source: git/dyn_modules/callpolymake/polymake_documentation.cc @ 69b2c1

spielwiese
Last change on this file since 69b2c1 was b21ae4, checked in by Martin Lee <martinlee84@…>, 11 years ago
chg: added dyn_modules to #include<callgfanlib/*> chg: added path to factory to include paths chg: deleted HAVE_FANS
  • Property mode set to 100644
File size: 14.3 KB
Line 
1#include <polymake_conversion.h>
2
3#include <dyn_modules/callgfanlib/bbcone.h>
4#include <dyn_modules/callgfanlib/bbfan.h>
5#include <dyn_modules/callgfanlib/bbpolytope.h>
6
7#include <Singular/blackbox.h>
8#include <Singular/ipshell.h>
9#include <Singular/subexpr.h>
10#include <Singular/ipid.h>
11
12void init_polymake_help()
13{
14
15  const char *polymake_banner =
16    "Welcome to polymake\nCopyright (c) 1997-2012\nEwgenij Gawrilow, Michael Joswig (TU Darmstadt)\nhttp://www.polymake.org\n";
17
18  PrintS(polymake_banner);
19
20  const char* polymake_help =
21    "SHARED LIBRARY: polymake.so  Interface to polymake (http://www.polymake.org)\nAUTHORS: Janko Boehm, boehm@mathematik.uni-kl.de\n         Yue Ren,     ren@mathematik.uni-kl.de\n\nOVERVIEW:\nPolymake is a tool to study the combinatorics \nand the geometry of convex polytopes and polyhedra. \nIt is also capable of dealing with simplicial complexes, \nmatroids, polyhedral fans, graphs, tropical objects.\nThe interface relies on the callable library functionality,\nby Ewgenij Gawrilow.\n\nREFERENCES:\nEwgenij Gawrilow and Michael Joswig. polymake: a framework for analyzing convex polytopes. \nPolytopes—combinatorics and computation (Oberwolfach, 1997), 43–73, DMV Sem., 29, BirkhÀuser, Basel, 2000. MR1785292 (2001f:52033)\n\nPROCEDURES:\n  boundaryLatticePoints(polytope p);\n  ehrhartPolynomialCoeff(polytope p);\n  facetVertexLatticeDistances(polytope p);\n  facetWidth(polytope p);\n  facetWidths(polytope p);\n  fVector(polytope p);\n  gorensteinIndex(polytope p);\n  gorensteinVector(polytope p);\n  hilbertBasis(cone c);\n  hStarVector(polytope p);\n  hVector(polytope p);\n  interiorLatticePoints(polytope p);\n  isBounded(polytope p);\n  isCanonical(polytope p);\n  isCompressed(polytope p);\n  isGorenstein(polytope p);\n  isLatticeEmpty(polytope p);\n  isNormal(polytope p);\n  isReflexive(polytope p);\n  isSmooth(polytope p);\n  isVeryAmple(polytope p);\n  latticeCodegree(polytope p);\n  latticeDegree(polytope p);\n  latticePoints(polytope p);\n  latticeVolume(polytope p);\n  maximalFace(polytope p, intvec v);\n  maximalValue(polytope p, intvec v);\n  minimalFace(polytope p, intvec v);\n  minimalValue(polytope p, intvec v);\n  minkowskiSum(polytope p, polytope q);\n  nBoundaryLatticePoints(polytope p);\n  nHilbertBasis(cone c);\n";
22
23  module_help_main("polymake.so",polymake_help);
24
25
26  const char*isReflexive_help =
27    "USAGE:    isReflexive(polytope p)\nRETURN:   int, 1 if p is reflexive and 0 otherwise\nKEYWORDS: polytopes; polymake; reflexive\nEXAMPLE:  example isReflexive shows an example\nexample\n{ \"EXAMPLE: \";\nintmat M[4][4]=1,1,0,0, 1,0,1,0, 1,0,0,1, 1,-1,-1,-1;\npolytope p = polytopeViaVertices(M);\nPolymake::isReflexive(p);\nintmat N[4][4]=1,2,0,0, 1,0,2,0, 1,0,0,2, 1,-2,-2,-2;\nq = polytopeViaVertices(N);\nPolymake::isReflexive(q);\n}\n";
28
29 module_help_proc("polymake.so","isReflexive", isReflexive_help);
30
31  const char* isBounded_help =
32    "USAGE:    isBounded(polytope p)\nRETURN:   int, 1 if p is bounded, 0 otherwise.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example isBounded shows an example\n";
33
34 module_help_proc("polymake.so","isBounded", isBounded_help);
35
36  const char* isGorenstein_help =
37    "USAGE:    isGorenstein(polytope p)\nRETURN:   int, 1 if p is gorenstein (i.e. reflexive after dilatation and translation), 0 otherwise.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example isGorenstein shows an example\n";
38
39 module_help_proc("polymake.so","isGorenstein", isGorenstein_help);
40
41  const char* gorensteinIndex_help =
42    "USAGE:    gorensteinIndex(polytope p)\nRETURN:   int, n if p is reflexive after dilatation by n and translation, 0 otherwise.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example gorensteinIndex shows an example\n";
43
44 module_help_proc("polymake.so","gorensteinIndex", gorensteinIndex_help);
45
46  const char* gorensteinVector_help =
47    "USAGE:    gorensteinVector(polytope p)\nRETURN:   intvec, v if p is reflexive after dilatation and translation by v, 0 otherwise.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example gorensteinVector shows an example\n";
48
49 module_help_proc("polymake.so","gorensteinVector", gorensteinVector_help);
50
51  const char* isCanonical_help =
52    "USAGE:    isCanonical(polytope p)\nRETURN:   intvec, 1 if p has exactly one interior lattice point, 0 otherwise.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example isCanonical shows an example\n";
53
54 module_help_proc("polymake.so","isCanonical", isCanonical_help);
55
56  const char* isTerminal_help =
57    "USAGE:    isLatticeEmpty(polytope p)\nRETURN:   int, 1 if p contains no lattice points other than the vertices, 0 otherwise.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example isLatticeEmpty shows an example\n";
58
59 module_help_proc("polymake.so","isTerminal", isTerminal_help);
60
61  const char* latticeVolume_help =
62    "USAGE:    latticeVolume(polytope p)\nRETURN:   int, the normalized lattice volume of p, that is, (dim(P))! times the volume of P.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example latticeVolume shows an example\n";
63
64 module_help_proc("polymake.so","latticeVolume", latticeVolume_help);
65
66  const char* latticeDegree_help =
67    "USAGE:    latticeDegree(polytope p)\nRETURN:   int, the lattice degree of p, i.e. degree of the Ehrhart polynomial of P.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example latticeDegree shows an example\n";
68
69 module_help_proc("polymake.so","latticeDegree", latticeDegree_help);
70
71  const char* latticeCodegree_help =
72    "USAGE:    latticeCodegree(polytope p)\nRETURN:   int, getDimension(p)+1-latticeDegree(p), which is the smallest number k such that k*p has an interior latt\\nice point.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example latticeCodegree shows an example\n";
73
74 module_help_proc("polymake.so","latticeCodegree", latticeCodegree_help);
75
76  const char* ehrhartPolynomialCoeff_help =
77    "USAGE:    ehrhartPolynomialCoeff(polytope p)\nRETURN:   intvec, coefficients of the Ehrhart polynomial of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example ehrhartPolynomialCoeff shows an example\n";
78
79 module_help_proc("polymake.so","ehrhartPolynomialCoeff", ehrhartPolynomialCoeff_help);
80
81  const char* hStarVector_help =
82    "USAGE:    hStarVector(polytope p)\nRETURN:   intvec, h*-vector of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example hStarVector shows an example\n";
83
84 module_help_proc("polymake.so","hStarVector", hStarVector_help);
85
86  const char* hVector_help =
87    "USAGE:    hVector(polytope p)\nRETURN:   intvec, h-vector of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example hVector shows an example\n";
88
89 module_help_proc("polymake.so","hVector", hVector_help);
90
91  const char* fVector_help =
92    "USAGE:    fVector(polytope p)\nRETURN:   intvec, the f-vector of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example fVector shows an example\n";
93
94 module_help_proc("polymake.so","fVector", fVector_help);
95
96  const char* isNormal_help =
97    "USAGE:    isNormal(polytope p)\nRETURN:   int, 1 if p is normal, i.e. the projective toric variety defined by p is projectively normal, 0 otherwise.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example isNormal shows an example\n";
98
99 module_help_proc("polymake.so","isNormal", isNormal_help);
100
101  const char* facetWidths_help =
102    "USAGE:    facetWidths(polytope p)\nRETURN:   intvec, vector with the integral widths of p with respect to all facet normals.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example facetWidths shows an example\n";
103
104 module_help_proc("polymake.so","facetWidths", facetWidths_help);
105
106  const char* facetWidth_help =
107    "USAGE:    facetWidth(polytope p)\nRETURN:   int, maximum of the integral widths of p over all facet normals.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example facetWidth shows an example\n";
108
109 module_help_proc("polymake.so","facetWidth", facetWidth_help);
110
111  const char* facetVertexLatticeDistances_help =
112    "USAGE:    facetVertexLatticeDistances(polytope p)\nRETURN:   intmat, matrix of lattice distances between vertices (columns) and facets (rows).\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example facetVertexLatticeDistances shows an example\n";
113
114 module_help_proc("polymake.so","facetVertexLatticeDistances", facetVertexLatticeDistances_help);
115
116  const char* isCompressed_help =
117    "USAGE:    isCompressed(polytope p)\nRETURN:   int, 1 if facetWidth(p)=1, 0 otherwise.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example isCompressed shows an example\n";
118
119 module_help_proc("polymake.so","isCompressed", isCompressed_help);
120
121  const char* isSmooth_help =
122    "USAGE:    isSmooth(polytope p)\n          isSmooth(cone c)\n          isSmooth(fan F)\nRETURN:   int, 1 if p, c, or F is smooth, 0 otherwise.\nKEYWORDS: polytopes; cones; fans; polymake;\nEXAMPLE:  example isSmooth shows an example\n";
123
124 module_help_proc("polymake.so","isSmooth", isSmooth_help);
125
126  const char* isVeryAmple_help =
127    "USAGE:    isVeryAmple(polytope p)\nRETURN:   int, 1 if p is very ample, 0 otherwise.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example isVeryAmple shows an example\n";
128
129 module_help_proc("polymake.so","isVeryAmple", isVeryAmple_help);
130
131  const char* latticePoints_help =
132    "USAGE:    latticePoints(polytope p)\nRETURN:   intmat, matrix whose rows are the lattice points of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example latticePoints shows an example\n";
133
134 module_help_proc("polymake.so","latticePoints", latticePoints_help);
135
136  const char* nLatticePoints_help =
137    "USAGE:    nLatticePoints(polytope p)\nRETURN:   int, number of lattice points of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example nLatticePoints shows an example\n";
138
139 module_help_proc("polymake.so","nLatticePoints", nLatticePoints_help);
140
141  const char* interiorLatticePoints_help =
142    "USAGE:    interiorLatticePoints(polytope p)\nRETURN:   intmat, an matrix whose rows are the lattice points in the relative interior of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example interiorLatticePoints shows an example\n";
143
144 module_help_proc("polymake.so","interiorLatticePoints", interiorLatticePoints_help);
145
146  const char* nInteriorLatticePoints_help =
147    "USAGE:    nInteriorLatticePoints(polytope p)\nRETURN:   int, number of lattice points in the relative interior of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example nInteriorLatticePoints shows an example\n";
148
149 module_help_proc("polymake.so","nInteriorLatticePoints", nInteriorLatticePoints_help);
150
151  const char* boundaryLatticePoints_help =
152    "USAGE:    boundaryLatticePoints(polytope p)\nRETURN:   intmat, matrix whose rows are the lattice points in the relative boundary of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example boundaryLatticePoints shows an example\n";
153
154 module_help_proc("polymake.so","boundaryLatticePoints", boundaryLatticePoints_help);
155
156  const char* nBoundaryLatticePoints_help =
157    "USAGE:    nBoundaryLatticePoints(polytope p)\nRETURN:   int, number of lattice points in the relative boundary of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example nBoundaryLatticePoints shows an example\n";
158
159 module_help_proc("polymake.so","nBoundaryLatticePoints", nBoundaryLatticePoints_help);
160
161  const char* hilbertBasis_help =
162    "USAGE:    hilbertBasis(cone c)\nRETURN:   intmat, Hilbert basis of the semigroup of c.\nKEYWORDS: cones; polymake;\nEXAMPLE:  example hilbertBasis shows an example\n";
163
164 module_help_proc("polymake.so","hilbertBasis", hilbertBasis_help);
165
166  const char* nHilbertBasis_help =
167    "USAGE:    nHilbertBasis(cone c)\nRETURN:   int, size of the Hilbert basis of the semigroup of c.\nKEYWORDS: cones; polymake;\nEXAMPLE:  example nHilbertBasis shows an example\n";
168
169 module_help_proc("polymake.so","nHilbertBasis", nHilbertBasis_help);
170
171  const char* minkowskiSum_help =
172    "USAGE:    minkowskiSum(polytope p, polytope q)\nRETURN:   polytope, Minkowski sum of p and q.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example minkowskiSum shows an example\n";
173
174 module_help_proc("polymake.so","minkowskiSum", minkowskiSum_help);
175
176  const char* minimalValue_help =
177    "USAGE:    minimalValue(polytope p, intvec v)\nRETURN:   int, the minimal value of the linear form v on p.\n          The first coordinate of v corresponds to a shift of the\n          minimal value since p is considered as a polytope\n          in the plane (first coordinate) = 1.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example minimalValue shows an example\n";
178
179 module_help_proc("polymake.so","minimalValue", minimalValue_help);
180
181  const char* maximalValue_help =
182    "USAGE:    maximalValue(polytope p, intvec v)\nRETURN:   int, maximal value of the linear form v on p.\n          The first coordinate of v corresponds to a shift of the\n          maximal value since p is considered as a polytope\n          in the plane (first coordinate) = 1.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example maximalValue shows an example\n";
183
184 module_help_proc("polymake.so","maximalValue", maximalValue_help);
185
186  const char* minimalFace_help =
187    "USAGE:    minimalFace(polytope p, intvec v)\nRETURN:   intmat, vertices of the face of p on which the linear form v\n          is minimal.\n          The first coordinate of v corresponds to a shift of the\n          minimal value since p is considered as a polytope\n          in the plane (first coordinate) = 1. Hence\n          the minimal face is independent of the first coordinate of v.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example minimalFace shows an example\n";
188
189 module_help_proc("polymake.so","minimalFace", minimalFace_help);
190
191  const char* maximalFace_help =
192    "USAGE:    maximalFace(polytope p, intvec v)\nRETURN:   intmat, vertices of the face of p on which the linear form v\n          is maximal.\n          The first coordinate of v corresponds to a shift of the\n          maximal value since p is considered as a polytope\n          in the plane (first coordinate) = 1. Hence\n          the maximal face is independent of the first coordinate of v.\nKEYWORDS: polytopes; polymake;\nEXAMPLE:  example maximalFace shows an example\n";
193
194 module_help_proc("polymake.so","maximalFace", maximalFace_help);
195
196  const char* visual_help =
197    "USAGE:    visual(polytope p)\n          visual(fan F)\nRETURN:   none, draws the polytope p or fan F using jreality.\nKEYWORDS: polytopes; polymake; visualization;\nEXAMPLE:  example visual shows an example\n";
198
199 module_help_proc("polymake.so","visual", visual_help);
200
201  const char* normalFan_help =
202    "USAGE:    normalFan(polytope p)\nRETURN:   fan,\nKEYWORDS: polytopes; polymake; visualization;\nEXAMPLE:  example visual shows an example\n";
203
204    module_help_proc("polymake.so","normalFan", normalFan_help);
205
206}
Note: See TracBrowser for help on using the repository browser.