1 | // -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- |
---|
2 | /*****************************************************************************\ |
---|
3 | * Computer Algebra System SINGULAR |
---|
4 | \*****************************************************************************/ |
---|
5 | /** @file syzextra.cc |
---|
6 | * |
---|
7 | * Here we implement the Computation of Syzygies |
---|
8 | * |
---|
9 | * ABSTRACT: Computation of Syzygies due to Schreyer |
---|
10 | * |
---|
11 | * @author Oleksandr Motsak |
---|
12 | * |
---|
13 | **/ |
---|
14 | /*****************************************************************************/ |
---|
15 | |
---|
16 | // include header file |
---|
17 | #include <kernel/mod2.h> |
---|
18 | |
---|
19 | #include "syzextra.h" |
---|
20 | |
---|
21 | #include "DebugPrint.h" |
---|
22 | |
---|
23 | #include <omalloc/omalloc.h> |
---|
24 | |
---|
25 | #include <misc/intvec.h> |
---|
26 | #include <misc/options.h> |
---|
27 | |
---|
28 | #include <coeffs/coeffs.h> |
---|
29 | |
---|
30 | #include <polys/monomials/p_polys.h> |
---|
31 | #include <polys/monomials/ring.h> |
---|
32 | |
---|
33 | #include <kernel/kstd1.h> |
---|
34 | #include <kernel/polys.h> |
---|
35 | #include <kernel/syz.h> |
---|
36 | #include <kernel/ideals.h> |
---|
37 | |
---|
38 | |
---|
39 | |
---|
40 | #include <Singular/tok.h> |
---|
41 | #include <Singular/ipid.h> |
---|
42 | #include <Singular/lists.h> |
---|
43 | #include <Singular/attrib.h> |
---|
44 | |
---|
45 | #include <Singular/ipid.h> |
---|
46 | #include <Singular/ipshell.h> // For iiAddCproc |
---|
47 | |
---|
48 | #include <stdio.h> |
---|
49 | #include <stdlib.h> |
---|
50 | #include <string.h> |
---|
51 | |
---|
52 | // USING_NAMESPACE_SINGULARXX; |
---|
53 | USING_NAMESPACE( SINGULARXXNAME :: DEBUG ) |
---|
54 | |
---|
55 | |
---|
56 | BEGIN_NAMESPACE_SINGULARXX BEGIN_NAMESPACE(SYZEXTRA) |
---|
57 | |
---|
58 | |
---|
59 | BEGIN_NAMESPACE(SORT_c_ds) |
---|
60 | |
---|
61 | |
---|
62 | #ifdef _GNU_SOURCE |
---|
63 | static int cmp_c_ds(const void *p1, const void *p2, void *R) |
---|
64 | { |
---|
65 | #else |
---|
66 | static int cmp_c_ds(const void *p1, const void *p2) |
---|
67 | { |
---|
68 | void *R = currRing; |
---|
69 | #endif |
---|
70 | |
---|
71 | const int YES = 1; |
---|
72 | const int NO = -1; |
---|
73 | |
---|
74 | const ring r = (const ring) R; // TODO/NOTE: the structure is known: C, lp!!! |
---|
75 | |
---|
76 | assume( r == currRing ); |
---|
77 | |
---|
78 | const poly a = *(const poly*)p1; |
---|
79 | const poly b = *(const poly*)p2; |
---|
80 | |
---|
81 | assume( a != NULL ); |
---|
82 | assume( b != NULL ); |
---|
83 | |
---|
84 | assume( p_LmTest(a, r) ); |
---|
85 | assume( p_LmTest(b, r) ); |
---|
86 | |
---|
87 | |
---|
88 | const signed long iCompDiff = p_GetComp(a, r) - p_GetComp(b, r); |
---|
89 | |
---|
90 | // TODO: test this!!!!!!!!!!!!!!!! |
---|
91 | |
---|
92 | //return -( compare (c, qsorts) ) |
---|
93 | |
---|
94 | #ifndef NDEBUG |
---|
95 | const int __DEBUG__ = 0; |
---|
96 | if( __DEBUG__ ) |
---|
97 | { |
---|
98 | PrintS("cmp_c_ds: a, b: \np1: "); dPrint(a, r, r, 2); |
---|
99 | PrintS("b: "); dPrint(b, r, r, 2); |
---|
100 | PrintLn(); |
---|
101 | } |
---|
102 | #endif |
---|
103 | |
---|
104 | |
---|
105 | if( iCompDiff > 0 ) |
---|
106 | return YES; |
---|
107 | |
---|
108 | if( iCompDiff < 0 ) |
---|
109 | return NO; |
---|
110 | |
---|
111 | assume( iCompDiff == 0 ); |
---|
112 | |
---|
113 | const signed long iDegDiff = p_Totaldegree(a, r) - p_Totaldegree(b, r); |
---|
114 | |
---|
115 | if( iDegDiff > 0 ) |
---|
116 | return YES; |
---|
117 | |
---|
118 | if( iDegDiff < 0 ) |
---|
119 | return NO; |
---|
120 | |
---|
121 | assume( iDegDiff == 0 ); |
---|
122 | |
---|
123 | #ifndef NDEBUG |
---|
124 | if( __DEBUG__ ) |
---|
125 | { |
---|
126 | PrintS("cmp_c_ds: a & b have the same comp & deg! "); PrintLn(); |
---|
127 | } |
---|
128 | #endif |
---|
129 | |
---|
130 | for (int v = rVar(r); v > 0; v--) |
---|
131 | { |
---|
132 | assume( v > 0 ); |
---|
133 | assume( v <= rVar(r) ); |
---|
134 | |
---|
135 | const signed int d = p_GetExp(a, v, r) - p_GetExp(b, v, r); |
---|
136 | |
---|
137 | if( d > 0 ) |
---|
138 | return YES; |
---|
139 | |
---|
140 | if( d < 0 ) |
---|
141 | return NO; |
---|
142 | |
---|
143 | assume( d == 0 ); |
---|
144 | } |
---|
145 | |
---|
146 | return 0; |
---|
147 | } |
---|
148 | |
---|
149 | END_NAMESPACE |
---|
150 | /* namespace SORT_c_ds */ |
---|
151 | |
---|
152 | /// return a new term: leading coeff * leading monomial of p |
---|
153 | /// with 0 leading component! |
---|
154 | poly leadmonom(const poly p, const ring r) |
---|
155 | { |
---|
156 | poly m = NULL; |
---|
157 | |
---|
158 | if( p != NULL ) |
---|
159 | { |
---|
160 | assume( p != NULL ); |
---|
161 | assume( p_LmTest(p, r) ); |
---|
162 | |
---|
163 | m = p_LmInit(p, r); |
---|
164 | p_SetCoeff0(m, n_Copy(p_GetCoeff(p, r), r), r); |
---|
165 | |
---|
166 | p_SetComp(m, 0, r); |
---|
167 | p_Setm(m, r); |
---|
168 | |
---|
169 | assume( p_GetComp(m, r) == 0 ); |
---|
170 | assume( m != NULL ); |
---|
171 | assume( pNext(m) == NULL ); |
---|
172 | assume( p_LmTest(m, r) ); |
---|
173 | } |
---|
174 | |
---|
175 | return m; |
---|
176 | } |
---|
177 | |
---|
178 | |
---|
179 | |
---|
180 | poly p_Tail(const poly p, const ring r) |
---|
181 | { |
---|
182 | if( p == NULL) |
---|
183 | return NULL; |
---|
184 | else |
---|
185 | return p_Copy( pNext(p), r ); |
---|
186 | } |
---|
187 | |
---|
188 | |
---|
189 | ideal id_Tail(const ideal id, const ring r) |
---|
190 | { |
---|
191 | if( id == NULL) |
---|
192 | return NULL; |
---|
193 | |
---|
194 | const ideal newid = idInit(IDELEMS(id),id->rank); |
---|
195 | |
---|
196 | for (int i=IDELEMS(id) - 1; i >= 0; i--) |
---|
197 | newid->m[i] = p_Tail( id->m[i], r ); |
---|
198 | |
---|
199 | newid->rank = id_RankFreeModule(newid, currRing); |
---|
200 | |
---|
201 | return newid; |
---|
202 | } |
---|
203 | |
---|
204 | |
---|
205 | |
---|
206 | void Sort_c_ds(const ideal id, const ring r) |
---|
207 | { |
---|
208 | const int sizeNew = IDELEMS(id); |
---|
209 | |
---|
210 | #ifdef _GNU_SOURCE |
---|
211 | #define qsort_my(m, s, ss, r, cmp) qsort_r(m, s, ss, cmp, r) |
---|
212 | #else |
---|
213 | #define qsort_my(m, s, ss, r, cmp) qsort_r(m, s, ss, cmp) |
---|
214 | #endif |
---|
215 | |
---|
216 | if( sizeNew >= 2 ) |
---|
217 | qsort_my(id->m, sizeNew, sizeof(poly), r, FROM_NAMESPACE(SORT_c_ds, cmp_c_ds)); |
---|
218 | |
---|
219 | #undef qsort_my |
---|
220 | |
---|
221 | id->rank = id_RankFreeModule(id, r); |
---|
222 | } |
---|
223 | |
---|
224 | ideal SchreyerSyzygyComputation::Compute1LeadingSyzygyTerms() |
---|
225 | { |
---|
226 | const ideal& id = m_idLeads; |
---|
227 | const ring& r = m_rBaseRing; |
---|
228 | // const SchreyerSyzygyComputationFlags& attributes = m_atttributes; |
---|
229 | |
---|
230 | // const BOOLEAN __DEBUG__ = attributes.__DEBUG__; |
---|
231 | // const BOOLEAN __SYZCHECK__ = attributes.__SYZCHECK__; |
---|
232 | // const BOOLEAN __LEAD2SYZ__ = attributes.__LEAD2SYZ__; |
---|
233 | // const BOOLEAN __HYBRIDNF__ = attributes.__HYBRIDNF__; |
---|
234 | // const BOOLEAN __TAILREDSYZ__ = attributes.__TAILREDSYZ__; |
---|
235 | |
---|
236 | assume(!__LEAD2SYZ__); |
---|
237 | |
---|
238 | // 1. set of components S? |
---|
239 | // 2. for each component c from S: set of indices of leading terms |
---|
240 | // with this component? |
---|
241 | // 3. short exp. vectors for each leading term? |
---|
242 | |
---|
243 | const int size = IDELEMS(id); |
---|
244 | |
---|
245 | if( size < 2 ) |
---|
246 | { |
---|
247 | const ideal newid = idInit(1, 0); newid->m[0] = NULL; // zero ideal... |
---|
248 | return newid; |
---|
249 | } |
---|
250 | |
---|
251 | // TODO/NOTE: input is supposed to be (reverse-) sorted wrt "(c,ds)"!?? |
---|
252 | |
---|
253 | // components should come in groups: count elements in each group |
---|
254 | // && estimate the real size!!! |
---|
255 | |
---|
256 | |
---|
257 | // use just a vector instead??? |
---|
258 | const ideal newid = idInit( (size * (size-1))/2, size); // maximal size: ideal case! |
---|
259 | |
---|
260 | int k = 0; |
---|
261 | |
---|
262 | for (int j = 0; j < size; j++) |
---|
263 | { |
---|
264 | const poly p = id->m[j]; |
---|
265 | assume( p != NULL ); |
---|
266 | const int c = p_GetComp(p, r); |
---|
267 | |
---|
268 | for (int i = j - 1; i >= 0; i--) |
---|
269 | { |
---|
270 | const poly pp = id->m[i]; |
---|
271 | assume( pp != NULL ); |
---|
272 | const int cc = p_GetComp(pp, r); |
---|
273 | |
---|
274 | if( c != cc ) |
---|
275 | continue; |
---|
276 | |
---|
277 | const poly m = p_Init(r); // p_New??? |
---|
278 | |
---|
279 | // m = LCM(p, pp) / p! // TODO: optimize: knowing the ring structure: (C/lp)! |
---|
280 | for (int v = rVar(r); v > 0; v--) |
---|
281 | { |
---|
282 | assume( v > 0 ); |
---|
283 | assume( v <= rVar(r) ); |
---|
284 | |
---|
285 | const short e1 = p_GetExp(p , v, r); |
---|
286 | const short e2 = p_GetExp(pp, v, r); |
---|
287 | |
---|
288 | if( e1 >= e2 ) |
---|
289 | p_SetExp(m, v, 0, r); |
---|
290 | else |
---|
291 | p_SetExp(m, v, e2 - e1, r); |
---|
292 | |
---|
293 | } |
---|
294 | |
---|
295 | assume( (j > i) && (i >= 0) ); |
---|
296 | |
---|
297 | p_SetComp(m, j + 1, r); |
---|
298 | pNext(m) = NULL; |
---|
299 | p_SetCoeff0(m, n_Init(1, r->cf), r); // for later... |
---|
300 | |
---|
301 | p_Setm(m, r); // should not do anything!!! |
---|
302 | |
---|
303 | newid->m[k++] = m; |
---|
304 | } |
---|
305 | } |
---|
306 | |
---|
307 | // if( __DEBUG__ && FALSE ) |
---|
308 | // { |
---|
309 | // PrintS("ComputeLeadingSyzygyTerms::Temp0: \n"); |
---|
310 | // dPrint(newid, r, r, 1); |
---|
311 | // } |
---|
312 | |
---|
313 | // the rest of newid is assumed to be zeroes... |
---|
314 | |
---|
315 | // simplify(newid, 2 + 32)?? |
---|
316 | // sort(newid, "C,ds")[1]??? |
---|
317 | id_DelDiv(newid, r); // #define SIMPL_LMDIV 32 |
---|
318 | |
---|
319 | // if( __DEBUG__ && FALSE ) |
---|
320 | // { |
---|
321 | // PrintS("ComputeLeadingSyzygyTerms::Temp1: \n"); |
---|
322 | // dPrint(newid, r, r, 1); |
---|
323 | // } |
---|
324 | |
---|
325 | idSkipZeroes(newid); // #define SIMPL_NULL 2 |
---|
326 | |
---|
327 | // if( __DEBUG__ ) |
---|
328 | // { |
---|
329 | // PrintS("ComputeLeadingSyzygyTerms::Output: \n"); |
---|
330 | // dPrint(newid, r, r, 1); |
---|
331 | // } |
---|
332 | |
---|
333 | Sort_c_ds(newid, r); |
---|
334 | |
---|
335 | return newid; |
---|
336 | } |
---|
337 | |
---|
338 | ideal SchreyerSyzygyComputation::Compute2LeadingSyzygyTerms() |
---|
339 | { |
---|
340 | const ideal& id = m_idLeads; |
---|
341 | const ring& r = m_rBaseRing; |
---|
342 | // const SchreyerSyzygyComputationFlags& attributes = m_atttributes; |
---|
343 | |
---|
344 | // const BOOLEAN __DEBUG__ = attributes.__DEBUG__; |
---|
345 | // const BOOLEAN __SYZCHECK__ = attributes.__SYZCHECK__; |
---|
346 | // const BOOLEAN __LEAD2SYZ__ = attributes.__LEAD2SYZ__; |
---|
347 | // const BOOLEAN __HYBRIDNF__ = attributes.__HYBRIDNF__; |
---|
348 | // const BOOLEAN __TAILREDSYZ__ = attributes.__TAILREDSYZ__; |
---|
349 | |
---|
350 | |
---|
351 | // 1. set of components S? |
---|
352 | // 2. for each component c from S: set of indices of leading terms |
---|
353 | // with this component? |
---|
354 | // 3. short exp. vectors for each leading term? |
---|
355 | |
---|
356 | const int size = IDELEMS(id); |
---|
357 | |
---|
358 | if( size < 2 ) |
---|
359 | { |
---|
360 | const ideal newid = idInit(1, 1); newid->m[0] = NULL; // zero module... |
---|
361 | return newid; |
---|
362 | } |
---|
363 | |
---|
364 | |
---|
365 | // TODO/NOTE: input is supposed to be sorted wrt "C,ds"!?? |
---|
366 | |
---|
367 | // components should come in groups: count elements in each group |
---|
368 | // && estimate the real size!!! |
---|
369 | |
---|
370 | |
---|
371 | // use just a vector instead??? |
---|
372 | ideal newid = idInit( (size * (size-1))/2, size); // maximal size: ideal case! |
---|
373 | |
---|
374 | int k = 0; |
---|
375 | |
---|
376 | for (int j = 0; j < size; j++) |
---|
377 | { |
---|
378 | const poly p = id->m[j]; |
---|
379 | assume( p != NULL ); |
---|
380 | const int c = p_GetComp(p, r); |
---|
381 | |
---|
382 | for (int i = j - 1; i >= 0; i--) |
---|
383 | { |
---|
384 | const poly pp = id->m[i]; |
---|
385 | assume( pp != NULL ); |
---|
386 | const int cc = p_GetComp(pp, r); |
---|
387 | |
---|
388 | if( c != cc ) |
---|
389 | continue; |
---|
390 | |
---|
391 | // allocate memory & zero it out! |
---|
392 | const poly m = p_Init(r); const poly mm = p_Init(r); |
---|
393 | |
---|
394 | |
---|
395 | // m = LCM(p, pp) / p! mm = LCM(p, pp) / pp! |
---|
396 | // TODO: optimize: knowing the ring structure: (C/lp)! |
---|
397 | |
---|
398 | for (int v = rVar(r); v > 0; v--) |
---|
399 | { |
---|
400 | assume( v > 0 ); |
---|
401 | assume( v <= rVar(r) ); |
---|
402 | |
---|
403 | const short e1 = p_GetExp(p , v, r); |
---|
404 | const short e2 = p_GetExp(pp, v, r); |
---|
405 | |
---|
406 | if( e1 >= e2 ) |
---|
407 | p_SetExp(mm, v, e1 - e2, r); // p_SetExp(m, v, 0, r); |
---|
408 | else |
---|
409 | p_SetExp(m, v, e2 - e1, r); // p_SetExp(mm, v, 0, r); |
---|
410 | |
---|
411 | } |
---|
412 | |
---|
413 | assume( (j > i) && (i >= 0) ); |
---|
414 | |
---|
415 | p_SetComp(m, j + 1, r); |
---|
416 | p_SetComp(mm, i + 1, r); |
---|
417 | |
---|
418 | const number& lc1 = p_GetCoeff(p , r); |
---|
419 | const number& lc2 = p_GetCoeff(pp, r); |
---|
420 | |
---|
421 | number g = n_Lcm( lc1, lc2, r ); |
---|
422 | |
---|
423 | p_SetCoeff0(m , n_Div(g, lc1, r), r); |
---|
424 | p_SetCoeff0(mm, n_Neg(n_Div(g, lc2, r), r), r); |
---|
425 | |
---|
426 | n_Delete(&g, r); |
---|
427 | |
---|
428 | p_Setm(m, r); // should not do anything!!! |
---|
429 | p_Setm(mm, r); // should not do anything!!! |
---|
430 | |
---|
431 | pNext(m) = mm; // pNext(mm) = NULL; |
---|
432 | |
---|
433 | newid->m[k++] = m; |
---|
434 | } |
---|
435 | } |
---|
436 | |
---|
437 | // if( __DEBUG__ && FALSE ) |
---|
438 | // { |
---|
439 | // PrintS("Compute2LeadingSyzygyTerms::Temp0: \n"); |
---|
440 | // dPrint(newid, r, r, 1); |
---|
441 | // } |
---|
442 | |
---|
443 | if( !__TAILREDSYZ__ ) |
---|
444 | { |
---|
445 | // simplify(newid, 2 + 32)?? |
---|
446 | // sort(newid, "C,ds")[1]??? |
---|
447 | id_DelDiv(newid, r); // #define SIMPL_LMDIV 32 |
---|
448 | |
---|
449 | // if( __DEBUG__ && FALSE ) |
---|
450 | // { |
---|
451 | // PrintS("Compute2LeadingSyzygyTerms::Temp1 (deldiv): \n"); |
---|
452 | // dPrint(newid, r, r, 1); |
---|
453 | // } |
---|
454 | } |
---|
455 | else |
---|
456 | { |
---|
457 | // option(redSB); option(redTail); |
---|
458 | // TEST_OPT_REDSB |
---|
459 | // TEST_OPT_REDTAIL |
---|
460 | assume( r == currRing ); |
---|
461 | BITSET _save_test = test; |
---|
462 | test |= (Sy_bit(OPT_REDTAIL) | Sy_bit(OPT_REDSB)); |
---|
463 | |
---|
464 | intvec* w=new intvec(IDELEMS(newid)); |
---|
465 | ideal tmp = kStd(newid, currQuotient, isHomog, &w); |
---|
466 | delete w; |
---|
467 | |
---|
468 | test = _save_test; |
---|
469 | |
---|
470 | id_Delete(&newid, r); |
---|
471 | newid = tmp; |
---|
472 | |
---|
473 | // if( __DEBUG__ && FALSE ) |
---|
474 | // { |
---|
475 | // PrintS("Compute2LeadingSyzygyTerms::Temp1 (std): \n"); |
---|
476 | // dPrint(newid, r, r, 1); |
---|
477 | // } |
---|
478 | |
---|
479 | } |
---|
480 | |
---|
481 | idSkipZeroes(newid); |
---|
482 | |
---|
483 | Sort_c_ds(newid, r); |
---|
484 | |
---|
485 | return newid; |
---|
486 | } |
---|
487 | |
---|
488 | poly SchreyerSyzygyComputation::TraverseNF(const poly a, const poly a2) const |
---|
489 | { |
---|
490 | const ideal& L = m_idLeads; |
---|
491 | const ideal& T = m_idTails; |
---|
492 | |
---|
493 | const ring& R = m_rBaseRing; |
---|
494 | |
---|
495 | const int r = p_GetComp(a, R) - 1; |
---|
496 | |
---|
497 | assume( r >= 0 && r < IDELEMS(T) ); |
---|
498 | assume( r >= 0 && r < IDELEMS(L) ); |
---|
499 | |
---|
500 | poly aa = leadmonom(a, R); assume( aa != NULL); // :( |
---|
501 | poly t = TraverseTail(aa, r); |
---|
502 | |
---|
503 | if( a2 != NULL ) |
---|
504 | { |
---|
505 | assume( __LEAD2SYZ__ ); |
---|
506 | |
---|
507 | const int r2 = p_GetComp(a2, R) - 1; poly aa2 = leadmonom(a2, R); // :( |
---|
508 | |
---|
509 | assume( r2 >= 0 && r2 < IDELEMS(T) ); |
---|
510 | |
---|
511 | t = p_Add_q(a2, p_Add_q(t, TraverseTail(aa2, r2), R), R); |
---|
512 | |
---|
513 | p_Delete(&aa2, R); |
---|
514 | } else |
---|
515 | t = p_Add_q(t, ReduceTerm(aa, L->m[r], a), R); |
---|
516 | |
---|
517 | p_Delete(&aa, R); |
---|
518 | |
---|
519 | return t; |
---|
520 | } |
---|
521 | |
---|
522 | |
---|
523 | |
---|
524 | void SchreyerSyzygyComputation::ComputeSyzygy() |
---|
525 | { |
---|
526 | assume( m_idLeads != NULL ); |
---|
527 | assume( m_idTails != NULL ); |
---|
528 | |
---|
529 | const ideal& L = m_idLeads; |
---|
530 | const ideal& T = m_idTails; |
---|
531 | |
---|
532 | ideal& TT = m_syzTails; |
---|
533 | const ring& R = m_rBaseRing; |
---|
534 | |
---|
535 | assume( IDELEMS(L) == IDELEMS(T) ); |
---|
536 | |
---|
537 | if( m_syzLeads == NULL ) |
---|
538 | ComputeLeadingSyzygyTerms( __LEAD2SYZ__ && !__IGNORETAILS__ ); // 2 terms OR 1 term! |
---|
539 | |
---|
540 | assume( m_syzLeads != NULL ); |
---|
541 | |
---|
542 | ideal& LL = m_syzLeads; |
---|
543 | |
---|
544 | |
---|
545 | const int size = IDELEMS(LL); |
---|
546 | |
---|
547 | TT = idInit(size, 0); |
---|
548 | |
---|
549 | if( size == 1 && LL->m[0] == NULL ) |
---|
550 | return; |
---|
551 | |
---|
552 | |
---|
553 | for( int k = size - 1; k >= 0; k-- ) |
---|
554 | { |
---|
555 | const poly a = LL->m[k]; assume( a != NULL ); |
---|
556 | |
---|
557 | poly a2 = pNext(a); |
---|
558 | |
---|
559 | // Splitting 2-terms Leading syzygy module |
---|
560 | if( a2 != NULL ) |
---|
561 | pNext(a) = NULL; |
---|
562 | |
---|
563 | if( __IGNORETAILS__ ) |
---|
564 | { |
---|
565 | TT->m[k] = NULL; |
---|
566 | |
---|
567 | assume( a2 != NULL ); |
---|
568 | |
---|
569 | if( a2 != NULL ) |
---|
570 | p_Delete(&a2, R); |
---|
571 | |
---|
572 | continue; |
---|
573 | } |
---|
574 | |
---|
575 | // TT->m[k] = a2; |
---|
576 | |
---|
577 | if( ! __HYBRIDNF__ ) |
---|
578 | { |
---|
579 | TT->m[k] = TraverseNF(a, a2); |
---|
580 | } else |
---|
581 | { |
---|
582 | TT->m[k] = SchreyerSyzygyNF(a, a2); |
---|
583 | } |
---|
584 | |
---|
585 | } |
---|
586 | |
---|
587 | TT->rank = id_RankFreeModule(TT, R); |
---|
588 | } |
---|
589 | |
---|
590 | void SchreyerSyzygyComputation::ComputeLeadingSyzygyTerms(bool bComputeSecondTerms) |
---|
591 | { |
---|
592 | // const SchreyerSyzygyComputationFlags& attributes = m_atttributes; |
---|
593 | |
---|
594 | // const BOOLEAN __LEAD2SYZ__ = attributes.__LEAD2SYZ__; |
---|
595 | // const BOOLEAN __TAILREDSYZ__ = attributes.__TAILREDSYZ__; |
---|
596 | |
---|
597 | assume( m_syzLeads == NULL ); |
---|
598 | |
---|
599 | if( bComputeSecondTerms ) |
---|
600 | { |
---|
601 | assume( __LEAD2SYZ__ ); |
---|
602 | // m_syzLeads = FROM_NAMESPACE(INTERNAL, _Compute2LeadingSyzygyTerms(m_idLeads, m_rBaseRing, m_atttributes)); |
---|
603 | m_syzLeads = Compute2LeadingSyzygyTerms(); |
---|
604 | } |
---|
605 | else |
---|
606 | { |
---|
607 | assume( !__LEAD2SYZ__ ); |
---|
608 | |
---|
609 | m_syzLeads = Compute1LeadingSyzygyTerms(); |
---|
610 | } |
---|
611 | // m_syzLeads = FROM_NAMESPACE(INTERNAL, _ComputeLeadingSyzygyTerms(m_idLeads, m_rBaseRing, m_atttributes)); |
---|
612 | |
---|
613 | // NOTE: set m_LS if tails are to be reduced! |
---|
614 | assume( m_syzLeads!= NULL ); |
---|
615 | |
---|
616 | if (__TAILREDSYZ__ && !__IGNORETAILS__ && (IDELEMS(m_syzLeads) > 0) && !((IDELEMS(m_syzLeads) == 1) && (m_syzLeads->m[0] == NULL))) |
---|
617 | { |
---|
618 | m_LS = m_syzLeads; |
---|
619 | m_checker.Initialize(m_syzLeads); |
---|
620 | #ifndef NDEBUG |
---|
621 | if( __DEBUG__ ) |
---|
622 | { |
---|
623 | const ring& r = m_rBaseRing; |
---|
624 | PrintS("SchreyerSyzygyComputation::ComputeLeadingSyzygyTerms: \n"); |
---|
625 | PrintS("m_syzLeads: \n"); |
---|
626 | dPrint(m_syzLeads, r, r, 1); |
---|
627 | PrintS("m_checker.Initialize(m_syzLeads) => \n"); |
---|
628 | m_checker.DebugPrint(); |
---|
629 | } |
---|
630 | #endif |
---|
631 | assume( m_checker.IsNonempty() ); // TODO: this always fails... BUG???? |
---|
632 | } |
---|
633 | } |
---|
634 | |
---|
635 | #define NOPRODUCT 1 |
---|
636 | |
---|
637 | poly SchreyerSyzygyComputation::SchreyerSyzygyNF(const poly syz_lead, poly syz_2) const |
---|
638 | { |
---|
639 | |
---|
640 | assume( !__IGNORETAILS__ ); |
---|
641 | |
---|
642 | const ideal& L = m_idLeads; |
---|
643 | const ideal& T = m_idTails; |
---|
644 | const ring& r = m_rBaseRing; |
---|
645 | |
---|
646 | assume( syz_lead != NULL ); |
---|
647 | |
---|
648 | if( syz_2 == NULL ) |
---|
649 | { |
---|
650 | const int rr = p_GetComp(syz_lead, r) - 1; |
---|
651 | |
---|
652 | assume( rr >= 0 && rr < IDELEMS(T) ); |
---|
653 | assume( rr >= 0 && rr < IDELEMS(L) ); |
---|
654 | |
---|
655 | |
---|
656 | #if NOPRODUCT |
---|
657 | syz_2 = m_div.FindReducer(syz_lead, L->m[rr], syz_lead, m_checker); |
---|
658 | #else |
---|
659 | poly aa = leadmonom(syz_lead, r); assume( aa != NULL); // :( |
---|
660 | aa = p_Mult_mm(aa, L->m[rr], r); |
---|
661 | |
---|
662 | syz_2 = m_div.FindReducer(aa, syz_lead, m_checker); |
---|
663 | |
---|
664 | p_Delete(&aa, r); |
---|
665 | #endif |
---|
666 | |
---|
667 | assume( syz_2 != NULL ); // by construction of S-Polynomial |
---|
668 | } |
---|
669 | |
---|
670 | |
---|
671 | |
---|
672 | assume( syz_2 != NULL ); |
---|
673 | |
---|
674 | assume( L != NULL ); |
---|
675 | assume( T != NULL ); |
---|
676 | |
---|
677 | assume( IDELEMS(L) == IDELEMS(T) ); |
---|
678 | |
---|
679 | int c = p_GetComp(syz_lead, r) - 1; |
---|
680 | |
---|
681 | assume( c >= 0 && c < IDELEMS(T) ); |
---|
682 | |
---|
683 | poly p = leadmonom(syz_lead, r); // :( |
---|
684 | poly spoly = pp_Mult_qq(p, T->m[c], r); |
---|
685 | p_Delete(&p, r); |
---|
686 | |
---|
687 | |
---|
688 | c = p_GetComp(syz_2, r) - 1; |
---|
689 | assume( c >= 0 && c < IDELEMS(T) ); |
---|
690 | |
---|
691 | p = leadmonom(syz_2, r); // :( |
---|
692 | spoly = p_Add_q(spoly, pp_Mult_qq(p, T->m[c], r), r); |
---|
693 | p_Delete(&p, r); |
---|
694 | |
---|
695 | poly tail = syz_2; // TODO: use bucket!? |
---|
696 | |
---|
697 | while (spoly != NULL) |
---|
698 | { |
---|
699 | poly t = m_div.FindReducer(spoly, NULL, m_checker); |
---|
700 | |
---|
701 | p_LmDelete(&spoly, r); |
---|
702 | |
---|
703 | if( t != NULL ) |
---|
704 | { |
---|
705 | p = leadmonom(t, r); // :( |
---|
706 | c = p_GetComp(t, r) - 1; |
---|
707 | |
---|
708 | assume( c >= 0 && c < IDELEMS(T) ); |
---|
709 | |
---|
710 | spoly = p_Add_q(spoly, pp_Mult_qq(p, T->m[c], r), r); |
---|
711 | |
---|
712 | p_Delete(&p, r); |
---|
713 | |
---|
714 | tail = p_Add_q(tail, t, r); |
---|
715 | } |
---|
716 | } |
---|
717 | |
---|
718 | return tail; |
---|
719 | } |
---|
720 | |
---|
721 | poly SchreyerSyzygyComputation::TraverseTail(poly multiplier, const int tail) const |
---|
722 | { |
---|
723 | // TODO: store (multiplier, tail) -.-^-.-^-.--> ! |
---|
724 | assume(m_idTails != NULL && m_idTails->m != NULL); |
---|
725 | assume( tail >= 0 && tail < IDELEMS(m_idTails) ); |
---|
726 | |
---|
727 | const poly t = m_idTails->m[tail]; |
---|
728 | |
---|
729 | if(t != NULL) |
---|
730 | return TraverseTail(multiplier, t); |
---|
731 | |
---|
732 | return NULL; |
---|
733 | } |
---|
734 | |
---|
735 | |
---|
736 | poly SchreyerSyzygyComputation::TraverseTail(poly multiplier, poly tail) const |
---|
737 | { |
---|
738 | assume( !__IGNORETAILS__ ); |
---|
739 | |
---|
740 | const ideal& L = m_idLeads; |
---|
741 | const ideal& T = m_idTails; |
---|
742 | const ring& r = m_rBaseRing; |
---|
743 | |
---|
744 | assume( multiplier != NULL ); |
---|
745 | |
---|
746 | assume( L != NULL ); |
---|
747 | assume( T != NULL ); |
---|
748 | |
---|
749 | poly s = NULL; |
---|
750 | |
---|
751 | if( (!__TAILREDSYZ__) || m_lcm.Check(multiplier) ) |
---|
752 | for(poly p = tail; p != NULL; p = pNext(p)) // iterate over the tail |
---|
753 | s = p_Add_q(s, ReduceTerm(multiplier, p, NULL), r); |
---|
754 | |
---|
755 | return s; |
---|
756 | } |
---|
757 | |
---|
758 | |
---|
759 | |
---|
760 | |
---|
761 | poly SchreyerSyzygyComputation::ReduceTerm(poly multiplier, poly term4reduction, poly syztermCheck) const |
---|
762 | { |
---|
763 | assume( !__IGNORETAILS__ ); |
---|
764 | |
---|
765 | const ideal& L = m_idLeads; |
---|
766 | const ideal& T = m_idTails; |
---|
767 | const ring& r = m_rBaseRing; |
---|
768 | |
---|
769 | assume( multiplier != NULL ); |
---|
770 | assume( term4reduction != NULL ); |
---|
771 | |
---|
772 | |
---|
773 | assume( L != NULL ); |
---|
774 | assume( T != NULL ); |
---|
775 | |
---|
776 | // simple implementation with FindReducer: |
---|
777 | poly s = NULL; |
---|
778 | |
---|
779 | if( (!__TAILREDSYZ__) || m_lcm.Check(multiplier) ) |
---|
780 | { |
---|
781 | #if NOPRODUCT |
---|
782 | s = m_div.FindReducer(multiplier, term4reduction, syztermCheck, m_checker); |
---|
783 | #else |
---|
784 | // NOTE: only LT(term4reduction) should be used in the following: |
---|
785 | poly product = pp_Mult_mm(multiplier, term4reduction, r); |
---|
786 | s = m_div.FindReducer(product, syztermCheck, m_checker); |
---|
787 | p_Delete(&product, r); |
---|
788 | #endif |
---|
789 | } |
---|
790 | |
---|
791 | if( s == NULL ) // No Reducer? |
---|
792 | return s; |
---|
793 | |
---|
794 | poly b = leadmonom(s, r); |
---|
795 | |
---|
796 | const int c = p_GetComp(s, r) - 1; |
---|
797 | assume( c >= 0 && c < IDELEMS(T) ); |
---|
798 | |
---|
799 | const poly t = TraverseTail(b, c); // T->m[c]; |
---|
800 | |
---|
801 | if( t != NULL ) |
---|
802 | s = p_Add_q(s, t, r); |
---|
803 | |
---|
804 | return s; |
---|
805 | } |
---|
806 | |
---|
807 | |
---|
808 | |
---|
809 | |
---|
810 | |
---|
811 | BEGIN_NAMESPACE_NONAME |
---|
812 | |
---|
813 | static inline int atGetInt(idhdl rootRingHdl, const char* attribute, long def) |
---|
814 | { |
---|
815 | return ((int)(long)(atGet(rootRingHdl, attribute, INT_CMD, (void*)def))); |
---|
816 | } |
---|
817 | |
---|
818 | END_NAMESPACE |
---|
819 | |
---|
820 | SchreyerSyzygyComputationFlags::SchreyerSyzygyComputationFlags(idhdl rootRingHdl): |
---|
821 | #ifndef NDEBUG |
---|
822 | __DEBUG__( (BOOLEAN)atGetInt(rootRingHdl,"DEBUG", TRUE) ), |
---|
823 | #else |
---|
824 | __DEBUG__( (BOOLEAN)atGetInt(rootRingHdl,"DEBUG", FALSE) ), |
---|
825 | #endif |
---|
826 | // __SYZCHECK__( (BOOLEAN)atGetInt(rootRingHdl, "SYZCHECK", __DEBUG__) ), |
---|
827 | __LEAD2SYZ__( (BOOLEAN)atGetInt(rootRingHdl, "LEAD2SYZ", 1) ), |
---|
828 | __TAILREDSYZ__( (BOOLEAN)atGetInt(rootRingHdl, "TAILREDSYZ", 1) ), |
---|
829 | __HYBRIDNF__( (BOOLEAN)atGetInt(rootRingHdl, "HYBRIDNF", 0) ), |
---|
830 | __IGNORETAILS__( (BOOLEAN)atGetInt(rootRingHdl, "IGNORETAILS", 0) ), |
---|
831 | m_rBaseRing( rootRingHdl->data.uring ) |
---|
832 | { |
---|
833 | if( __DEBUG__ ) |
---|
834 | { |
---|
835 | PrintS("SchreyerSyzygyComputationFlags: \n"); |
---|
836 | Print(" DEBUG: \t%d\n", __DEBUG__); |
---|
837 | // Print(" SYZCHECK : \t%d\n", __SYZCHECK__); |
---|
838 | Print(" LEAD2SYZ: \t%d\n", __LEAD2SYZ__); |
---|
839 | Print(" TAILREDSYZ: \t%d\n", __TAILREDSYZ__); |
---|
840 | Print(" IGNORETAILS: \t%d\n", __IGNORETAILS__); |
---|
841 | |
---|
842 | } |
---|
843 | |
---|
844 | // TODO: just current setting! |
---|
845 | assume( rootRingHdl == currRingHdl ); |
---|
846 | assume( rootRingHdl->typ == RING_CMD ); |
---|
847 | assume( m_rBaseRing == currRing ); |
---|
848 | // move the global ring here inside??? |
---|
849 | } |
---|
850 | |
---|
851 | |
---|
852 | |
---|
853 | CReducerFinder::CLeadingTerm::CLeadingTerm(unsigned int _label, const poly _lt, const ring R): |
---|
854 | m_sev( p_GetShortExpVector(_lt, R) ), m_label( _label ), m_lt( _lt ) |
---|
855 | { } |
---|
856 | |
---|
857 | |
---|
858 | CReducerFinder::~CReducerFinder() |
---|
859 | { |
---|
860 | for( CReducersHash::const_iterator it = m_hash.begin(); it != m_hash.end(); it++ ) |
---|
861 | { |
---|
862 | const TReducers& v = it->second; |
---|
863 | for(TReducers::const_iterator vit = v.begin(); vit != v.end(); vit++ ) |
---|
864 | delete const_cast<CLeadingTerm*>(*vit); |
---|
865 | } |
---|
866 | } |
---|
867 | |
---|
868 | |
---|
869 | void CReducerFinder::Initialize(const ideal L) |
---|
870 | { |
---|
871 | assume( m_L == NULL || m_L == L ); |
---|
872 | if( m_L == NULL ) |
---|
873 | m_L = L; |
---|
874 | |
---|
875 | assume( m_L == L ); |
---|
876 | |
---|
877 | if( L != NULL ) |
---|
878 | { |
---|
879 | const ring& R = m_rBaseRing; |
---|
880 | assume( R != NULL ); |
---|
881 | |
---|
882 | for( int k = IDELEMS(L) - 1; k >= 0; k-- ) |
---|
883 | { |
---|
884 | const poly a = L->m[k]; // assume( a != NULL ); |
---|
885 | |
---|
886 | // NOTE: label is k \in 0 ... |L|-1!!! |
---|
887 | if( a != NULL ) |
---|
888 | m_hash[p_GetComp(a, R)].push_back( new CLeadingTerm(k, a, R) ); |
---|
889 | } |
---|
890 | } |
---|
891 | } |
---|
892 | |
---|
893 | CReducerFinder::CReducerFinder(const ideal L, const SchreyerSyzygyComputationFlags& flags): |
---|
894 | SchreyerSyzygyComputationFlags(flags), |
---|
895 | m_L(const_cast<ideal>(L)), // for debug anyway |
---|
896 | m_hash() |
---|
897 | { |
---|
898 | assume( flags.m_rBaseRing == m_rBaseRing ); |
---|
899 | if( L != NULL ) |
---|
900 | Initialize(L); |
---|
901 | } |
---|
902 | |
---|
903 | |
---|
904 | bool CReducerFinder::IsDivisible(const poly product) const |
---|
905 | { |
---|
906 | const ring& r = m_rBaseRing; |
---|
907 | |
---|
908 | const long comp = p_GetComp(product, r); |
---|
909 | const unsigned long not_sev = ~p_GetShortExpVector(product, r); |
---|
910 | |
---|
911 | assume( comp >= 0 ); |
---|
912 | |
---|
913 | CReducersHash::const_iterator it = m_hash.find(comp); // same module component |
---|
914 | |
---|
915 | if( it == m_hash.end() ) |
---|
916 | return false; |
---|
917 | |
---|
918 | assume( m_L != NULL ); |
---|
919 | |
---|
920 | const TReducers& reducers = it->second; |
---|
921 | |
---|
922 | for(TReducers::const_iterator vit = reducers.begin(); vit != reducers.end(); vit++ ) |
---|
923 | { |
---|
924 | const poly p = (*vit)->m_lt; |
---|
925 | |
---|
926 | assume( p_GetComp(p, r) == comp ); |
---|
927 | |
---|
928 | const int k = (*vit)->m_label; |
---|
929 | |
---|
930 | assume( m_L->m[k] == p ); |
---|
931 | |
---|
932 | const unsigned long p_sev = (*vit)->m_sev; |
---|
933 | |
---|
934 | assume( p_sev == p_GetShortExpVector(p, r) ); |
---|
935 | |
---|
936 | if( !p_LmShortDivisibleByNoComp(p, p_sev, product, not_sev, r) ) |
---|
937 | continue; |
---|
938 | |
---|
939 | if( __DEBUG__ ) |
---|
940 | { |
---|
941 | Print("_FindReducer::Test LS: q is divisible by LS[%d] !:((, diviser is: ", k+1); |
---|
942 | dPrint(p, r, r, 1); |
---|
943 | } |
---|
944 | |
---|
945 | return true; |
---|
946 | } |
---|
947 | |
---|
948 | return false; |
---|
949 | } |
---|
950 | |
---|
951 | |
---|
952 | #ifndef NDEBUG |
---|
953 | void CReducerFinder::DebugPrint() const |
---|
954 | { |
---|
955 | const ring& r = m_rBaseRing; |
---|
956 | |
---|
957 | for( CReducersHash::const_iterator it = m_hash.begin(); it != m_hash.end(); it++) |
---|
958 | { |
---|
959 | Print("Hash Key: %d, Values: \n", it->first); |
---|
960 | const TReducers& reducers = it->second; |
---|
961 | |
---|
962 | for(TReducers::const_iterator vit = reducers.begin(); vit != reducers.end(); vit++ ) |
---|
963 | { |
---|
964 | const poly p = (*vit)->m_lt; |
---|
965 | |
---|
966 | assume( p_GetComp(p, r) == it->first ); |
---|
967 | |
---|
968 | const int k = (*vit)->m_label; |
---|
969 | |
---|
970 | assume( m_L->m[k] == p ); |
---|
971 | |
---|
972 | const unsigned long p_sev = (*vit)->m_sev; |
---|
973 | |
---|
974 | assume( p_sev == p_GetShortExpVector(p, r) ); |
---|
975 | |
---|
976 | Print("L[%d]: ", k); dPrint(p, r, r, 0); Print("SEV: %dl\n", p_sev); |
---|
977 | } |
---|
978 | } |
---|
979 | } |
---|
980 | #endif |
---|
981 | |
---|
982 | |
---|
983 | /// _p_LmDivisibleByNoComp for a | b*c |
---|
984 | static inline BOOLEAN _p_LmDivisibleByNoComp(const poly a, const poly b, const poly c, const ring r) |
---|
985 | { |
---|
986 | int i=r->VarL_Size - 1; |
---|
987 | unsigned long divmask = r->divmask; |
---|
988 | unsigned long la, lb; |
---|
989 | |
---|
990 | if (r->VarL_LowIndex >= 0) |
---|
991 | { |
---|
992 | i += r->VarL_LowIndex; |
---|
993 | do |
---|
994 | { |
---|
995 | la = a->exp[i]; |
---|
996 | lb = b->exp[i] + c->exp[i]; |
---|
997 | if ((la > lb) || |
---|
998 | (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask))) |
---|
999 | { |
---|
1000 | pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == FALSE); |
---|
1001 | return FALSE; |
---|
1002 | } |
---|
1003 | i--; |
---|
1004 | } |
---|
1005 | while (i>=r->VarL_LowIndex); |
---|
1006 | } |
---|
1007 | else |
---|
1008 | { |
---|
1009 | do |
---|
1010 | { |
---|
1011 | la = a->exp[r->VarL_Offset[i]]; |
---|
1012 | lb = b->exp[r->VarL_Offset[i]] + c->exp[r->VarL_Offset[i]]; |
---|
1013 | if ((la > lb) || |
---|
1014 | (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask))) |
---|
1015 | { |
---|
1016 | pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == FALSE); |
---|
1017 | return FALSE; |
---|
1018 | } |
---|
1019 | i--; |
---|
1020 | } |
---|
1021 | while (i>=0); |
---|
1022 | } |
---|
1023 | #ifdef HAVE_RINGS |
---|
1024 | assume( !rField_is_Ring(r) ); // not implemented for rings...! |
---|
1025 | #endif |
---|
1026 | return TRUE; |
---|
1027 | } |
---|
1028 | |
---|
1029 | |
---|
1030 | poly CReducerFinder::FindReducer(const poly multiplier, const poly t, |
---|
1031 | const poly syzterm, const CReducerFinder& syz_checker) const |
---|
1032 | { |
---|
1033 | // don't case about the module component of multiplier (as it may be |
---|
1034 | // the syzygy term) |
---|
1035 | // product = multiplier * t? |
---|
1036 | const ring& r = m_rBaseRing; |
---|
1037 | |
---|
1038 | assume( multiplier != NULL ); assume( t != NULL ); |
---|
1039 | |
---|
1040 | const ideal& L = m_L; assume( L != NULL ); // for debug/testing only! |
---|
1041 | |
---|
1042 | long c = 0; |
---|
1043 | |
---|
1044 | if (syzterm != NULL) |
---|
1045 | c = p_GetComp(syzterm, r) - 1; |
---|
1046 | |
---|
1047 | assume( c >= 0 && c < IDELEMS(L) ); |
---|
1048 | |
---|
1049 | if (__DEBUG__ && (syzterm != NULL)) |
---|
1050 | { |
---|
1051 | const poly m = L->m[c]; |
---|
1052 | |
---|
1053 | assume( m != NULL ); assume( pNext(m) == NULL ); |
---|
1054 | |
---|
1055 | poly lm = p_Mult_mm(leadmonom(syzterm, r), m, r); |
---|
1056 | |
---|
1057 | poly pr = p_Mult_q( p_LmInit(multiplier, r), p_LmInit(t, r), r); |
---|
1058 | |
---|
1059 | assume( p_EqualPolys(lm, pr, r) ); |
---|
1060 | |
---|
1061 | // def @@c = leadcomp(syzterm); int @@r = int(@@c); |
---|
1062 | // def @@product = leadmonomial(syzterm) * L[@@r]; |
---|
1063 | |
---|
1064 | p_Delete(&lm, r); |
---|
1065 | p_Delete(&pr, r); |
---|
1066 | } |
---|
1067 | |
---|
1068 | const long comp = p_GetComp(t, r); |
---|
1069 | |
---|
1070 | const unsigned long not_sev = ~p_GetShortExpVector(multiplier, t, r); // ! |
---|
1071 | |
---|
1072 | assume( comp >= 0 ); |
---|
1073 | |
---|
1074 | // for( int k = IDELEMS(L)-1; k>= 0; k-- ) |
---|
1075 | // { |
---|
1076 | // const poly p = L->m[k]; |
---|
1077 | // |
---|
1078 | // if ( p_GetComp(p, r) != comp ) |
---|
1079 | // continue; |
---|
1080 | // |
---|
1081 | // const unsigned long p_sev = p_GetShortExpVector(p, r); // to be stored in m_hash!!! |
---|
1082 | |
---|
1083 | // looking for an appropriate diviser p = L[k]... |
---|
1084 | CReducersHash::const_iterator it = m_hash.find(comp); // same module component |
---|
1085 | |
---|
1086 | if( it == m_hash.end() ) |
---|
1087 | return NULL; |
---|
1088 | |
---|
1089 | assume( m_L != NULL ); |
---|
1090 | |
---|
1091 | const TReducers& reducers = it->second; |
---|
1092 | |
---|
1093 | const BOOLEAN to_check = (syz_checker.IsNonempty()); // __TAILREDSYZ__ && |
---|
1094 | |
---|
1095 | const poly q = p_New(r); pNext(q) = NULL; |
---|
1096 | |
---|
1097 | if( __DEBUG__ ) |
---|
1098 | p_SetCoeff0(q, 0, r); // for printing q |
---|
1099 | |
---|
1100 | for(TReducers::const_iterator vit = reducers.begin(); vit != reducers.end(); vit++ ) |
---|
1101 | { |
---|
1102 | const poly p = (*vit)->m_lt; |
---|
1103 | |
---|
1104 | assume( p_GetComp(p, r) == comp ); |
---|
1105 | |
---|
1106 | const int k = (*vit)->m_label; |
---|
1107 | |
---|
1108 | assume( L->m[k] == p ); |
---|
1109 | |
---|
1110 | const unsigned long p_sev = (*vit)->m_sev; |
---|
1111 | |
---|
1112 | assume( p_sev == p_GetShortExpVector(p, r) ); |
---|
1113 | |
---|
1114 | // if( !p_LmShortDivisibleByNoComp(p, p_sev, product, not_sev, r) ) |
---|
1115 | // continue; |
---|
1116 | |
---|
1117 | if (p_sev & not_sev) |
---|
1118 | continue; |
---|
1119 | |
---|
1120 | if( !_p_LmDivisibleByNoComp(p, multiplier, t, r) ) |
---|
1121 | continue; |
---|
1122 | |
---|
1123 | |
---|
1124 | p_ExpVectorSum(q, multiplier, t, r); // q == product == multiplier * t |
---|
1125 | p_ExpVectorDiff(q, q, p, r); // (LM(product) / LM(L[k])) |
---|
1126 | |
---|
1127 | p_SetComp(q, k + 1, r); |
---|
1128 | p_Setm(q, r); |
---|
1129 | |
---|
1130 | // cannot allow something like: a*gen(i) - a*gen(i) |
---|
1131 | if (syzterm != NULL && (k == c)) |
---|
1132 | if (p_ExpVectorEqual(syzterm, q, r)) |
---|
1133 | { |
---|
1134 | if( __DEBUG__ ) |
---|
1135 | { |
---|
1136 | Print("_FindReducer::Test SYZTERM: q == syzterm !:((, syzterm is: "); |
---|
1137 | dPrint(syzterm, r, r, 1); |
---|
1138 | } |
---|
1139 | |
---|
1140 | continue; |
---|
1141 | } |
---|
1142 | |
---|
1143 | // while the complement (the fraction) is not reducible by leading syzygies |
---|
1144 | if( to_check && syz_checker.IsDivisible(q) ) |
---|
1145 | { |
---|
1146 | if( __DEBUG__ ) |
---|
1147 | { |
---|
1148 | PrintS("_FindReducer::Test LS: q is divisible by LS[?] !:((: "); |
---|
1149 | } |
---|
1150 | |
---|
1151 | continue; |
---|
1152 | } |
---|
1153 | |
---|
1154 | number n = n_Mult( p_GetCoeff(multiplier, r), p_GetCoeff(t, r), r); |
---|
1155 | p_SetCoeff0(q, n_Neg( n_Div(n, p_GetCoeff(p, r), r), r), r); |
---|
1156 | n_Delete(&n, r); |
---|
1157 | |
---|
1158 | return q; |
---|
1159 | } |
---|
1160 | |
---|
1161 | p_LmFree(q, r); |
---|
1162 | |
---|
1163 | return NULL; |
---|
1164 | } |
---|
1165 | |
---|
1166 | |
---|
1167 | poly CReducerFinder::FindReducer(const poly product, const poly syzterm, const CReducerFinder& syz_checker) const |
---|
1168 | { |
---|
1169 | const ring& r = m_rBaseRing; |
---|
1170 | |
---|
1171 | assume( product != NULL ); |
---|
1172 | |
---|
1173 | const ideal& L = m_L; assume( L != NULL ); // for debug/testing only! |
---|
1174 | |
---|
1175 | long c = 0; |
---|
1176 | |
---|
1177 | if (syzterm != NULL) |
---|
1178 | c = p_GetComp(syzterm, r) - 1; |
---|
1179 | |
---|
1180 | assume( c >= 0 && c < IDELEMS(L) ); |
---|
1181 | |
---|
1182 | if (__DEBUG__ && (syzterm != NULL)) |
---|
1183 | { |
---|
1184 | const poly m = L->m[c]; |
---|
1185 | |
---|
1186 | assume( m != NULL ); assume( pNext(m) == NULL ); |
---|
1187 | |
---|
1188 | poly lm = p_Mult_mm(leadmonom(syzterm, r), m, r); |
---|
1189 | assume( p_EqualPolys(lm, product, r) ); |
---|
1190 | |
---|
1191 | // def @@c = leadcomp(syzterm); int @@r = int(@@c); |
---|
1192 | // def @@product = leadmonomial(syzterm) * L[@@r]; |
---|
1193 | |
---|
1194 | p_Delete(&lm, r); |
---|
1195 | } |
---|
1196 | |
---|
1197 | const long comp = p_GetComp(product, r); |
---|
1198 | const unsigned long not_sev = ~p_GetShortExpVector(product, r); |
---|
1199 | |
---|
1200 | assume( comp >= 0 ); |
---|
1201 | |
---|
1202 | // for( int k = IDELEMS(L)-1; k>= 0; k-- ) |
---|
1203 | // { |
---|
1204 | // const poly p = L->m[k]; |
---|
1205 | // |
---|
1206 | // if ( p_GetComp(p, r) != comp ) |
---|
1207 | // continue; |
---|
1208 | // |
---|
1209 | // const unsigned long p_sev = p_GetShortExpVector(p, r); // to be stored in m_hash!!! |
---|
1210 | |
---|
1211 | // looking for an appropriate diviser p = L[k]... |
---|
1212 | CReducersHash::const_iterator it = m_hash.find(comp); // same module component |
---|
1213 | |
---|
1214 | if( it == m_hash.end() ) |
---|
1215 | return NULL; |
---|
1216 | |
---|
1217 | assume( m_L != NULL ); |
---|
1218 | |
---|
1219 | const TReducers& reducers = it->second; |
---|
1220 | |
---|
1221 | const BOOLEAN to_check = (syz_checker.IsNonempty()); // __TAILREDSYZ__ && |
---|
1222 | |
---|
1223 | const poly q = p_New(r); pNext(q) = NULL; |
---|
1224 | |
---|
1225 | if( __DEBUG__ ) |
---|
1226 | p_SetCoeff0(q, 0, r); // for printing q |
---|
1227 | |
---|
1228 | for(TReducers::const_iterator vit = reducers.begin(); vit != reducers.end(); vit++ ) |
---|
1229 | { |
---|
1230 | const poly p = (*vit)->m_lt; |
---|
1231 | |
---|
1232 | assume( p_GetComp(p, r) == comp ); |
---|
1233 | |
---|
1234 | const int k = (*vit)->m_label; |
---|
1235 | |
---|
1236 | assume( L->m[k] == p ); |
---|
1237 | |
---|
1238 | const unsigned long p_sev = (*vit)->m_sev; |
---|
1239 | |
---|
1240 | assume( p_sev == p_GetShortExpVector(p, r) ); |
---|
1241 | |
---|
1242 | if( !p_LmShortDivisibleByNoComp(p, p_sev, product, not_sev, r) ) |
---|
1243 | continue; |
---|
1244 | |
---|
1245 | // // ... which divides the product, looking for the _1st_ appropriate one! |
---|
1246 | // if( !p_LmDivisibleByNoComp(p, product, r) ) // included inside p_LmShortDivisibleBy! |
---|
1247 | // continue; |
---|
1248 | |
---|
1249 | p_ExpVectorDiff(q, product, p, r); // (LM(product) / LM(L[k])) |
---|
1250 | p_SetComp(q, k + 1, r); |
---|
1251 | p_Setm(q, r); |
---|
1252 | |
---|
1253 | // cannot allow something like: a*gen(i) - a*gen(i) |
---|
1254 | if (syzterm != NULL && (k == c)) |
---|
1255 | if (p_ExpVectorEqual(syzterm, q, r)) |
---|
1256 | { |
---|
1257 | if( __DEBUG__ ) |
---|
1258 | { |
---|
1259 | Print("_FindReducer::Test SYZTERM: q == syzterm !:((, syzterm is: "); |
---|
1260 | dPrint(syzterm, r, r, 1); |
---|
1261 | } |
---|
1262 | |
---|
1263 | continue; |
---|
1264 | } |
---|
1265 | |
---|
1266 | // while the complement (the fraction) is not reducible by leading syzygies |
---|
1267 | if( to_check && syz_checker.IsDivisible(q) ) |
---|
1268 | { |
---|
1269 | if( __DEBUG__ ) |
---|
1270 | { |
---|
1271 | PrintS("_FindReducer::Test LS: q is divisible by LS[?] !:((: "); |
---|
1272 | } |
---|
1273 | |
---|
1274 | continue; |
---|
1275 | } |
---|
1276 | |
---|
1277 | p_SetCoeff0(q, n_Neg( n_Div( p_GetCoeff(product, r), p_GetCoeff(p, r), r), r), r); |
---|
1278 | return q; |
---|
1279 | } |
---|
1280 | |
---|
1281 | p_LmFree(q, r); |
---|
1282 | |
---|
1283 | return NULL; |
---|
1284 | } |
---|
1285 | |
---|
1286 | |
---|
1287 | |
---|
1288 | CLCM::CLCM(const ideal& L, const SchreyerSyzygyComputationFlags& flags): |
---|
1289 | SchreyerSyzygyComputationFlags(flags), std::vector<bool>(), |
---|
1290 | m_compute(false), m_N(rVar(flags.m_rBaseRing)) |
---|
1291 | { |
---|
1292 | const ring& R = m_rBaseRing; |
---|
1293 | assume( flags.m_rBaseRing == R ); |
---|
1294 | assume( R != NULL ); |
---|
1295 | |
---|
1296 | assume( L != NULL ); |
---|
1297 | |
---|
1298 | if( __TAILREDSYZ__ && !__HYBRIDNF__ && (L != NULL)) |
---|
1299 | { |
---|
1300 | const int l = IDELEMS(L); |
---|
1301 | |
---|
1302 | assume( l > 0 ); |
---|
1303 | |
---|
1304 | resize(l, false); |
---|
1305 | |
---|
1306 | for( int k = l - 1; k >= 0; k-- ) |
---|
1307 | { |
---|
1308 | const poly a = L->m[k]; assume( a != NULL ); |
---|
1309 | |
---|
1310 | for (unsigned int j = m_N; j > 0; j--) |
---|
1311 | if ( !(*this)[j] ) |
---|
1312 | (*this)[j] = (p_GetExp(a, j, R) > 0); |
---|
1313 | } |
---|
1314 | |
---|
1315 | m_compute = true; |
---|
1316 | } |
---|
1317 | } |
---|
1318 | |
---|
1319 | |
---|
1320 | bool CLCM::Check(const poly m) const |
---|
1321 | { |
---|
1322 | assume( m != NULL ); |
---|
1323 | if( m_compute && (m != NULL)) |
---|
1324 | { |
---|
1325 | const ring& R = m_rBaseRing; |
---|
1326 | |
---|
1327 | assume( __TAILREDSYZ__ && !__HYBRIDNF__ ); |
---|
1328 | |
---|
1329 | for (unsigned int j = m_N; j > 0; j--) |
---|
1330 | if ( (*this)[j] ) |
---|
1331 | if(p_GetExp(m, j, R) > 0) |
---|
1332 | return true; |
---|
1333 | |
---|
1334 | return false; |
---|
1335 | |
---|
1336 | } else return true; |
---|
1337 | } |
---|
1338 | |
---|
1339 | |
---|
1340 | |
---|
1341 | |
---|
1342 | END_NAMESPACE END_NAMESPACE_SINGULARXX |
---|
1343 | |
---|
1344 | |
---|
1345 | // Vi-modeline: vim: filetype=c:syntax:shiftwidth=2:tabstop=8:textwidth=0:expandtab |
---|