1 | // -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- |
---|
2 | /*****************************************************************************\ |
---|
3 | * Computer Algebra System SINGULAR |
---|
4 | \*****************************************************************************/ |
---|
5 | /** @file syzextra.cc |
---|
6 | * |
---|
7 | * Here we implement the Computation of Syzygies |
---|
8 | * |
---|
9 | * ABSTRACT: Computation of Syzygies due to Schreyer |
---|
10 | * |
---|
11 | * @author Oleksandr Motsak |
---|
12 | * |
---|
13 | **/ |
---|
14 | /*****************************************************************************/ |
---|
15 | |
---|
16 | // include header file |
---|
17 | #include <kernel/mod2.h> |
---|
18 | |
---|
19 | #include "syzextra.h" |
---|
20 | |
---|
21 | #include "DebugPrint.h" |
---|
22 | |
---|
23 | #include <omalloc/omalloc.h> |
---|
24 | |
---|
25 | #include <misc/intvec.h> |
---|
26 | #include <misc/options.h> |
---|
27 | |
---|
28 | #include <coeffs/coeffs.h> |
---|
29 | |
---|
30 | #include <polys/monomials/p_polys.h> |
---|
31 | #include <polys/monomials/ring.h> |
---|
32 | #include <polys/simpleideals.h> |
---|
33 | |
---|
34 | #include <kernel/kstd1.h> |
---|
35 | #include <kernel/polys.h> |
---|
36 | #include <kernel/syz.h> |
---|
37 | #include <kernel/ideals.h> |
---|
38 | |
---|
39 | #include <kernel/timer.h> |
---|
40 | |
---|
41 | |
---|
42 | #include <Singular/tok.h> |
---|
43 | #include <Singular/ipid.h> |
---|
44 | #include <Singular/lists.h> |
---|
45 | #include <Singular/attrib.h> |
---|
46 | |
---|
47 | #include <Singular/ipid.h> |
---|
48 | #include <Singular/ipshell.h> // For iiAddCproc |
---|
49 | |
---|
50 | #include <stdio.h> |
---|
51 | #include <stdlib.h> |
---|
52 | #include <string.h> |
---|
53 | |
---|
54 | // USING_NAMESPACE_SINGULARXX; |
---|
55 | USING_NAMESPACE( SINGULARXXNAME :: DEBUG ) |
---|
56 | |
---|
57 | |
---|
58 | BEGIN_NAMESPACE_SINGULARXX BEGIN_NAMESPACE(SYZEXTRA) |
---|
59 | |
---|
60 | |
---|
61 | BEGIN_NAMESPACE(SORT_c_ds) |
---|
62 | |
---|
63 | |
---|
64 | #ifdef _GNU_SOURCE |
---|
65 | static int cmp_c_ds(const void *p1, const void *p2, void *R) |
---|
66 | { |
---|
67 | #else |
---|
68 | static int cmp_c_ds(const void *p1, const void *p2) |
---|
69 | { |
---|
70 | void *R = currRing; |
---|
71 | #endif |
---|
72 | |
---|
73 | const int YES = 1; |
---|
74 | const int NO = -1; |
---|
75 | |
---|
76 | const ring r = (const ring) R; // TODO/NOTE: the structure is known: C, lp!!! |
---|
77 | |
---|
78 | assume( r == currRing ); |
---|
79 | |
---|
80 | const poly a = *(const poly*)p1; |
---|
81 | const poly b = *(const poly*)p2; |
---|
82 | |
---|
83 | assume( a != NULL ); |
---|
84 | assume( b != NULL ); |
---|
85 | |
---|
86 | assume( p_LmTest(a, r) ); |
---|
87 | assume( p_LmTest(b, r) ); |
---|
88 | |
---|
89 | |
---|
90 | const signed long iCompDiff = p_GetComp(a, r) - p_GetComp(b, r); |
---|
91 | |
---|
92 | // TODO: test this!!!!!!!!!!!!!!!! |
---|
93 | |
---|
94 | //return -( compare (c, qsorts) ) |
---|
95 | |
---|
96 | #ifndef NDEBUG |
---|
97 | const int __DEBUG__ = 0; |
---|
98 | if( __DEBUG__ ) |
---|
99 | { |
---|
100 | PrintS("cmp_c_ds: a, b: \np1: "); dPrint(a, r, r, 2); |
---|
101 | PrintS("b: "); dPrint(b, r, r, 2); |
---|
102 | PrintLn(); |
---|
103 | } |
---|
104 | #endif |
---|
105 | |
---|
106 | |
---|
107 | if( iCompDiff > 0 ) |
---|
108 | return YES; |
---|
109 | |
---|
110 | if( iCompDiff < 0 ) |
---|
111 | return NO; |
---|
112 | |
---|
113 | assume( iCompDiff == 0 ); |
---|
114 | |
---|
115 | const signed long iDegDiff = p_Totaldegree(a, r) - p_Totaldegree(b, r); |
---|
116 | |
---|
117 | if( iDegDiff > 0 ) |
---|
118 | return YES; |
---|
119 | |
---|
120 | if( iDegDiff < 0 ) |
---|
121 | return NO; |
---|
122 | |
---|
123 | assume( iDegDiff == 0 ); |
---|
124 | |
---|
125 | #ifndef NDEBUG |
---|
126 | if( __DEBUG__ ) |
---|
127 | { |
---|
128 | PrintS("cmp_c_ds: a & b have the same comp & deg! "); PrintLn(); |
---|
129 | } |
---|
130 | #endif |
---|
131 | |
---|
132 | for (int v = rVar(r); v > 0; v--) |
---|
133 | { |
---|
134 | assume( v > 0 ); |
---|
135 | assume( v <= rVar(r) ); |
---|
136 | |
---|
137 | const signed int d = p_GetExp(a, v, r) - p_GetExp(b, v, r); |
---|
138 | |
---|
139 | if( d > 0 ) |
---|
140 | return YES; |
---|
141 | |
---|
142 | if( d < 0 ) |
---|
143 | return NO; |
---|
144 | |
---|
145 | assume( d == 0 ); |
---|
146 | } |
---|
147 | |
---|
148 | return 0; |
---|
149 | } |
---|
150 | |
---|
151 | END_NAMESPACE |
---|
152 | /* namespace SORT_c_ds */ |
---|
153 | |
---|
154 | /// return a new term: leading coeff * leading monomial of p |
---|
155 | /// with 0 leading component! |
---|
156 | poly leadmonom(const poly p, const ring r, const bool bSetZeroComp) |
---|
157 | { |
---|
158 | poly m = NULL; |
---|
159 | |
---|
160 | if( p != NULL ) |
---|
161 | { |
---|
162 | assume( p != NULL ); |
---|
163 | assume( p_LmTest(p, r) ); |
---|
164 | |
---|
165 | m = p_LmInit(p, r); |
---|
166 | p_SetCoeff0(m, n_Copy(p_GetCoeff(p, r), r), r); |
---|
167 | |
---|
168 | if( bSetZeroComp ) |
---|
169 | p_SetComp(m, 0, r); |
---|
170 | p_Setm(m, r); |
---|
171 | |
---|
172 | |
---|
173 | assume( m != NULL ); |
---|
174 | assume( pNext(m) == NULL ); |
---|
175 | assume( p_LmTest(m, r) ); |
---|
176 | |
---|
177 | if( bSetZeroComp ) |
---|
178 | assume( p_GetComp(m, r) == 0 ); |
---|
179 | } |
---|
180 | |
---|
181 | return m; |
---|
182 | } |
---|
183 | |
---|
184 | |
---|
185 | |
---|
186 | poly p_Tail(const poly p, const ring r) |
---|
187 | { |
---|
188 | if( p == NULL) |
---|
189 | return NULL; |
---|
190 | else |
---|
191 | return p_Copy( pNext(p), r ); |
---|
192 | } |
---|
193 | |
---|
194 | |
---|
195 | ideal id_Tail(const ideal id, const ring r) |
---|
196 | { |
---|
197 | if( id == NULL) |
---|
198 | return NULL; |
---|
199 | |
---|
200 | const ideal newid = idInit(IDELEMS(id),id->rank); |
---|
201 | |
---|
202 | for (int i=IDELEMS(id) - 1; i >= 0; i--) |
---|
203 | newid->m[i] = p_Tail( id->m[i], r ); |
---|
204 | |
---|
205 | newid->rank = id_RankFreeModule(newid, currRing); |
---|
206 | |
---|
207 | return newid; |
---|
208 | } |
---|
209 | |
---|
210 | |
---|
211 | |
---|
212 | void Sort_c_ds(const ideal id, const ring r) |
---|
213 | { |
---|
214 | const int sizeNew = IDELEMS(id); |
---|
215 | |
---|
216 | #ifdef _GNU_SOURCE |
---|
217 | #define qsort_my(m, s, ss, r, cmp) qsort_r(m, s, ss, cmp, r) |
---|
218 | #else |
---|
219 | #define qsort_my(m, s, ss, r, cmp) qsort_r(m, s, ss, cmp) |
---|
220 | #endif |
---|
221 | |
---|
222 | if( sizeNew >= 2 ) |
---|
223 | qsort_my(id->m, sizeNew, sizeof(poly), r, FROM_NAMESPACE(SORT_c_ds, cmp_c_ds)); |
---|
224 | |
---|
225 | #undef qsort_my |
---|
226 | |
---|
227 | id->rank = id_RankFreeModule(id, r); |
---|
228 | } |
---|
229 | |
---|
230 | /// Clean up all the accumulated data |
---|
231 | void SchreyerSyzygyComputation::CleanUp() |
---|
232 | { |
---|
233 | extern void id_Delete (ideal*, const ring); |
---|
234 | |
---|
235 | id_Delete(const_cast<ideal*>(&m_idTails), m_rBaseRing); // TODO!!! |
---|
236 | } |
---|
237 | /* |
---|
238 | for( TTailTerms::const_iterator it = m_idTailTerms.begin(); it != m_idTailTerms.end(); it++ ) |
---|
239 | { |
---|
240 | const TTail& v = *it; |
---|
241 | for(TTail::const_iterator vit = v.begin(); vit != v.end(); vit++ ) |
---|
242 | delete const_cast<CTailTerm*>(*vit); |
---|
243 | } |
---|
244 | */ |
---|
245 | |
---|
246 | |
---|
247 | |
---|
248 | int CReducerFinder::PreProcessTerm(const poly t, CReducerFinder& syzChecker) const |
---|
249 | { |
---|
250 | assume( t != NULL ); |
---|
251 | |
---|
252 | if( __DEBUG__ && __TAILREDSYZ__ ) |
---|
253 | assume( !IsDivisible(t) ); // each input term should NOT be in <L> |
---|
254 | |
---|
255 | const ring r = m_rBaseRing; |
---|
256 | |
---|
257 | |
---|
258 | if( __TAILREDSYZ__ ) |
---|
259 | if( p_LmIsConstant(t, r) ) // most basic case of baing coprime with L, whatever that is... |
---|
260 | return 1; // TODO: prove this...? |
---|
261 | |
---|
262 | // return false; // appears to be fine |
---|
263 | |
---|
264 | const long comp = p_GetComp(t, r); |
---|
265 | |
---|
266 | CReducersHash::const_iterator itr = m_hash.find(comp); |
---|
267 | |
---|
268 | if ( itr == m_hash.end() ) |
---|
269 | return 2; // no such leading component!!! |
---|
270 | |
---|
271 | const bool bIdealCase = (comp == 0); |
---|
272 | const bool bSyzCheck = syzChecker.IsNonempty(); // need to check even in ideal case????? proof? "&& !bIdealCase" |
---|
273 | |
---|
274 | if( __TAILREDSYZ__ && (bIdealCase || bSyzCheck) ) |
---|
275 | { |
---|
276 | const TReducers& v = itr->second; |
---|
277 | const int N = rVar(r); |
---|
278 | // TODO: extract exps of t beforehand?! |
---|
279 | bool coprime = true; |
---|
280 | for(TReducers::const_iterator vit = v.begin(); (vit != v.end()) && coprime; ++vit ) |
---|
281 | { |
---|
282 | assume( m_L->m[(*vit)->m_label] == (*vit)->m_lt ); |
---|
283 | |
---|
284 | const poly p = (*vit)->m_lt; |
---|
285 | |
---|
286 | assume( p_GetComp(p, r) == comp ); |
---|
287 | |
---|
288 | // TODO: check if coprime with Leads... if __TAILREDSYZ__ ! |
---|
289 | for( int var = N; var > 0; --var ) |
---|
290 | if( (p_GetExp(p, var, r) != 0) && (p_GetExp(t, var, r) != 0) ) |
---|
291 | { |
---|
292 | if( __DEBUG__ || 0) |
---|
293 | { |
---|
294 | PrintS("CReducerFinder::PreProcessTerm, 't' is NOT co-prime with the following leading term: \n"); |
---|
295 | dPrint(p, r, r, 1); |
---|
296 | } |
---|
297 | coprime = false; // t not coprime with p! |
---|
298 | break; |
---|
299 | } |
---|
300 | |
---|
301 | if( bSyzCheck && coprime ) |
---|
302 | { |
---|
303 | poly ss = p_LmInit(t, r); |
---|
304 | p_SetCoeff0(ss, n_Init(1, r), r); // for delete & printout only!... |
---|
305 | p_SetComp(ss, (*vit)->m_label + 1, r); // coeff? |
---|
306 | p_Setm(ss, r); |
---|
307 | |
---|
308 | coprime = ( syzChecker.IsDivisible(ss) ); |
---|
309 | |
---|
310 | if( __DEBUG__ && !coprime) |
---|
311 | { |
---|
312 | PrintS("CReducerFinder::PreProcessTerm, 't' is co-prime with p but may lead to NOT divisible syz.term: \n"); |
---|
313 | dPrint(ss, r, r, 1); |
---|
314 | } |
---|
315 | |
---|
316 | p_LmDelete(&ss, r); // deletes coeff as well??? |
---|
317 | } |
---|
318 | |
---|
319 | } |
---|
320 | |
---|
321 | if( __DEBUG__ && coprime ) |
---|
322 | PrintS("CReducerFinder::PreProcessTerm, the following 't' is 'co-prime' with all of leading terms! \n"); |
---|
323 | |
---|
324 | return coprime? 3: 0; // t was coprime with all of leading terms!!! |
---|
325 | |
---|
326 | } |
---|
327 | // return true; // delete the term |
---|
328 | |
---|
329 | return 0; |
---|
330 | } |
---|
331 | |
---|
332 | |
---|
333 | void SchreyerSyzygyComputation::SetUpTailTerms() |
---|
334 | { |
---|
335 | const ideal idTails = m_idTails; |
---|
336 | assume( idTails != NULL ); |
---|
337 | assume( idTails->m != NULL ); |
---|
338 | const ring r = m_rBaseRing; |
---|
339 | |
---|
340 | if( __DEBUG__ || 0) |
---|
341 | { |
---|
342 | PrintS("SchreyerSyzygyComputation::SetUpTailTerms(): Tails: \n"); |
---|
343 | dPrint(idTails, r, r, 0); |
---|
344 | } |
---|
345 | |
---|
346 | unsigned long pp[4] = {0,0,0,0}; // count preprocessed terms... |
---|
347 | |
---|
348 | for( int p = IDELEMS(idTails) - 1; p >= 0; --p ) |
---|
349 | for( poly* tt = &(idTails->m[p]); (*tt) != NULL; ) |
---|
350 | { |
---|
351 | const poly t = *tt; |
---|
352 | const int k = m_div.PreProcessTerm(t, m_checker); // 0..3 |
---|
353 | assume( 0 <= k && k <= 3 ); |
---|
354 | pp[k]++; |
---|
355 | if( k ) |
---|
356 | { |
---|
357 | if( __DEBUG__) |
---|
358 | { |
---|
359 | Print("SchreyerSyzygyComputation::SetUpTailTerms(): PP (%d) the following TT: \n", k); |
---|
360 | dPrint(t, r, r, 1); |
---|
361 | } |
---|
362 | |
---|
363 | (*tt) = p_LmDeleteAndNext(t, r); // delete the lead and next... |
---|
364 | } |
---|
365 | else |
---|
366 | tt = &pNext(t); // go next? |
---|
367 | |
---|
368 | } |
---|
369 | |
---|
370 | if( TEST_OPT_PROT || 1) |
---|
371 | Print(" **!!** SchreyerSyzygyComputation::SetUpTailTerms()::PreProcessing(): X: {c: %lu, C: %lu, P: %lu} + %lu\n", pp[1], pp[2], pp[3], pp[0]); |
---|
372 | |
---|
373 | if( __DEBUG__ || 0) |
---|
374 | { |
---|
375 | PrintS("SchreyerSyzygyComputation::SetUpTailTerms(): Preprocessed Tails: \n"); |
---|
376 | dPrint(idTails, r, r, 0); |
---|
377 | } |
---|
378 | } |
---|
379 | /* |
---|
380 | m_idTailTerms.resize( IDELEMS(idTails) ); |
---|
381 | |
---|
382 | for( unsigned int p = IDELEMS(idTails) - 1; p >= 0; p -- ) |
---|
383 | { |
---|
384 | TTail& v = m_idTailTerms[p]; |
---|
385 | poly t = idTails->m[p]; |
---|
386 | v.resize( pLength(t) ); |
---|
387 | |
---|
388 | unsigned int pp = 0; |
---|
389 | |
---|
390 | while( t != NULL ) |
---|
391 | { |
---|
392 | assume( t != NULL ); |
---|
393 | // TODO: compute L:t! |
---|
394 | // ideal reducers; |
---|
395 | // CReducerFinder m_reducers |
---|
396 | |
---|
397 | CTailTerm* d = v[pp] = new CTailTerm(); |
---|
398 | |
---|
399 | ++pp; pIter(t); |
---|
400 | } |
---|
401 | } |
---|
402 | */ |
---|
403 | |
---|
404 | |
---|
405 | |
---|
406 | ideal SchreyerSyzygyComputation::Compute1LeadingSyzygyTerms() |
---|
407 | { |
---|
408 | const ideal& id = m_idLeads; |
---|
409 | const ring& r = m_rBaseRing; |
---|
410 | // const SchreyerSyzygyComputationFlags& attributes = m_atttributes; |
---|
411 | |
---|
412 | // const BOOLEAN __DEBUG__ = attributes.__DEBUG__; |
---|
413 | // const BOOLEAN __SYZCHECK__ = attributes.__SYZCHECK__; |
---|
414 | // const BOOLEAN __LEAD2SYZ__ = attributes.__LEAD2SYZ__; |
---|
415 | // const BOOLEAN __HYBRIDNF__ = attributes.__HYBRIDNF__; |
---|
416 | // const BOOLEAN __TAILREDSYZ__ = attributes.__TAILREDSYZ__; |
---|
417 | |
---|
418 | assume(!__LEAD2SYZ__); |
---|
419 | |
---|
420 | // 1. set of components S? |
---|
421 | // 2. for each component c from S: set of indices of leading terms |
---|
422 | // with this component? |
---|
423 | // 3. short exp. vectors for each leading term? |
---|
424 | |
---|
425 | const int size = IDELEMS(id); |
---|
426 | |
---|
427 | if( size < 2 ) |
---|
428 | { |
---|
429 | const ideal newid = idInit(1, 0); newid->m[0] = NULL; // zero ideal... |
---|
430 | return newid; |
---|
431 | } |
---|
432 | |
---|
433 | // TODO/NOTE: input is supposed to be (reverse-) sorted wrt "(c,ds)"!?? |
---|
434 | |
---|
435 | // components should come in groups: count elements in each group |
---|
436 | // && estimate the real size!!! |
---|
437 | |
---|
438 | |
---|
439 | // use just a vector instead??? |
---|
440 | const ideal newid = idInit( (size * (size-1))/2, size); // maximal size: ideal case! |
---|
441 | |
---|
442 | int k = 0; |
---|
443 | |
---|
444 | for (int j = 0; j < size; j++) |
---|
445 | { |
---|
446 | const poly p = id->m[j]; |
---|
447 | assume( p != NULL ); |
---|
448 | const int c = p_GetComp(p, r); |
---|
449 | |
---|
450 | for (int i = j - 1; i >= 0; i--) |
---|
451 | { |
---|
452 | const poly pp = id->m[i]; |
---|
453 | assume( pp != NULL ); |
---|
454 | const int cc = p_GetComp(pp, r); |
---|
455 | |
---|
456 | if( c != cc ) |
---|
457 | continue; |
---|
458 | |
---|
459 | const poly m = p_Init(r); // p_New??? |
---|
460 | |
---|
461 | // m = LCM(p, pp) / p! // TODO: optimize: knowing the ring structure: (C/lp)! |
---|
462 | for (int v = rVar(r); v > 0; v--) |
---|
463 | { |
---|
464 | assume( v > 0 ); |
---|
465 | assume( v <= rVar(r) ); |
---|
466 | |
---|
467 | const short e1 = p_GetExp(p , v, r); |
---|
468 | const short e2 = p_GetExp(pp, v, r); |
---|
469 | |
---|
470 | if( e1 >= e2 ) |
---|
471 | p_SetExp(m, v, 0, r); |
---|
472 | else |
---|
473 | p_SetExp(m, v, e2 - e1, r); |
---|
474 | |
---|
475 | } |
---|
476 | |
---|
477 | assume( (j > i) && (i >= 0) ); |
---|
478 | |
---|
479 | p_SetComp(m, j + 1, r); |
---|
480 | pNext(m) = NULL; |
---|
481 | p_SetCoeff0(m, n_Init(1, r->cf), r); // for later... |
---|
482 | |
---|
483 | p_Setm(m, r); // should not do anything!!! |
---|
484 | |
---|
485 | newid->m[k++] = m; |
---|
486 | } |
---|
487 | } |
---|
488 | |
---|
489 | // if( __DEBUG__ && FALSE ) |
---|
490 | // { |
---|
491 | // PrintS("ComputeLeadingSyzygyTerms::Temp0: \n"); |
---|
492 | // dPrint(newid, r, r, 1); |
---|
493 | // } |
---|
494 | |
---|
495 | // the rest of newid is assumed to be zeroes... |
---|
496 | |
---|
497 | // simplify(newid, 2 + 32)?? |
---|
498 | // sort(newid, "C,ds")[1]??? |
---|
499 | id_DelDiv(newid, r); // #define SIMPL_LMDIV 32 |
---|
500 | |
---|
501 | // if( __DEBUG__ && FALSE ) |
---|
502 | // { |
---|
503 | // PrintS("ComputeLeadingSyzygyTerms::Temp1: \n"); |
---|
504 | // dPrint(newid, r, r, 1); |
---|
505 | // } |
---|
506 | |
---|
507 | idSkipZeroes(newid); // #define SIMPL_NULL 2 |
---|
508 | |
---|
509 | // if( __DEBUG__ ) |
---|
510 | // { |
---|
511 | // PrintS("ComputeLeadingSyzygyTerms::Output: \n"); |
---|
512 | // dPrint(newid, r, r, 1); |
---|
513 | // } |
---|
514 | |
---|
515 | Sort_c_ds(newid, r); |
---|
516 | |
---|
517 | return newid; |
---|
518 | } |
---|
519 | |
---|
520 | ideal SchreyerSyzygyComputation::Compute2LeadingSyzygyTerms() |
---|
521 | { |
---|
522 | const ideal& id = m_idLeads; |
---|
523 | const ring& r = m_rBaseRing; |
---|
524 | // const SchreyerSyzygyComputationFlags& attributes = m_atttributes; |
---|
525 | |
---|
526 | // const BOOLEAN __DEBUG__ = attributes.__DEBUG__; |
---|
527 | // const BOOLEAN __SYZCHECK__ = attributes.__SYZCHECK__; |
---|
528 | // const BOOLEAN __LEAD2SYZ__ = attributes.__LEAD2SYZ__; |
---|
529 | // const BOOLEAN __HYBRIDNF__ = attributes.__HYBRIDNF__; |
---|
530 | // const BOOLEAN __TAILREDSYZ__ = attributes.__TAILREDSYZ__; |
---|
531 | |
---|
532 | |
---|
533 | // 1. set of components S? |
---|
534 | // 2. for each component c from S: set of indices of leading terms |
---|
535 | // with this component? |
---|
536 | // 3. short exp. vectors for each leading term? |
---|
537 | |
---|
538 | const int size = IDELEMS(id); |
---|
539 | |
---|
540 | if( size < 2 ) |
---|
541 | { |
---|
542 | const ideal newid = idInit(1, 1); newid->m[0] = NULL; // zero module... |
---|
543 | return newid; |
---|
544 | } |
---|
545 | |
---|
546 | |
---|
547 | // TODO/NOTE: input is supposed to be sorted wrt "C,ds"!?? |
---|
548 | |
---|
549 | // components should come in groups: count elements in each group |
---|
550 | // && estimate the real size!!! |
---|
551 | |
---|
552 | |
---|
553 | // use just a vector instead??? |
---|
554 | ideal newid = idInit( (size * (size-1))/2, size); // maximal size: ideal case! |
---|
555 | |
---|
556 | int k = 0; |
---|
557 | |
---|
558 | for (int j = 0; j < size; j++) |
---|
559 | { |
---|
560 | const poly p = id->m[j]; |
---|
561 | assume( p != NULL ); |
---|
562 | const int c = p_GetComp(p, r); |
---|
563 | |
---|
564 | for (int i = j - 1; i >= 0; i--) |
---|
565 | { |
---|
566 | const poly pp = id->m[i]; |
---|
567 | assume( pp != NULL ); |
---|
568 | const int cc = p_GetComp(pp, r); |
---|
569 | |
---|
570 | if( c != cc ) |
---|
571 | continue; |
---|
572 | |
---|
573 | // allocate memory & zero it out! |
---|
574 | const poly m = p_Init(r); const poly mm = p_Init(r); |
---|
575 | |
---|
576 | |
---|
577 | // m = LCM(p, pp) / p! mm = LCM(p, pp) / pp! |
---|
578 | // TODO: optimize: knowing the ring structure: (C/lp)! |
---|
579 | |
---|
580 | for (int v = rVar(r); v > 0; v--) |
---|
581 | { |
---|
582 | assume( v > 0 ); |
---|
583 | assume( v <= rVar(r) ); |
---|
584 | |
---|
585 | const short e1 = p_GetExp(p , v, r); |
---|
586 | const short e2 = p_GetExp(pp, v, r); |
---|
587 | |
---|
588 | if( e1 >= e2 ) |
---|
589 | p_SetExp(mm, v, e1 - e2, r); // p_SetExp(m, v, 0, r); |
---|
590 | else |
---|
591 | p_SetExp(m, v, e2 - e1, r); // p_SetExp(mm, v, 0, r); |
---|
592 | |
---|
593 | } |
---|
594 | |
---|
595 | assume( (j > i) && (i >= 0) ); |
---|
596 | |
---|
597 | p_SetComp(m, j + 1, r); |
---|
598 | p_SetComp(mm, i + 1, r); |
---|
599 | |
---|
600 | const number& lc1 = p_GetCoeff(p , r); |
---|
601 | const number& lc2 = p_GetCoeff(pp, r); |
---|
602 | |
---|
603 | number g = n_Lcm( lc1, lc2, r ); |
---|
604 | |
---|
605 | p_SetCoeff0(m , n_Div(g, lc1, r), r); |
---|
606 | p_SetCoeff0(mm, n_Neg(n_Div(g, lc2, r), r), r); |
---|
607 | |
---|
608 | n_Delete(&g, r); |
---|
609 | |
---|
610 | p_Setm(m, r); // should not do anything!!! |
---|
611 | p_Setm(mm, r); // should not do anything!!! |
---|
612 | |
---|
613 | pNext(m) = mm; // pNext(mm) = NULL; |
---|
614 | |
---|
615 | newid->m[k++] = m; |
---|
616 | } |
---|
617 | } |
---|
618 | |
---|
619 | // if( __DEBUG__ && FALSE ) |
---|
620 | // { |
---|
621 | // PrintS("Compute2LeadingSyzygyTerms::Temp0: \n"); |
---|
622 | // dPrint(newid, r, r, 1); |
---|
623 | // } |
---|
624 | |
---|
625 | if( !__TAILREDSYZ__ ) |
---|
626 | { |
---|
627 | // simplify(newid, 2 + 32)?? |
---|
628 | // sort(newid, "C,ds")[1]??? |
---|
629 | id_DelDiv(newid, r); // #define SIMPL_LMDIV 32 |
---|
630 | |
---|
631 | // if( __DEBUG__ && FALSE ) |
---|
632 | // { |
---|
633 | // PrintS("Compute2LeadingSyzygyTerms::Temp1 (deldiv): \n"); |
---|
634 | // dPrint(newid, r, r, 1); |
---|
635 | // } |
---|
636 | } |
---|
637 | else |
---|
638 | { |
---|
639 | // option(redSB); option(redTail); |
---|
640 | // TEST_OPT_REDSB |
---|
641 | // TEST_OPT_REDTAIL |
---|
642 | assume( r == currRing ); |
---|
643 | |
---|
644 | BITSET _save_test; SI_SAVE_OPT1(_save_test); |
---|
645 | SI_RESTORE_OPT1(Sy_bit(OPT_REDTAIL) | Sy_bit(OPT_REDSB) | _save_test); |
---|
646 | |
---|
647 | intvec* w=new intvec(IDELEMS(newid)); |
---|
648 | ideal tmp = kStd(newid, currQuotient, isHomog, &w); |
---|
649 | delete w; |
---|
650 | |
---|
651 | SI_RESTORE_OPT1(_save_test) |
---|
652 | |
---|
653 | id_Delete(&newid, r); |
---|
654 | newid = tmp; |
---|
655 | |
---|
656 | // if( __DEBUG__ && FALSE ) |
---|
657 | // { |
---|
658 | // PrintS("Compute2LeadingSyzygyTerms::Temp1 (std): \n"); |
---|
659 | // dPrint(newid, r, r, 1); |
---|
660 | // } |
---|
661 | |
---|
662 | } |
---|
663 | |
---|
664 | idSkipZeroes(newid); |
---|
665 | |
---|
666 | Sort_c_ds(newid, r); |
---|
667 | |
---|
668 | return newid; |
---|
669 | } |
---|
670 | |
---|
671 | poly SchreyerSyzygyComputation::TraverseNF(const poly a, const poly a2) const |
---|
672 | { |
---|
673 | const ideal& L = m_idLeads; |
---|
674 | const ideal& T = m_idTails; |
---|
675 | |
---|
676 | const ring& R = m_rBaseRing; |
---|
677 | |
---|
678 | const int r = p_GetComp(a, R) - 1; |
---|
679 | |
---|
680 | assume( r >= 0 && r < IDELEMS(T) ); |
---|
681 | assume( r >= 0 && r < IDELEMS(L) ); |
---|
682 | |
---|
683 | poly aa = leadmonom(a, R); assume( aa != NULL); // :( |
---|
684 | poly t = TraverseTail(aa, r); |
---|
685 | |
---|
686 | if( a2 != NULL ) |
---|
687 | { |
---|
688 | assume( __LEAD2SYZ__ ); |
---|
689 | |
---|
690 | const int r2 = p_GetComp(a2, R) - 1; poly aa2 = leadmonom(a2, R); // :( |
---|
691 | |
---|
692 | assume( r2 >= 0 && r2 < IDELEMS(T) ); |
---|
693 | |
---|
694 | t = p_Add_q(a2, p_Add_q(t, TraverseTail(aa2, r2), R), R); |
---|
695 | |
---|
696 | p_Delete(&aa2, R); |
---|
697 | } else |
---|
698 | t = p_Add_q(t, ReduceTerm(aa, L->m[r], a), R); |
---|
699 | |
---|
700 | p_Delete(&aa, R); |
---|
701 | |
---|
702 | return t; |
---|
703 | } |
---|
704 | |
---|
705 | |
---|
706 | void SchreyerSyzygyComputation::ComputeSyzygy() |
---|
707 | { |
---|
708 | assume( m_idLeads != NULL ); |
---|
709 | assume( m_idTails != NULL ); |
---|
710 | |
---|
711 | const ideal& L = m_idLeads; |
---|
712 | const ideal& T = m_idTails; |
---|
713 | |
---|
714 | ideal& TT = m_syzTails; |
---|
715 | const ring& R = m_rBaseRing; |
---|
716 | |
---|
717 | assume( IDELEMS(L) == IDELEMS(T) ); |
---|
718 | int t, r; |
---|
719 | |
---|
720 | if( m_syzLeads == NULL ) |
---|
721 | { |
---|
722 | if( TEST_OPT_PROT || 1) |
---|
723 | { |
---|
724 | t = getTimer(); r = getRTimer(); |
---|
725 | Print("%5d **!TIME4!** SchreyerSyzygyComputation::ComputeSyzygy::ComputeLeadingSyzygyTerms: t: %d, r: %d\n", r, t, r); |
---|
726 | } |
---|
727 | ComputeLeadingSyzygyTerms( __LEAD2SYZ__ && !__IGNORETAILS__ ); // 2 terms OR 1 term! |
---|
728 | if( TEST_OPT_PROT || 1) |
---|
729 | { |
---|
730 | t = getTimer() - t; r = getRTimer() - r; |
---|
731 | Print("%5d **!TIME4!** SchreyerSyzygyComputation::ComputeSyzygy::ComputeLeadingSyzygyTerms: dt: %d, dr: %d\n", getRTimer(), t, r); |
---|
732 | } |
---|
733 | |
---|
734 | } |
---|
735 | |
---|
736 | assume( m_syzLeads != NULL ); |
---|
737 | ideal& LL = m_syzLeads; |
---|
738 | const int size = IDELEMS(LL); |
---|
739 | |
---|
740 | TT = idInit(size, 0); |
---|
741 | |
---|
742 | if( size == 1 && LL->m[0] == NULL ) |
---|
743 | return; |
---|
744 | |
---|
745 | // use hybrid method? |
---|
746 | const bool method = (__HYBRIDNF__ == 1) || (__HYBRIDNF__ == 2 && __SYZNUMBER__ < 3); |
---|
747 | |
---|
748 | if( !__IGNORETAILS__) |
---|
749 | { |
---|
750 | if( T != NULL ) |
---|
751 | { |
---|
752 | if( TEST_OPT_PROT || 1 ) |
---|
753 | { |
---|
754 | t = getTimer(); r = getRTimer(); |
---|
755 | Print("%5d **!TIME4!** SchreyerSyzygyComputation::ComputeSyzygy::SetUpTailTerms(): t: %d, r: %d\n", r, t, r); |
---|
756 | } |
---|
757 | |
---|
758 | SetUpTailTerms(); |
---|
759 | |
---|
760 | if( TEST_OPT_PROT || 1) |
---|
761 | { |
---|
762 | t = getTimer() - t; r = getRTimer() - r; |
---|
763 | Print("%5d **!TIME4!** SchreyerSyzygyComputation::ComputeSyzygy::SetUpTailTerms(): dt: %d, dr: %d\n", getRTimer(), t, r); |
---|
764 | } |
---|
765 | } |
---|
766 | } |
---|
767 | |
---|
768 | if( TEST_OPT_PROT || 1) |
---|
769 | { |
---|
770 | t = getTimer(); r = getRTimer(); |
---|
771 | Print("%5d **!TIME4!** SchreyerSyzygyComputation::ComputeSyzygy::SyzygyLift: t: %d, r: %d\n", r, t, r); |
---|
772 | } |
---|
773 | |
---|
774 | for( int k = size - 1; k >= 0; k-- ) |
---|
775 | { |
---|
776 | const poly a = LL->m[k]; assume( a != NULL ); |
---|
777 | |
---|
778 | poly a2 = pNext(a); |
---|
779 | |
---|
780 | // Splitting 2-terms Leading syzygy module |
---|
781 | if( a2 != NULL ) |
---|
782 | pNext(a) = NULL; |
---|
783 | |
---|
784 | if( __IGNORETAILS__ ) |
---|
785 | { |
---|
786 | TT->m[k] = NULL; |
---|
787 | |
---|
788 | assume( a2 != NULL ); |
---|
789 | |
---|
790 | if( a2 != NULL ) |
---|
791 | p_Delete(&a2, R); |
---|
792 | |
---|
793 | continue; |
---|
794 | } |
---|
795 | |
---|
796 | // TT->m[k] = a2; |
---|
797 | |
---|
798 | if( method ) |
---|
799 | TT->m[k] = SchreyerSyzygyNF(a, a2); |
---|
800 | else |
---|
801 | TT->m[k] = TraverseNF(a, a2); |
---|
802 | } |
---|
803 | |
---|
804 | if( TEST_OPT_PROT || 1) |
---|
805 | { |
---|
806 | t = getTimer() - t; r = getRTimer() - r; |
---|
807 | Print("%5d **!TIME4!** SchreyerSyzygyComputation::ComputeSyzygy::SyzygyLift: dt: %d, dr: %d\n", getRTimer(), t, r); |
---|
808 | } |
---|
809 | |
---|
810 | TT->rank = id_RankFreeModule(TT, R); |
---|
811 | } |
---|
812 | |
---|
813 | void SchreyerSyzygyComputation::ComputeLeadingSyzygyTerms(bool bComputeSecondTerms) |
---|
814 | { |
---|
815 | // const SchreyerSyzygyComputationFlags& attributes = m_atttributes; |
---|
816 | |
---|
817 | // const BOOLEAN __LEAD2SYZ__ = attributes.__LEAD2SYZ__; |
---|
818 | // const BOOLEAN __TAILREDSYZ__ = attributes.__TAILREDSYZ__; |
---|
819 | |
---|
820 | assume( m_syzLeads == NULL ); |
---|
821 | |
---|
822 | if( bComputeSecondTerms ) |
---|
823 | { |
---|
824 | assume( __LEAD2SYZ__ ); |
---|
825 | // m_syzLeads = FROM_NAMESPACE(INTERNAL, _Compute2LeadingSyzygyTerms(m_idLeads, m_rBaseRing, m_atttributes)); |
---|
826 | m_syzLeads = Compute2LeadingSyzygyTerms(); |
---|
827 | } |
---|
828 | else |
---|
829 | { |
---|
830 | assume( !__LEAD2SYZ__ ); |
---|
831 | |
---|
832 | m_syzLeads = Compute1LeadingSyzygyTerms(); |
---|
833 | } |
---|
834 | // m_syzLeads = FROM_NAMESPACE(INTERNAL, _ComputeLeadingSyzygyTerms(m_idLeads, m_rBaseRing, m_atttributes)); |
---|
835 | |
---|
836 | // NOTE: set m_LS if tails are to be reduced! |
---|
837 | assume( m_syzLeads!= NULL ); |
---|
838 | |
---|
839 | if (__TAILREDSYZ__ && !__IGNORETAILS__ && (IDELEMS(m_syzLeads) > 0) && !((IDELEMS(m_syzLeads) == 1) && (m_syzLeads->m[0] == NULL))) |
---|
840 | { |
---|
841 | m_LS = m_syzLeads; |
---|
842 | m_checker.Initialize(m_syzLeads); |
---|
843 | #ifndef NDEBUG |
---|
844 | if( __DEBUG__ ) |
---|
845 | { |
---|
846 | const ring& r = m_rBaseRing; |
---|
847 | PrintS("SchreyerSyzygyComputation::ComputeLeadingSyzygyTerms: \n"); |
---|
848 | PrintS("m_syzLeads: \n"); |
---|
849 | dPrint(m_syzLeads, r, r, 1); |
---|
850 | PrintS("m_checker.Initialize(m_syzLeads) => \n"); |
---|
851 | m_checker.DebugPrint(); |
---|
852 | } |
---|
853 | #endif |
---|
854 | assume( m_checker.IsNonempty() ); // TODO: this always fails... BUG???? |
---|
855 | } |
---|
856 | } |
---|
857 | |
---|
858 | #define NOPRODUCT 1 |
---|
859 | |
---|
860 | poly SchreyerSyzygyComputation::SchreyerSyzygyNF(const poly syz_lead, poly syz_2) const |
---|
861 | { |
---|
862 | |
---|
863 | assume( !__IGNORETAILS__ ); |
---|
864 | |
---|
865 | const ideal& L = m_idLeads; |
---|
866 | const ideal& T = m_idTails; |
---|
867 | const ring& r = m_rBaseRing; |
---|
868 | |
---|
869 | assume( syz_lead != NULL ); |
---|
870 | |
---|
871 | if( syz_2 == NULL ) |
---|
872 | { |
---|
873 | const int rr = p_GetComp(syz_lead, r) - 1; |
---|
874 | |
---|
875 | assume( rr >= 0 && rr < IDELEMS(T) ); |
---|
876 | assume( rr >= 0 && rr < IDELEMS(L) ); |
---|
877 | |
---|
878 | |
---|
879 | #if NOPRODUCT |
---|
880 | syz_2 = m_div.FindReducer(syz_lead, L->m[rr], syz_lead, m_checker); |
---|
881 | #else |
---|
882 | poly aa = leadmonom(syz_lead, r); assume( aa != NULL); // :( |
---|
883 | aa = p_Mult_mm(aa, L->m[rr], r); |
---|
884 | |
---|
885 | syz_2 = m_div.FindReducer(aa, syz_lead, m_checker); |
---|
886 | |
---|
887 | p_Delete(&aa, r); |
---|
888 | #endif |
---|
889 | |
---|
890 | assume( syz_2 != NULL ); // by construction of S-Polynomial |
---|
891 | } |
---|
892 | |
---|
893 | |
---|
894 | |
---|
895 | assume( syz_2 != NULL ); |
---|
896 | |
---|
897 | assume( L != NULL ); |
---|
898 | assume( T != NULL ); |
---|
899 | |
---|
900 | assume( IDELEMS(L) == IDELEMS(T) ); |
---|
901 | |
---|
902 | int c = p_GetComp(syz_lead, r) - 1; |
---|
903 | |
---|
904 | assume( c >= 0 && c < IDELEMS(T) ); |
---|
905 | |
---|
906 | poly p = leadmonom(syz_lead, r); // :( |
---|
907 | poly spoly = pp_Mult_qq(p, T->m[c], r); |
---|
908 | p_Delete(&p, r); |
---|
909 | |
---|
910 | |
---|
911 | c = p_GetComp(syz_2, r) - 1; |
---|
912 | assume( c >= 0 && c < IDELEMS(T) ); |
---|
913 | |
---|
914 | p = leadmonom(syz_2, r); // :( |
---|
915 | spoly = p_Add_q(spoly, pp_Mult_qq(p, T->m[c], r), r); |
---|
916 | p_Delete(&p, r); |
---|
917 | |
---|
918 | poly tail = syz_2; // TODO: use bucket!? |
---|
919 | |
---|
920 | while (spoly != NULL) |
---|
921 | { |
---|
922 | poly t = m_div.FindReducer(spoly, NULL, m_checker); |
---|
923 | |
---|
924 | p_LmDelete(&spoly, r); |
---|
925 | |
---|
926 | if( t != NULL ) |
---|
927 | { |
---|
928 | p = leadmonom(t, r); // :( |
---|
929 | c = p_GetComp(t, r) - 1; |
---|
930 | |
---|
931 | assume( c >= 0 && c < IDELEMS(T) ); |
---|
932 | |
---|
933 | spoly = p_Add_q(spoly, pp_Mult_qq(p, T->m[c], r), r); |
---|
934 | |
---|
935 | p_Delete(&p, r); |
---|
936 | |
---|
937 | tail = p_Add_q(tail, t, r); |
---|
938 | } |
---|
939 | } |
---|
940 | |
---|
941 | return tail; |
---|
942 | } |
---|
943 | |
---|
944 | poly SchreyerSyzygyComputation::TraverseTail(poly multiplier, const int tail) const |
---|
945 | { |
---|
946 | // TODO: store (multiplier, tail) -.-^-.-^-.--> ! |
---|
947 | assume(m_idTails != NULL && m_idTails->m != NULL); |
---|
948 | assume( tail >= 0 && tail < IDELEMS(m_idTails) ); |
---|
949 | |
---|
950 | const poly t = m_idTails->m[tail]; // !!! |
---|
951 | |
---|
952 | if(t != NULL) |
---|
953 | return TraverseTail(multiplier, t); |
---|
954 | |
---|
955 | return NULL; |
---|
956 | } |
---|
957 | |
---|
958 | |
---|
959 | poly SchreyerSyzygyComputation::TraverseTail(poly multiplier, poly tail) const |
---|
960 | { |
---|
961 | assume( !__IGNORETAILS__ ); |
---|
962 | |
---|
963 | const ideal& L = m_idLeads; |
---|
964 | const ideal& T = m_idTails; |
---|
965 | const ring& r = m_rBaseRing; |
---|
966 | |
---|
967 | assume( multiplier != NULL ); |
---|
968 | |
---|
969 | assume( L != NULL ); |
---|
970 | assume( T != NULL ); |
---|
971 | |
---|
972 | poly s = NULL; |
---|
973 | |
---|
974 | if( (!__TAILREDSYZ__) || m_lcm.Check(multiplier) ) |
---|
975 | for(poly p = tail; p != NULL; p = pNext(p)) // iterate over the tail |
---|
976 | s = p_Add_q(s, ReduceTerm(multiplier, p, NULL), r); |
---|
977 | |
---|
978 | return s; |
---|
979 | } |
---|
980 | |
---|
981 | |
---|
982 | |
---|
983 | |
---|
984 | poly SchreyerSyzygyComputation::ReduceTerm(poly multiplier, poly term4reduction, poly syztermCheck) const |
---|
985 | { |
---|
986 | assume( !__IGNORETAILS__ ); |
---|
987 | |
---|
988 | const ideal& L = m_idLeads; |
---|
989 | const ideal& T = m_idTails; |
---|
990 | const ring& r = m_rBaseRing; |
---|
991 | |
---|
992 | assume( multiplier != NULL ); |
---|
993 | assume( term4reduction != NULL ); |
---|
994 | |
---|
995 | |
---|
996 | assume( L != NULL ); |
---|
997 | assume( T != NULL ); |
---|
998 | |
---|
999 | // simple implementation with FindReducer: |
---|
1000 | poly s = NULL; |
---|
1001 | |
---|
1002 | if( (!__TAILREDSYZ__) || m_lcm.Check(multiplier) ) |
---|
1003 | { |
---|
1004 | #if NOPRODUCT |
---|
1005 | s = m_div.FindReducer(multiplier, term4reduction, syztermCheck, m_checker); |
---|
1006 | #else |
---|
1007 | // NOTE: only LT(term4reduction) should be used in the following: |
---|
1008 | poly product = pp_Mult_mm(multiplier, term4reduction, r); |
---|
1009 | s = m_div.FindReducer(product, syztermCheck, m_checker); |
---|
1010 | p_Delete(&product, r); |
---|
1011 | #endif |
---|
1012 | } |
---|
1013 | |
---|
1014 | if( s == NULL ) // No Reducer? |
---|
1015 | return s; |
---|
1016 | |
---|
1017 | poly b = leadmonom(s, r); |
---|
1018 | |
---|
1019 | const int c = p_GetComp(s, r) - 1; |
---|
1020 | assume( c >= 0 && c < IDELEMS(T) ); |
---|
1021 | |
---|
1022 | const poly t = TraverseTail(b, c); // T->m[c]; |
---|
1023 | |
---|
1024 | if( t != NULL ) |
---|
1025 | s = p_Add_q(s, t, r); |
---|
1026 | |
---|
1027 | return s; |
---|
1028 | } |
---|
1029 | |
---|
1030 | |
---|
1031 | |
---|
1032 | |
---|
1033 | |
---|
1034 | BEGIN_NAMESPACE_NONAME |
---|
1035 | |
---|
1036 | static inline int atGetInt(idhdl rootRingHdl, const char* attribute, long def) |
---|
1037 | { |
---|
1038 | return ((int)(long)(atGet(rootRingHdl, attribute, INT_CMD, (void*)def))); |
---|
1039 | } |
---|
1040 | |
---|
1041 | END_NAMESPACE |
---|
1042 | |
---|
1043 | SchreyerSyzygyComputationFlags::SchreyerSyzygyComputationFlags(idhdl rootRingHdl): |
---|
1044 | #ifndef NDEBUG |
---|
1045 | __DEBUG__( atGetInt(rootRingHdl,"DEBUG", 0) ), |
---|
1046 | #else |
---|
1047 | __DEBUG__( atGetInt(rootRingHdl,"DEBUG", 0) ), |
---|
1048 | #endif |
---|
1049 | // __SYZCHECK__( (BOOLEAN)atGetInt(rootRingHdl, "SYZCHECK", __DEBUG__) ), |
---|
1050 | __LEAD2SYZ__( atGetInt(rootRingHdl, "LEAD2SYZ", 1) ), |
---|
1051 | __TAILREDSYZ__( atGetInt(rootRingHdl, "TAILREDSYZ", 1) ), |
---|
1052 | __HYBRIDNF__( atGetInt(rootRingHdl, "HYBRIDNF", 2) ), |
---|
1053 | __IGNORETAILS__( atGetInt(rootRingHdl, "IGNORETAILS", 0) ), |
---|
1054 | __SYZNUMBER__( atGetInt(rootRingHdl, "SYZNUMBER", 0) ), |
---|
1055 | m_rBaseRing( rootRingHdl->data.uring ) |
---|
1056 | { |
---|
1057 | if( __DEBUG__ ) |
---|
1058 | { |
---|
1059 | PrintS("SchreyerSyzygyComputationFlags: \n"); |
---|
1060 | Print(" DEBUG: \t%d\n", __DEBUG__); |
---|
1061 | // Print(" SYZCHECK : \t%d\n", __SYZCHECK__); |
---|
1062 | Print(" LEAD2SYZ: \t%d\n", __LEAD2SYZ__); |
---|
1063 | Print(" TAILREDSYZ: \t%d\n", __TAILREDSYZ__); |
---|
1064 | Print(" IGNORETAILS: \t%d\n", __IGNORETAILS__); |
---|
1065 | |
---|
1066 | } |
---|
1067 | |
---|
1068 | // TODO: just current setting! |
---|
1069 | assume( rootRingHdl == currRingHdl ); |
---|
1070 | assume( rootRingHdl->typ == RING_CMD ); |
---|
1071 | assume( m_rBaseRing == currRing ); |
---|
1072 | // move the global ring here inside??? |
---|
1073 | } |
---|
1074 | |
---|
1075 | |
---|
1076 | |
---|
1077 | CLeadingTerm::CLeadingTerm(unsigned int _label, const poly _lt, const ring R): |
---|
1078 | m_sev( p_GetShortExpVector(_lt, R) ), m_label( _label ), m_lt( _lt ) |
---|
1079 | { } |
---|
1080 | |
---|
1081 | |
---|
1082 | CReducerFinder::~CReducerFinder() |
---|
1083 | { |
---|
1084 | for( CReducersHash::const_iterator it = m_hash.begin(); it != m_hash.end(); it++ ) |
---|
1085 | { |
---|
1086 | const TReducers& v = it->second; |
---|
1087 | for(TReducers::const_iterator vit = v.begin(); vit != v.end(); vit++ ) |
---|
1088 | delete const_cast<CLeadingTerm*>(*vit); |
---|
1089 | } |
---|
1090 | } |
---|
1091 | |
---|
1092 | |
---|
1093 | void CReducerFinder::Initialize(const ideal L) |
---|
1094 | { |
---|
1095 | assume( m_L == NULL || m_L == L ); |
---|
1096 | if( m_L == NULL ) |
---|
1097 | m_L = L; |
---|
1098 | |
---|
1099 | assume( m_L == L ); |
---|
1100 | |
---|
1101 | if( L != NULL ) |
---|
1102 | { |
---|
1103 | const ring& R = m_rBaseRing; |
---|
1104 | assume( R != NULL ); |
---|
1105 | |
---|
1106 | for( int k = IDELEMS(L) - 1; k >= 0; k-- ) |
---|
1107 | { |
---|
1108 | const poly a = L->m[k]; // assume( a != NULL ); |
---|
1109 | |
---|
1110 | // NOTE: label is k \in 0 ... |L|-1!!! |
---|
1111 | if( a != NULL ) |
---|
1112 | m_hash[p_GetComp(a, R)].push_back( new CLeadingTerm(k, a, R) ); |
---|
1113 | } |
---|
1114 | } |
---|
1115 | } |
---|
1116 | |
---|
1117 | CReducerFinder::CReducerFinder(const ideal L, const SchreyerSyzygyComputationFlags& flags): |
---|
1118 | SchreyerSyzygyComputationFlags(flags), |
---|
1119 | m_L(const_cast<ideal>(L)), // for debug anyway |
---|
1120 | m_hash() |
---|
1121 | { |
---|
1122 | assume( flags.m_rBaseRing == m_rBaseRing ); |
---|
1123 | if( L != NULL ) |
---|
1124 | Initialize(L); |
---|
1125 | } |
---|
1126 | |
---|
1127 | /// _p_LmDivisibleByNoComp for a | b*c |
---|
1128 | static inline BOOLEAN _p_LmDivisibleByNoComp(const poly a, const poly b, const poly c, const ring r) |
---|
1129 | { |
---|
1130 | int i=r->VarL_Size - 1; |
---|
1131 | unsigned long divmask = r->divmask; |
---|
1132 | unsigned long la, lb; |
---|
1133 | |
---|
1134 | if (r->VarL_LowIndex >= 0) |
---|
1135 | { |
---|
1136 | i += r->VarL_LowIndex; |
---|
1137 | do |
---|
1138 | { |
---|
1139 | la = a->exp[i]; |
---|
1140 | lb = b->exp[i] + c->exp[i]; |
---|
1141 | if ((la > lb) || |
---|
1142 | (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask))) |
---|
1143 | { |
---|
1144 | pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == FALSE); |
---|
1145 | return FALSE; |
---|
1146 | } |
---|
1147 | i--; |
---|
1148 | } |
---|
1149 | while (i>=r->VarL_LowIndex); |
---|
1150 | } |
---|
1151 | else |
---|
1152 | { |
---|
1153 | do |
---|
1154 | { |
---|
1155 | la = a->exp[r->VarL_Offset[i]]; |
---|
1156 | lb = b->exp[r->VarL_Offset[i]] + c->exp[r->VarL_Offset[i]]; |
---|
1157 | if ((la > lb) || |
---|
1158 | (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask))) |
---|
1159 | { |
---|
1160 | pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == FALSE); |
---|
1161 | return FALSE; |
---|
1162 | } |
---|
1163 | i--; |
---|
1164 | } |
---|
1165 | while (i>=0); |
---|
1166 | } |
---|
1167 | #ifdef HAVE_RINGS |
---|
1168 | assume( !rField_is_Ring(r) ); // not implemented for rings...! |
---|
1169 | #endif |
---|
1170 | return TRUE; |
---|
1171 | } |
---|
1172 | |
---|
1173 | bool CLeadingTerm::DivisibilityCheck(const poly product, const unsigned long not_sev, const ring r) const |
---|
1174 | { |
---|
1175 | const poly p = m_lt; |
---|
1176 | |
---|
1177 | assume( p_GetComp(p, r) == p_GetComp(product, r) ); |
---|
1178 | |
---|
1179 | const int k = m_label; |
---|
1180 | |
---|
1181 | // assume( m_L->m[k] == p ); |
---|
1182 | |
---|
1183 | const unsigned long p_sev = m_sev; |
---|
1184 | |
---|
1185 | assume( p_sev == p_GetShortExpVector(p, r) ); |
---|
1186 | |
---|
1187 | return p_LmShortDivisibleByNoComp(p, p_sev, product, not_sev, r); |
---|
1188 | |
---|
1189 | } |
---|
1190 | |
---|
1191 | /// as DivisibilityCheck(multiplier * t, ...) for monomial 'm' |
---|
1192 | /// and a module term 't' |
---|
1193 | bool CLeadingTerm::DivisibilityCheck(const poly m, const poly t, const unsigned long not_sev, const ring r) const |
---|
1194 | { |
---|
1195 | const poly p = m_lt; |
---|
1196 | |
---|
1197 | assume( p_GetComp(p, r) == p_GetComp(t, r) ); |
---|
1198 | // assume( p_GetComp(m, r) == 0 ); |
---|
1199 | |
---|
1200 | // const int k = m_label; |
---|
1201 | // assume( m_L->m[k] == p ); |
---|
1202 | |
---|
1203 | const unsigned long p_sev = m_sev; |
---|
1204 | assume( p_sev == p_GetShortExpVector(p, r) ); |
---|
1205 | |
---|
1206 | if (p_sev & not_sev) |
---|
1207 | return false; |
---|
1208 | |
---|
1209 | return _p_LmDivisibleByNoComp(p, m, t, r); |
---|
1210 | |
---|
1211 | // return p_LmShortDivisibleByNoComp(p, p_sev, product, not_sev, r); |
---|
1212 | |
---|
1213 | } |
---|
1214 | |
---|
1215 | |
---|
1216 | |
---|
1217 | /// TODO: |
---|
1218 | class CDivisorEnumerator: public SchreyerSyzygyComputationFlags |
---|
1219 | { |
---|
1220 | private: |
---|
1221 | const CReducerFinder& m_reds; |
---|
1222 | const poly m_product; |
---|
1223 | const unsigned long m_not_sev; |
---|
1224 | const unsigned long m_comp; |
---|
1225 | |
---|
1226 | CReducerFinder::CReducersHash::const_iterator m_itr; |
---|
1227 | CReducerFinder::TReducers::const_iterator m_current, m_finish; |
---|
1228 | |
---|
1229 | bool m_active; |
---|
1230 | |
---|
1231 | public: |
---|
1232 | CDivisorEnumerator(const CReducerFinder& self, const poly product): |
---|
1233 | SchreyerSyzygyComputationFlags(self), |
---|
1234 | m_reds(self), |
---|
1235 | m_product(product), |
---|
1236 | m_not_sev(~p_GetShortExpVector(product, m_rBaseRing)), |
---|
1237 | m_comp(p_GetComp(product, m_rBaseRing)), |
---|
1238 | m_itr(), m_current(), m_finish(), |
---|
1239 | m_active(false) |
---|
1240 | { |
---|
1241 | assume( m_comp >= 0 ); |
---|
1242 | assume( m_reds.m_L != NULL ); |
---|
1243 | } |
---|
1244 | |
---|
1245 | inline bool Reset() |
---|
1246 | { |
---|
1247 | m_active = false; |
---|
1248 | |
---|
1249 | m_itr = m_reds.m_hash.find(m_comp); |
---|
1250 | |
---|
1251 | if( m_itr == m_reds.m_hash.end() ) |
---|
1252 | return false; |
---|
1253 | |
---|
1254 | assume( m_itr->first == m_comp ); |
---|
1255 | |
---|
1256 | m_current = (m_itr->second).begin(); |
---|
1257 | m_finish = (m_itr->second).end(); |
---|
1258 | |
---|
1259 | if (m_current == m_finish) |
---|
1260 | return false; |
---|
1261 | |
---|
1262 | // m_active = true; |
---|
1263 | return true; |
---|
1264 | } |
---|
1265 | |
---|
1266 | const CLeadingTerm& Current() const |
---|
1267 | { |
---|
1268 | assume( m_active ); |
---|
1269 | assume( m_current != m_finish ); |
---|
1270 | |
---|
1271 | return *(*m_current); |
---|
1272 | } |
---|
1273 | |
---|
1274 | inline bool MoveNext() |
---|
1275 | { |
---|
1276 | assume( m_current != m_finish ); |
---|
1277 | |
---|
1278 | if( m_active ) |
---|
1279 | ++m_current; |
---|
1280 | else |
---|
1281 | m_active = true; // for Current() |
---|
1282 | |
---|
1283 | // looking for the next good entry |
---|
1284 | for( ; m_current != m_finish; ++m_current ) |
---|
1285 | { |
---|
1286 | assume( m_reds.m_L->m[Current().m_label] == Current().m_lt ); |
---|
1287 | |
---|
1288 | if( Current().DivisibilityCheck(m_product, m_not_sev, m_rBaseRing) ) |
---|
1289 | { |
---|
1290 | if( __DEBUG__ ) |
---|
1291 | { |
---|
1292 | Print("CDivisorEnumerator::MoveNext::est LS: q is divisible by LS[%d] !:((, diviser is: ", 1 + Current().m_label); |
---|
1293 | dPrint(Current().m_lt, m_rBaseRing, m_rBaseRing, 1); |
---|
1294 | } |
---|
1295 | |
---|
1296 | // m_active = true; |
---|
1297 | return true; |
---|
1298 | } |
---|
1299 | } |
---|
1300 | |
---|
1301 | // the end... :( |
---|
1302 | assume( m_current == m_finish ); |
---|
1303 | |
---|
1304 | m_active = false; |
---|
1305 | return false; |
---|
1306 | } |
---|
1307 | }; |
---|
1308 | |
---|
1309 | |
---|
1310 | |
---|
1311 | bool CReducerFinder::IsDivisible(const poly product) const |
---|
1312 | { |
---|
1313 | CDivisorEnumerator itr(*this, product); |
---|
1314 | if( !itr.Reset() ) |
---|
1315 | return false; |
---|
1316 | |
---|
1317 | return itr.MoveNext(); |
---|
1318 | |
---|
1319 | /* |
---|
1320 | const ring& r = m_rBaseRing; |
---|
1321 | |
---|
1322 | const long comp = p_GetComp(product, r); |
---|
1323 | const unsigned long not_sev = ~p_GetShortExpVector(product, r); |
---|
1324 | |
---|
1325 | assume( comp >= 0 ); |
---|
1326 | |
---|
1327 | CReducersHash::const_iterator it = m_hash.find(comp); // same module component |
---|
1328 | |
---|
1329 | assume( m_L != NULL ); |
---|
1330 | |
---|
1331 | if( it == m_hash.end() ) |
---|
1332 | return false; |
---|
1333 | |
---|
1334 | const TReducers& reducers = it->second; |
---|
1335 | |
---|
1336 | for(TReducers::const_iterator vit = reducers.begin(); vit != reducers.end(); vit++ ) |
---|
1337 | { |
---|
1338 | assume( m_L->m[(*vit)->m_label] == (*vit)->m_lt ); |
---|
1339 | |
---|
1340 | if( (*vit)->DivisibilityCheck(product, not_sev, r) ) |
---|
1341 | { |
---|
1342 | if( __DEBUG__ ) |
---|
1343 | { |
---|
1344 | Print("_FindReducer::Test LS: q is divisible by LS[%d] !:((, diviser is: ", 1 + (*vit)->m_label); |
---|
1345 | dPrint((*vit)->m_lt, r, r, 1); |
---|
1346 | } |
---|
1347 | |
---|
1348 | return true; |
---|
1349 | } |
---|
1350 | } |
---|
1351 | |
---|
1352 | return false; |
---|
1353 | */ |
---|
1354 | } |
---|
1355 | |
---|
1356 | |
---|
1357 | #ifndef NDEBUG |
---|
1358 | void CReducerFinder::DebugPrint() const |
---|
1359 | { |
---|
1360 | const ring& r = m_rBaseRing; |
---|
1361 | |
---|
1362 | for( CReducersHash::const_iterator it = m_hash.begin(); it != m_hash.end(); it++) |
---|
1363 | { |
---|
1364 | Print("Hash Key: %d, Values: \n", it->first); |
---|
1365 | const TReducers& reducers = it->second; |
---|
1366 | |
---|
1367 | for(TReducers::const_iterator vit = reducers.begin(); vit != reducers.end(); vit++ ) |
---|
1368 | { |
---|
1369 | const poly p = (*vit)->m_lt; |
---|
1370 | |
---|
1371 | assume( p_GetComp(p, r) == it->first ); |
---|
1372 | |
---|
1373 | const int k = (*vit)->m_label; |
---|
1374 | |
---|
1375 | assume( m_L->m[k] == p ); |
---|
1376 | |
---|
1377 | const unsigned long p_sev = (*vit)->m_sev; |
---|
1378 | |
---|
1379 | assume( p_sev == p_GetShortExpVector(p, r) ); |
---|
1380 | |
---|
1381 | Print("L[%d]: ", k); dPrint(p, r, r, 0); Print("SEV: %dl\n", p_sev); |
---|
1382 | } |
---|
1383 | } |
---|
1384 | } |
---|
1385 | #endif |
---|
1386 | |
---|
1387 | /// TODO: |
---|
1388 | class CDivisorEnumerator2: public SchreyerSyzygyComputationFlags |
---|
1389 | { |
---|
1390 | private: |
---|
1391 | const CReducerFinder& m_reds; |
---|
1392 | const poly m_multiplier, m_term; |
---|
1393 | const unsigned long m_not_sev; |
---|
1394 | const unsigned long m_comp; |
---|
1395 | |
---|
1396 | CReducerFinder::CReducersHash::const_iterator m_itr; |
---|
1397 | CReducerFinder::TReducers::const_iterator m_current, m_finish; |
---|
1398 | |
---|
1399 | bool m_active; |
---|
1400 | |
---|
1401 | public: |
---|
1402 | CDivisorEnumerator2(const CReducerFinder& self, const poly m, const poly t): |
---|
1403 | SchreyerSyzygyComputationFlags(self), |
---|
1404 | m_reds(self), |
---|
1405 | m_multiplier(m), m_term(t), |
---|
1406 | m_not_sev(~p_GetShortExpVector(m, t, m_rBaseRing)), |
---|
1407 | m_comp(p_GetComp(t, m_rBaseRing)), |
---|
1408 | m_itr(), m_current(), m_finish(), |
---|
1409 | m_active(false) |
---|
1410 | { |
---|
1411 | assume( m_comp >= 0 ); |
---|
1412 | assume( m_reds.m_L != NULL ); |
---|
1413 | assume( m_multiplier != NULL ); |
---|
1414 | assume( m_term != NULL ); |
---|
1415 | // assume( p_GetComp(m_multiplier, m_rBaseRing) == 0 ); |
---|
1416 | } |
---|
1417 | |
---|
1418 | inline bool Reset() |
---|
1419 | { |
---|
1420 | m_active = false; |
---|
1421 | |
---|
1422 | m_itr = m_reds.m_hash.find(m_comp); |
---|
1423 | |
---|
1424 | if( m_itr == m_reds.m_hash.end() ) |
---|
1425 | return false; |
---|
1426 | |
---|
1427 | assume( m_itr->first == m_comp ); |
---|
1428 | |
---|
1429 | m_current = (m_itr->second).begin(); |
---|
1430 | m_finish = (m_itr->second).end(); |
---|
1431 | |
---|
1432 | if (m_current == m_finish) |
---|
1433 | return false; |
---|
1434 | |
---|
1435 | return true; |
---|
1436 | } |
---|
1437 | |
---|
1438 | const CLeadingTerm& Current() const |
---|
1439 | { |
---|
1440 | assume( m_active ); |
---|
1441 | assume( m_current != m_finish ); |
---|
1442 | |
---|
1443 | return *(*m_current); |
---|
1444 | } |
---|
1445 | |
---|
1446 | inline bool MoveNext() |
---|
1447 | { |
---|
1448 | assume( m_current != m_finish ); |
---|
1449 | |
---|
1450 | if( m_active ) |
---|
1451 | ++m_current; |
---|
1452 | else |
---|
1453 | m_active = true; |
---|
1454 | |
---|
1455 | |
---|
1456 | // looking for the next good entry |
---|
1457 | for( ; m_current != m_finish; ++m_current ) |
---|
1458 | { |
---|
1459 | assume( m_reds.m_L->m[Current().m_label] == Current().m_lt ); |
---|
1460 | |
---|
1461 | if( Current().DivisibilityCheck(m_multiplier, m_term, m_not_sev, m_rBaseRing) ) |
---|
1462 | { |
---|
1463 | if( __DEBUG__ ) |
---|
1464 | { |
---|
1465 | Print("CDivisorEnumerator::MoveNext::est LS: q is divisible by LS[%d] !:((, diviser is: ", 1 + Current().m_label); |
---|
1466 | dPrint(Current().m_lt, m_rBaseRing, m_rBaseRing, 1); |
---|
1467 | } |
---|
1468 | |
---|
1469 | // m_active = true; |
---|
1470 | return true; |
---|
1471 | |
---|
1472 | } |
---|
1473 | } |
---|
1474 | |
---|
1475 | // the end... :( |
---|
1476 | assume( m_current == m_finish ); |
---|
1477 | |
---|
1478 | m_active = false; |
---|
1479 | return false; |
---|
1480 | } |
---|
1481 | }; |
---|
1482 | |
---|
1483 | poly CReducerFinder::FindReducer(const poly multiplier, const poly t, |
---|
1484 | const poly syzterm, |
---|
1485 | const CReducerFinder& syz_checker) const |
---|
1486 | { |
---|
1487 | CDivisorEnumerator2 itr(*this, multiplier, t); |
---|
1488 | if( !itr.Reset() ) |
---|
1489 | return NULL; |
---|
1490 | |
---|
1491 | // don't care about the module component of multiplier (as it may be the syzygy term) |
---|
1492 | // product = multiplier * t? |
---|
1493 | const ring& r = m_rBaseRing; |
---|
1494 | |
---|
1495 | assume( multiplier != NULL ); assume( t != NULL ); |
---|
1496 | |
---|
1497 | const ideal& L = m_L; assume( L != NULL ); // for debug/testing only! |
---|
1498 | |
---|
1499 | long c = 0; |
---|
1500 | |
---|
1501 | if (syzterm != NULL) |
---|
1502 | c = p_GetComp(syzterm, r) - 1; |
---|
1503 | |
---|
1504 | assume( c >= 0 && c < IDELEMS(L) ); |
---|
1505 | |
---|
1506 | if (__DEBUG__ && (syzterm != NULL)) |
---|
1507 | { |
---|
1508 | const poly m = L->m[c]; |
---|
1509 | |
---|
1510 | assume( m != NULL ); assume( pNext(m) == NULL ); |
---|
1511 | |
---|
1512 | poly lm = p_Mult_mm(leadmonom(syzterm, r), m, r); |
---|
1513 | |
---|
1514 | poly pr = p_Mult_q( leadmonom(multiplier, r, false), leadmonom(t, r, false), r); |
---|
1515 | |
---|
1516 | assume( p_EqualPolys(lm, pr, r) ); |
---|
1517 | |
---|
1518 | // def @@c = leadcomp(syzterm); int @@r = int(@@c); |
---|
1519 | // def @@product = leadmonomial(syzterm) * L[@@r]; |
---|
1520 | |
---|
1521 | p_Delete(&lm, r); |
---|
1522 | p_Delete(&pr, r); |
---|
1523 | } |
---|
1524 | |
---|
1525 | const BOOLEAN to_check = (syz_checker.IsNonempty()); // __TAILREDSYZ__ && |
---|
1526 | |
---|
1527 | const poly q = p_New(r); pNext(q) = NULL; |
---|
1528 | |
---|
1529 | if( __DEBUG__ ) |
---|
1530 | p_SetCoeff0(q, 0, r); // for printing q |
---|
1531 | |
---|
1532 | while( itr.MoveNext() ) |
---|
1533 | { |
---|
1534 | const poly p = itr.Current().m_lt; |
---|
1535 | const int k = itr.Current().m_label; |
---|
1536 | |
---|
1537 | p_ExpVectorSum(q, multiplier, t, r); // q == product == multiplier * t // TODO: do it once? |
---|
1538 | p_ExpVectorDiff(q, q, p, r); // (LM(product) / LM(L[k])) |
---|
1539 | |
---|
1540 | p_SetComp(q, k + 1, r); |
---|
1541 | p_Setm(q, r); |
---|
1542 | |
---|
1543 | // cannot allow something like: a*gen(i) - a*gen(i) |
---|
1544 | if (syzterm != NULL && (k == c)) |
---|
1545 | if (p_ExpVectorEqual(syzterm, q, r)) |
---|
1546 | { |
---|
1547 | if( __DEBUG__ ) |
---|
1548 | { |
---|
1549 | Print("_FindReducer::Test SYZTERM: q == syzterm !:((, syzterm is: "); |
---|
1550 | dPrint(syzterm, r, r, 1); |
---|
1551 | } |
---|
1552 | |
---|
1553 | continue; |
---|
1554 | } |
---|
1555 | |
---|
1556 | // while the complement (the fraction) is not reducible by leading syzygies |
---|
1557 | if( to_check && syz_checker.IsDivisible(q) ) |
---|
1558 | { |
---|
1559 | if( __DEBUG__ ) |
---|
1560 | { |
---|
1561 | PrintS("_FindReducer::Test LS: q is divisible by LS[?] !:((: "); |
---|
1562 | } |
---|
1563 | |
---|
1564 | continue; |
---|
1565 | } |
---|
1566 | |
---|
1567 | number n = n_Mult( p_GetCoeff(multiplier, r), p_GetCoeff(t, r), r); |
---|
1568 | p_SetCoeff0(q, n_Neg( n_Div(n, p_GetCoeff(p, r), r), r), r); |
---|
1569 | n_Delete(&n, r); |
---|
1570 | |
---|
1571 | return q; |
---|
1572 | } |
---|
1573 | |
---|
1574 | /* |
---|
1575 | const long comp = p_GetComp(t, r); assume( comp >= 0 ); |
---|
1576 | const unsigned long not_sev = ~p_GetShortExpVector(multiplier, t, r); // ! |
---|
1577 | |
---|
1578 | // for( int k = IDELEMS(L)-1; k>= 0; k-- ) |
---|
1579 | // { |
---|
1580 | // const poly p = L->m[k]; |
---|
1581 | // |
---|
1582 | // if ( p_GetComp(p, r) != comp ) |
---|
1583 | // continue; |
---|
1584 | // |
---|
1585 | // const unsigned long p_sev = p_GetShortExpVector(p, r); // to be stored in m_hash!!! |
---|
1586 | |
---|
1587 | // looking for an appropriate diviser p = L[k]... |
---|
1588 | CReducersHash::const_iterator it = m_hash.find(comp); // same module component |
---|
1589 | |
---|
1590 | if( it == m_hash.end() ) |
---|
1591 | return NULL; |
---|
1592 | |
---|
1593 | assume( m_L != NULL ); |
---|
1594 | |
---|
1595 | const TReducers& reducers = it->second; |
---|
1596 | |
---|
1597 | for(TReducers::const_iterator vit = reducers.begin(); vit != reducers.end(); vit++ ) |
---|
1598 | { |
---|
1599 | |
---|
1600 | const poly p = (*vit)->m_lt; |
---|
1601 | const int k = (*vit)->m_label; |
---|
1602 | |
---|
1603 | assume( L->m[k] == p ); |
---|
1604 | |
---|
1605 | // const unsigned long p_sev = (*vit)->m_sev; |
---|
1606 | // assume( p_sev == p_GetShortExpVector(p, r) ); |
---|
1607 | |
---|
1608 | // if( !p_LmShortDivisibleByNoComp(p, p_sev, product, not_sev, r) ) |
---|
1609 | // continue; |
---|
1610 | |
---|
1611 | if( !(*vit)->DivisibilityCheck(multiplier, t, not_sev, r) ) |
---|
1612 | continue; |
---|
1613 | |
---|
1614 | |
---|
1615 | // if (p_sev & not_sev) continue; |
---|
1616 | // if( !_p_LmDivisibleByNoComp(p, multiplier, t, r) ) continue; |
---|
1617 | |
---|
1618 | |
---|
1619 | p_ExpVectorSum(q, multiplier, t, r); // q == product == multiplier * t |
---|
1620 | p_ExpVectorDiff(q, q, p, r); // (LM(product) / LM(L[k])) |
---|
1621 | |
---|
1622 | p_SetComp(q, k + 1, r); |
---|
1623 | p_Setm(q, r); |
---|
1624 | |
---|
1625 | // cannot allow something like: a*gen(i) - a*gen(i) |
---|
1626 | if (syzterm != NULL && (k == c)) |
---|
1627 | if (p_ExpVectorEqual(syzterm, q, r)) |
---|
1628 | { |
---|
1629 | if( __DEBUG__ ) |
---|
1630 | { |
---|
1631 | Print("_FindReducer::Test SYZTERM: q == syzterm !:((, syzterm is: "); |
---|
1632 | dPrint(syzterm, r, r, 1); |
---|
1633 | } |
---|
1634 | |
---|
1635 | continue; |
---|
1636 | } |
---|
1637 | |
---|
1638 | // while the complement (the fraction) is not reducible by leading syzygies |
---|
1639 | if( to_check && syz_checker.IsDivisible(q) ) |
---|
1640 | { |
---|
1641 | if( __DEBUG__ ) |
---|
1642 | { |
---|
1643 | PrintS("_FindReducer::Test LS: q is divisible by LS[?] !:((: "); |
---|
1644 | } |
---|
1645 | |
---|
1646 | continue; |
---|
1647 | } |
---|
1648 | |
---|
1649 | number n = n_Mult( p_GetCoeff(multiplier, r), p_GetCoeff(t, r), r); |
---|
1650 | p_SetCoeff0(q, n_Neg( n_Div(n, p_GetCoeff(p, r), r), r), r); |
---|
1651 | n_Delete(&n, r); |
---|
1652 | |
---|
1653 | return q; |
---|
1654 | } |
---|
1655 | */ |
---|
1656 | |
---|
1657 | p_LmFree(q, r); |
---|
1658 | |
---|
1659 | return NULL; |
---|
1660 | |
---|
1661 | } |
---|
1662 | |
---|
1663 | |
---|
1664 | poly CReducerFinder::FindReducer(const poly product, const poly syzterm, const CReducerFinder& syz_checker) const |
---|
1665 | { |
---|
1666 | CDivisorEnumerator itr(*this, product); |
---|
1667 | if( !itr.Reset() ) |
---|
1668 | return NULL; |
---|
1669 | |
---|
1670 | |
---|
1671 | const ring& r = m_rBaseRing; |
---|
1672 | |
---|
1673 | assume( product != NULL ); |
---|
1674 | |
---|
1675 | const ideal& L = m_L; assume( L != NULL ); // for debug/testing only! |
---|
1676 | |
---|
1677 | long c = 0; |
---|
1678 | |
---|
1679 | if (syzterm != NULL) |
---|
1680 | c = p_GetComp(syzterm, r) - 1; |
---|
1681 | |
---|
1682 | assume( c >= 0 && c < IDELEMS(L) ); |
---|
1683 | |
---|
1684 | if (__DEBUG__ && (syzterm != NULL)) |
---|
1685 | { |
---|
1686 | const poly m = L->m[c]; |
---|
1687 | |
---|
1688 | assume( m != NULL ); assume( pNext(m) == NULL ); |
---|
1689 | |
---|
1690 | poly lm = p_Mult_mm(leadmonom(syzterm, r), m, r); |
---|
1691 | assume( p_EqualPolys(lm, product, r) ); |
---|
1692 | |
---|
1693 | // def @@c = leadcomp(syzterm); int @@r = int(@@c); |
---|
1694 | // def @@product = leadmonomial(syzterm) * L[@@r]; |
---|
1695 | |
---|
1696 | p_Delete(&lm, r); |
---|
1697 | } |
---|
1698 | |
---|
1699 | |
---|
1700 | const BOOLEAN to_check = (syz_checker.IsNonempty()); // __TAILREDSYZ__ && |
---|
1701 | |
---|
1702 | const poly q = p_New(r); pNext(q) = NULL; |
---|
1703 | |
---|
1704 | if( __DEBUG__ ) |
---|
1705 | p_SetCoeff0(q, 0, r); // for printing q |
---|
1706 | |
---|
1707 | while( itr.MoveNext() ) |
---|
1708 | { |
---|
1709 | const poly p = itr.Current().m_lt; |
---|
1710 | const int k = itr.Current().m_label; |
---|
1711 | |
---|
1712 | p_ExpVectorDiff(q, product, p, r); // (LM(product) / LM(L[k])) |
---|
1713 | p_SetComp(q, k + 1, r); |
---|
1714 | p_Setm(q, r); |
---|
1715 | |
---|
1716 | // cannot allow something like: a*gen(i) - a*gen(i) |
---|
1717 | if (syzterm != NULL && (k == c)) |
---|
1718 | if (p_ExpVectorEqual(syzterm, q, r)) |
---|
1719 | { |
---|
1720 | if( __DEBUG__ ) |
---|
1721 | { |
---|
1722 | Print("_FindReducer::Test SYZTERM: q == syzterm !:((, syzterm is: "); |
---|
1723 | dPrint(syzterm, r, r, 1); |
---|
1724 | } |
---|
1725 | |
---|
1726 | continue; |
---|
1727 | } |
---|
1728 | |
---|
1729 | // while the complement (the fraction) is not reducible by leading syzygies |
---|
1730 | if( to_check && syz_checker.IsDivisible(q) ) |
---|
1731 | { |
---|
1732 | if( __DEBUG__ ) |
---|
1733 | { |
---|
1734 | PrintS("_FindReducer::Test LS: q is divisible by LS[?] !:((: "); |
---|
1735 | } |
---|
1736 | |
---|
1737 | continue; |
---|
1738 | } |
---|
1739 | |
---|
1740 | p_SetCoeff0(q, n_Neg( n_Div( p_GetCoeff(product, r), p_GetCoeff(p, r), r), r), r); |
---|
1741 | |
---|
1742 | return q; |
---|
1743 | } |
---|
1744 | |
---|
1745 | |
---|
1746 | |
---|
1747 | /* |
---|
1748 | const long comp = p_GetComp(product, r); |
---|
1749 | const unsigned long not_sev = ~p_GetShortExpVector(product, r); |
---|
1750 | |
---|
1751 | assume( comp >= 0 ); |
---|
1752 | |
---|
1753 | // for( int k = IDELEMS(L)-1; k>= 0; k-- ) |
---|
1754 | // { |
---|
1755 | // const poly p = L->m[k]; |
---|
1756 | // |
---|
1757 | // if ( p_GetComp(p, r) != comp ) |
---|
1758 | // continue; |
---|
1759 | // |
---|
1760 | // const unsigned long p_sev = p_GetShortExpVector(p, r); // to be stored in m_hash!!! |
---|
1761 | |
---|
1762 | // looking for an appropriate diviser p = L[k]... |
---|
1763 | CReducersHash::const_iterator it = m_hash.find(comp); // same module component |
---|
1764 | |
---|
1765 | if( it == m_hash.end() ) |
---|
1766 | return NULL; |
---|
1767 | |
---|
1768 | assume( m_L != NULL ); |
---|
1769 | |
---|
1770 | const TReducers& reducers = it->second; |
---|
1771 | |
---|
1772 | const BOOLEAN to_check = (syz_checker.IsNonempty()); // __TAILREDSYZ__ && |
---|
1773 | |
---|
1774 | const poly q = p_New(r); pNext(q) = NULL; |
---|
1775 | |
---|
1776 | if( __DEBUG__ ) |
---|
1777 | p_SetCoeff0(q, 0, r); // for printing q |
---|
1778 | |
---|
1779 | for(TReducers::const_iterator vit = reducers.begin(); vit != reducers.end(); vit++ ) |
---|
1780 | { |
---|
1781 | const poly p = (*vit)->m_lt; |
---|
1782 | |
---|
1783 | assume( p_GetComp(p, r) == comp ); |
---|
1784 | |
---|
1785 | const int k = (*vit)->m_label; |
---|
1786 | |
---|
1787 | assume( L->m[k] == p ); |
---|
1788 | |
---|
1789 | const unsigned long p_sev = (*vit)->m_sev; |
---|
1790 | |
---|
1791 | assume( p_sev == p_GetShortExpVector(p, r) ); |
---|
1792 | |
---|
1793 | if( !p_LmShortDivisibleByNoComp(p, p_sev, product, not_sev, r) ) |
---|
1794 | continue; |
---|
1795 | |
---|
1796 | // // ... which divides the product, looking for the _1st_ appropriate one! |
---|
1797 | // if( !p_LmDivisibleByNoComp(p, product, r) ) // included inside p_LmShortDivisibleBy! |
---|
1798 | // continue; |
---|
1799 | |
---|
1800 | p_ExpVectorDiff(q, product, p, r); // (LM(product) / LM(L[k])) |
---|
1801 | p_SetComp(q, k + 1, r); |
---|
1802 | p_Setm(q, r); |
---|
1803 | |
---|
1804 | // cannot allow something like: a*gen(i) - a*gen(i) |
---|
1805 | if (syzterm != NULL && (k == c)) |
---|
1806 | if (p_ExpVectorEqual(syzterm, q, r)) |
---|
1807 | { |
---|
1808 | if( __DEBUG__ ) |
---|
1809 | { |
---|
1810 | Print("_FindReducer::Test SYZTERM: q == syzterm !:((, syzterm is: "); |
---|
1811 | dPrint(syzterm, r, r, 1); |
---|
1812 | } |
---|
1813 | |
---|
1814 | continue; |
---|
1815 | } |
---|
1816 | |
---|
1817 | // while the complement (the fraction) is not reducible by leading syzygies |
---|
1818 | if( to_check && syz_checker.IsDivisible(q) ) |
---|
1819 | { |
---|
1820 | if( __DEBUG__ ) |
---|
1821 | { |
---|
1822 | PrintS("_FindReducer::Test LS: q is divisible by LS[?] !:((: "); |
---|
1823 | } |
---|
1824 | |
---|
1825 | continue; |
---|
1826 | } |
---|
1827 | |
---|
1828 | p_SetCoeff0(q, n_Neg( n_Div( p_GetCoeff(product, r), p_GetCoeff(p, r), r), r), r); |
---|
1829 | return q; |
---|
1830 | } |
---|
1831 | */ |
---|
1832 | |
---|
1833 | p_LmFree(q, r); |
---|
1834 | |
---|
1835 | return NULL; |
---|
1836 | } |
---|
1837 | |
---|
1838 | |
---|
1839 | |
---|
1840 | CLCM::CLCM(const ideal& L, const SchreyerSyzygyComputationFlags& flags): |
---|
1841 | SchreyerSyzygyComputationFlags(flags), std::vector<bool>(), |
---|
1842 | m_compute(false), m_N(rVar(flags.m_rBaseRing)) |
---|
1843 | { |
---|
1844 | const ring& R = m_rBaseRing; |
---|
1845 | assume( flags.m_rBaseRing == R ); |
---|
1846 | assume( R != NULL ); |
---|
1847 | |
---|
1848 | assume( L != NULL ); |
---|
1849 | |
---|
1850 | if( __TAILREDSYZ__ && !__HYBRIDNF__ && (L != NULL)) |
---|
1851 | { |
---|
1852 | const int l = IDELEMS(L); |
---|
1853 | |
---|
1854 | assume( l > 0 ); |
---|
1855 | |
---|
1856 | resize(l, false); |
---|
1857 | |
---|
1858 | for( int k = l - 1; k >= 0; k-- ) |
---|
1859 | { |
---|
1860 | const poly a = L->m[k]; assume( a != NULL ); |
---|
1861 | |
---|
1862 | for (unsigned int j = m_N; j > 0; j--) |
---|
1863 | if ( !(*this)[j] ) |
---|
1864 | (*this)[j] = (p_GetExp(a, j, R) > 0); |
---|
1865 | } |
---|
1866 | |
---|
1867 | m_compute = true; |
---|
1868 | } |
---|
1869 | } |
---|
1870 | |
---|
1871 | |
---|
1872 | bool CLCM::Check(const poly m) const |
---|
1873 | { |
---|
1874 | assume( m != NULL ); |
---|
1875 | if( m_compute && (m != NULL)) |
---|
1876 | { |
---|
1877 | const ring& R = m_rBaseRing; |
---|
1878 | |
---|
1879 | assume( __TAILREDSYZ__ && !__HYBRIDNF__ ); |
---|
1880 | |
---|
1881 | for (unsigned int j = m_N; j > 0; j--) |
---|
1882 | if ( (*this)[j] ) |
---|
1883 | if(p_GetExp(m, j, R) > 0) |
---|
1884 | return true; |
---|
1885 | |
---|
1886 | return false; |
---|
1887 | |
---|
1888 | } else return true; |
---|
1889 | } |
---|
1890 | |
---|
1891 | |
---|
1892 | |
---|
1893 | |
---|
1894 | END_NAMESPACE END_NAMESPACE_SINGULARXX |
---|
1895 | |
---|
1896 | |
---|
1897 | // Vi-modeline: vim: filetype=c:syntax:shiftwidth=2:tabstop=8:textwidth=0:expandtab |
---|