzygies and resolutions @value{PSUFFIX}:: @c * References @value{PSUFFIX}:: @c @end menu @node Top, Mathematical background @value{PSUFFIX},(dir), (dir) @menu * Mathematical background @value{PSUFFIX}:: @end menu @ifset singularmanual @node Mathematical background @value{PSUFFIX},,Functions and system variables @value{PSUFFIX},PLURAL @end ifset @ifclear singularmanual @node Mathematical background @value{PSUFFIX}, G-algebras, PLURAL, PLURAL @end ifclear @section Mathematical background @value{PSUFFIX} %**end @end ignore This chapter introduces some of the mathematical notions and definitions used throughout the @sc{Plural} manual. For details, please, refer to some articles or text books (see @ref{References @value{PSUFFIX}}). @menu * G-algebras:: * Groebner bases:: * Syzygies and resolutions @value{PSUFFIX}:: * References @value{PSUFFIX}:: @end menu @c --------------------------------------------------------------------------- @node G-algebras, Groebner bases, ,Mathematical background @value{PSUFFIX} @section G-algebras @cindex G-algebra @subheading Definition @tex Let $K$ be a field, and let a $K$-algebra $A$ be given in terms of generators and relations: $A= K \langle x_1, \ldots ,x_n \mid$ $\{ x_j x_i=c_{ij} \cdot x_i x_j + d_{ij}\}, 1 \leq i , where c_@{ij@} in K^*, d_@{ij@} in K[x_1, ..., x_n]. A is called a G--algebra, if the following conditions hold: @end ifinfo @c table @asis @itemize @bullet @item @tex there is a monomial well-ordering $<_A$ such that $\forall i is subset N^n. We call l(S) the monoid of leading exponents. There exist a_1, ..., a_m in N^n, such that l(S) :=< a_1,..., a_m>. We define a @strong{set of leading monomials of S} be L(S) := @{ x^a| a in l(S) @} subset A. @end ifinfo @c Let $ I\subset A^r $ be a submodule of $A^r$. @c Denote by $L(I)$ the submodule of $A^r$ generated by the leading terms @c of elements of $I$, i.e. by $\left\{\hbox{lm(f)} \mid f \in I\right\}$. @tex A finite set $G\subset I$ is called {\bf Groebner basis} of $I$ if and only if $L(G)=L(I)$, that is for any $f \in I\setminus \{ 0 \}$ there exists a $g\in G$ satisfying $ \hbox{lm}(g) \mid \hbox{lm}(f)$. @end tex @ifinfo A finite set G subset I is called @strong{ Groebner basis} of I if and only if L(G)=L(I), that is for any f in I\ @{ 0 @} there exists a g in G satisfying lm(g)|lm(f). @end ifinfo @*@strong{Remark:} In the non-commutative case we are working with well ordering only. (See @ref{PLURAL conventions}) @tex A Groebner basis $G\subset A^r$ is called {\bf minimal} if $0\notin G$ and if lm$(g)\notin L(G\setminus \{ g \})$ for all $g\in G$. Note, that any Groebner basis can be made minimal by deleting successively those $g$ with $\hbox{lm}(h)\mid \hbox{lm}(g)$ for some $h\in G\setminus\{g \}$. For $f\in A^r $ and $ G\subset A^r $ we say that $f$ is {\bf reduced with respect to $G$} if no monomial of $f$ is contained in $L(G)$. @end tex @ifinfo A Groebner basis G subset A^r is called @strong{minimal} if 0 not in G and if lm(g) not in L(G\@{ g @}) for all g in G. Note, that any Groebner basis can be made minimal by deleting successively those g with lm(h)| lm(g) for some h in G\@{g@}. For f in A^r and G subset A^r we say that f is @strong{reduced with respect to G} if no monomial of f is contained in L(G). @end ifinfo @subheading Normal Form @table @asis @tex A map $\hbox{NF} : A^r \times \{G \mid G\ \hbox{ a Groebner basis}\} \to A^r, (f|G) \mapsto \hbox{NF}(f|G)$, is called a {\bf normal form} on $A^r$ if for any $f \in A^r$ and any Groebner basis $G$ the following holds: (i) $\hbox{NF}(f|G) \not= 0$ then $\hbox{lm}(g)$ does not divide $\hbox{lm}(\hbox{NF}(f|G))$ for all $g \in G$. (ii) $f - \hbox{NF}(f|G)\in \langle G \rangle.$ \noindent $\hbox{NF}(f|G)$ is called a {\bf normal form of} $f$ {\bf with respect to} $G$ (note that such a map is not unique). @end tex @ifinfo A map NF : A^r x G| G\ @{ a Groebner basis@} --> A^r, (f|G) --> NF(f|G), is called a @strong{normal form} on A^r if for any f in A^r and any Groebner basis G the following holds: (i) NF(f|G)<> 0 then lm(g) does not divide lm(NF(f|G)) for all g \in G. (ii) f - NF(f|G) is in .$ NF(f|G) is called a @strong{normal form of} f @strong{with respect to} G (note that such a map is not unique). @end ifinfo @end table @*@strong{ Remark:} With respect to the definitions of @code{ideal} and @code{module} (see @ref{PLURAL conventions} ) @sc{Plural} works with left normal form only. @table @asis @item Ideal membership: @cindex Ideal membership @tex For a Groebner basis $G$ of $I$ the following holds: $f \in I$ if and only if $\hbox{NF}(f|G) = 0$. @end tex @ifinfo For a Groebner basis G of I the following holds: f is in I if and only if NF(f|G) = 0. @end ifinfo @end table @c @item Hilbert function: @c @ifset singularmanual @c see @ref{Hilbert function} @c @end ifset @c @ifclear singularmanual @c See section Hilbert function in chapter @c Mathematical background @sc{Singular} @c manual. @c @end ifclear @c @end table @c --------------------------------------------------------------------------- @c @node Hilbert function @value{PSUFFIX}, Syzygies and resolutions @value{PSUFFIX}, Groebner bases @value{PSUFFIX}, Mathematical background @value{PSUFFIX} @c @section Hilbert function @value{PSUFFIX} @c @cindex Hilbert function @value{PSUFFIX} @c @cindex Hilbert series @value{PSUFFIX} @c @tex @c Let M $=\bigoplus_i M_i$ be a graded module over $K[x_1,..,x_n]$ with @c respect to weights $(w_1,..w_n)$. @c The {\bf Hilbert function} of $M$, $H_M$, is defined (on the integers) by @c $$H_M(k) :=dim_K M_k.$$ @c The {\bf Hilbert-Poincare series} of $M$ is the power series @c $$\hbox{HP}_M(t) :=\sum_{i=-\infty}^\infty @c H_M(i)t^i=\sum_{i=-\infty}^\infty dim_K M_i \cdot t^i.$$ @c It turns out that $\hbox{HP}_M(t)$ can be written in two useful ways @c for weights $(1,..,1)$: @c $$\hbox{HP}_M(t)={Q(t)\over (1-t)^n}={P(t)\over (1-t)^{dim(M)}}$$ @c where $Q(t)$ and $P(t)$ are polynomials in ${\bf Z}[t]$. @c $Q(t)$ is called the {\bf first Hilbert series}, @c and $P(t)$ the {\bf second Hilbert series}. @c If \hbox{$P(t)=\sum_{k=0}^N a_k t^k$}, and \hbox{$d = dim(M)$}, @c then \hbox{$H_M(s)=\sum_{k=0}^N a_k$ ${d+s-k-1}\choose{d-1}$} @c (the {\bf Hilbert polynomial}) for $s \ge N$. @c @end tex @c @ifinfo @c Let M =(+) M_i be a graded module over K[x_1,...,x_n] with @c respect to weights (w_1,..w_n). @c The Hilbert function of M H_M is defined by @c @display @c H_M(k)=dim_K M_k. @c @end display @c The Hilbert-Poincare series of M is the power series @c @display @c HP_M(t)=sum_i dim_K (M_i)*t^i. @c @end display @c It turns out that HP_M(t) can be written in two useful ways @c for weights $(1,..,1)$: @c @display @c H_M(t)=Q(t)/(1-t)^n=P(t)/(1-t)^dim(M). @c @end display @c where Q(t) and P(t) are polynomials in Z[t]. @c Q(t) is called the first Hilbert series, and P(t) the second Hilbert series. @c If P(t)=sum_(k=0)^N a_k t^k, and d=dim(M), @c then @c @display @c H_M(s)=sum_(k=0)^N a_k binomial(d+s-k-1,d-1) (the Hilbert polynomial) @c @end display @c for s >= N. @c @end ifinfo @c @* @c @* @c @tex @c Generalizing these to quasihomogeneous modules we get @c $$\hbox{HP}_M(t)={Q(t)\over {\Pi_{i=1}^n(1-t^{w_i})}}$$ @c where $Q(t)$ is a polynomial in ${\bf Z}[t]$. @c $Q(t)$ is called the {\bf first (weighted) Hilbert series} of M. @c @end tex @c @ifinfo @c Generalizing these to quasihomogeneous modules we get @c @display @c H_M(t)=Q(t)/Prod((1-t)^(w_i)). @c @end display @c where Q(t) is a polynomial in Z[t]. @c Q(t) is called the first (weighted) Hilbert series of M. @c @end ifinfo @c --------------------------------------------------------------------------- @node Syzygies and resolutions @value{PSUFFIX}, References @value{PSUFFIX}, Groebner bases, Mathematical background @value{PSUFFIX} @section Syzygies and resolutions @value{PSUFFIX} @cindex Syzygies and resolutions @value{PSUFFIX} @subheading Syzygies @tex Let $K$ be a field and $>$ a well ordering on $A^r$. A {\bf left syzygy} between $k$ elements $f_1,\dots,f_k \in A^r =\oplus_{i=1}^{r}Ae_i $ is $k$-tuple $(g_1,\dots ,g_k)\in A^k$ satisfying $$\sum_{i=1}^{k}g_i f_i =0 $$ The set of all left (resp.right) syzygies between $f_1,...,f_k$ is left (resp. right) submodule $S$ of $A^k$. @end tex @ifinfo Let K be a field and > a well ordering on A^r. A @strong{left syzygy} between k elements f_1,...,f_k in A^r is k-tuple (g_1,... ,g_k) in A^k satisfying sum_@{i=1@}^@{k@}g_i f_i =0 The set of all left (resp.right) syzygies between f_1,...,f_k is left (resp. right) submodule S of A^k. @end ifinfo @*@strong{Remark:} With respect to the definitions of @code{ideal} and @code{module} (see @ref{PLURAL conventions} ) @sc{Plural} works with left syzygies only (by @code{syz} we understand a left syzygy). If @code{S} is a matrix of a left syzygy module of left submodule given by matrix @code{M}, then @code{transpose(S)*transpose(M) = 0}. @tex Note, that the syzygy modules of $I$ depend on a choice of generators $g_1, \dots , g_s$. But one can show that they depend on $I$ uniquely up to direct summands. @end tex @ifinfo Note, that the syzygy modules of I depend on a choice of generators g_1,\dots , g_s. But one can show that they depend on I uniquely up to direct summands. @end ifinfo @subheading Free resolutions @tex Let $I=\langle g_1,\dots ,g_s\rangle \subseteq A^r$ and $M= A^r/I$. A {\bf free resolution of $M$} is a long exact sequence $$\dots \longrightarrow F_2 \buildrel{B_2}\over{\longrightarrow} F_1 \buildrel{B_1}\over{\longrightarrow} F_0\longrightarrow M\longrightarrow 0,$$ @end tex @ifinfo Let I= in A^r and M=A^r/I. A free resolution of M is a long exact sequence @display ...--> F2 --A2-> F1 --A1-> F0-->M-->0, @end display @end ifinfo @*where the columns of the matrix @tex $B_1$ @end tex @ifinfo B_1 @end ifinfo generate @math{I}. Note, that resolutions over factor-algebras need not to be finite (i.e., of finite length). The Generalized Hilbert Syzygy Theorem states, that for G-algebra @tex $A$, @end tex @ifinfo A, @end ifinfo generated by n variables, there exists a resolution of length smaller or equal than n. @table @code @item @strong{Example:} @smallexample @c example LIB "poly.lib"; ring R=0,(x,y,z),dp; matrix d[3][3]; d[1,2]=-z; d[1,3]=2x; d[2,3]=-2y; ncalgebra(1,d); // this is U(sl_2) ideal I=x3,y3,z3-z; I=std(I); I; resolution resI = mres(I,0); resI; // The matrix A_1 is given by print(matrix(resI[1])); // We see that the columns of A_1 generate I. // The matrix A_2 is given by print(matrix(resI[2])); ideal tst; // now let us show that the resolution is exact matrix TST; TST = transpose(resI[3])*transpose(resI[2]); // 2nd term tst = std(flatten(TST)); tst; TST = transpose(resI[2])*transpose(resI[1]); // 1st term tst = std(flatten(TST)); tst; @c example @end smallexample @end table @c --------------------------------------------------------------------------- @node References @value{PSUFFIX}, , Syzygies and resolutions @value{PSUFFIX}, Mathematical background @value{PSUFFIX} @section References @value{PSUFFIX} @cindex References @value{PSUFFIX} The Centre for Computer Algebra Kaiserslautern publishes a series of preprints which are electronically available at @code{http://www.mathematik.uni-kl.de/~zca/Reports_on_ca}. Other sources to check are the following books and articles: @subheading Text books @c @include plumatref.tex @itemize @bullet @item @c DK book Y. Drozd and V. Kirichenko. Finite dimensional algebras. With an appendix by Vlastimil Dlab. Springer, 1994 @item @c GPS book [GPS] Greuel, G.-M. and Pfister, G. with contributions by Bachmann, O. ; Lossen, C. and Sch@"onemann, H. A SINGULAR Introduction to Commutative Algebra. Springer, 2002 @item @c BGV [BGV] Bueso, J.; Gomez Torrecillas, J.; Verschoren, A. Algorithmic methods in non-commutative algebra. Applications to quantum groups. Kluwer Academic Publishers, 2003 @item @c Kr Book Kredel, H. Solvable polynomial rings. Shaker, 1993 @item @c HLi Book [Li] Huishi Li. Noncommutative Gr@"obner bases and filtered-graded transfer. Springer, 2002 @item @c MR book [MR] McConnell, J.C. and Robson, J.C. Noncommutative Noetherian rings. With the cooperation of L. W. Small. Graduate Studies in Mathematics. 30. Providence, RI: American Mathematical Society (AMS)., 2001 @end itemize @subheading Descriptions of algorithms and problems @itemize @bullet @item @c{HKP} art Havlicek, M. and Klimyk, A. and Posta, S. Central elements of the algebras @tex $U'_q({\rm so}_m)$ and $U'_q({\rm iso}_m)$. {arXiv. math. QA/9911130}, (1999) @end tex @item @c{AP} art J. Apel. Gr@"obnerbasen in nichtkommutativen algebren und ihre anwendung. Dissertation, Universit@"at Leipzig, 1988. @item @c{AP2} art Apel, J. Computational ideal theory in finitely generated extension rings. Theor. Comput. Sci.(2000), 244(1-2):1--33 @item @c{BachS:98} InCollection O. Bachmann and H. Sch@"onemann. Monomial operations for computations of Gr@"obner bases. In Reports On Computer Algebra 18. Centre for Computer Algebra, University of Kaiserslautern (1998) @item @c DE} InProceedings D. Decker and D. Eisenbud. Sheaf algorithms using the exterior algebra. In Eisenbud, D.; Grayson, D.; Stillman, M.; Sturmfels, B., editor, Computations in algebraic geometry with Macaulay 2, (2001) @item @c art Jose L. Bueso, J. Gomez Torrecillas and F. J. Lobillo. Computing the Gelfand-Kirillov dimension II. In A. Granja, J. A. Hermida and A. Verschoren eds. Ring Theory and Algebraic Geometry, Lect. Not. in Pure and Appl. Maths., Marcel Dekker, 2001. @item @c art Jose L. Bueso, J. Gomez Torrecillas and F. J. Lobillo. Re-filtering and exactness of the Gelfand-Kirillov dimension. Bulletin des Sciences Mathematiques 125(8), 689-715 (2001). @item @c GL art J. Gomez Torrecillas and F.J. Lobillo. Global homological dimension of multifiltered rings and quantized enveloping algebras. J. Algebra, 225(2):522--533, 2000. @item @c I1 InProc N. Iorgov. @tex On the Center of $q$-Deformed Algebra $U'_q( \rm so _3)$ Related to Quantum Gravity at $q$ a Root of $1$. @end tex In Proceedings of IV Int. Conf. "Symmetry in Nonlinear Mathematical Physics",(2001) Kyiv, Ukraine @item @c KW art A. Kandri-Rody and V. Weispfenning. Non--commutative Gr@"obner bases in algebras of solvable type. J. Symbolic Computation, 9(1):1--26, 1990. @item @c LV2 Inproc Levandovskyy, V. On Gr@"obner bases for non--commutative G-algebras. In Kredel, H. and Seiler, W.K., editor, Proceedings of the 8th Rhine Workshop on Computer Algebra, 2002. @item @c NDC InProc Levandovskyy, V. PBW Bases, Non--Degeneracy Conditions and Applications. In Buchweitz, R.-O. and Lenzing, H., editor, Proceedings of the ICRA X conference, Toronto, 2003. @item @c LS InProc Levandovskyy V.; Sch@"onemann, H. Plural --- a computer algebra system for noncommutative polynomial algebras. In Proc. of the International Symposium on Symbolic and Algebraic Computation (ISSAC'03). ACM Press, 2003. @item @c MoraNC article Mora, T. Gr@"obner bases for non-commutative polynomial rings. Proc. AAECC 3 Lect. N. Comp. Sci, 229: 353--362, 1986. @item @c Mora article Mora, T. An introduction to commutative and non-commutative Groebner bases. Theor. Comp. Sci., 134: 131--173, 1994. @item @c NS art T. N@"u@ss{}ler and H. Sch@"onemann. Gr@"obner bases in algebras with zero--divisors. Preprint 244, Universit@"at Kaiserslautern, 1993. @item @c CMR art Ringel, C. M. PBW-bases of quantum groups. J. Reine Angew. Math., 470:51--88, 1996. @item @c S:03 InColl Sch@"onemann, H. Singular in a Framework for Polynomial Computations. In Joswig, M. and Takayama, N., editor, Algebra, Geometry and Software Systems, pages 163--176. Springer, 2003. @item @c Yan:98 art T. Yan. The geobucket data structure for polynomials. J. Symbolic Computation, 25(3):285--294, March 1998. @end itemize @c @item @c Adams, W.; Loustaunau, P.: An Introduction to Gr@"obner Bases. Providence, RI, @c AMS, 1996 @c @item @c Becker, T.; Weisspfenning, V.: @c Gr@"obner Bases - A Computational Approach to Commutative Algebra. Springer, 1993 @c @item @c Cohen, H.: @c A Course in Computational Algebraic Number Theory, @c Springer, 1995 @c @item @c Cox, D.; Little, J.; O'Shea, D.: @c Ideals, Varieties and Algorithms. Springer, 1996 @c @item @c Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. @c Springer, 1995 @c @item @c Mishra, B.: Algorithmic Algebra, Texts and Monographs in Computer Science. @c Springer, 1993 @c @item @c Sturmfels, B.: Algorithms in Invariant Theory. Springer 1993 @c @item @c Vasconcelos, W.: Computational Methods in Commutative Algebra and Algebraic @c Geometry. Springer, 1998 @c @end itemize @c @subheading Descriptions of algorithms @c @itemize @bullet @c @item @c Bareiss, E.: @c Sylvester's identity and multistep integer-preserving Gaussian elimination. @c Math. Comp. 22 (1968), 565-578 @c @item @c Campillo, A.: Algebroid curves in positive characteristic. SLN 813, 1980 @c @item @c Chou, S.: @c Mechanical Geometry Theorem Proving. @c D.Reidel Publishing Company, 1988 @c @item @c Decker, W.; Greuel, G.-M.; Pfister, G.: @c Primary decomposition: algorithms and @c comparisons. Preprint, Univ. Kaiserslautern, 1998. @c To appear in: Greuel, G.-M.; Matzat, B. H.; Hiss, G. (Eds.), @c Algorithmic Algebra and Number Theory. Springer Verlag, Heidelberg, 1998 @c @item @c Decker, W.; Greuel, G.-M.; de Jong, T.; Pfister, G.: @c The normalisation: a new algorithm, @c implementation and comparisons. Preprint, Univ. Kaiserslautern, 1998 @c @item @c Decker, W.; Heydtmann, A.; Schreyer, F. O.: Generating a Noetherian Normalization of @c the Invariant Ring of a Finite Group, 1997, to appear in Journal of @c Symbolic Computation @c @item @c @tex @c Faug\`ere, @c @end tex @c @ifinfo @c Faugere, @c @end ifinfo @c J. C.; Gianni, P.; Lazard, D.; Mora, T.: Efficient computation @c of zero-dimensional @c Gr@"obner bases by change of ordering. Journal of Symbolic Computation, 1989 @c @item @c Gr@"abe, H.-G.: On factorized Gr@"obner bases, Univ. Leipzig, Inst. f@"ur @c Informatik, 1994 @c @item @c Grassmann, H.; Greuel, G.-M.; Martin, B.; Neumann, @c W.; Pfister, G.; Pohl, W.; Sch@"onemann, H.; Siebert, T.: On an @c implementation of Groebner bases and syzygies in @sc{Singular}. @c Proceedings of the Workshop Computational Methods in Lie theory in AAECC (1995) @c @item @c Greuel, G.-M.; Pfister, G.: @c Advances and improvements in the theory of Standart bases and @c syzygies. Arch. d. Math. 63(1995) @c @item @c Kemper; Generating Invariant Rings of Finite Groups over Arbitrary @c Fields. 1996, to appear in Journal of Symbolic Computation @c @item @c Kemper and Steel: Some Algorithms in Invariant Theory of Finite Groups. 1997 @c @item @c Lee, H.R.; Saunders, B.D.: Fraction Free Gaussian Elimination for @c Sparse Matrices. Journal of Symbolic Computation (1995) 19, 393-402 @c @item @c Sch@"onemann, H.: @c Algorithms in @sc{Singular}, @c Reports on Computer Algebra 2(1996), Kaiserslautern @c @item @c Siebert, T.: @c On strategies and implementations for computations of free resolutions. @c Reports on Computer Algebra 8(1996), Kaiserslautern @c @item @c Wang, D.: @c Characteristic Sets and Zero Structure of Polynomial Sets. @c Lecture Notes, RISC Linz, 1989 @c @end itemize