1 | /* $Id$ */ |
---|
2 | #include <config.h> |
---|
3 | |
---|
4 | #ifdef HAVE_SINGULAR |
---|
5 | #ifndef OM_NDEBUG |
---|
6 | #define OM_NDEBUG |
---|
7 | #endif |
---|
8 | #endif |
---|
9 | |
---|
10 | #include "cf_gmp.h" |
---|
11 | |
---|
12 | #include "assert.h" |
---|
13 | |
---|
14 | #include "cf_defs.h" |
---|
15 | #include "canonicalform.h" |
---|
16 | #include "cf_iter.h" |
---|
17 | #include "fac_berlekamp.h" |
---|
18 | #include "fac_cantzass.h" |
---|
19 | #include "fac_univar.h" |
---|
20 | #include "fac_multivar.h" |
---|
21 | #include "fac_sqrfree.h" |
---|
22 | #include "cf_algorithm.h" |
---|
23 | |
---|
24 | #ifdef HAVE_NTL |
---|
25 | #ifdef HAVE_CSTDIO |
---|
26 | #include <cstdio> |
---|
27 | #else |
---|
28 | #include <stdio.h> |
---|
29 | #endif |
---|
30 | #include <string.h> |
---|
31 | #include <NTL/ZZXFactoring.h> |
---|
32 | #include <NTL/ZZ_pXFactoring.h> |
---|
33 | #include <NTL/lzz_pXFactoring.h> |
---|
34 | #include <NTL/GF2XFactoring.h> |
---|
35 | #include <NTL/ZZ_pEXFactoring.h> |
---|
36 | #include <NTL/lzz_pEXFactoring.h> |
---|
37 | #include <NTL/GF2EXFactoring.h> |
---|
38 | #include <NTL/tools.h> |
---|
39 | #include "int_int.h" |
---|
40 | #include <limits.h> |
---|
41 | #include "NTLconvert.h" |
---|
42 | |
---|
43 | #ifdef HAVE_OMALLOC |
---|
44 | #define Alloc(L) omAlloc(L) |
---|
45 | #define Free(A,L) omFreeSize(A,L) |
---|
46 | #elif defined(USE_MEMUTIL) |
---|
47 | #include "memutil.h" |
---|
48 | #define Alloc(L) getBlock(L) |
---|
49 | #define Free(A,L) freeBlock(A,L) |
---|
50 | #else |
---|
51 | #define Alloc(L) malloc(L) |
---|
52 | #define Free(A,L) free(A) |
---|
53 | #endif |
---|
54 | |
---|
55 | void out_cf(const char *s1,const CanonicalForm &f,const char *s2); |
---|
56 | |
---|
57 | |
---|
58 | int fac_NTL_char=-1; // the current characterstic for NTL calls |
---|
59 | // -1: undefined |
---|
60 | #ifdef NTL_CLIENT // in <NTL/tools.h>: using of name space NTL |
---|
61 | NTL_CLIENT |
---|
62 | #endif |
---|
63 | |
---|
64 | //////////////////////////////////////////////////////////////////////////////// |
---|
65 | // NAME: convertFacCF2NTLZZpX // |
---|
66 | // // |
---|
67 | // DESCRIPTION: // |
---|
68 | // Conversion routine for Factory-type canonicalform into ZZpX of NTL, // |
---|
69 | // i.e. polynomials over F_p. As a precondition for correct execution, // |
---|
70 | // the characteristic has to a a prime number. // |
---|
71 | // // |
---|
72 | // INPUT: A canonicalform f // |
---|
73 | // OUTPUT: The converted NTL-polynomial over F_p of type ZZpX // |
---|
74 | //////////////////////////////////////////////////////////////////////////////// |
---|
75 | |
---|
76 | ZZ_pX convertFacCF2NTLZZpX(CanonicalForm f) |
---|
77 | { |
---|
78 | ZZ_pX ntl_poly; |
---|
79 | |
---|
80 | CFIterator i; |
---|
81 | i=f; |
---|
82 | |
---|
83 | int NTLcurrentExp=i.exp(); |
---|
84 | int largestExp=i.exp(); |
---|
85 | int k; |
---|
86 | |
---|
87 | // we now build up the NTL-polynomial |
---|
88 | ntl_poly.SetMaxLength(largestExp+1); |
---|
89 | |
---|
90 | for (;i.hasTerms();i++) |
---|
91 | { |
---|
92 | for (k=NTLcurrentExp;k>i.exp();k--) |
---|
93 | { |
---|
94 | SetCoeff(ntl_poly,k,0); |
---|
95 | } |
---|
96 | NTLcurrentExp=i.exp(); |
---|
97 | |
---|
98 | CanonicalForm c=i.coeff(); |
---|
99 | if (!c.isImm()) c=c.mapinto(); //c%= getCharacteristic(); |
---|
100 | if (!c.isImm()) |
---|
101 | { //This case will never happen if the characteristic is in fact a prime |
---|
102 | // number, since all coefficients are represented as immediates |
---|
103 | #ifndef NOSTREAMIO |
---|
104 | cout<<"convertFacCF2NTLZZ_pX: coefficient not immediate! : "<<f<<"\n"; |
---|
105 | #else |
---|
106 | //NTL_SNS |
---|
107 | printf("convertFacCF2NTLZZ_pX: coefficient not immediate!, char=%d\n", |
---|
108 | getCharacteristic()); |
---|
109 | #endif |
---|
110 | NTL_SNS exit(1); |
---|
111 | } |
---|
112 | else |
---|
113 | { |
---|
114 | SetCoeff(ntl_poly,NTLcurrentExp,c.intval()); |
---|
115 | } |
---|
116 | NTLcurrentExp--; |
---|
117 | } |
---|
118 | |
---|
119 | //Set the remaining coefficients of ntl_poly to zero. |
---|
120 | // This is necessary, because NTL internally |
---|
121 | // also stores powers with zero coefficient, |
---|
122 | // whereas factory stores tuples of degree and coefficient |
---|
123 | //leaving out tuples if the coefficient equals zero |
---|
124 | for (k=NTLcurrentExp;k>=0;k--) |
---|
125 | { |
---|
126 | SetCoeff(ntl_poly,k,0); |
---|
127 | } |
---|
128 | |
---|
129 | //normalize the polynomial and return it |
---|
130 | ntl_poly.normalize(); |
---|
131 | |
---|
132 | return ntl_poly; |
---|
133 | } |
---|
134 | zz_pX convertFacCF2NTLzzpX(CanonicalForm f) |
---|
135 | { |
---|
136 | zz_pX ntl_poly; |
---|
137 | |
---|
138 | CFIterator i; |
---|
139 | i=f; |
---|
140 | |
---|
141 | int NTLcurrentExp=i.exp(); |
---|
142 | int largestExp=i.exp(); |
---|
143 | int k; |
---|
144 | |
---|
145 | // we now build up the NTL-polynomial |
---|
146 | ntl_poly.SetMaxLength(largestExp+1); |
---|
147 | |
---|
148 | for (;i.hasTerms();i++) |
---|
149 | { |
---|
150 | for (k=NTLcurrentExp;k>i.exp();k--) |
---|
151 | { |
---|
152 | SetCoeff(ntl_poly,k,0); |
---|
153 | } |
---|
154 | NTLcurrentExp=i.exp(); |
---|
155 | |
---|
156 | CanonicalForm c=i.coeff(); |
---|
157 | if (!c.isImm()) c.mapinto(); //c%= getCharacteristic(); |
---|
158 | if (!c.isImm()) |
---|
159 | { //This case will never happen if the characteristic is in fact a prime |
---|
160 | // number, since all coefficients are represented as immediates |
---|
161 | #ifndef NOSTREAMIO |
---|
162 | cout<<"convertFacCF2NTLzz_pX: coefficient not immediate! : "<<f<<"\n"; |
---|
163 | #else |
---|
164 | //NTL_SNS |
---|
165 | printf("convertFacCF2NTLzz_pX: coefficient not immediate!, char=%d\n", |
---|
166 | getCharacteristic()); |
---|
167 | #endif |
---|
168 | NTL_SNS exit(1); |
---|
169 | } |
---|
170 | else |
---|
171 | { |
---|
172 | SetCoeff(ntl_poly,NTLcurrentExp,c.intval()); |
---|
173 | } |
---|
174 | NTLcurrentExp--; |
---|
175 | } |
---|
176 | |
---|
177 | //Set the remaining coefficients of ntl_poly to zero. |
---|
178 | // This is necessary, because NTL internally |
---|
179 | // also stores powers with zero coefficient, |
---|
180 | // whereas factory stores tuples of degree and coefficient |
---|
181 | //leaving out tuples if the coefficient equals zero |
---|
182 | for (k=NTLcurrentExp;k>=0;k--) |
---|
183 | { |
---|
184 | SetCoeff(ntl_poly,k,0); |
---|
185 | } |
---|
186 | |
---|
187 | //normalize the polynomial and return it |
---|
188 | ntl_poly.normalize(); |
---|
189 | |
---|
190 | return ntl_poly; |
---|
191 | } |
---|
192 | |
---|
193 | //////////////////////////////////////////////////////////////////////////////// |
---|
194 | // NAME: convertFacCF2NTLGF2X // |
---|
195 | // // |
---|
196 | // DESCRIPTION: // |
---|
197 | // Conversion routine for Factory-type canonicalform into GF2X of NTL, // |
---|
198 | // i.e. polynomials over F_2. As precondition for correct execution, // |
---|
199 | // the characteristic must equal two. // |
---|
200 | // This is a special case of the more general conversion routine for // |
---|
201 | // canonicalform to ZZpX. It is included because NTL provides additional // |
---|
202 | // support and faster algorithms over F_2, moreover the conversion code // |
---|
203 | // can be optimized, because certain steps are either completely obsolent // |
---|
204 | // (like normalizing the polynomial) or they can be made significantly // |
---|
205 | // faster (like building up the NTL-polynomial). // |
---|
206 | // // |
---|
207 | // INPUT: A canonicalform f // |
---|
208 | // OUTPUT: The converted NTL-polynomial over F_2 of type GF2X // |
---|
209 | //////////////////////////////////////////////////////////////////////////////// |
---|
210 | |
---|
211 | GF2X convertFacCF2NTLGF2X(CanonicalForm f) |
---|
212 | { |
---|
213 | //printf("convertFacCF2NTLGF2X\n"); |
---|
214 | GF2X ntl_poly; |
---|
215 | |
---|
216 | CFIterator i; |
---|
217 | i=f; |
---|
218 | |
---|
219 | int NTLcurrentExp=i.exp(); |
---|
220 | int largestExp=i.exp(); |
---|
221 | int k; |
---|
222 | |
---|
223 | //building the NTL-polynomial |
---|
224 | ntl_poly.SetMaxLength(largestExp+1); |
---|
225 | |
---|
226 | for (;i.hasTerms();i++) |
---|
227 | { |
---|
228 | |
---|
229 | for (k=NTLcurrentExp;k>i.exp();k--) |
---|
230 | { |
---|
231 | SetCoeff(ntl_poly,k,0); |
---|
232 | } |
---|
233 | NTLcurrentExp=i.exp(); |
---|
234 | |
---|
235 | if (!i.coeff().isImm()) i.coeff()=i.coeff().mapinto(); |
---|
236 | if (!i.coeff().isImm()) |
---|
237 | { |
---|
238 | #ifndef NOSTREAMIO |
---|
239 | cout<<"convertFacCF2NTLGF2X: coefficient not immidiate! : " << f << "\n"; |
---|
240 | #else |
---|
241 | //NTL_SNS |
---|
242 | printf("convertFacCF2NTLGF2X: coefficient not immidiate!"); |
---|
243 | #endif |
---|
244 | NTL_SNS exit(1); |
---|
245 | } |
---|
246 | else |
---|
247 | { |
---|
248 | SetCoeff(ntl_poly,NTLcurrentExp,i.coeff().intval()); |
---|
249 | } |
---|
250 | NTLcurrentExp--; |
---|
251 | } |
---|
252 | for (k=NTLcurrentExp;k>=0;k--) |
---|
253 | { |
---|
254 | SetCoeff(ntl_poly,k,0); |
---|
255 | } |
---|
256 | //normalization is not necessary of F_2 |
---|
257 | |
---|
258 | return ntl_poly; |
---|
259 | } |
---|
260 | |
---|
261 | |
---|
262 | //////////////////////////////////////////////////////////////////////////////// |
---|
263 | // NAME: convertNTLZZpX2CF // |
---|
264 | // // |
---|
265 | // DESCRIPTION: // |
---|
266 | // Conversion routine for NTL-Type ZZpX to Factory-Type canonicalform. // |
---|
267 | // Additionally a variable x is needed as a parameter indicating the // |
---|
268 | // main variable of the computed canonicalform. To guarantee the correct // |
---|
269 | // execution of the algorithm, the characteristic has a be an arbitrary // |
---|
270 | // prime number. // |
---|
271 | // // |
---|
272 | // INPUT: A canonicalform f, a variable x // |
---|
273 | // OUTPUT: The converted Factory-polynomial of type canonicalform, // |
---|
274 | // built by the main variable x // |
---|
275 | //////////////////////////////////////////////////////////////////////////////// |
---|
276 | |
---|
277 | CanonicalForm convertNTLZZpX2CF(ZZ_pX poly,Variable x) |
---|
278 | { |
---|
279 | //printf("convertNTLZZpX2CF\n"); |
---|
280 | CanonicalForm bigone; |
---|
281 | |
---|
282 | |
---|
283 | if (deg(poly)>0) |
---|
284 | { |
---|
285 | // poly is non-constant |
---|
286 | bigone=0; |
---|
287 | bigone.mapinto(); |
---|
288 | // Compute the canonicalform coefficient by coefficient, |
---|
289 | // bigone summarizes the result. |
---|
290 | for (int j=0;j<deg(poly)+1;j++) |
---|
291 | { |
---|
292 | if (coeff(poly,j)!=0) |
---|
293 | { |
---|
294 | bigone+=(power(x,j)*CanonicalForm(to_long(rep(coeff(poly,j))))); |
---|
295 | } |
---|
296 | } |
---|
297 | } |
---|
298 | else |
---|
299 | { |
---|
300 | // poly is immediate |
---|
301 | bigone=CanonicalForm(to_long(rep(coeff(poly,0)))); |
---|
302 | bigone.mapinto(); |
---|
303 | } |
---|
304 | return bigone; |
---|
305 | } |
---|
306 | |
---|
307 | CanonicalForm convertNTLzzpX2CF(zz_pX poly,Variable x) |
---|
308 | { |
---|
309 | //printf("convertNTLzzpX2CF\n"); |
---|
310 | CanonicalForm bigone; |
---|
311 | |
---|
312 | |
---|
313 | if (deg(poly)>0) |
---|
314 | { |
---|
315 | // poly is non-constant |
---|
316 | bigone=0; |
---|
317 | bigone.mapinto(); |
---|
318 | // Compute the canonicalform coefficient by coefficient, |
---|
319 | // bigone summarizes the result. |
---|
320 | for (int j=0;j<deg(poly)+1;j++) |
---|
321 | { |
---|
322 | if (coeff(poly,j)!=0) |
---|
323 | { |
---|
324 | bigone+=(power(x,j)*CanonicalForm(to_long(rep(coeff(poly,j))))); |
---|
325 | } |
---|
326 | } |
---|
327 | } |
---|
328 | else |
---|
329 | { |
---|
330 | // poly is immediate |
---|
331 | bigone=CanonicalForm(to_long(rep(coeff(poly,0)))); |
---|
332 | bigone.mapinto(); |
---|
333 | } |
---|
334 | return bigone; |
---|
335 | } |
---|
336 | |
---|
337 | CanonicalForm convertNTLZZX2CF(ZZX polynom,Variable x) |
---|
338 | { |
---|
339 | //printf("convertNTLZZX2CF\n"); |
---|
340 | CanonicalForm bigone; |
---|
341 | |
---|
342 | // Go through the vector e and build up the CFFList |
---|
343 | // As usual bigone summarizes the result |
---|
344 | bigone=0; |
---|
345 | ZZ coefficient; |
---|
346 | |
---|
347 | for (int j=0;j<=deg(polynom);j++) |
---|
348 | { |
---|
349 | coefficient=coeff(polynom,j); |
---|
350 | if (!IsZero(coefficient)) |
---|
351 | { |
---|
352 | bigone += (power(x,j)*convertZZ2CF(coefficient)); |
---|
353 | } |
---|
354 | } |
---|
355 | return bigone; |
---|
356 | } |
---|
357 | |
---|
358 | //////////////////////////////////////////////////////////////////////////////// |
---|
359 | // NAME: convertNTLGF2X2CF // |
---|
360 | // // |
---|
361 | // DESCRIPTION: // |
---|
362 | // Conversion routine for NTL-Type GF2X to Factory-Type canonicalform, // |
---|
363 | // the routine is again an optimized special case of the more general // |
---|
364 | // conversion to ZZpX. Additionally a variable x is needed as a // |
---|
365 | // parameter indicating the main variable of the computed canonicalform. // |
---|
366 | // To guarantee the correct execution of the algorithm the characteristic // |
---|
367 | // has a be an arbitrary prime number. // |
---|
368 | // // |
---|
369 | // INPUT: A canonicalform f, a variable x // |
---|
370 | // OUTPUT: The converted Factory-polynomial of type canonicalform, // |
---|
371 | // built by the main variable x // |
---|
372 | //////////////////////////////////////////////////////////////////////////////// |
---|
373 | |
---|
374 | CanonicalForm convertNTLGF2X2CF(GF2X poly,Variable x) |
---|
375 | { |
---|
376 | //printf("convertNTLGF2X2CF\n"); |
---|
377 | CanonicalForm bigone; |
---|
378 | |
---|
379 | if (deg(poly)>0) |
---|
380 | { |
---|
381 | // poly is non-constant |
---|
382 | bigone=0; |
---|
383 | bigone.mapinto(); |
---|
384 | // Compute the canonicalform coefficient by coefficient, |
---|
385 | // bigone summarizes the result. |
---|
386 | // In constrast to the more general conversion to ZZpX |
---|
387 | // the only possible coefficients are zero |
---|
388 | // and one yielding the following simplified loop |
---|
389 | for (int j=0;j<deg(poly)+1;j++) |
---|
390 | { |
---|
391 | if (coeff(poly,j)!=0) bigone+=power(x,j); |
---|
392 | // *CanonicalForm(to_long(rep(coeff(poly,j))))) is not necessary any more; |
---|
393 | } |
---|
394 | } |
---|
395 | else |
---|
396 | { |
---|
397 | // poly is immediate |
---|
398 | bigone=CanonicalForm(to_long(rep(coeff(poly,0)))); |
---|
399 | bigone.mapinto(); |
---|
400 | } |
---|
401 | |
---|
402 | return bigone; |
---|
403 | } |
---|
404 | |
---|
405 | //////////////////////////////////////////////////////////////////////////////// |
---|
406 | // NAME: convertNTLvec_pair_ZZpX_long2FacCFFList // |
---|
407 | // // |
---|
408 | // DESCRIPTION: // |
---|
409 | // Routine for converting a vector of polynomials from ZZpX to // |
---|
410 | // a CFFList of Factory. This routine will be used after a successful // |
---|
411 | // factorization of NTL to convert the result back to Factory. // |
---|
412 | // // |
---|
413 | // Additionally a variable x and the computed multiplicity, as a type ZZp // |
---|
414 | // of NTL, is needed as parameters indicating the main variable of the // |
---|
415 | // computed canonicalform and the multiplicity of the original polynomial. // |
---|
416 | // To guarantee the correct execution of the algorithm the characteristic // |
---|
417 | // has a be an arbitrary prime number. // |
---|
418 | // // |
---|
419 | // INPUT: A vector of polynomials over ZZp of type vec_pair_ZZ_pX_long and // |
---|
420 | // a variable x and a multiplicity of type ZZp // |
---|
421 | // OUTPUT: The converted list of polynomials of type CFFList, all polynomials // |
---|
422 | // have x as their main variable // |
---|
423 | //////////////////////////////////////////////////////////////////////////////// |
---|
424 | |
---|
425 | CFFList convertNTLvec_pair_ZZpX_long2FacCFFList |
---|
426 | (vec_pair_ZZ_pX_long e,ZZ_p multi,Variable x) |
---|
427 | { |
---|
428 | //printf("convertNTLvec_pair_ZZpX_long2FacCFFList\n"); |
---|
429 | CFFList rueckgabe; |
---|
430 | ZZ_pX polynom; |
---|
431 | CanonicalForm bigone; |
---|
432 | |
---|
433 | // Maybe, e may additionally be sorted with respect to increasing degree of x |
---|
434 | // but this is not |
---|
435 | //important for the factorization, but nevertheless would take computing time, |
---|
436 | // so it is omitted |
---|
437 | |
---|
438 | |
---|
439 | // Go through the vector e and compute the CFFList |
---|
440 | // again bigone summarizes the result |
---|
441 | for (int i=e.length()-1;i>=0;i--) |
---|
442 | { |
---|
443 | rueckgabe.append(CFFactor(convertNTLZZpX2CF(e[i].a,x),e[i].b)); |
---|
444 | } |
---|
445 | // the multiplicity at pos 1 |
---|
446 | if (!IsOne(multi)) |
---|
447 | rueckgabe.insert(CFFactor(CanonicalForm(to_long(rep(multi))),1)); |
---|
448 | return rueckgabe; |
---|
449 | } |
---|
450 | CFFList convertNTLvec_pair_zzpX_long2FacCFFList |
---|
451 | (vec_pair_zz_pX_long e,zz_p multi,Variable x) |
---|
452 | { |
---|
453 | //printf("convertNTLvec_pair_zzpX_long2FacCFFList\n"); |
---|
454 | CFFList rueckgabe; |
---|
455 | zz_pX polynom; |
---|
456 | CanonicalForm bigone; |
---|
457 | |
---|
458 | // Maybe, e may additionally be sorted with respect to increasing degree of x |
---|
459 | // but this is not |
---|
460 | //important for the factorization, but nevertheless would take computing time, |
---|
461 | // so it is omitted |
---|
462 | |
---|
463 | |
---|
464 | // Go through the vector e and compute the CFFList |
---|
465 | // again bigone summarizes the result |
---|
466 | for (int i=e.length()-1;i>=0;i--) |
---|
467 | { |
---|
468 | rueckgabe.append(CFFactor(convertNTLzzpX2CF(e[i].a,x),e[i].b)); |
---|
469 | } |
---|
470 | // the multiplicity at pos 1 |
---|
471 | if (!IsOne(multi)) |
---|
472 | rueckgabe.insert(CFFactor(CanonicalForm(to_long(rep(multi))),1)); |
---|
473 | return rueckgabe; |
---|
474 | } |
---|
475 | |
---|
476 | //////////////////////////////////////////////////////////////////////////////// |
---|
477 | // NAME: convertNTLvec_pair_GF2X_long2FacCFFList // |
---|
478 | // // |
---|
479 | // DESCRIPTION: // |
---|
480 | // Routine for converting a vector of polynomials of type GF2X from // |
---|
481 | // NTL to a list CFFList of Factory. This routine will be used after a // |
---|
482 | // successful factorization of NTL to convert the result back to Factory. // |
---|
483 | // As usual this is simply a special case of the more general conversion // |
---|
484 | // routine but again speeded up by leaving out unnecessary steps. // |
---|
485 | // Additionally a variable x and the computed multiplicity, as type // |
---|
486 | // GF2 of NTL, are needed as parameters indicating the main variable of the // |
---|
487 | // computed canonicalform and the multiplicity of the original polynomial. // |
---|
488 | // To guarantee the correct execution of the algorithm the characteristic // |
---|
489 | // has a be an arbitrary prime number. // |
---|
490 | // // |
---|
491 | // INPUT: A vector of polynomials over GF2 of type vec_pair_GF2X_long and // |
---|
492 | // a variable x and a multiplicity of type GF2 // |
---|
493 | // OUTPUT: The converted list of polynomials of type CFFList, all // |
---|
494 | // polynomials have x as their main variable // |
---|
495 | //////////////////////////////////////////////////////////////////////////////// |
---|
496 | |
---|
497 | CFFList convertNTLvec_pair_GF2X_long2FacCFFList |
---|
498 | (vec_pair_GF2X_long e,GF2 multi,Variable x) |
---|
499 | { |
---|
500 | //printf("convertNTLvec_pair_GF2X_long2FacCFFList\n"); |
---|
501 | CFFList rueckgabe; |
---|
502 | GF2X polynom; |
---|
503 | long exponent; |
---|
504 | CanonicalForm bigone; |
---|
505 | |
---|
506 | // Maybe, e may additionally be sorted with respect to increasing degree of x |
---|
507 | // but this is not |
---|
508 | //important for the factorization, but nevertheless would take computing time |
---|
509 | // so it is omitted. |
---|
510 | |
---|
511 | //We do not have to worry about the multiplicity in GF2 since it equals one. |
---|
512 | |
---|
513 | // Go through the vector e and compute the CFFList |
---|
514 | // bigone summarizes the result again |
---|
515 | for (int i=e.length()-1;i>=0;i--) |
---|
516 | { |
---|
517 | bigone=0; |
---|
518 | |
---|
519 | polynom=e[i].a; |
---|
520 | exponent=e[i].b; |
---|
521 | for (int j=0;j<deg(polynom)+1;j++) |
---|
522 | { |
---|
523 | if (coeff(polynom,j)!=0) |
---|
524 | bigone += (power(x,j)*CanonicalForm(to_long(rep(coeff(polynom,j))))); |
---|
525 | } |
---|
526 | |
---|
527 | //append the converted polynomial to the CFFList |
---|
528 | rueckgabe.append(CFFactor(bigone,exponent)); |
---|
529 | } |
---|
530 | return rueckgabe; |
---|
531 | } |
---|
532 | |
---|
533 | //////////////////////////////////////////////////////////////////////////////// |
---|
534 | // NAME: convertZZ2CF // |
---|
535 | // // |
---|
536 | // DESCRIPTION: // |
---|
537 | // Routine for conversion of integers represented in NTL as Type ZZ to // |
---|
538 | // integers in Factory represented as canonicalform. // |
---|
539 | // To guarantee the correct execution of the algorithm the characteristic // |
---|
540 | // has to equal zero. // |
---|
541 | // // |
---|
542 | // INPUT: The value coefficient of type ZZ that has to be converted // |
---|
543 | // OUTPUT: The converted Factory-integer of type canonicalform // |
---|
544 | //////////////////////////////////////////////////////////////////////////////// |
---|
545 | |
---|
546 | static char *cf_stringtemp; |
---|
547 | static char *cf_stringtemp2; |
---|
548 | static int cf_stringtemp_l=0; |
---|
549 | CanonicalForm convertZZ2CF(ZZ coefficient) |
---|
550 | { |
---|
551 | long coeff_long; |
---|
552 | //CanonicalForm tmp=0; |
---|
553 | char dummy[2]; |
---|
554 | int minusremainder=0; |
---|
555 | char numbers[]="0123456789abcdef"; |
---|
556 | |
---|
557 | coeff_long=to_long(coefficient); |
---|
558 | |
---|
559 | //Test whether coefficient can be represented as an immediate integer in Factory |
---|
560 | if ( (NumBits(coefficient)<((long)NTL_ZZ_NBITS)) |
---|
561 | && (coeff_long>((long)MINIMMEDIATE)) |
---|
562 | && (coeff_long<((long)MAXIMMEDIATE))) |
---|
563 | { |
---|
564 | // coefficient is immediate --> return the coefficient as canonicalform |
---|
565 | return CanonicalForm(coeff_long); |
---|
566 | } |
---|
567 | else |
---|
568 | { |
---|
569 | // coefficient is not immediate (gmp-number) |
---|
570 | if (cf_stringtemp_l==0) |
---|
571 | { |
---|
572 | cf_stringtemp=(char *)Alloc(1023); |
---|
573 | cf_stringtemp2=(char *)Alloc(1023); |
---|
574 | cf_stringtemp[0]='\0'; |
---|
575 | cf_stringtemp2[0]='\0'; |
---|
576 | cf_stringtemp_l=1023; |
---|
577 | } |
---|
578 | |
---|
579 | // convert coefficient to char* (input for gmp) |
---|
580 | dummy[1]='\0'; |
---|
581 | |
---|
582 | if (coefficient<0) |
---|
583 | { |
---|
584 | // negate coefficient, but store the sign in minusremainder |
---|
585 | minusremainder=1; |
---|
586 | coefficient=-coefficient; |
---|
587 | } |
---|
588 | |
---|
589 | int l=0; |
---|
590 | while (coefficient>15) |
---|
591 | { |
---|
592 | ZZ quotient,remaind; |
---|
593 | ZZ ten;ten=16; |
---|
594 | DivRem(quotient,remaind,coefficient,ten); |
---|
595 | dummy[0]=numbers[to_long(remaind)]; |
---|
596 | //tmp*=10; tmp+=to_long(remaind); |
---|
597 | |
---|
598 | l++; |
---|
599 | if (l>=cf_stringtemp_l-2) |
---|
600 | { |
---|
601 | Free(cf_stringtemp2,cf_stringtemp_l); |
---|
602 | char *p=(char *)Alloc(cf_stringtemp_l*2); |
---|
603 | //NTL_SNS |
---|
604 | memcpy(p,cf_stringtemp,cf_stringtemp_l); |
---|
605 | Free(cf_stringtemp,cf_stringtemp_l); |
---|
606 | cf_stringtemp_l*=2; |
---|
607 | cf_stringtemp=p; |
---|
608 | cf_stringtemp2=(char *)Alloc(cf_stringtemp_l); |
---|
609 | } |
---|
610 | cf_stringtemp[l-1]=dummy[0]; |
---|
611 | cf_stringtemp[l]='\0'; |
---|
612 | //strcat(stringtemp,dummy); |
---|
613 | |
---|
614 | coefficient=quotient; |
---|
615 | } |
---|
616 | //built up the string in dummy[0] |
---|
617 | dummy[0]=numbers[to_long(coefficient)]; |
---|
618 | //NTL_SNS |
---|
619 | strcat(cf_stringtemp,dummy); |
---|
620 | //tmp*=10; tmp+=to_long(coefficient); |
---|
621 | |
---|
622 | if (minusremainder==1) |
---|
623 | { |
---|
624 | //Check whether coefficient has been negative at the start of the procedure |
---|
625 | cf_stringtemp2[0]='-'; |
---|
626 | //tmp*=(-1); |
---|
627 | } |
---|
628 | |
---|
629 | //reverse the list to obtain the correct string |
---|
630 | int len= |
---|
631 | //NTL_SNS |
---|
632 | strlen(cf_stringtemp); |
---|
633 | for (int i=len-1;i>=0;i--) |
---|
634 | { |
---|
635 | cf_stringtemp2[len-i-1+minusremainder]=cf_stringtemp[i]; |
---|
636 | } |
---|
637 | cf_stringtemp2[len+minusremainder]='\0'; |
---|
638 | } |
---|
639 | |
---|
640 | //convert the string to canonicalform using the char*-Constructor |
---|
641 | return CanonicalForm(cf_stringtemp2,16); |
---|
642 | //return tmp; |
---|
643 | } |
---|
644 | |
---|
645 | //////////////////////////////////////////////////////////////////////////////// |
---|
646 | // NAME: convertFacCF2NTLZZX // |
---|
647 | // // |
---|
648 | // DESCRIPTION: // |
---|
649 | // Routine for conversion of canonicalforms in Factory to polynomials // |
---|
650 | // of type ZZX of NTL. To guarantee the correct execution of the // |
---|
651 | // algorithm the characteristic has to equal zero. // |
---|
652 | // // |
---|
653 | // INPUT: The canonicalform that has to be converted // |
---|
654 | // OUTPUT: The converted NTL-polynom of type ZZX // |
---|
655 | //////////////////////////////////////////////////////////////////////////////// |
---|
656 | |
---|
657 | ZZX convertFacCF2NTLZZX(CanonicalForm f) |
---|
658 | { |
---|
659 | ZZX ntl_poly; |
---|
660 | |
---|
661 | CFIterator i; |
---|
662 | i=f; |
---|
663 | |
---|
664 | int NTLcurrentExp=i.exp(); |
---|
665 | int largestExp=i.exp(); |
---|
666 | int k; |
---|
667 | |
---|
668 | //set the length of the NTL-polynomial |
---|
669 | ntl_poly.SetMaxLength(largestExp+1); |
---|
670 | |
---|
671 | //Go through the coefficients of the canonicalform and build up the NTL-polynomial |
---|
672 | for (;i.hasTerms();i++) |
---|
673 | { |
---|
674 | for (k=NTLcurrentExp;k>i.exp();k--) |
---|
675 | { |
---|
676 | SetCoeff(ntl_poly,k,0); |
---|
677 | } |
---|
678 | NTLcurrentExp=i.exp(); |
---|
679 | |
---|
680 | if (!i.coeff().isImm()) |
---|
681 | { |
---|
682 | //Coefficient is a gmp-number |
---|
683 | mpz_t gmp_val; |
---|
684 | ZZ temp; |
---|
685 | char* stringtemp; |
---|
686 | |
---|
687 | gmp_val[0]=getmpi(i.coeff().getval()); |
---|
688 | int l=mpz_sizeinbase(gmp_val,10)+2; |
---|
689 | stringtemp=(char*)Alloc(l); |
---|
690 | stringtemp=mpz_get_str(stringtemp,10,gmp_val); |
---|
691 | mpz_clear(gmp_val); |
---|
692 | conv(temp,stringtemp); |
---|
693 | Free(stringtemp,l); |
---|
694 | |
---|
695 | //set the computed coefficient |
---|
696 | SetCoeff(ntl_poly,NTLcurrentExp,temp); |
---|
697 | } |
---|
698 | else |
---|
699 | { |
---|
700 | //Coefficient is immediate --> use its value |
---|
701 | SetCoeff(ntl_poly,NTLcurrentExp,i.coeff().intval()); |
---|
702 | } |
---|
703 | |
---|
704 | NTLcurrentExp--; |
---|
705 | } |
---|
706 | for (k=NTLcurrentExp;k>=0;k--) |
---|
707 | { |
---|
708 | SetCoeff(ntl_poly,k,0); |
---|
709 | } |
---|
710 | |
---|
711 | //normalize the polynomial |
---|
712 | ntl_poly.normalize(); |
---|
713 | |
---|
714 | return ntl_poly; |
---|
715 | } |
---|
716 | |
---|
717 | //////////////////////////////////////////////////////////////////////////////// |
---|
718 | // NAME: convertNTLvec_pair_ZZX_long2FacCFFList // |
---|
719 | // // |
---|
720 | // DESCRIPTION: // |
---|
721 | // Routine for converting a vector of polynomials from ZZ to a list // |
---|
722 | // CFFList of Factory. This routine will be used after a successful // |
---|
723 | // factorization of NTL to convert the result back to Factory. // |
---|
724 | // Additionally a variable x and the computed multiplicity, as a type // |
---|
725 | // ZZ of NTL, is needed as parameters indicating the main variable of the // |
---|
726 | // computed canonicalform and the multiplicity of the original polynomial. // |
---|
727 | // To guarantee the correct execution of the algorithm the characteristic // |
---|
728 | // has to equal zero. // |
---|
729 | // // |
---|
730 | // INPUT: A vector of polynomials over ZZ of type vec_pair_ZZX_long and // |
---|
731 | // a variable x and a multiplicity of type ZZ // |
---|
732 | // OUTPUT: The converted list of polynomials of type CFFList, all // |
---|
733 | // have x as their main variable // |
---|
734 | //////////////////////////////////////////////////////////////////////////////// |
---|
735 | |
---|
736 | CFFList convertNTLvec_pair_ZZX_long2FacCFFList(vec_pair_ZZX_long e,ZZ multi,Variable x) |
---|
737 | { |
---|
738 | CFFList rueckgabe; |
---|
739 | ZZX polynom; |
---|
740 | long exponent; |
---|
741 | CanonicalForm bigone; |
---|
742 | |
---|
743 | // Go through the vector e and build up the CFFList |
---|
744 | // As usual bigone summarizes the result |
---|
745 | for (int i=e.length()-1;i>=0;i--) |
---|
746 | { |
---|
747 | ZZ coefficient; |
---|
748 | polynom=e[i].a; |
---|
749 | exponent=e[i].b; |
---|
750 | bigone=convertNTLZZX2CF(polynom,x); |
---|
751 | //append the converted polynomial to the list |
---|
752 | rueckgabe.append(CFFactor(bigone,exponent)); |
---|
753 | } |
---|
754 | // the multiplicity at pos 1 |
---|
755 | //if (!IsOne(multi)) |
---|
756 | rueckgabe.insert(CFFactor(convertZZ2CF(multi),1)); |
---|
757 | |
---|
758 | //return the converted list |
---|
759 | return rueckgabe; |
---|
760 | } |
---|
761 | |
---|
762 | |
---|
763 | //////////////////////////////////////////////////////////////////////////////// |
---|
764 | // NAME: convertNTLZZpX2CF // |
---|
765 | // // |
---|
766 | // DESCRIPTION: // |
---|
767 | // Routine for conversion of elements of arbitrary extensions of ZZp, // |
---|
768 | // having type ZZpE, of NTL to their corresponding values of type // |
---|
769 | // canonicalform in Factory. // |
---|
770 | // To guarantee the correct execution of the algorithm the characteristic // |
---|
771 | // has to be an arbitrary prime number and Factory has to compute in an // |
---|
772 | // extension of F_p. // |
---|
773 | // // |
---|
774 | // INPUT: The coefficient of type ZZpE and the variable x indicating the main// |
---|
775 | // variable of the computed canonicalform // |
---|
776 | // OUTPUT: The converted value of coefficient as type canonicalform // |
---|
777 | //////////////////////////////////////////////////////////////////////////////// |
---|
778 | |
---|
779 | CanonicalForm convertNTLZZpE2CF(ZZ_pE coefficient,Variable x) |
---|
780 | { |
---|
781 | return convertNTLZZpX2CF(rep(coefficient),x); |
---|
782 | } |
---|
783 | CanonicalForm convertNTLzzpE2CF(zz_pE coefficient,Variable x) |
---|
784 | { |
---|
785 | return convertNTLzzpX2CF(rep(coefficient),x); |
---|
786 | } |
---|
787 | |
---|
788 | //////////////////////////////////////////////////////////////////////////////// |
---|
789 | // NAME: convertNTLvec_pair_ZZpEX_long2FacCFFList // |
---|
790 | // // |
---|
791 | // DESCRIPTION: // |
---|
792 | // Routine for converting a vector of polynomials from ZZpEX to a CFFList // |
---|
793 | // of Factory. This routine will be used after a successful factorization // |
---|
794 | // of NTL to convert the result back to Factory. // |
---|
795 | // Additionally a variable x and the computed multiplicity, as a type // |
---|
796 | // ZZpE of NTL, is needed as parameters indicating the main variable of the // |
---|
797 | // computed canonicalform and the multiplicity of the original polynomial. // |
---|
798 | // To guarantee the correct execution of the algorithm the characteristic // |
---|
799 | // has a be an arbitrary prime number p and computations have to be done // |
---|
800 | // in an extention of F_p. // |
---|
801 | // // |
---|
802 | // INPUT: A vector of polynomials over ZZpE of type vec_pair_ZZ_pEX_long and // |
---|
803 | // a variable x and a multiplicity of type ZZpE // |
---|
804 | // OUTPUT: The converted list of polynomials of type CFFList, all polynomials // |
---|
805 | // have x as their main variable // |
---|
806 | //////////////////////////////////////////////////////////////////////////////// |
---|
807 | |
---|
808 | CFFList convertNTLvec_pair_ZZpEX_long2FacCFFList(vec_pair_ZZ_pEX_long e,ZZ_pE multi,Variable x,Variable alpha) |
---|
809 | { |
---|
810 | CFFList rueckgabe; |
---|
811 | ZZ_pEX polynom; |
---|
812 | long exponent; |
---|
813 | CanonicalForm bigone; |
---|
814 | |
---|
815 | // Maybe, e may additionally be sorted with respect to increasing degree of x, but this is not |
---|
816 | //important for the factorization, but nevertheless would take computing time, so it is omitted |
---|
817 | |
---|
818 | // Go through the vector e and build up the CFFList |
---|
819 | // As usual bigone summarizes the result during every loop |
---|
820 | for (int i=e.length()-1;i>=0;i--) |
---|
821 | { |
---|
822 | bigone=0; |
---|
823 | |
---|
824 | polynom=e[i].a; |
---|
825 | exponent=e[i].b; |
---|
826 | |
---|
827 | for (int j=0;j<deg(polynom)+1;j++) |
---|
828 | { |
---|
829 | if (IsOne(coeff(polynom,j))) |
---|
830 | { |
---|
831 | bigone+=power(x,j); |
---|
832 | } |
---|
833 | else |
---|
834 | { |
---|
835 | CanonicalForm coefficient=convertNTLZZpE2CF(coeff(polynom,j),alpha); |
---|
836 | if (coeff(polynom,j)!=0) |
---|
837 | { |
---|
838 | bigone += (power(x,j)*coefficient); |
---|
839 | } |
---|
840 | } |
---|
841 | } |
---|
842 | //append the computed polynomials together with its exponent to the CFFList |
---|
843 | rueckgabe.append(CFFactor(bigone,exponent)); |
---|
844 | } |
---|
845 | // Start by appending the multiplicity |
---|
846 | if (!IsOne(multi)) |
---|
847 | rueckgabe.insert(CFFactor(convertNTLZZpE2CF(multi,alpha),1)); |
---|
848 | |
---|
849 | //return the computed CFFList |
---|
850 | return rueckgabe; |
---|
851 | } |
---|
852 | CFFList convertNTLvec_pair_zzpEX_long2FacCFFList(vec_pair_zz_pEX_long e,zz_pE multi,Variable x,Variable alpha) |
---|
853 | { |
---|
854 | CFFList rueckgabe; |
---|
855 | zz_pEX polynom; |
---|
856 | long exponent; |
---|
857 | CanonicalForm bigone; |
---|
858 | |
---|
859 | // Maybe, e may additionally be sorted with respect to increasing degree of x, but this is not |
---|
860 | //important for the factorization, but nevertheless would take computing time, so it is omitted |
---|
861 | |
---|
862 | // Go through the vector e and build up the CFFList |
---|
863 | // As usual bigone summarizes the result during every loop |
---|
864 | for (int i=e.length()-1;i>=0;i--) |
---|
865 | { |
---|
866 | bigone=0; |
---|
867 | |
---|
868 | polynom=e[i].a; |
---|
869 | exponent=e[i].b; |
---|
870 | |
---|
871 | for (int j=0;j<deg(polynom)+1;j++) |
---|
872 | { |
---|
873 | if (IsOne(coeff(polynom,j))) |
---|
874 | { |
---|
875 | bigone+=power(x,j); |
---|
876 | } |
---|
877 | else |
---|
878 | { |
---|
879 | CanonicalForm coefficient=convertNTLzzpE2CF(coeff(polynom,j),alpha); |
---|
880 | if (coeff(polynom,j)!=0) |
---|
881 | { |
---|
882 | bigone += (power(x,j)*coefficient); |
---|
883 | } |
---|
884 | } |
---|
885 | } |
---|
886 | //append the computed polynomials together with its exponent to the CFFList |
---|
887 | rueckgabe.append(CFFactor(bigone,exponent)); |
---|
888 | } |
---|
889 | // Start by appending the multiplicity |
---|
890 | if (!IsOne(multi)) |
---|
891 | rueckgabe.insert(CFFactor(convertNTLzzpE2CF(multi,alpha),1)); |
---|
892 | |
---|
893 | //return the computed CFFList |
---|
894 | return rueckgabe; |
---|
895 | } |
---|
896 | |
---|
897 | //////////////////////////////////////////////////////////////////////////////// |
---|
898 | // NAME: convertNTLGF2E2CF // |
---|
899 | // // |
---|
900 | // DESCRIPTION: // |
---|
901 | // Routine for conversion of elements of extensions of GF2, having type // |
---|
902 | // GF2E, of NTL to their corresponding values of type canonicalform in // |
---|
903 | // Factory. // |
---|
904 | // To guarantee the correct execution of the algorithm, the characteristic // |
---|
905 | // must equal two and Factory has to compute in an extension of F_2. // |
---|
906 | // As usual this is an optimized special case of the more general conversion // |
---|
907 | // routine from ZZpE to Factory. // |
---|
908 | // // |
---|
909 | // INPUT: The coefficient of type GF2E and the variable x indicating the // |
---|
910 | // main variable of the computed canonicalform // |
---|
911 | // OUTPUT: The converted value of coefficient as type canonicalform // |
---|
912 | //////////////////////////////////////////////////////////////////////////////// |
---|
913 | |
---|
914 | CanonicalForm convertNTLGF2E2CF(GF2E coefficient,Variable x) |
---|
915 | { |
---|
916 | return convertNTLGF2X2CF(rep(coefficient),x); |
---|
917 | } |
---|
918 | |
---|
919 | //////////////////////////////////////////////////////////////////////////////// |
---|
920 | // NAME: convertNTLvec_pair_GF2EX_long2FacCFFList // |
---|
921 | // // |
---|
922 | // DESCRIPTION: // |
---|
923 | // Routine for converting a vector of polynomials from GF2EX to a CFFList // |
---|
924 | // of Factory. This routine will be used after a successful factorization // |
---|
925 | // of NTL to convert the result back to Factory. // |
---|
926 | // This is a special, but optimized case of the more general conversion // |
---|
927 | // from ZZpE to canonicalform. // |
---|
928 | // Additionally a variable x and the computed multiplicity, as a type GF2E // |
---|
929 | // of NTL, is needed as parameters indicating the main variable of the // |
---|
930 | // computed canonicalform and the multiplicity of the original polynomial. // |
---|
931 | // To guarantee the correct execution of the algorithm the characteristic // |
---|
932 | // has to equal two and computations have to be done in an extention of F_2. // |
---|
933 | // // |
---|
934 | // INPUT: A vector of polynomials over GF2E of type vec_pair_GF2EX_long and // |
---|
935 | // a variable x and a multiplicity of type GF2E // |
---|
936 | // OUTPUT: The converted list of polynomials of type CFFList, all polynomials // |
---|
937 | // have x as their main variable // |
---|
938 | //////////////////////////////////////////////////////////////////////////////// |
---|
939 | |
---|
940 | CFFList convertNTLvec_pair_GF2EX_long2FacCFFList(vec_pair_GF2EX_long e,GF2E multi,Variable x,Variable alpha) |
---|
941 | { |
---|
942 | CFFList rueckgabe; |
---|
943 | GF2EX polynom; |
---|
944 | long exponent; |
---|
945 | CanonicalForm bigone; |
---|
946 | |
---|
947 | // Maybe, e may additionally be sorted with respect to increasing degree of x, but this is not |
---|
948 | //important for the factorization, but nevertheless would take computing time, so it is omitted |
---|
949 | |
---|
950 | // multiplicity is always one, so we do not have to worry about that |
---|
951 | |
---|
952 | // Go through the vector e and build up the CFFList |
---|
953 | // As usual bigone summarizes the result during every loop |
---|
954 | for (int i=e.length()-1;i>=0;i--) |
---|
955 | { |
---|
956 | bigone=0; |
---|
957 | |
---|
958 | polynom=e[i].a; |
---|
959 | exponent=e[i].b; |
---|
960 | |
---|
961 | for (int j=0;j<deg(polynom)+1;j++) |
---|
962 | { |
---|
963 | if (IsOne(coeff(polynom,j))) |
---|
964 | { |
---|
965 | bigone+=power(x,j); |
---|
966 | } |
---|
967 | else |
---|
968 | { |
---|
969 | CanonicalForm coefficient=convertNTLGF2E2CF(coeff(polynom,j),alpha); |
---|
970 | if (coeff(polynom,j)!=0) |
---|
971 | { |
---|
972 | bigone += (power(x,j)*coefficient); |
---|
973 | } |
---|
974 | } |
---|
975 | } |
---|
976 | |
---|
977 | // append the computed polynomial together with its multiplicity |
---|
978 | rueckgabe.append(CFFactor(bigone,exponent)); |
---|
979 | |
---|
980 | } |
---|
981 | // return the computed CFFList |
---|
982 | return rueckgabe; |
---|
983 | } |
---|
984 | |
---|
985 | //////////////////////////////////////////////////// |
---|
986 | // CanonicalForm in Z_2(a)[X] to NTL GF2EX // |
---|
987 | //////////////////////////////////////////////////// |
---|
988 | GF2EX convertFacCF2NTLGF2EX(CanonicalForm f,GF2X mipo) |
---|
989 | { |
---|
990 | GF2E::init(mipo); |
---|
991 | GF2EX result; |
---|
992 | CFIterator i; |
---|
993 | i=f; |
---|
994 | |
---|
995 | int NTLcurrentExp=i.exp(); |
---|
996 | int largestExp=i.exp(); |
---|
997 | int k; |
---|
998 | |
---|
999 | result.SetMaxLength(largestExp+1); |
---|
1000 | for(;i.hasTerms();i++) |
---|
1001 | { |
---|
1002 | for(k=NTLcurrentExp;k>i.exp();k--) SetCoeff(result,k,0); |
---|
1003 | NTLcurrentExp=i.exp(); |
---|
1004 | CanonicalForm c=i.coeff(); |
---|
1005 | GF2X cc=convertFacCF2NTLGF2X(c); |
---|
1006 | //ZZ_pE ccc; |
---|
1007 | //conv(ccc,cc); |
---|
1008 | SetCoeff(result,NTLcurrentExp,to_GF2E(cc)); |
---|
1009 | NTLcurrentExp--; |
---|
1010 | } |
---|
1011 | for(k=NTLcurrentExp;k>=0;k--) SetCoeff(result,k,0); |
---|
1012 | result.normalize(); |
---|
1013 | return result; |
---|
1014 | } |
---|
1015 | //////////////////////////////////////////////////// |
---|
1016 | // CanonicalForm in Z_p(a)[X] to NTL ZZ_pEX // |
---|
1017 | //////////////////////////////////////////////////// |
---|
1018 | ZZ_pEX convertFacCF2NTLZZ_pEX(CanonicalForm f, ZZ_pX mipo) |
---|
1019 | { |
---|
1020 | ZZ_pE::init(mipo); |
---|
1021 | ZZ_pEX result; |
---|
1022 | CFIterator i; |
---|
1023 | i=f; |
---|
1024 | |
---|
1025 | int NTLcurrentExp=i.exp(); |
---|
1026 | int largestExp=i.exp(); |
---|
1027 | int k; |
---|
1028 | |
---|
1029 | result.SetMaxLength(largestExp+1); |
---|
1030 | for(;i.hasTerms();i++) |
---|
1031 | { |
---|
1032 | for(k=NTLcurrentExp;k>i.exp();k--) SetCoeff(result,k,0); |
---|
1033 | NTLcurrentExp=i.exp(); |
---|
1034 | CanonicalForm c=i.coeff(); |
---|
1035 | ZZ_pX cc=convertFacCF2NTLZZpX(c); |
---|
1036 | //ZZ_pE ccc; |
---|
1037 | //conv(ccc,cc); |
---|
1038 | SetCoeff(result,NTLcurrentExp,to_ZZ_pE(cc)); |
---|
1039 | NTLcurrentExp--; |
---|
1040 | } |
---|
1041 | for(k=NTLcurrentExp;k>=0;k--) SetCoeff(result,k,0); |
---|
1042 | result.normalize(); |
---|
1043 | return result; |
---|
1044 | } |
---|
1045 | zz_pEX convertFacCF2NTLzz_pEX(CanonicalForm f, zz_pX mipo) |
---|
1046 | { |
---|
1047 | zz_pE::init(mipo); |
---|
1048 | zz_pEX result; |
---|
1049 | CFIterator i; |
---|
1050 | i=f; |
---|
1051 | |
---|
1052 | int NTLcurrentExp=i.exp(); |
---|
1053 | int largestExp=i.exp(); |
---|
1054 | int k; |
---|
1055 | |
---|
1056 | result.SetMaxLength(largestExp+1); |
---|
1057 | for(;i.hasTerms();i++) |
---|
1058 | { |
---|
1059 | for(k=NTLcurrentExp;k>i.exp();k--) SetCoeff(result,k,0); |
---|
1060 | NTLcurrentExp=i.exp(); |
---|
1061 | CanonicalForm c=i.coeff(); |
---|
1062 | zz_pX cc=convertFacCF2NTLzzpX(c); |
---|
1063 | //ZZ_pE ccc; |
---|
1064 | //conv(ccc,cc); |
---|
1065 | SetCoeff(result,NTLcurrentExp,to_zz_pE(cc)); |
---|
1066 | NTLcurrentExp--; |
---|
1067 | } |
---|
1068 | for(k=NTLcurrentExp;k>=0;k--) SetCoeff(result,k,0); |
---|
1069 | result.normalize(); |
---|
1070 | return result; |
---|
1071 | } |
---|
1072 | |
---|
1073 | CanonicalForm convertNTLzz_pEX2CF (zz_pEX f, Variable x, Variable alpha) |
---|
1074 | { |
---|
1075 | CanonicalForm bigone= 0; |
---|
1076 | for (int j=0;j<deg(f)+1;j++) |
---|
1077 | { |
---|
1078 | if (IsOne(coeff(f,j))) |
---|
1079 | bigone+=power(x,j); |
---|
1080 | else |
---|
1081 | { |
---|
1082 | //cout << "hier doof" << "\n"; |
---|
1083 | CanonicalForm coefficient=convertNTLzzpE2CF(coeff(f,j),alpha); |
---|
1084 | //cout << "ja" << "\n"; |
---|
1085 | if (coeff(f,j)!=0) |
---|
1086 | bigone += (power(x,j)*coefficient); |
---|
1087 | } |
---|
1088 | } |
---|
1089 | } |
---|
1090 | #endif |
---|