1 | /*****************************************************************************\ |
---|
2 | * Computer Algebra System SINGULAR |
---|
3 | \*****************************************************************************/ |
---|
4 | /** @file FLINTconvert.cc |
---|
5 | * |
---|
6 | * This file implements functions for conversion to FLINT (www.flintlib.org) |
---|
7 | * and back. |
---|
8 | * |
---|
9 | * @author Martin Lee |
---|
10 | * |
---|
11 | **/ |
---|
12 | /*****************************************************************************/ |
---|
13 | |
---|
14 | |
---|
15 | #ifdef HAVE_CONFIG_H |
---|
16 | #include <config.h> |
---|
17 | #endif /* HAVE_CONFIG_H */ |
---|
18 | |
---|
19 | #include "canonicalform.h" |
---|
20 | #include "fac_util.h" |
---|
21 | #include "cf_iter.h" |
---|
22 | #include "cf_factory.h" |
---|
23 | #include "gmpext.h" |
---|
24 | #include "singext.h" |
---|
25 | #include "cf_algorithm.h" |
---|
26 | |
---|
27 | #ifdef HAVE_FLINT |
---|
28 | #ifdef HAVE_CSTDIO |
---|
29 | #include <cstdio> |
---|
30 | #else |
---|
31 | #include <stdio.h> |
---|
32 | #endif |
---|
33 | #ifdef __cplusplus |
---|
34 | extern "C" |
---|
35 | { |
---|
36 | #endif |
---|
37 | #ifndef __GMP_BITS_PER_MP_LIMB |
---|
38 | #define __GMP_BITS_PER_MP_LIMB GMP_LIMB_BITS |
---|
39 | #endif |
---|
40 | #include <flint/fmpz.h> |
---|
41 | #include <flint/fmpq.h> |
---|
42 | #include <flint/fmpz_poly.h> |
---|
43 | #include <flint/fmpz_mod_poly.h> |
---|
44 | #include <flint/nmod_poly.h> |
---|
45 | #include <flint/fmpq_poly.h> |
---|
46 | #include <flint/nmod_mat.h> |
---|
47 | #include <flint/fmpz_mat.h> |
---|
48 | #if (__FLINT_VERSION_MINOR >= 4) |
---|
49 | #include <flint/fq.h> |
---|
50 | #include <flint/fq_poly.h> |
---|
51 | #include <flint/fq_nmod.h> |
---|
52 | #include <flint/fq_nmod_poly.h> |
---|
53 | #include <flint/fq_nmod_mat.h> |
---|
54 | #endif |
---|
55 | #ifdef __cplusplus |
---|
56 | } |
---|
57 | #endif |
---|
58 | |
---|
59 | #include "FLINTconvert.h" |
---|
60 | |
---|
61 | void convertCF2Fmpz (fmpz_t result, const CanonicalForm& f) |
---|
62 | { |
---|
63 | if (f.isImm()) |
---|
64 | fmpz_set_si (result, f.intval()); |
---|
65 | else |
---|
66 | { |
---|
67 | mpz_t gmp_val; |
---|
68 | f.mpzval(gmp_val); |
---|
69 | fmpz_set_mpz (result, gmp_val); |
---|
70 | mpz_clear (gmp_val); |
---|
71 | } |
---|
72 | } |
---|
73 | |
---|
74 | void convertFacCF2Fmpz_poly_t (fmpz_poly_t result, const CanonicalForm& f) |
---|
75 | { |
---|
76 | fmpz_poly_init2 (result, degree (f)+1); |
---|
77 | _fmpz_poly_set_length(result, degree(f)+1); |
---|
78 | for (CFIterator i= f; i.hasTerms(); i++) |
---|
79 | convertCF2Fmpz (fmpz_poly_get_coeff_ptr(result, i.exp()), i.coeff()); |
---|
80 | } |
---|
81 | |
---|
82 | CanonicalForm convertFmpz2CF (const fmpz_t coefficient) |
---|
83 | { |
---|
84 | if (fmpz_cmp_si (coefficient, MINIMMEDIATE) >= 0 && |
---|
85 | fmpz_cmp_si (coefficient, MAXIMMEDIATE) <= 0) |
---|
86 | { |
---|
87 | long coeff= fmpz_get_si (coefficient); |
---|
88 | return CanonicalForm (coeff); |
---|
89 | } |
---|
90 | else |
---|
91 | { |
---|
92 | mpz_t gmp_val; |
---|
93 | mpz_init (gmp_val); |
---|
94 | fmpz_get_mpz (gmp_val, coefficient); |
---|
95 | CanonicalForm result= CanonicalForm (CFFactory::basic (gmp_val)); |
---|
96 | return result; |
---|
97 | } |
---|
98 | } |
---|
99 | |
---|
100 | CanonicalForm |
---|
101 | convertFmpz_poly_t2FacCF (const fmpz_poly_t poly, const Variable& x) |
---|
102 | { |
---|
103 | CanonicalForm result= 0; |
---|
104 | fmpz* coeff; |
---|
105 | for (int i= 0; i < fmpz_poly_length (poly); i++) |
---|
106 | { |
---|
107 | coeff= fmpz_poly_get_coeff_ptr (poly, i); |
---|
108 | if (!fmpz_is_zero (coeff)) |
---|
109 | result += convertFmpz2CF (coeff)*power (x,i); |
---|
110 | } |
---|
111 | return result; |
---|
112 | } |
---|
113 | |
---|
114 | void |
---|
115 | convertFacCF2nmod_poly_t (nmod_poly_t result, const CanonicalForm& f) |
---|
116 | { |
---|
117 | bool save_sym_ff= isOn (SW_SYMMETRIC_FF); |
---|
118 | if (save_sym_ff) Off (SW_SYMMETRIC_FF); |
---|
119 | nmod_poly_init2 (result, getCharacteristic(), degree (f)+1); |
---|
120 | for (CFIterator i= f; i.hasTerms(); i++) |
---|
121 | { |
---|
122 | CanonicalForm c= i.coeff(); |
---|
123 | if (!c.isImm()) c=c.mapinto(); //c%= getCharacteristic(); |
---|
124 | if (!c.isImm()) |
---|
125 | { //This case will never happen if the characteristic is in fact a prime |
---|
126 | // number, since all coefficients are represented as immediates |
---|
127 | printf("convertCF2nmod_poly_t: coefficient not immediate!, char=%d\n", |
---|
128 | getCharacteristic()); |
---|
129 | } |
---|
130 | else |
---|
131 | nmod_poly_set_coeff_ui (result, i.exp(), c.intval()); |
---|
132 | } |
---|
133 | if (save_sym_ff) On (SW_SYMMETRIC_FF); |
---|
134 | } |
---|
135 | |
---|
136 | CanonicalForm |
---|
137 | convertnmod_poly_t2FacCF (const nmod_poly_t poly, const Variable& x) |
---|
138 | { |
---|
139 | CanonicalForm result= 0; |
---|
140 | for (int i= 0; i < nmod_poly_length (poly); i++) |
---|
141 | { |
---|
142 | ulong coeff= nmod_poly_get_coeff_ui (poly, i); |
---|
143 | if (!coeff == 0) |
---|
144 | result += CanonicalForm ((long)coeff)*power (x,i); |
---|
145 | } |
---|
146 | return result; |
---|
147 | } |
---|
148 | |
---|
149 | void convertCF2Fmpq (fmpq_t result, const CanonicalForm& f) |
---|
150 | { |
---|
151 | //ASSERT (isOn (SW_RATIONAL), "expected rational"); |
---|
152 | fmpz_t tmp1, tmp2; |
---|
153 | fmpz_init (tmp1); |
---|
154 | fmpz_init (tmp2); |
---|
155 | if (f.isImm ()) |
---|
156 | { |
---|
157 | fmpz_set_si (tmp1, f.num().intval()); |
---|
158 | fmpz_set_si (tmp2, f.den().intval()); |
---|
159 | } |
---|
160 | else |
---|
161 | { |
---|
162 | mpz_t gmp_val; |
---|
163 | gmp_numerator (f, gmp_val); |
---|
164 | fmpz_set_mpz (tmp1, gmp_val); |
---|
165 | mpz_clear (gmp_val); |
---|
166 | gmp_denominator (f, gmp_val); |
---|
167 | fmpz_set_mpz (tmp2, gmp_val); |
---|
168 | mpz_clear (gmp_val); |
---|
169 | } |
---|
170 | |
---|
171 | fmpz_set (fmpq_numref (result), tmp1); |
---|
172 | fmpz_set (fmpq_denref (result), tmp2); |
---|
173 | fmpz_clear (tmp1); |
---|
174 | fmpz_clear (tmp2); |
---|
175 | } |
---|
176 | |
---|
177 | CanonicalForm convertFmpq_t2CF (const fmpq_t q) |
---|
178 | { |
---|
179 | //ASSERT (isOn (SW_RATIONAL), "expected rational"); |
---|
180 | |
---|
181 | CanonicalForm num, den; |
---|
182 | mpz_t nnum, nden; |
---|
183 | mpz_init (nnum); |
---|
184 | mpz_init (nden); |
---|
185 | fmpz_get_mpz (nnum, fmpq_numref (q)); |
---|
186 | fmpz_get_mpz (nden, fmpq_denref (q)); |
---|
187 | |
---|
188 | if (mpz_is_imm (nnum) && mpz_is_imm (nden)) |
---|
189 | { |
---|
190 | num= CanonicalForm (mpz_get_si(nnum)); |
---|
191 | den= CanonicalForm (mpz_get_si(nden)); |
---|
192 | mpz_clear (nnum); |
---|
193 | mpz_clear (nden); |
---|
194 | return num/den; |
---|
195 | } |
---|
196 | else |
---|
197 | return make_cf (nnum, nden, false); |
---|
198 | } |
---|
199 | |
---|
200 | CanonicalForm |
---|
201 | convertFmpq_poly_t2FacCF (const fmpq_poly_t p, const Variable& x) |
---|
202 | { |
---|
203 | CanonicalForm result= 0; |
---|
204 | fmpq_t coeff; |
---|
205 | long n= p->length; |
---|
206 | for (long i= 0; i < n; i++) |
---|
207 | { |
---|
208 | fmpq_init (coeff); |
---|
209 | fmpq_poly_get_coeff_fmpq (coeff, p, i); |
---|
210 | if (fmpq_is_zero (coeff)) |
---|
211 | { |
---|
212 | fmpq_clear (coeff); |
---|
213 | continue; |
---|
214 | } |
---|
215 | result += convertFmpq_t2CF (coeff)*power (x, i); |
---|
216 | fmpq_clear (coeff); |
---|
217 | } |
---|
218 | return result; |
---|
219 | } |
---|
220 | |
---|
221 | void convertFacCF2Fmpz_array (fmpz* result, const CanonicalForm& f) |
---|
222 | { |
---|
223 | for (CFIterator i= f; i.hasTerms(); i++) |
---|
224 | convertCF2Fmpz (&result[i.exp()], i.coeff()); |
---|
225 | } |
---|
226 | |
---|
227 | void convertFacCF2Fmpq_poly_t (fmpq_poly_t result, const CanonicalForm& f) |
---|
228 | { |
---|
229 | //ASSERT (isOn (SW_RATIONAL), "expected poly over Q"); |
---|
230 | |
---|
231 | fmpq_poly_init2 (result, degree (f)+1); |
---|
232 | _fmpq_poly_set_length (result, degree (f) + 1); |
---|
233 | CanonicalForm den= bCommonDen (f); |
---|
234 | convertFacCF2Fmpz_array (fmpq_poly_numref (result), f*den); |
---|
235 | convertCF2Fmpz (fmpq_poly_denref (result), den); |
---|
236 | } |
---|
237 | |
---|
238 | CFFList |
---|
239 | convertFLINTnmod_poly_factor2FacCFFList (const nmod_poly_factor_t fac, |
---|
240 | const mp_limb_t leadingCoeff, |
---|
241 | const Variable& x |
---|
242 | ) |
---|
243 | { |
---|
244 | CFFList result; |
---|
245 | if (leadingCoeff != 1) |
---|
246 | result.insert (CFFactor (CanonicalForm ((long) leadingCoeff), 1)); |
---|
247 | |
---|
248 | long i; |
---|
249 | |
---|
250 | for (i = 0; i < fac->num; i++) |
---|
251 | result.append (CFFactor (convertnmod_poly_t2FacCF ( |
---|
252 | (nmod_poly_t &)fac->p[i],x), |
---|
253 | fac->exp[i])); |
---|
254 | return result; |
---|
255 | } |
---|
256 | |
---|
257 | #if __FLINT_VERSION_MINOR >= 4 |
---|
258 | CFFList |
---|
259 | convertFLINTFq_nmod_poly_factor2FacCFFList (const fq_nmod_poly_factor_t fac, |
---|
260 | const Variable& x, const Variable& alpha, |
---|
261 | const fq_nmod_ctx_t fq_con |
---|
262 | ) |
---|
263 | { |
---|
264 | CFFList result; |
---|
265 | |
---|
266 | long i; |
---|
267 | |
---|
268 | for (i = 0; i < fac->num; i++) |
---|
269 | result.append (CFFactor (convertFq_nmod_poly_t2FacCF ( |
---|
270 | (fq_nmod_poly_t &)fac->poly[i], x, alpha, fq_con), |
---|
271 | fac->exp[i])); |
---|
272 | return result; |
---|
273 | } |
---|
274 | #endif |
---|
275 | |
---|
276 | void |
---|
277 | convertFacCF2Fmpz_mod_poly_t (fmpz_mod_poly_t result, const CanonicalForm& f, |
---|
278 | const fmpz_t p) |
---|
279 | { |
---|
280 | fmpz_mod_poly_init2 (result, p, degree (f) + 1); |
---|
281 | fmpz_poly_t buf; |
---|
282 | convertFacCF2Fmpz_poly_t (buf, f); |
---|
283 | fmpz_mod_poly_set_fmpz_poly (result, buf); |
---|
284 | fmpz_poly_clear (buf); |
---|
285 | } |
---|
286 | |
---|
287 | CanonicalForm |
---|
288 | convertFmpz_mod_poly_t2FacCF (const fmpz_mod_poly_t poly, const Variable& x, |
---|
289 | const modpk& b) |
---|
290 | { |
---|
291 | fmpz_poly_t buf; |
---|
292 | fmpz_poly_init (buf); |
---|
293 | fmpz_mod_poly_get_fmpz_poly (buf, poly); |
---|
294 | CanonicalForm result= convertFmpz_poly_t2FacCF (buf, x); |
---|
295 | fmpz_poly_clear (buf); |
---|
296 | return b (result); |
---|
297 | } |
---|
298 | |
---|
299 | #if __FLINT_VERSION_MINOR >= 4 |
---|
300 | void |
---|
301 | convertFacCF2Fq_nmod_t (fq_nmod_t result, const CanonicalForm& f, |
---|
302 | const fq_nmod_ctx_t ctx) |
---|
303 | { |
---|
304 | bool save_sym_ff= isOn (SW_SYMMETRIC_FF); |
---|
305 | if (save_sym_ff) Off (SW_SYMMETRIC_FF); |
---|
306 | for (CFIterator i= f; i.hasTerms(); i++) |
---|
307 | { |
---|
308 | CanonicalForm c= i.coeff(); |
---|
309 | if (!c.isImm()) c=c.mapinto(); //c%= getCharacteristic(); |
---|
310 | if (!c.isImm()) |
---|
311 | { //This case will never happen if the characteristic is in fact a prime |
---|
312 | // number, since all coefficients are represented as immediates |
---|
313 | printf("convertFacCF2Fq_nmod_t: coefficient not immediate!, char=%d\n", |
---|
314 | getCharacteristic()); |
---|
315 | } |
---|
316 | else |
---|
317 | { |
---|
318 | STICKYASSERT (i.exp() <= fq_nmod_ctx_degree(ctx), "convertFacCF2Fq_nmod_t: element is not reduced"); |
---|
319 | nmod_poly_set_coeff_ui (result, i.exp(), c.intval()); |
---|
320 | } |
---|
321 | } |
---|
322 | if (save_sym_ff) On (SW_SYMMETRIC_FF); |
---|
323 | } |
---|
324 | |
---|
325 | CanonicalForm |
---|
326 | convertFq_nmod_t2FacCF (const fq_nmod_t poly, const Variable& alpha) |
---|
327 | { |
---|
328 | return convertnmod_poly_t2FacCF (poly, alpha); |
---|
329 | } |
---|
330 | |
---|
331 | void |
---|
332 | convertFacCF2Fq_t (fq_t result, const CanonicalForm& f, const fq_ctx_t ctx) |
---|
333 | { |
---|
334 | fmpz_poly_init2 (result, fq_ctx_degree(ctx)); |
---|
335 | ASSERT (degree (f) < fq_ctx_degree (ctx), "input is not reduced"); |
---|
336 | _fmpz_poly_set_length(result, degree(f)+1); |
---|
337 | for (CFIterator i= f; i.hasTerms(); i++) |
---|
338 | convertCF2Fmpz (fmpz_poly_get_coeff_ptr(result, i.exp()), i.coeff()); |
---|
339 | _fmpz_vec_scalar_mod_fmpz (result->coeffs, result->coeffs, degree (f) + 1, |
---|
340 | &ctx->p); |
---|
341 | _fmpz_poly_normalise (result); |
---|
342 | } |
---|
343 | |
---|
344 | CanonicalForm |
---|
345 | convertFq_t2FacCF (const fq_t poly, const Variable& alpha) |
---|
346 | { |
---|
347 | return convertFmpz_poly_t2FacCF (poly, alpha); |
---|
348 | } |
---|
349 | |
---|
350 | void |
---|
351 | convertFacCF2Fq_poly_t (fq_poly_t result, const CanonicalForm& f, |
---|
352 | const fq_ctx_t ctx) |
---|
353 | { |
---|
354 | fq_poly_init2 (result, degree (f)+1, ctx); |
---|
355 | _fq_poly_set_length (result, degree (f) + 1, ctx); |
---|
356 | fmpz_poly_t buf; |
---|
357 | for (CFIterator i= f; i.hasTerms(); i++) |
---|
358 | { |
---|
359 | convertFacCF2Fmpz_poly_t (buf, i.coeff()); |
---|
360 | _fmpz_vec_scalar_mod_fmpz (buf->coeffs, buf->coeffs, degree (i.coeff()) + 1, |
---|
361 | &ctx->p); |
---|
362 | _fmpz_poly_normalise (buf); |
---|
363 | fq_poly_set_coeff (result, i.exp(), buf, ctx); |
---|
364 | fmpz_poly_clear (buf); |
---|
365 | } |
---|
366 | } |
---|
367 | |
---|
368 | void |
---|
369 | convertFacCF2Fq_nmod_poly_t (fq_nmod_poly_t result, const CanonicalForm& f, |
---|
370 | const fq_nmod_ctx_t ctx) |
---|
371 | { |
---|
372 | fq_nmod_poly_init2 (result, degree (f)+1, ctx); |
---|
373 | _fq_nmod_poly_set_length (result, degree (f) + 1, ctx); |
---|
374 | fq_nmod_t buf; |
---|
375 | fq_nmod_init2 (buf, ctx); |
---|
376 | for (CFIterator i= f; i.hasTerms(); i++) |
---|
377 | { |
---|
378 | convertFacCF2Fq_nmod_t (buf, i.coeff(), ctx); |
---|
379 | fq_nmod_poly_set_coeff (result, i.exp(), buf, ctx); |
---|
380 | fq_nmod_zero (buf, ctx); |
---|
381 | } |
---|
382 | fq_nmod_clear (buf, ctx); |
---|
383 | } |
---|
384 | |
---|
385 | CanonicalForm |
---|
386 | convertFq_poly_t2FacCF (const fq_poly_t p, const Variable& x, |
---|
387 | const Variable& alpha, const fq_ctx_t ctx) |
---|
388 | { |
---|
389 | CanonicalForm result= 0; |
---|
390 | fq_t coeff; |
---|
391 | long n= fq_poly_length (p, ctx); |
---|
392 | fq_init2 (coeff, ctx); |
---|
393 | for (long i= 0; i < n; i++) |
---|
394 | { |
---|
395 | fq_poly_get_coeff (coeff, p, i, ctx); |
---|
396 | if (fq_is_zero (coeff, ctx)) |
---|
397 | continue; |
---|
398 | result += convertFq_t2FacCF (coeff, alpha)*power (x, i); |
---|
399 | fq_zero (coeff, ctx); |
---|
400 | } |
---|
401 | fq_clear (coeff, ctx); |
---|
402 | |
---|
403 | return result; |
---|
404 | } |
---|
405 | |
---|
406 | CanonicalForm |
---|
407 | convertFq_nmod_poly_t2FacCF (const fq_nmod_poly_t p, const Variable& x, |
---|
408 | const Variable& alpha, const fq_nmod_ctx_t ctx) |
---|
409 | { |
---|
410 | CanonicalForm result= 0; |
---|
411 | fq_nmod_t coeff; |
---|
412 | long n= fq_nmod_poly_length (p, ctx); |
---|
413 | fq_nmod_init2 (coeff, ctx); |
---|
414 | for (long i= 0; i < n; i++) |
---|
415 | { |
---|
416 | fq_nmod_poly_get_coeff (coeff, p, i, ctx); |
---|
417 | if (fq_nmod_is_zero (coeff, ctx)) |
---|
418 | continue; |
---|
419 | result += convertFq_nmod_t2FacCF (coeff, alpha)*power (x, i); |
---|
420 | fq_nmod_zero (coeff, ctx); |
---|
421 | } |
---|
422 | fq_nmod_clear (coeff, ctx); |
---|
423 | |
---|
424 | return result; |
---|
425 | } |
---|
426 | #endif |
---|
427 | |
---|
428 | void convertFacCFMatrix2Fmpz_mat_t (fmpz_mat_t M, const CFMatrix &m) |
---|
429 | { |
---|
430 | fmpz_mat_init (M, (long) m.rows(), (long) m.columns()); |
---|
431 | |
---|
432 | int i,j; |
---|
433 | for(i=m.rows();i>0;i--) |
---|
434 | { |
---|
435 | for(j=m.columns();j>0;j--) |
---|
436 | { |
---|
437 | convertCF2Fmpz (fmpz_mat_entry (M,i-1,j-1), m(i,j)); |
---|
438 | } |
---|
439 | } |
---|
440 | } |
---|
441 | CFMatrix* convertFmpz_mat_t2FacCFMatrix(const fmpz_mat_t m) |
---|
442 | { |
---|
443 | CFMatrix *res=new CFMatrix(fmpz_mat_nrows (m),fmpz_mat_ncols (m)); |
---|
444 | int i,j; |
---|
445 | for(i=res->rows();i>0;i--) |
---|
446 | { |
---|
447 | for(j=res->columns();j>0;j--) |
---|
448 | { |
---|
449 | (*res)(i,j)=convertFmpz2CF(fmpz_mat_entry (m,i-1,j-1)); |
---|
450 | } |
---|
451 | } |
---|
452 | return res; |
---|
453 | } |
---|
454 | |
---|
455 | void convertFacCFMatrix2nmod_mat_t (nmod_mat_t M, const CFMatrix &m) |
---|
456 | { |
---|
457 | nmod_mat_init (M, (long) m.rows(), (long) m.columns(), getCharacteristic()); |
---|
458 | |
---|
459 | bool save_sym_ff= isOn (SW_SYMMETRIC_FF); |
---|
460 | if (save_sym_ff) Off (SW_SYMMETRIC_FF); |
---|
461 | int i,j; |
---|
462 | for(i=m.rows();i>0;i--) |
---|
463 | { |
---|
464 | for(j=m.columns();j>0;j--) |
---|
465 | { |
---|
466 | if(!(m(i,j)).isImm()) printf("convertFacCFMatrix2FLINTmat_zz_p: not imm.\n"); |
---|
467 | nmod_mat_entry (M,i-1,j-1)= (m(i,j)).intval(); |
---|
468 | } |
---|
469 | } |
---|
470 | if (save_sym_ff) On (SW_SYMMETRIC_FF); |
---|
471 | } |
---|
472 | |
---|
473 | CFMatrix* convertNmod_mat_t2FacCFMatrix(const nmod_mat_t m) |
---|
474 | { |
---|
475 | CFMatrix *res=new CFMatrix(nmod_mat_nrows (m), nmod_mat_ncols (m)); |
---|
476 | int i,j; |
---|
477 | for(i=res->rows();i>0;i--) |
---|
478 | { |
---|
479 | for(j=res->columns();j>0;j--) |
---|
480 | { |
---|
481 | (*res)(i,j)=CanonicalForm((long) nmod_mat_entry (m, i-1, j-1)); |
---|
482 | } |
---|
483 | } |
---|
484 | return res; |
---|
485 | } |
---|
486 | |
---|
487 | #if __FLINT_VERSION_MINOR >= 4 |
---|
488 | void |
---|
489 | convertFacCFMatrix2Fq_nmod_mat_t (fq_nmod_mat_t M, |
---|
490 | const fq_nmod_ctx_t fq_con, const CFMatrix &m) |
---|
491 | { |
---|
492 | fq_nmod_mat_init (M, (long) m.rows(), (long) m.columns(), fq_con); |
---|
493 | int i,j; |
---|
494 | for(i=m.rows();i>0;i--) |
---|
495 | { |
---|
496 | for(j=m.columns();j>0;j--) |
---|
497 | { |
---|
498 | convertFacCF2nmod_poly_t (M->rows[i-1]+j-1, m (i,j)); |
---|
499 | } |
---|
500 | } |
---|
501 | } |
---|
502 | |
---|
503 | CFMatrix* |
---|
504 | convertFq_nmod_mat_t2FacCFMatrix(const fq_nmod_mat_t m, |
---|
505 | const fq_nmod_ctx_t& fq_con, |
---|
506 | const Variable& alpha) |
---|
507 | { |
---|
508 | CFMatrix *res=new CFMatrix(fq_nmod_mat_nrows (m, fq_con), |
---|
509 | fq_nmod_mat_ncols (m, fq_con)); |
---|
510 | int i,j; |
---|
511 | for(i=res->rows();i>0;i--) |
---|
512 | { |
---|
513 | for(j=res->columns();j>0;j--) |
---|
514 | { |
---|
515 | (*res)(i,j)=convertFq_nmod_t2FacCF (fq_nmod_mat_entry (m, i-1, j-1), |
---|
516 | alpha); |
---|
517 | } |
---|
518 | } |
---|
519 | return res; |
---|
520 | } |
---|
521 | #endif |
---|
522 | |
---|
523 | #endif |
---|
524 | |
---|
525 | |
---|