1 | /* $Id$ */ |
---|
2 | #include "config.h" |
---|
3 | |
---|
4 | #include "cf_assert.h" |
---|
5 | |
---|
6 | #include "cf_defs.h" |
---|
7 | #include "canonicalform.h" |
---|
8 | #include "cf_iter.h" |
---|
9 | #include "fac_berlekamp.h" |
---|
10 | #include "fac_cantzass.h" |
---|
11 | #include "fac_univar.h" |
---|
12 | #include "fac_multivar.h" |
---|
13 | #include "fac_sqrfree.h" |
---|
14 | #include "cf_algorithm.h" |
---|
15 | |
---|
16 | #include <factory/cf_gmp.h> |
---|
17 | |
---|
18 | #ifdef HAVE_NTL |
---|
19 | #ifndef NOSTREAMIO |
---|
20 | #ifdef HAVE_CSTDIO |
---|
21 | #include <cstdio> |
---|
22 | #else |
---|
23 | #include <stdio.h> |
---|
24 | #endif |
---|
25 | #endif |
---|
26 | #include <string.h> |
---|
27 | #include <NTL/ZZXFactoring.h> |
---|
28 | #include <NTL/ZZ_pXFactoring.h> |
---|
29 | #include <NTL/lzz_pXFactoring.h> |
---|
30 | #include <NTL/GF2XFactoring.h> |
---|
31 | #include <NTL/ZZ_pEXFactoring.h> |
---|
32 | #include <NTL/lzz_pEXFactoring.h> |
---|
33 | #include <NTL/GF2EXFactoring.h> |
---|
34 | #include <NTL/tools.h> |
---|
35 | #include <NTL/mat_ZZ.h> |
---|
36 | #include "int_int.h" |
---|
37 | #include <limits.h> |
---|
38 | #include "NTLconvert.h" |
---|
39 | |
---|
40 | #define Alloc(L) malloc(L) |
---|
41 | #define Free(A,L) free(A) |
---|
42 | |
---|
43 | void out_cf(const char *s1,const CanonicalForm &f,const char *s2); |
---|
44 | |
---|
45 | |
---|
46 | long fac_NTL_char = -1; // the current characterstic for NTL calls |
---|
47 | // -1: undefined |
---|
48 | #ifdef NTL_CLIENT // in <NTL/tools.h>: using of name space NTL |
---|
49 | NTL_CLIENT |
---|
50 | #endif |
---|
51 | |
---|
52 | //////////////////////////////////////////////////////////////////////////////// |
---|
53 | // NAME: convertFacCF2NTLZZpX // |
---|
54 | // // |
---|
55 | // DESCRIPTION: // |
---|
56 | // Conversion routine for Factory-type canonicalform into ZZpX of NTL, // |
---|
57 | // i.e. polynomials over F_p. As a precondition for correct execution, // |
---|
58 | // the characteristic has to a a prime number. // |
---|
59 | // // |
---|
60 | // INPUT: A canonicalform f // |
---|
61 | // OUTPUT: The converted NTL-polynomial over F_p of type ZZpX // |
---|
62 | //////////////////////////////////////////////////////////////////////////////// |
---|
63 | |
---|
64 | ZZ_pX convertFacCF2NTLZZpX(CanonicalForm f) |
---|
65 | { |
---|
66 | ZZ_pX ntl_poly; |
---|
67 | |
---|
68 | CFIterator i; |
---|
69 | i=f; |
---|
70 | |
---|
71 | int NTLcurrentExp=i.exp(); |
---|
72 | int largestExp=i.exp(); |
---|
73 | int k; |
---|
74 | |
---|
75 | // we now build up the NTL-polynomial |
---|
76 | ntl_poly.SetMaxLength(largestExp+1); |
---|
77 | |
---|
78 | for (;i.hasTerms();i++) |
---|
79 | { |
---|
80 | for (k=NTLcurrentExp;k>i.exp();k--) |
---|
81 | { |
---|
82 | SetCoeff(ntl_poly,k,0); |
---|
83 | } |
---|
84 | NTLcurrentExp=i.exp(); |
---|
85 | |
---|
86 | CanonicalForm c=i.coeff(); |
---|
87 | if (!c.isImm()) c=c.mapinto(); //c%= getCharacteristic(); |
---|
88 | if (!c.isImm()) |
---|
89 | { //This case will never happen if the characteristic is in fact a prime |
---|
90 | // number, since all coefficients are represented as immediates |
---|
91 | #ifndef NOSTREAMIO |
---|
92 | cout<<"convertFacCF2NTLZZ_pX: coefficient not immediate! : "<<f<<"\n"; |
---|
93 | #else |
---|
94 | //NTL_SNS |
---|
95 | printf("convertFacCF2NTLZZ_pX: coefficient not immediate!, char=%d\n", |
---|
96 | getCharacteristic()); |
---|
97 | #endif |
---|
98 | NTL_SNS exit(1); |
---|
99 | } |
---|
100 | else |
---|
101 | { |
---|
102 | SetCoeff(ntl_poly,NTLcurrentExp,c.intval()); |
---|
103 | } |
---|
104 | NTLcurrentExp--; |
---|
105 | } |
---|
106 | |
---|
107 | //Set the remaining coefficients of ntl_poly to zero. |
---|
108 | // This is necessary, because NTL internally |
---|
109 | // also stores powers with zero coefficient, |
---|
110 | // whereas factory stores tuples of degree and coefficient |
---|
111 | //leaving out tuples if the coefficient equals zero |
---|
112 | for (k=NTLcurrentExp;k>=0;k--) |
---|
113 | { |
---|
114 | SetCoeff(ntl_poly,k,0); |
---|
115 | } |
---|
116 | |
---|
117 | //normalize the polynomial and return it |
---|
118 | ntl_poly.normalize(); |
---|
119 | |
---|
120 | return ntl_poly; |
---|
121 | } |
---|
122 | zz_pX convertFacCF2NTLzzpX(CanonicalForm f) |
---|
123 | { |
---|
124 | zz_pX ntl_poly; |
---|
125 | |
---|
126 | CFIterator i; |
---|
127 | i=f; |
---|
128 | |
---|
129 | int NTLcurrentExp=i.exp(); |
---|
130 | int largestExp=i.exp(); |
---|
131 | int k; |
---|
132 | |
---|
133 | // we now build up the NTL-polynomial |
---|
134 | ntl_poly.SetMaxLength(largestExp+1); |
---|
135 | |
---|
136 | for (;i.hasTerms();i++) |
---|
137 | { |
---|
138 | for (k=NTLcurrentExp;k>i.exp();k--) |
---|
139 | { |
---|
140 | SetCoeff(ntl_poly,k,0); |
---|
141 | } |
---|
142 | NTLcurrentExp=i.exp(); |
---|
143 | |
---|
144 | CanonicalForm c=i.coeff(); |
---|
145 | if (!c.isImm()) c.mapinto(); //c%= getCharacteristic(); |
---|
146 | if (!c.isImm()) |
---|
147 | { //This case will never happen if the characteristic is in fact a prime |
---|
148 | // number, since all coefficients are represented as immediates |
---|
149 | #ifndef NOSTREAMIO |
---|
150 | cout<<"convertFacCF2NTLzz_pX: coefficient not immediate! : "<<f<<"\n"; |
---|
151 | #else |
---|
152 | //NTL_SNS |
---|
153 | printf("convertFacCF2NTLzz_pX: coefficient not immediate!, char=%d\n", |
---|
154 | getCharacteristic()); |
---|
155 | #endif |
---|
156 | NTL_SNS exit(1); |
---|
157 | } |
---|
158 | else |
---|
159 | { |
---|
160 | SetCoeff(ntl_poly,NTLcurrentExp,c.intval()); |
---|
161 | } |
---|
162 | NTLcurrentExp--; |
---|
163 | } |
---|
164 | |
---|
165 | //Set the remaining coefficients of ntl_poly to zero. |
---|
166 | // This is necessary, because NTL internally |
---|
167 | // also stores powers with zero coefficient, |
---|
168 | // whereas factory stores tuples of degree and coefficient |
---|
169 | //leaving out tuples if the coefficient equals zero |
---|
170 | for (k=NTLcurrentExp;k>=0;k--) |
---|
171 | { |
---|
172 | SetCoeff(ntl_poly,k,0); |
---|
173 | } |
---|
174 | |
---|
175 | //normalize the polynomial and return it |
---|
176 | ntl_poly.normalize(); |
---|
177 | |
---|
178 | return ntl_poly; |
---|
179 | } |
---|
180 | |
---|
181 | //////////////////////////////////////////////////////////////////////////////// |
---|
182 | // NAME: convertFacCF2NTLGF2X // |
---|
183 | // // |
---|
184 | // DESCRIPTION: // |
---|
185 | // Conversion routine for Factory-type canonicalform into GF2X of NTL, // |
---|
186 | // i.e. polynomials over F_2. As precondition for correct execution, // |
---|
187 | // the characteristic must equal two. // |
---|
188 | // This is a special case of the more general conversion routine for // |
---|
189 | // canonicalform to ZZpX. It is included because NTL provides additional // |
---|
190 | // support and faster algorithms over F_2, moreover the conversion code // |
---|
191 | // can be optimized, because certain steps are either completely obsolent // |
---|
192 | // (like normalizing the polynomial) or they can be made significantly // |
---|
193 | // faster (like building up the NTL-polynomial). // |
---|
194 | // // |
---|
195 | // INPUT: A canonicalform f // |
---|
196 | // OUTPUT: The converted NTL-polynomial over F_2 of type GF2X // |
---|
197 | //////////////////////////////////////////////////////////////////////////////// |
---|
198 | |
---|
199 | GF2X convertFacCF2NTLGF2X(CanonicalForm f) |
---|
200 | { |
---|
201 | //printf("convertFacCF2NTLGF2X\n"); |
---|
202 | GF2X ntl_poly; |
---|
203 | |
---|
204 | CFIterator i; |
---|
205 | i=f; |
---|
206 | |
---|
207 | int NTLcurrentExp=i.exp(); |
---|
208 | int largestExp=i.exp(); |
---|
209 | int k; |
---|
210 | |
---|
211 | //building the NTL-polynomial |
---|
212 | ntl_poly.SetMaxLength(largestExp+1); |
---|
213 | |
---|
214 | for (;i.hasTerms();i++) |
---|
215 | { |
---|
216 | |
---|
217 | for (k=NTLcurrentExp;k>i.exp();k--) |
---|
218 | { |
---|
219 | SetCoeff(ntl_poly,k,0); |
---|
220 | } |
---|
221 | NTLcurrentExp=i.exp(); |
---|
222 | |
---|
223 | if (!i.coeff().isImm()) i.coeff()=i.coeff().mapinto(); |
---|
224 | if (!i.coeff().isImm()) |
---|
225 | { |
---|
226 | #ifndef NOSTREAMIO |
---|
227 | cout<<"convertFacCF2NTLGF2X: coefficient not immidiate! : " << f << "\n"; |
---|
228 | #else |
---|
229 | //NTL_SNS |
---|
230 | printf("convertFacCF2NTLGF2X: coefficient not immidiate!"); |
---|
231 | #endif |
---|
232 | NTL_SNS exit(1); |
---|
233 | } |
---|
234 | else |
---|
235 | { |
---|
236 | SetCoeff(ntl_poly,NTLcurrentExp,i.coeff().intval()); |
---|
237 | } |
---|
238 | NTLcurrentExp--; |
---|
239 | } |
---|
240 | for (k=NTLcurrentExp;k>=0;k--) |
---|
241 | { |
---|
242 | SetCoeff(ntl_poly,k,0); |
---|
243 | } |
---|
244 | //normalization is not necessary of F_2 |
---|
245 | |
---|
246 | return ntl_poly; |
---|
247 | } |
---|
248 | |
---|
249 | |
---|
250 | //////////////////////////////////////////////////////////////////////////////// |
---|
251 | // NAME: convertNTLZZpX2CF // |
---|
252 | // // |
---|
253 | // DESCRIPTION: // |
---|
254 | // Conversion routine for NTL-Type ZZpX to Factory-Type canonicalform. // |
---|
255 | // Additionally a variable x is needed as a parameter indicating the // |
---|
256 | // main variable of the computed canonicalform. To guarantee the correct // |
---|
257 | // execution of the algorithm, the characteristic has a be an arbitrary // |
---|
258 | // prime number. // |
---|
259 | // // |
---|
260 | // INPUT: A canonicalform f, a variable x // |
---|
261 | // OUTPUT: The converted Factory-polynomial of type canonicalform, // |
---|
262 | // built by the main variable x // |
---|
263 | //////////////////////////////////////////////////////////////////////////////// |
---|
264 | |
---|
265 | CanonicalForm convertNTLZZpX2CF(ZZ_pX poly,Variable x) |
---|
266 | { |
---|
267 | //printf("convertNTLZZpX2CF\n"); |
---|
268 | CanonicalForm bigone; |
---|
269 | |
---|
270 | |
---|
271 | if (deg(poly)>0) |
---|
272 | { |
---|
273 | // poly is non-constant |
---|
274 | bigone=0; |
---|
275 | bigone.mapinto(); |
---|
276 | // Compute the canonicalform coefficient by coefficient, |
---|
277 | // bigone summarizes the result. |
---|
278 | for (int j=0;j<=deg(poly);j++) |
---|
279 | { |
---|
280 | if (coeff(poly,j)!=0) |
---|
281 | { |
---|
282 | bigone+=(power(x,j)*CanonicalForm(to_long(rep(coeff(poly,j))))); |
---|
283 | } |
---|
284 | } |
---|
285 | } |
---|
286 | else |
---|
287 | { |
---|
288 | // poly is immediate |
---|
289 | bigone=CanonicalForm(to_long(rep(coeff(poly,0)))); |
---|
290 | bigone.mapinto(); |
---|
291 | } |
---|
292 | return bigone; |
---|
293 | } |
---|
294 | |
---|
295 | CanonicalForm convertNTLzzpX2CF(zz_pX poly,Variable x) |
---|
296 | { |
---|
297 | //printf("convertNTLzzpX2CF\n"); |
---|
298 | CanonicalForm bigone; |
---|
299 | |
---|
300 | |
---|
301 | if (deg(poly)>0) |
---|
302 | { |
---|
303 | // poly is non-constant |
---|
304 | bigone=0; |
---|
305 | bigone.mapinto(); |
---|
306 | // Compute the canonicalform coefficient by coefficient, |
---|
307 | // bigone summarizes the result. |
---|
308 | for (int j=0;j<=deg(poly);j++) |
---|
309 | { |
---|
310 | if (coeff(poly,j)!=0) |
---|
311 | { |
---|
312 | bigone+=(power(x,j)*CanonicalForm(to_long(rep(coeff(poly,j))))); |
---|
313 | } |
---|
314 | } |
---|
315 | } |
---|
316 | else |
---|
317 | { |
---|
318 | // poly is immediate |
---|
319 | bigone=CanonicalForm(to_long(rep(coeff(poly,0)))); |
---|
320 | bigone.mapinto(); |
---|
321 | } |
---|
322 | return bigone; |
---|
323 | } |
---|
324 | |
---|
325 | CanonicalForm convertNTLZZX2CF(ZZX polynom,Variable x) |
---|
326 | { |
---|
327 | //printf("convertNTLZZX2CF\n"); |
---|
328 | CanonicalForm bigone; |
---|
329 | |
---|
330 | // Go through the vector e and build up the CFFList |
---|
331 | // As usual bigone summarizes the result |
---|
332 | bigone=0; |
---|
333 | ZZ coefficient; |
---|
334 | |
---|
335 | for (int j=0;j<=deg(polynom);j++) |
---|
336 | { |
---|
337 | coefficient=coeff(polynom,j); |
---|
338 | if (!IsZero(coefficient)) |
---|
339 | { |
---|
340 | bigone += (power(x,j)*convertZZ2CF(coefficient)); |
---|
341 | } |
---|
342 | } |
---|
343 | return bigone; |
---|
344 | } |
---|
345 | |
---|
346 | //////////////////////////////////////////////////////////////////////////////// |
---|
347 | // NAME: convertNTLGF2X2CF // |
---|
348 | // // |
---|
349 | // DESCRIPTION: // |
---|
350 | // Conversion routine for NTL-Type GF2X to Factory-Type canonicalform, // |
---|
351 | // the routine is again an optimized special case of the more general // |
---|
352 | // conversion to ZZpX. Additionally a variable x is needed as a // |
---|
353 | // parameter indicating the main variable of the computed canonicalform. // |
---|
354 | // To guarantee the correct execution of the algorithm the characteristic // |
---|
355 | // has a be an arbitrary prime number. // |
---|
356 | // // |
---|
357 | // INPUT: A canonicalform f, a variable x // |
---|
358 | // OUTPUT: The converted Factory-polynomial of type canonicalform, // |
---|
359 | // built by the main variable x // |
---|
360 | //////////////////////////////////////////////////////////////////////////////// |
---|
361 | |
---|
362 | CanonicalForm convertNTLGF2X2CF(GF2X poly,Variable x) |
---|
363 | { |
---|
364 | //printf("convertNTLGF2X2CF\n"); |
---|
365 | CanonicalForm bigone; |
---|
366 | |
---|
367 | if (deg(poly)>0) |
---|
368 | { |
---|
369 | // poly is non-constant |
---|
370 | bigone=0; |
---|
371 | bigone.mapinto(); |
---|
372 | // Compute the canonicalform coefficient by coefficient, |
---|
373 | // bigone summarizes the result. |
---|
374 | // In constrast to the more general conversion to ZZpX |
---|
375 | // the only possible coefficients are zero |
---|
376 | // and one yielding the following simplified loop |
---|
377 | for (int j=0;j<=deg(poly);j++) |
---|
378 | { |
---|
379 | if (coeff(poly,j)!=0) bigone+=power(x,j); |
---|
380 | // *CanonicalForm(to_long(rep(coeff(poly,j))))) is not necessary any more; |
---|
381 | } |
---|
382 | } |
---|
383 | else |
---|
384 | { |
---|
385 | // poly is immediate |
---|
386 | bigone=CanonicalForm(to_long(rep(coeff(poly,0)))); |
---|
387 | bigone.mapinto(); |
---|
388 | } |
---|
389 | |
---|
390 | return bigone; |
---|
391 | } |
---|
392 | |
---|
393 | //////////////////////////////////////////////////////////////////////////////// |
---|
394 | // NAME: convertNTLvec_pair_ZZpX_long2FacCFFList // |
---|
395 | // // |
---|
396 | // DESCRIPTION: // |
---|
397 | // Routine for converting a vector of polynomials from ZZpX to // |
---|
398 | // a CFFList of Factory. This routine will be used after a successful // |
---|
399 | // factorization of NTL to convert the result back to Factory. // |
---|
400 | // // |
---|
401 | // Additionally a variable x and the computed multiplicity, as a type ZZp // |
---|
402 | // of NTL, is needed as parameters indicating the main variable of the // |
---|
403 | // computed canonicalform and the multiplicity of the original polynomial. // |
---|
404 | // To guarantee the correct execution of the algorithm the characteristic // |
---|
405 | // has a be an arbitrary prime number. // |
---|
406 | // // |
---|
407 | // INPUT: A vector of polynomials over ZZp of type vec_pair_ZZ_pX_long and // |
---|
408 | // a variable x and a multiplicity of type ZZp // |
---|
409 | // OUTPUT: The converted list of polynomials of type CFFList, all polynomials // |
---|
410 | // have x as their main variable // |
---|
411 | //////////////////////////////////////////////////////////////////////////////// |
---|
412 | |
---|
413 | CFFList convertNTLvec_pair_ZZpX_long2FacCFFList |
---|
414 | (vec_pair_ZZ_pX_long e,ZZ_p multi,Variable x) |
---|
415 | { |
---|
416 | //printf("convertNTLvec_pair_ZZpX_long2FacCFFList\n"); |
---|
417 | CFFList result; |
---|
418 | ZZ_pX polynom; |
---|
419 | CanonicalForm bigone; |
---|
420 | |
---|
421 | // Maybe, e may additionally be sorted with respect to increasing degree of x |
---|
422 | // but this is not |
---|
423 | //important for the factorization, but nevertheless would take computing time, |
---|
424 | // so it is omitted |
---|
425 | |
---|
426 | |
---|
427 | // Go through the vector e and compute the CFFList |
---|
428 | // again bigone summarizes the result |
---|
429 | for (int i=e.length()-1;i>=0;i--) |
---|
430 | { |
---|
431 | result.append(CFFactor(convertNTLZZpX2CF(e[i].a,x),e[i].b)); |
---|
432 | } |
---|
433 | // the multiplicity at pos 1 |
---|
434 | if (!IsOne(multi)) |
---|
435 | result.insert(CFFactor(CanonicalForm(to_long(rep(multi))),1)); |
---|
436 | return result; |
---|
437 | } |
---|
438 | CFFList convertNTLvec_pair_zzpX_long2FacCFFList |
---|
439 | (vec_pair_zz_pX_long e,zz_p multi,Variable x) |
---|
440 | { |
---|
441 | //printf("convertNTLvec_pair_zzpX_long2FacCFFList\n"); |
---|
442 | CFFList result; |
---|
443 | zz_pX polynom; |
---|
444 | CanonicalForm bigone; |
---|
445 | |
---|
446 | // Maybe, e may additionally be sorted with respect to increasing degree of x |
---|
447 | // but this is not |
---|
448 | //important for the factorization, but nevertheless would take computing time, |
---|
449 | // so it is omitted |
---|
450 | |
---|
451 | |
---|
452 | // Go through the vector e and compute the CFFList |
---|
453 | // again bigone summarizes the result |
---|
454 | for (int i=e.length()-1;i>=0;i--) |
---|
455 | { |
---|
456 | result.append(CFFactor(convertNTLzzpX2CF(e[i].a,x),e[i].b)); |
---|
457 | } |
---|
458 | // the multiplicity at pos 1 |
---|
459 | if (!IsOne(multi)) |
---|
460 | result.insert(CFFactor(CanonicalForm(to_long(rep(multi))),1)); |
---|
461 | return result; |
---|
462 | } |
---|
463 | |
---|
464 | //////////////////////////////////////////////////////////////////////////////// |
---|
465 | // NAME: convertNTLvec_pair_GF2X_long2FacCFFList // |
---|
466 | // // |
---|
467 | // DESCRIPTION: // |
---|
468 | // Routine for converting a vector of polynomials of type GF2X from // |
---|
469 | // NTL to a list CFFList of Factory. This routine will be used after a // |
---|
470 | // successful factorization of NTL to convert the result back to Factory. // |
---|
471 | // As usual this is simply a special case of the more general conversion // |
---|
472 | // routine but again speeded up by leaving out unnecessary steps. // |
---|
473 | // Additionally a variable x and the computed multiplicity, as type // |
---|
474 | // GF2 of NTL, are needed as parameters indicating the main variable of the // |
---|
475 | // computed canonicalform and the multiplicity of the original polynomial. // |
---|
476 | // To guarantee the correct execution of the algorithm the characteristic // |
---|
477 | // has a be an arbitrary prime number. // |
---|
478 | // // |
---|
479 | // INPUT: A vector of polynomials over GF2 of type vec_pair_GF2X_long and // |
---|
480 | // a variable x and a multiplicity of type GF2 // |
---|
481 | // OUTPUT: The converted list of polynomials of type CFFList, all // |
---|
482 | // polynomials have x as their main variable // |
---|
483 | //////////////////////////////////////////////////////////////////////////////// |
---|
484 | |
---|
485 | CFFList convertNTLvec_pair_GF2X_long2FacCFFList |
---|
486 | (vec_pair_GF2X_long e, GF2 /*multi*/, Variable x) |
---|
487 | { |
---|
488 | //printf("convertNTLvec_pair_GF2X_long2FacCFFList\n"); |
---|
489 | CFFList result; |
---|
490 | GF2X polynom; |
---|
491 | long exponent; |
---|
492 | CanonicalForm bigone; |
---|
493 | |
---|
494 | // Maybe, e may additionally be sorted with respect to increasing degree of x |
---|
495 | // but this is not |
---|
496 | //important for the factorization, but nevertheless would take computing time |
---|
497 | // so it is omitted. |
---|
498 | |
---|
499 | //We do not have to worry about the multiplicity in GF2 since it equals one. |
---|
500 | |
---|
501 | // Go through the vector e and compute the CFFList |
---|
502 | // bigone summarizes the result again |
---|
503 | for (int i=e.length()-1;i>=0;i--) |
---|
504 | { |
---|
505 | bigone=0; |
---|
506 | |
---|
507 | polynom=e[i].a; |
---|
508 | exponent=e[i].b; |
---|
509 | for (int j=0;j<=deg(polynom);j++) |
---|
510 | { |
---|
511 | if (coeff(polynom,j)!=0) |
---|
512 | bigone += (power(x,j)*CanonicalForm(to_long(rep(coeff(polynom,j))))); |
---|
513 | } |
---|
514 | |
---|
515 | //append the converted polynomial to the CFFList |
---|
516 | result.append(CFFactor(bigone,exponent)); |
---|
517 | } |
---|
518 | return result; |
---|
519 | } |
---|
520 | |
---|
521 | //////////////////////////////////////////////////////////////////////////////// |
---|
522 | // NAME: convertZZ2CF // |
---|
523 | // // |
---|
524 | // DESCRIPTION: // |
---|
525 | // Routine for conversion of integers represented in NTL as Type ZZ to // |
---|
526 | // integers in Factory represented as canonicalform. // |
---|
527 | // To guarantee the correct execution of the algorithm the characteristic // |
---|
528 | // has to equal zero. // |
---|
529 | // // |
---|
530 | // INPUT: The value coefficient of type ZZ that has to be converted // |
---|
531 | // OUTPUT: The converted Factory-integer of type canonicalform // |
---|
532 | //////////////////////////////////////////////////////////////////////////////// |
---|
533 | |
---|
534 | static unsigned char *cf_stringtemp; |
---|
535 | static unsigned long cf_stringtemp_l=0L; |
---|
536 | CanonicalForm |
---|
537 | convertZZ2CF (ZZ a) |
---|
538 | { |
---|
539 | long coeff_long=to_long(a); |
---|
540 | |
---|
541 | CanonicalForm result; |
---|
542 | if ( (NumBits(a)<((long)NTL_ZZ_NBITS)) |
---|
543 | && (coeff_long>((long)MINIMMEDIATE)) |
---|
544 | && (coeff_long<((long)MAXIMMEDIATE))) |
---|
545 | { |
---|
546 | return CanonicalForm(coeff_long); |
---|
547 | } |
---|
548 | else |
---|
549 | { |
---|
550 | long sizeofrep= ((long *) a.rep) [1]; |
---|
551 | bool lessZero= false; |
---|
552 | if (sizeofrep < 0) |
---|
553 | { |
---|
554 | lessZero= true; |
---|
555 | sizeofrep= -sizeofrep; |
---|
556 | } |
---|
557 | if (cf_stringtemp_l == 0) |
---|
558 | { |
---|
559 | cf_stringtemp_l= sizeofrep*sizeof(mp_limb_t)*2; |
---|
560 | cf_stringtemp= (unsigned char*) Alloc (cf_stringtemp_l); |
---|
561 | } |
---|
562 | else if (cf_stringtemp_l < sizeofrep*sizeof(mp_limb_t)*2) |
---|
563 | { |
---|
564 | Free (cf_stringtemp, cf_stringtemp_l); |
---|
565 | cf_stringtemp_l= sizeofrep*sizeof(mp_limb_t)*2; |
---|
566 | cf_stringtemp= (unsigned char*) Alloc (cf_stringtemp_l); |
---|
567 | } |
---|
568 | int cc= mpn_get_str (cf_stringtemp, 16, (mp_limb_t *) (((long *) (a.rep)) + 2), sizeofrep); |
---|
569 | |
---|
570 | char* cf_stringtemp2; |
---|
571 | if (lessZero) |
---|
572 | { |
---|
573 | cf_stringtemp2= new char [cc + 2]; |
---|
574 | cf_stringtemp2[0]='-'; |
---|
575 | for (int j= 1; j <= cc; j++) |
---|
576 | cf_stringtemp2[j]= IntValToChar ((int) cf_stringtemp [j-1]); |
---|
577 | cf_stringtemp2[cc+1]='\0'; |
---|
578 | } |
---|
579 | else |
---|
580 | { |
---|
581 | cf_stringtemp2= new char [cc + 1]; |
---|
582 | for (int j= 0; j < cc; j++) |
---|
583 | cf_stringtemp2[j]= IntValToChar ((int) cf_stringtemp [j]); |
---|
584 | cf_stringtemp2[cc]='\0'; |
---|
585 | } |
---|
586 | |
---|
587 | result= CanonicalForm (cf_stringtemp2, 16); |
---|
588 | delete [] cf_stringtemp2; |
---|
589 | return result; |
---|
590 | } |
---|
591 | return result; |
---|
592 | } |
---|
593 | |
---|
594 | /*static char *cf_stringtemp; |
---|
595 | static char *cf_stringtemp2; |
---|
596 | static int cf_stringtemp_l=0; |
---|
597 | CanonicalForm convertZZ2CF(ZZ coefficient) |
---|
598 | { |
---|
599 | long coeff_long; |
---|
600 | //CanonicalForm tmp=0; |
---|
601 | char dummy[2]; |
---|
602 | int minusremainder=0; |
---|
603 | char numbers[]="0123456789abcdef"; |
---|
604 | |
---|
605 | coeff_long=to_long(coefficient); |
---|
606 | |
---|
607 | //Test whether coefficient can be represented as an immediate integer in Factory |
---|
608 | if ( (NumBits(coefficient)<((long)NTL_ZZ_NBITS)) |
---|
609 | && (coeff_long>((long)MINIMMEDIATE)) |
---|
610 | && (coeff_long<((long)MAXIMMEDIATE))) |
---|
611 | { |
---|
612 | // coefficient is immediate --> return the coefficient as canonicalform |
---|
613 | return CanonicalForm(coeff_long); |
---|
614 | } |
---|
615 | else |
---|
616 | { |
---|
617 | // coefficient is not immediate (gmp-number) |
---|
618 | if (cf_stringtemp_l==0) |
---|
619 | { |
---|
620 | cf_stringtemp=(char *)Alloc(1023); |
---|
621 | cf_stringtemp2=(char *)Alloc(1023); |
---|
622 | cf_stringtemp[0]='\0'; |
---|
623 | cf_stringtemp2[0]='\0'; |
---|
624 | cf_stringtemp_l=1023; |
---|
625 | } |
---|
626 | |
---|
627 | // convert coefficient to char* (input for gmp) |
---|
628 | dummy[1]='\0'; |
---|
629 | |
---|
630 | if (coefficient<0) |
---|
631 | { |
---|
632 | // negate coefficient, but store the sign in minusremainder |
---|
633 | minusremainder=1; |
---|
634 | coefficient=-coefficient; |
---|
635 | } |
---|
636 | |
---|
637 | int l=0; |
---|
638 | while (coefficient>15) |
---|
639 | { |
---|
640 | ZZ quotient,remaind; |
---|
641 | ZZ ten;ten=16; |
---|
642 | DivRem(quotient,remaind,coefficient,ten); |
---|
643 | dummy[0]=numbers[to_long(remaind)]; |
---|
644 | //tmp*=10; tmp+=to_long(remaind); |
---|
645 | |
---|
646 | l++; |
---|
647 | if (l>=cf_stringtemp_l-2) |
---|
648 | { |
---|
649 | Free(cf_stringtemp2,cf_stringtemp_l); |
---|
650 | char *p=(char *)Alloc(cf_stringtemp_l*2); |
---|
651 | //NTL_SNS |
---|
652 | memcpy(p,cf_stringtemp,cf_stringtemp_l); |
---|
653 | Free(cf_stringtemp,cf_stringtemp_l); |
---|
654 | cf_stringtemp_l*=2; |
---|
655 | cf_stringtemp=p; |
---|
656 | cf_stringtemp2=(char *)Alloc(cf_stringtemp_l); |
---|
657 | } |
---|
658 | cf_stringtemp[l-1]=dummy[0]; |
---|
659 | cf_stringtemp[l]='\0'; |
---|
660 | //strcat(stringtemp,dummy); |
---|
661 | |
---|
662 | coefficient=quotient; |
---|
663 | } |
---|
664 | //built up the string in dummy[0] |
---|
665 | dummy[0]=numbers[to_long(coefficient)]; |
---|
666 | //NTL_SNS |
---|
667 | l++; |
---|
668 | cf_stringtemp[l-1]=dummy[0]; |
---|
669 | cf_stringtemp[l]='\0'; |
---|
670 | //tmp*=10; tmp+=to_long(coefficient); |
---|
671 | |
---|
672 | if (minusremainder==1) |
---|
673 | { |
---|
674 | //Check whether coefficient has been negative at the start of the procedure |
---|
675 | cf_stringtemp2[0]='-'; |
---|
676 | //tmp*=(-1); |
---|
677 | } |
---|
678 | |
---|
679 | //reverse the list to obtain the correct string |
---|
680 | //NTL_SNS |
---|
681 | for (int i=l-1;i>=0;i--) // l ist the position of \0 |
---|
682 | { |
---|
683 | cf_stringtemp2[l-i-1+minusremainder]=cf_stringtemp[i]; |
---|
684 | } |
---|
685 | cf_stringtemp2[l+minusremainder]='\0'; |
---|
686 | } |
---|
687 | |
---|
688 | //convert the string to canonicalform using the char*-Constructor |
---|
689 | return CanonicalForm(cf_stringtemp2,16); |
---|
690 | //return tmp; |
---|
691 | }*/ |
---|
692 | |
---|
693 | //////////////////////////////////////////////////////////////////////////////// |
---|
694 | // NAME: convertFacCF2NTLZZX // |
---|
695 | // // |
---|
696 | // DESCRIPTION: // |
---|
697 | // Routine for conversion of canonicalforms in Factory to polynomials // |
---|
698 | // of type ZZX of NTL. To guarantee the correct execution of the // |
---|
699 | // algorithm the characteristic has to equal zero. // |
---|
700 | // // |
---|
701 | // INPUT: The canonicalform that has to be converted // |
---|
702 | // OUTPUT: The converted NTL-polynom of type ZZX // |
---|
703 | //////////////////////////////////////////////////////////////////////////////// |
---|
704 | |
---|
705 | ZZ convertFacCF2NTLZZ(const CanonicalForm f) |
---|
706 | { |
---|
707 | ZZ temp; |
---|
708 | if (f.isImm()) temp=f.intval(); |
---|
709 | else |
---|
710 | { |
---|
711 | //Coefficient is a gmp-number |
---|
712 | mpz_t gmp_val; |
---|
713 | char* stringtemp; |
---|
714 | |
---|
715 | gmp_val[0]=*getmpi(f.getval()); |
---|
716 | int l=mpz_sizeinbase(gmp_val,10)+2; |
---|
717 | stringtemp=(char*)Alloc(l); |
---|
718 | stringtemp=mpz_get_str(stringtemp,10,gmp_val); |
---|
719 | mpz_clear(gmp_val); |
---|
720 | conv(temp,stringtemp); |
---|
721 | Free(stringtemp,l); |
---|
722 | } |
---|
723 | return temp; |
---|
724 | } |
---|
725 | |
---|
726 | ZZX convertFacCF2NTLZZX(CanonicalForm f) |
---|
727 | { |
---|
728 | ZZX ntl_poly; |
---|
729 | |
---|
730 | CFIterator i; |
---|
731 | i=f; |
---|
732 | |
---|
733 | int NTLcurrentExp=i.exp(); |
---|
734 | int largestExp=i.exp(); |
---|
735 | int k; |
---|
736 | |
---|
737 | //set the length of the NTL-polynomial |
---|
738 | ntl_poly.SetMaxLength(largestExp+1); |
---|
739 | |
---|
740 | //Go through the coefficients of the canonicalform and build up the NTL-polynomial |
---|
741 | for (;i.hasTerms();i++) |
---|
742 | { |
---|
743 | for (k=NTLcurrentExp;k>i.exp();k--) |
---|
744 | { |
---|
745 | SetCoeff(ntl_poly,k,0); |
---|
746 | } |
---|
747 | NTLcurrentExp=i.exp(); |
---|
748 | |
---|
749 | //Coefficient is a gmp-number |
---|
750 | ZZ temp=convertFacCF2NTLZZ(i.coeff()); |
---|
751 | |
---|
752 | //set the computed coefficient |
---|
753 | SetCoeff(ntl_poly,NTLcurrentExp,temp); |
---|
754 | |
---|
755 | NTLcurrentExp--; |
---|
756 | } |
---|
757 | for (k=NTLcurrentExp;k>=0;k--) |
---|
758 | { |
---|
759 | SetCoeff(ntl_poly,k,0); |
---|
760 | } |
---|
761 | |
---|
762 | //normalize the polynomial |
---|
763 | ntl_poly.normalize(); |
---|
764 | |
---|
765 | return ntl_poly; |
---|
766 | } |
---|
767 | |
---|
768 | //////////////////////////////////////////////////////////////////////////////// |
---|
769 | // NAME: convertNTLvec_pair_ZZX_long2FacCFFList // |
---|
770 | // // |
---|
771 | // DESCRIPTION: // |
---|
772 | // Routine for converting a vector of polynomials from ZZ to a list // |
---|
773 | // CFFList of Factory. This routine will be used after a successful // |
---|
774 | // factorization of NTL to convert the result back to Factory. // |
---|
775 | // Additionally a variable x and the computed multiplicity, as a type // |
---|
776 | // ZZ of NTL, is needed as parameters indicating the main variable of the // |
---|
777 | // computed canonicalform and the multiplicity of the original polynomial. // |
---|
778 | // To guarantee the correct execution of the algorithm the characteristic // |
---|
779 | // has to equal zero. // |
---|
780 | // // |
---|
781 | // INPUT: A vector of polynomials over ZZ of type vec_pair_ZZX_long and // |
---|
782 | // a variable x and a multiplicity of type ZZ // |
---|
783 | // OUTPUT: The converted list of polynomials of type CFFList, all // |
---|
784 | // have x as their main variable // |
---|
785 | //////////////////////////////////////////////////////////////////////////////// |
---|
786 | |
---|
787 | CFFList convertNTLvec_pair_ZZX_long2FacCFFList(vec_pair_ZZX_long e,ZZ multi,Variable x) |
---|
788 | { |
---|
789 | CFFList result; |
---|
790 | ZZX polynom; |
---|
791 | long exponent; |
---|
792 | CanonicalForm bigone; |
---|
793 | |
---|
794 | // Go through the vector e and build up the CFFList |
---|
795 | // As usual bigone summarizes the result |
---|
796 | for (int i=e.length()-1;i>=0;i--) |
---|
797 | { |
---|
798 | ZZ coefficient; |
---|
799 | polynom=e[i].a; |
---|
800 | exponent=e[i].b; |
---|
801 | bigone=convertNTLZZX2CF(polynom,x); |
---|
802 | //append the converted polynomial to the list |
---|
803 | result.append(CFFactor(bigone,exponent)); |
---|
804 | } |
---|
805 | // the multiplicity at pos 1 |
---|
806 | //if (!IsOne(multi)) |
---|
807 | result.insert(CFFactor(convertZZ2CF(multi),1)); |
---|
808 | |
---|
809 | //return the converted list |
---|
810 | return result; |
---|
811 | } |
---|
812 | |
---|
813 | |
---|
814 | //////////////////////////////////////////////////////////////////////////////// |
---|
815 | // NAME: convertNTLZZpX2CF // |
---|
816 | // // |
---|
817 | // DESCRIPTION: // |
---|
818 | // Routine for conversion of elements of arbitrary extensions of ZZp, // |
---|
819 | // having type ZZpE, of NTL to their corresponding values of type // |
---|
820 | // canonicalform in Factory. // |
---|
821 | // To guarantee the correct execution of the algorithm the characteristic // |
---|
822 | // has to be an arbitrary prime number and Factory has to compute in an // |
---|
823 | // extension of F_p. // |
---|
824 | // // |
---|
825 | // INPUT: The coefficient of type ZZpE and the variable x indicating the main// |
---|
826 | // variable of the computed canonicalform // |
---|
827 | // OUTPUT: The converted value of coefficient as type canonicalform // |
---|
828 | //////////////////////////////////////////////////////////////////////////////// |
---|
829 | |
---|
830 | CanonicalForm convertNTLZZpE2CF(ZZ_pE coefficient,Variable x) |
---|
831 | { |
---|
832 | return convertNTLZZpX2CF(rep(coefficient),x); |
---|
833 | } |
---|
834 | CanonicalForm convertNTLzzpE2CF(zz_pE coefficient,Variable x) |
---|
835 | { |
---|
836 | return convertNTLzzpX2CF(rep(coefficient),x); |
---|
837 | } |
---|
838 | |
---|
839 | //////////////////////////////////////////////////////////////////////////////// |
---|
840 | // NAME: convertNTLvec_pair_ZZpEX_long2FacCFFList // |
---|
841 | // // |
---|
842 | // DESCRIPTION: // |
---|
843 | // Routine for converting a vector of polynomials from ZZpEX to a CFFList // |
---|
844 | // of Factory. This routine will be used after a successful factorization // |
---|
845 | // of NTL to convert the result back to Factory. // |
---|
846 | // Additionally a variable x and the computed multiplicity, as a type // |
---|
847 | // ZZpE of NTL, is needed as parameters indicating the main variable of the // |
---|
848 | // computed canonicalform and the multiplicity of the original polynomial. // |
---|
849 | // To guarantee the correct execution of the algorithm the characteristic // |
---|
850 | // has a be an arbitrary prime number p and computations have to be done // |
---|
851 | // in an extention of F_p. // |
---|
852 | // // |
---|
853 | // INPUT: A vector of polynomials over ZZpE of type vec_pair_ZZ_pEX_long and // |
---|
854 | // a variable x and a multiplicity of type ZZpE // |
---|
855 | // OUTPUT: The converted list of polynomials of type CFFList, all polynomials // |
---|
856 | // have x as their main variable // |
---|
857 | //////////////////////////////////////////////////////////////////////////////// |
---|
858 | |
---|
859 | CFFList convertNTLvec_pair_ZZpEX_long2FacCFFList(vec_pair_ZZ_pEX_long e,ZZ_pE multi,Variable x,Variable alpha) |
---|
860 | { |
---|
861 | CFFList result; |
---|
862 | ZZ_pEX polynom; |
---|
863 | long exponent; |
---|
864 | CanonicalForm bigone; |
---|
865 | |
---|
866 | // Maybe, e may additionally be sorted with respect to increasing degree of x, but this is not |
---|
867 | //important for the factorization, but nevertheless would take computing time, so it is omitted |
---|
868 | |
---|
869 | // Go through the vector e and build up the CFFList |
---|
870 | // As usual bigone summarizes the result during every loop |
---|
871 | for (int i=e.length()-1;i>=0;i--) |
---|
872 | { |
---|
873 | bigone=0; |
---|
874 | |
---|
875 | polynom=e[i].a; |
---|
876 | exponent=e[i].b; |
---|
877 | |
---|
878 | for (int j=0;j<=deg(polynom);j++) |
---|
879 | { |
---|
880 | if (IsOne(coeff(polynom,j))) |
---|
881 | { |
---|
882 | bigone+=power(x,j); |
---|
883 | } |
---|
884 | else |
---|
885 | { |
---|
886 | CanonicalForm coefficient=convertNTLZZpE2CF(coeff(polynom,j),alpha); |
---|
887 | if (coeff(polynom,j)!=0) |
---|
888 | { |
---|
889 | bigone += (power(x,j)*coefficient); |
---|
890 | } |
---|
891 | } |
---|
892 | } |
---|
893 | //append the computed polynomials together with its exponent to the CFFList |
---|
894 | result.append(CFFactor(bigone,exponent)); |
---|
895 | } |
---|
896 | // Start by appending the multiplicity |
---|
897 | if (!IsOne(multi)) |
---|
898 | result.insert(CFFactor(convertNTLZZpE2CF(multi,alpha),1)); |
---|
899 | |
---|
900 | //return the computed CFFList |
---|
901 | return result; |
---|
902 | } |
---|
903 | CFFList convertNTLvec_pair_zzpEX_long2FacCFFList(vec_pair_zz_pEX_long e,zz_pE multi,Variable x,Variable alpha) |
---|
904 | { |
---|
905 | CFFList result; |
---|
906 | zz_pEX polynom; |
---|
907 | long exponent; |
---|
908 | CanonicalForm bigone; |
---|
909 | |
---|
910 | // Maybe, e may additionally be sorted with respect to increasing degree of x, but this is not |
---|
911 | //important for the factorization, but nevertheless would take computing time, so it is omitted |
---|
912 | |
---|
913 | // Go through the vector e and build up the CFFList |
---|
914 | // As usual bigone summarizes the result during every loop |
---|
915 | for (int i=e.length()-1;i>=0;i--) |
---|
916 | { |
---|
917 | bigone=0; |
---|
918 | |
---|
919 | polynom=e[i].a; |
---|
920 | exponent=e[i].b; |
---|
921 | |
---|
922 | for (int j=0;j<=deg(polynom);j++) |
---|
923 | { |
---|
924 | if (IsOne(coeff(polynom,j))) |
---|
925 | { |
---|
926 | bigone+=power(x,j); |
---|
927 | } |
---|
928 | else |
---|
929 | { |
---|
930 | CanonicalForm coefficient=convertNTLzzpE2CF(coeff(polynom,j),alpha); |
---|
931 | if (coeff(polynom,j)!=0) |
---|
932 | { |
---|
933 | bigone += (power(x,j)*coefficient); |
---|
934 | } |
---|
935 | } |
---|
936 | } |
---|
937 | //append the computed polynomials together with its exponent to the CFFList |
---|
938 | result.append(CFFactor(bigone,exponent)); |
---|
939 | } |
---|
940 | // Start by appending the multiplicity |
---|
941 | if (!IsOne(multi)) |
---|
942 | result.insert(CFFactor(convertNTLzzpE2CF(multi,alpha),1)); |
---|
943 | |
---|
944 | //return the computed CFFList |
---|
945 | return result; |
---|
946 | } |
---|
947 | |
---|
948 | //////////////////////////////////////////////////////////////////////////////// |
---|
949 | // NAME: convertNTLGF2E2CF // |
---|
950 | // // |
---|
951 | // DESCRIPTION: // |
---|
952 | // Routine for conversion of elements of extensions of GF2, having type // |
---|
953 | // GF2E, of NTL to their corresponding values of type canonicalform in // |
---|
954 | // Factory. // |
---|
955 | // To guarantee the correct execution of the algorithm, the characteristic // |
---|
956 | // must equal two and Factory has to compute in an extension of F_2. // |
---|
957 | // As usual this is an optimized special case of the more general conversion // |
---|
958 | // routine from ZZpE to Factory. // |
---|
959 | // // |
---|
960 | // INPUT: The coefficient of type GF2E and the variable x indicating the // |
---|
961 | // main variable of the computed canonicalform // |
---|
962 | // OUTPUT: The converted value of coefficient as type canonicalform // |
---|
963 | //////////////////////////////////////////////////////////////////////////////// |
---|
964 | |
---|
965 | CanonicalForm convertNTLGF2E2CF(GF2E coefficient,Variable x) |
---|
966 | { |
---|
967 | return convertNTLGF2X2CF(rep(coefficient),x); |
---|
968 | } |
---|
969 | |
---|
970 | //////////////////////////////////////////////////////////////////////////////// |
---|
971 | // NAME: convertNTLvec_pair_GF2EX_long2FacCFFList // |
---|
972 | // // |
---|
973 | // DESCRIPTION: // |
---|
974 | // Routine for converting a vector of polynomials from GF2EX to a CFFList // |
---|
975 | // of Factory. This routine will be used after a successful factorization // |
---|
976 | // of NTL to convert the result back to Factory. // |
---|
977 | // This is a special, but optimized case of the more general conversion // |
---|
978 | // from ZZpE to canonicalform. // |
---|
979 | // Additionally a variable x and the computed multiplicity, as a type GF2E // |
---|
980 | // of NTL, is needed as parameters indicating the main variable of the // |
---|
981 | // computed canonicalform and the multiplicity of the original polynomial. // |
---|
982 | // To guarantee the correct execution of the algorithm the characteristic // |
---|
983 | // has to equal two and computations have to be done in an extention of F_2. // |
---|
984 | // // |
---|
985 | // INPUT: A vector of polynomials over GF2E of type vec_pair_GF2EX_long and // |
---|
986 | // a variable x and a multiplicity of type GF2E // |
---|
987 | // OUTPUT: The converted list of polynomials of type CFFList, all polynomials // |
---|
988 | // have x as their main variable // |
---|
989 | //////////////////////////////////////////////////////////////////////////////// |
---|
990 | |
---|
991 | CFFList convertNTLvec_pair_GF2EX_long2FacCFFList |
---|
992 | (vec_pair_GF2EX_long e, GF2E /*multi*/, Variable x, Variable alpha) |
---|
993 | { |
---|
994 | CFFList result; |
---|
995 | GF2EX polynom; |
---|
996 | long exponent; |
---|
997 | CanonicalForm bigone; |
---|
998 | |
---|
999 | // Maybe, e may additionally be sorted with respect to increasing degree of x, but this is not |
---|
1000 | //important for the factorization, but nevertheless would take computing time, so it is omitted |
---|
1001 | |
---|
1002 | // multiplicity is always one, so we do not have to worry about that |
---|
1003 | |
---|
1004 | // Go through the vector e and build up the CFFList |
---|
1005 | // As usual bigone summarizes the result during every loop |
---|
1006 | for (int i=e.length()-1;i>=0;i--) |
---|
1007 | { |
---|
1008 | bigone=0; |
---|
1009 | |
---|
1010 | polynom=e[i].a; |
---|
1011 | exponent=e[i].b; |
---|
1012 | |
---|
1013 | for (int j=0;j<=deg(polynom);j++) |
---|
1014 | { |
---|
1015 | if (IsOne(coeff(polynom,j))) |
---|
1016 | { |
---|
1017 | bigone+=power(x,j); |
---|
1018 | } |
---|
1019 | else |
---|
1020 | { |
---|
1021 | CanonicalForm coefficient=convertNTLGF2E2CF(coeff(polynom,j),alpha); |
---|
1022 | if (coeff(polynom,j)!=0) |
---|
1023 | { |
---|
1024 | bigone += (power(x,j)*coefficient); |
---|
1025 | } |
---|
1026 | } |
---|
1027 | } |
---|
1028 | |
---|
1029 | // append the computed polynomial together with its multiplicity |
---|
1030 | result.append(CFFactor(bigone,exponent)); |
---|
1031 | |
---|
1032 | } |
---|
1033 | // return the computed CFFList |
---|
1034 | return result; |
---|
1035 | } |
---|
1036 | |
---|
1037 | //////////////////////////////////////////////////// |
---|
1038 | // CanonicalForm in Z_2(a)[X] to NTL GF2EX // |
---|
1039 | //////////////////////////////////////////////////// |
---|
1040 | GF2EX convertFacCF2NTLGF2EX(CanonicalForm f,GF2X mipo) |
---|
1041 | { |
---|
1042 | GF2E::init(mipo); |
---|
1043 | GF2EX result; |
---|
1044 | CFIterator i; |
---|
1045 | i=f; |
---|
1046 | |
---|
1047 | int NTLcurrentExp=i.exp(); |
---|
1048 | int largestExp=i.exp(); |
---|
1049 | int k; |
---|
1050 | |
---|
1051 | result.SetMaxLength(largestExp+1); |
---|
1052 | for(;i.hasTerms();i++) |
---|
1053 | { |
---|
1054 | for(k=NTLcurrentExp;k>i.exp();k--) SetCoeff(result,k,0); |
---|
1055 | NTLcurrentExp=i.exp(); |
---|
1056 | CanonicalForm c=i.coeff(); |
---|
1057 | GF2X cc=convertFacCF2NTLGF2X(c); |
---|
1058 | //ZZ_pE ccc; |
---|
1059 | //conv(ccc,cc); |
---|
1060 | SetCoeff(result,NTLcurrentExp,to_GF2E(cc)); |
---|
1061 | NTLcurrentExp--; |
---|
1062 | } |
---|
1063 | for(k=NTLcurrentExp;k>=0;k--) SetCoeff(result,k,0); |
---|
1064 | result.normalize(); |
---|
1065 | return result; |
---|
1066 | } |
---|
1067 | //////////////////////////////////////////////////// |
---|
1068 | // CanonicalForm in Z_p(a)[X] to NTL ZZ_pEX // |
---|
1069 | //////////////////////////////////////////////////// |
---|
1070 | ZZ_pEX convertFacCF2NTLZZ_pEX(CanonicalForm f, ZZ_pX mipo) |
---|
1071 | { |
---|
1072 | ZZ_pE::init(mipo); |
---|
1073 | ZZ_pEX result; |
---|
1074 | CFIterator i; |
---|
1075 | i=f; |
---|
1076 | |
---|
1077 | int NTLcurrentExp=i.exp(); |
---|
1078 | int largestExp=i.exp(); |
---|
1079 | int k; |
---|
1080 | |
---|
1081 | result.SetMaxLength(largestExp+1); |
---|
1082 | for(;i.hasTerms();i++) |
---|
1083 | { |
---|
1084 | for(k=NTLcurrentExp;k>i.exp();k--) SetCoeff(result,k,0); |
---|
1085 | NTLcurrentExp=i.exp(); |
---|
1086 | CanonicalForm c=i.coeff(); |
---|
1087 | ZZ_pX cc=convertFacCF2NTLZZpX(c); |
---|
1088 | //ZZ_pE ccc; |
---|
1089 | //conv(ccc,cc); |
---|
1090 | SetCoeff(result,NTLcurrentExp,to_ZZ_pE(cc)); |
---|
1091 | NTLcurrentExp--; |
---|
1092 | } |
---|
1093 | for(k=NTLcurrentExp;k>=0;k--) SetCoeff(result,k,0); |
---|
1094 | result.normalize(); |
---|
1095 | return result; |
---|
1096 | } |
---|
1097 | zz_pEX convertFacCF2NTLzz_pEX(CanonicalForm f, zz_pX mipo) |
---|
1098 | { |
---|
1099 | zz_pE::init(mipo); |
---|
1100 | zz_pEX result; |
---|
1101 | CFIterator i; |
---|
1102 | i=f; |
---|
1103 | |
---|
1104 | int NTLcurrentExp=i.exp(); |
---|
1105 | int largestExp=i.exp(); |
---|
1106 | int k; |
---|
1107 | |
---|
1108 | result.SetMaxLength(largestExp+1); |
---|
1109 | for(;i.hasTerms();i++) |
---|
1110 | { |
---|
1111 | for(k=NTLcurrentExp;k>i.exp();k--) SetCoeff(result,k,0); |
---|
1112 | NTLcurrentExp=i.exp(); |
---|
1113 | CanonicalForm c=i.coeff(); |
---|
1114 | zz_pX cc=convertFacCF2NTLzzpX(c); |
---|
1115 | //ZZ_pE ccc; |
---|
1116 | //conv(ccc,cc); |
---|
1117 | SetCoeff(result,NTLcurrentExp,to_zz_pE(cc)); |
---|
1118 | NTLcurrentExp--; |
---|
1119 | } |
---|
1120 | for(k=NTLcurrentExp;k>=0;k--) SetCoeff(result,k,0); |
---|
1121 | result.normalize(); |
---|
1122 | return result; |
---|
1123 | } |
---|
1124 | |
---|
1125 | CanonicalForm convertNTLzz_pEX2CF (zz_pEX f, Variable x, Variable alpha) |
---|
1126 | { |
---|
1127 | CanonicalForm bigone; |
---|
1128 | if (deg (f) > 0) |
---|
1129 | { |
---|
1130 | bigone= 0; |
---|
1131 | bigone.mapinto(); |
---|
1132 | for (int j=0;j<deg(f)+1;j++) |
---|
1133 | { |
---|
1134 | if (coeff(f,j)!=0) |
---|
1135 | { |
---|
1136 | bigone+=(power(x,j)*convertNTLzzpE2CF(coeff(f,j),alpha)); |
---|
1137 | } |
---|
1138 | } |
---|
1139 | } |
---|
1140 | else |
---|
1141 | { |
---|
1142 | bigone= convertNTLzzpE2CF(coeff(f,0),alpha); |
---|
1143 | bigone.mapinto(); |
---|
1144 | } |
---|
1145 | return bigone; |
---|
1146 | } |
---|
1147 | //---------------------------------------------------------------------- |
---|
1148 | mat_ZZ* convertFacCFMatrix2NTLmat_ZZ(CFMatrix &m) |
---|
1149 | { |
---|
1150 | mat_ZZ *res=new mat_ZZ; |
---|
1151 | res->SetDims(m.rows(),m.columns()); |
---|
1152 | |
---|
1153 | int i,j; |
---|
1154 | for(i=m.rows();i>0;i--) |
---|
1155 | { |
---|
1156 | for(j=m.columns();j>0;j--) |
---|
1157 | { |
---|
1158 | (*res)(i,j)=convertFacCF2NTLZZ(m(i,j)); |
---|
1159 | } |
---|
1160 | } |
---|
1161 | return res; |
---|
1162 | } |
---|
1163 | CFMatrix* convertNTLmat_ZZ2FacCFMatrix(mat_ZZ &m) |
---|
1164 | { |
---|
1165 | CFMatrix *res=new CFMatrix(m.NumRows(),m.NumCols()); |
---|
1166 | int i,j; |
---|
1167 | for(i=res->rows();i>0;i--) |
---|
1168 | { |
---|
1169 | for(j=res->columns();j>0;j--) |
---|
1170 | { |
---|
1171 | (*res)(i,j)=convertZZ2CF(m(i,j)); |
---|
1172 | } |
---|
1173 | } |
---|
1174 | return res; |
---|
1175 | } |
---|
1176 | |
---|
1177 | mat_zz_p* convertFacCFMatrix2NTLmat_zz_p(CFMatrix &m) |
---|
1178 | { |
---|
1179 | mat_zz_p *res=new mat_zz_p; |
---|
1180 | res->SetDims(m.rows(),m.columns()); |
---|
1181 | |
---|
1182 | int i,j; |
---|
1183 | for(i=m.rows();i>0;i--) |
---|
1184 | { |
---|
1185 | for(j=m.columns();j>0;j--) |
---|
1186 | { |
---|
1187 | if(!(m(i,j)).isImm()) printf("convertFacCFMatrix2NTLmat_zz_p: not imm.\n"); |
---|
1188 | (*res)(i,j)=(m(i,j)).intval(); |
---|
1189 | } |
---|
1190 | } |
---|
1191 | return res; |
---|
1192 | } |
---|
1193 | CFMatrix* convertNTLmat_zz_p2FacCFMatrix(mat_zz_p &m) |
---|
1194 | { |
---|
1195 | CFMatrix *res=new CFMatrix(m.NumRows(),m.NumCols()); |
---|
1196 | int i,j; |
---|
1197 | for(i=res->rows();i>0;i--) |
---|
1198 | { |
---|
1199 | for(j=res->columns();j>0;j--) |
---|
1200 | { |
---|
1201 | (*res)(i,j)=CanonicalForm(to_long(rep(m(i,j)))); |
---|
1202 | } |
---|
1203 | } |
---|
1204 | return res; |
---|
1205 | } |
---|
1206 | mat_zz_pE* convertFacCFMatrix2NTLmat_zz_pE(CFMatrix &m) |
---|
1207 | { |
---|
1208 | mat_zz_pE *res=new mat_zz_pE; |
---|
1209 | res->SetDims(m.rows(),m.columns()); |
---|
1210 | |
---|
1211 | int i,j; |
---|
1212 | for(i=m.rows();i>0;i--) |
---|
1213 | { |
---|
1214 | for(j=m.columns();j>0;j--) |
---|
1215 | { |
---|
1216 | zz_pX cc=convertFacCF2NTLzzpX(m(i,j)); |
---|
1217 | (*res)(i,j)=to_zz_pE(cc); |
---|
1218 | } |
---|
1219 | } |
---|
1220 | return res; |
---|
1221 | } |
---|
1222 | CFMatrix* convertNTLmat_zz_pE2FacCFMatrix(mat_zz_pE &m, Variable alpha) |
---|
1223 | { |
---|
1224 | CFMatrix *res=new CFMatrix(m.NumRows(),m.NumCols()); |
---|
1225 | int i,j; |
---|
1226 | for(i=res->rows();i>0;i--) |
---|
1227 | { |
---|
1228 | for(j=res->columns();j>0;j--) |
---|
1229 | { |
---|
1230 | (*res)(i,j)=convertNTLzzpE2CF(m(i,j), alpha); |
---|
1231 | } |
---|
1232 | } |
---|
1233 | return res; |
---|
1234 | } |
---|
1235 | #endif |
---|