1 | |
---|
2 | #include "config.h" |
---|
3 | |
---|
4 | #include "cf_assert.h" |
---|
5 | |
---|
6 | #include "cf_defs.h" |
---|
7 | #include "canonicalform.h" |
---|
8 | #include "cf_iter.h" |
---|
9 | #include "fac_sqrfree.h" |
---|
10 | #include "cf_algorithm.h" |
---|
11 | |
---|
12 | #ifdef HAVE_NTL |
---|
13 | #ifndef NOSTREAMIO |
---|
14 | #ifdef HAVE_CSTDIO |
---|
15 | #include <cstdio> |
---|
16 | #else |
---|
17 | #include <stdio.h> |
---|
18 | #endif |
---|
19 | #endif |
---|
20 | #include <string.h> |
---|
21 | #include <NTL/ZZXFactoring.h> |
---|
22 | #include <NTL/ZZ_pXFactoring.h> |
---|
23 | #include <NTL/lzz_pXFactoring.h> |
---|
24 | #include <NTL/GF2XFactoring.h> |
---|
25 | #include <NTL/ZZ_pEXFactoring.h> |
---|
26 | #include <NTL/lzz_pEXFactoring.h> |
---|
27 | #include <NTL/GF2EXFactoring.h> |
---|
28 | #include <NTL/tools.h> |
---|
29 | #include <NTL/mat_ZZ.h> |
---|
30 | #include <NTL/version.h> |
---|
31 | #include "int_int.h" |
---|
32 | #include <limits.h> |
---|
33 | #include "NTLconvert.h" |
---|
34 | |
---|
35 | #ifdef HAVE_OMALLOC |
---|
36 | #define Alloc(L) omAlloc(L) |
---|
37 | #define Free(A,L) omFreeSize(A,L) |
---|
38 | #else |
---|
39 | #define Alloc(L) malloc(L) |
---|
40 | #define Free(A,L) free(A) |
---|
41 | #endif |
---|
42 | |
---|
43 | void out_cf(const char *s1,const CanonicalForm &f,const char *s2); |
---|
44 | |
---|
45 | |
---|
46 | VAR long fac_NTL_char = -1; // the current characterstic for NTL calls |
---|
47 | // -1: undefined |
---|
48 | #ifdef NTL_CLIENT // in <NTL/tools.h>: using of name space NTL |
---|
49 | NTL_CLIENT |
---|
50 | #endif |
---|
51 | |
---|
52 | //////////////////////////////////////////////////////////////////////////////// |
---|
53 | /// NAME: convertFacCF2NTLZZpX |
---|
54 | /// |
---|
55 | /// DESCRIPTION: |
---|
56 | /// Conversion routine for Factory-type canonicalform into ZZpX of NTL, |
---|
57 | /// i.e. polynomials over F_p. As a precondition for correct execution, |
---|
58 | /// the characteristic has to a a prime number. |
---|
59 | /// |
---|
60 | /// INPUT: A canonicalform f |
---|
61 | /// OUTPUT: The converted NTL-polynomial over F_p of type ZZpX |
---|
62 | //////////////////////////////////////////////////////////////////////////////// |
---|
63 | |
---|
64 | ZZ_pX convertFacCF2NTLZZpX(const CanonicalForm & f) |
---|
65 | { |
---|
66 | ZZ_pX ntl_poly; |
---|
67 | |
---|
68 | CFIterator i; |
---|
69 | i=f; |
---|
70 | |
---|
71 | int NTLcurrentExp=i.exp(); |
---|
72 | int largestExp=i.exp(); |
---|
73 | int k; |
---|
74 | |
---|
75 | // we now build up the NTL-polynomial |
---|
76 | ntl_poly.SetMaxLength(largestExp+1); |
---|
77 | |
---|
78 | for (;i.hasTerms();i++) |
---|
79 | { |
---|
80 | for (k=NTLcurrentExp;k>i.exp();k--) |
---|
81 | { |
---|
82 | SetCoeff(ntl_poly,k,0); |
---|
83 | } |
---|
84 | NTLcurrentExp=i.exp(); |
---|
85 | |
---|
86 | SetCoeff(ntl_poly,NTLcurrentExp,to_ZZ_p (convertFacCF2NTLZZ (i.coeff()))); |
---|
87 | NTLcurrentExp--; |
---|
88 | } |
---|
89 | |
---|
90 | //Set the remaining coefficients of ntl_poly to zero. |
---|
91 | // This is necessary, because NTL internally |
---|
92 | // also stores powers with zero coefficient, |
---|
93 | // whereas factory stores tuples of degree and coefficient |
---|
94 | //leaving out tuples if the coefficient equals zero |
---|
95 | for (k=NTLcurrentExp;k>=0;k--) |
---|
96 | { |
---|
97 | SetCoeff(ntl_poly,k,0); |
---|
98 | } |
---|
99 | |
---|
100 | //normalize the polynomial and return it |
---|
101 | ntl_poly.normalize(); |
---|
102 | |
---|
103 | return ntl_poly; |
---|
104 | } |
---|
105 | zz_pX convertFacCF2NTLzzpX(const CanonicalForm & f) |
---|
106 | { |
---|
107 | zz_pX ntl_poly; |
---|
108 | |
---|
109 | CFIterator i; |
---|
110 | i=f; |
---|
111 | |
---|
112 | int NTLcurrentExp=i.exp(); |
---|
113 | int largestExp=i.exp(); |
---|
114 | int k; |
---|
115 | |
---|
116 | // we now build up the NTL-polynomial |
---|
117 | ntl_poly.SetMaxLength(largestExp+1); |
---|
118 | |
---|
119 | for (;i.hasTerms();i++) |
---|
120 | { |
---|
121 | for (k=NTLcurrentExp;k>i.exp();k--) |
---|
122 | { |
---|
123 | SetCoeff(ntl_poly,k,0); |
---|
124 | } |
---|
125 | NTLcurrentExp=i.exp(); |
---|
126 | |
---|
127 | CanonicalForm c=i.coeff(); |
---|
128 | if (!c.isImm()) c=c.mapinto(); //c%= getCharacteristic(); |
---|
129 | if (!c.isImm()) |
---|
130 | { //This case will never happen if the characteristic is in fact a prime |
---|
131 | // number, since all coefficients are represented as immediates |
---|
132 | #ifndef NOSTREAMIO |
---|
133 | cout<<"convertFacCF2NTLzz_pX: coefficient not immediate! : "<<f<<"\n"; |
---|
134 | #else |
---|
135 | //NTL_SNS |
---|
136 | printf("convertFacCF2NTLzz_pX: coefficient not immediate!, char=%d\n", |
---|
137 | getCharacteristic()); |
---|
138 | #endif |
---|
139 | NTL_SNS exit(1); |
---|
140 | } |
---|
141 | else |
---|
142 | { |
---|
143 | SetCoeff(ntl_poly,NTLcurrentExp,c.intval()); |
---|
144 | } |
---|
145 | NTLcurrentExp--; |
---|
146 | } |
---|
147 | |
---|
148 | //Set the remaining coefficients of ntl_poly to zero. |
---|
149 | // This is necessary, because NTL internally |
---|
150 | // also stores powers with zero coefficient, |
---|
151 | // whereas factory stores tuples of degree and coefficient |
---|
152 | //leaving out tuples if the coefficient equals zero |
---|
153 | for (k=NTLcurrentExp;k>=0;k--) |
---|
154 | { |
---|
155 | SetCoeff(ntl_poly,k,0); |
---|
156 | } |
---|
157 | |
---|
158 | //normalize the polynomial and return it |
---|
159 | ntl_poly.normalize(); |
---|
160 | |
---|
161 | return ntl_poly; |
---|
162 | } |
---|
163 | |
---|
164 | //////////////////////////////////////////////////////////////////////////////// |
---|
165 | /// NAME: convertFacCF2NTLGF2X |
---|
166 | /// |
---|
167 | /// DESCRIPTION: |
---|
168 | /// Conversion routine for Factory-type canonicalform into GF2X of NTL, |
---|
169 | /// i.e. polynomials over F_2. As precondition for correct execution, |
---|
170 | /// the characteristic must equal two. |
---|
171 | /// This is a special case of the more general conversion routine for |
---|
172 | /// canonicalform to ZZpX. It is included because NTL provides additional |
---|
173 | /// support and faster algorithms over F_2, moreover the conversion code |
---|
174 | /// can be optimized, because certain steps are either completely obsolent |
---|
175 | /// (like normalizing the polynomial) or they can be made significantly |
---|
176 | /// faster (like building up the NTL-polynomial). |
---|
177 | /// |
---|
178 | /// INPUT: A canonicalform f |
---|
179 | /// OUTPUT: The converted NTL-polynomial over F_2 of type GF2X |
---|
180 | //////////////////////////////////////////////////////////////////////////////// |
---|
181 | |
---|
182 | GF2X convertFacCF2NTLGF2X(const CanonicalForm & f) |
---|
183 | { |
---|
184 | //printf("convertFacCF2NTLGF2X\n"); |
---|
185 | GF2X ntl_poly; |
---|
186 | |
---|
187 | CFIterator i; |
---|
188 | i=f; |
---|
189 | |
---|
190 | int NTLcurrentExp=i.exp(); |
---|
191 | int largestExp=i.exp(); |
---|
192 | int k; |
---|
193 | |
---|
194 | //building the NTL-polynomial |
---|
195 | ntl_poly.SetMaxLength(largestExp+1); |
---|
196 | |
---|
197 | for (;i.hasTerms();i++) |
---|
198 | { |
---|
199 | |
---|
200 | for (k=NTLcurrentExp;k>i.exp();k--) |
---|
201 | { |
---|
202 | SetCoeff(ntl_poly,k,0); |
---|
203 | } |
---|
204 | NTLcurrentExp=i.exp(); |
---|
205 | |
---|
206 | if (!i.coeff().isImm()) i.coeff()=i.coeff().mapinto(); |
---|
207 | if (!i.coeff().isImm()) |
---|
208 | { |
---|
209 | #ifndef NOSTREAMIO |
---|
210 | cout<<"convertFacCF2NTLGF2X: coefficient not immediate! : " << f << "\n"; |
---|
211 | #else |
---|
212 | //NTL_SNS |
---|
213 | printf("convertFacCF2NTLGF2X: coefficient not immediate!"); |
---|
214 | #endif |
---|
215 | NTL_SNS exit(1); |
---|
216 | } |
---|
217 | else |
---|
218 | { |
---|
219 | SetCoeff(ntl_poly,NTLcurrentExp,i.coeff().intval()); |
---|
220 | } |
---|
221 | NTLcurrentExp--; |
---|
222 | } |
---|
223 | for (k=NTLcurrentExp;k>=0;k--) |
---|
224 | { |
---|
225 | SetCoeff(ntl_poly,k,0); |
---|
226 | } |
---|
227 | //normalization is not necessary of F_2 |
---|
228 | |
---|
229 | return ntl_poly; |
---|
230 | } |
---|
231 | |
---|
232 | |
---|
233 | //////////////////////////////////////////////////////////////////////////////// |
---|
234 | /// NAME: convertNTLZZpX2CF |
---|
235 | /// |
---|
236 | /// DESCRIPTION: |
---|
237 | /// Conversion routine for NTL-Type ZZpX to Factory-Type canonicalform. |
---|
238 | /// Additionally a variable x is needed as a parameter indicating the |
---|
239 | /// main variable of the computed canonicalform. To guarantee the correct |
---|
240 | /// execution of the algorithm, the characteristic has a be an arbitrary |
---|
241 | /// prime number. |
---|
242 | /// |
---|
243 | /// INPUT: A canonicalform f, a variable x |
---|
244 | /// OUTPUT: The converted Factory-polynomial of type canonicalform, |
---|
245 | /// built by the main variable x |
---|
246 | //////////////////////////////////////////////////////////////////////////////// |
---|
247 | |
---|
248 | CanonicalForm convertNTLZZpX2CF(const ZZ_pX & poly,const Variable & x) |
---|
249 | { |
---|
250 | return convertNTLZZX2CF (to_ZZX (poly), x); |
---|
251 | } |
---|
252 | |
---|
253 | CanonicalForm convertNTLzzpX2CF(const zz_pX & poly,const Variable & x) |
---|
254 | { |
---|
255 | //printf("convertNTLzzpX2CF\n"); |
---|
256 | CanonicalForm bigone; |
---|
257 | |
---|
258 | |
---|
259 | if (deg(poly)>0) |
---|
260 | { |
---|
261 | // poly is non-constant |
---|
262 | bigone=0; |
---|
263 | bigone.mapinto(); |
---|
264 | // Compute the canonicalform coefficient by coefficient, |
---|
265 | // bigone summarizes the result. |
---|
266 | for (int j=0;j<=deg(poly);j++) |
---|
267 | { |
---|
268 | if (coeff(poly,j)!=0) |
---|
269 | { |
---|
270 | bigone+=(power(x,j)*CanonicalForm(to_long(rep(coeff(poly,j))))); |
---|
271 | } |
---|
272 | } |
---|
273 | } |
---|
274 | else |
---|
275 | { |
---|
276 | // poly is immediate |
---|
277 | bigone=CanonicalForm(to_long(rep(coeff(poly,0)))); |
---|
278 | bigone.mapinto(); |
---|
279 | } |
---|
280 | return bigone; |
---|
281 | } |
---|
282 | |
---|
283 | CanonicalForm convertNTLZZX2CF(const ZZX & polynom,const Variable & x) |
---|
284 | { |
---|
285 | //printf("convertNTLZZX2CF\n"); |
---|
286 | CanonicalForm bigone; |
---|
287 | |
---|
288 | // Go through the vector e and build up the CFFList |
---|
289 | // As usual bigone summarizes the result |
---|
290 | bigone=0; |
---|
291 | ZZ coefficient; |
---|
292 | |
---|
293 | for (int j=0;j<=deg(polynom);j++) |
---|
294 | { |
---|
295 | coefficient=coeff(polynom,j); |
---|
296 | if (!IsZero(coefficient)) |
---|
297 | { |
---|
298 | bigone += (power(x,j)*convertZZ2CF(coefficient)); |
---|
299 | } |
---|
300 | } |
---|
301 | return bigone; |
---|
302 | } |
---|
303 | |
---|
304 | //////////////////////////////////////////////////////////////////////////////// |
---|
305 | /// NAME: convertNTLGF2X2CF |
---|
306 | /// |
---|
307 | /// DESCRIPTION: |
---|
308 | /// Conversion routine for NTL-Type GF2X to Factory-Type canonicalform, |
---|
309 | /// the routine is again an optimized special case of the more general |
---|
310 | /// conversion to ZZpX. Additionally a variable x is needed as a |
---|
311 | /// parameter indicating the main variable of the computed canonicalform. |
---|
312 | /// To guarantee the correct execution of the algorithm the characteristic |
---|
313 | /// has a be an arbitrary prime number. |
---|
314 | /// |
---|
315 | /// INPUT: A canonicalform f, a variable x |
---|
316 | /// OUTPUT: The converted Factory-polynomial of type canonicalform, |
---|
317 | /// built by the main variable x |
---|
318 | //////////////////////////////////////////////////////////////////////////////// |
---|
319 | |
---|
320 | CanonicalForm convertNTLGF2X2CF(const GF2X & poly,const Variable & x) |
---|
321 | { |
---|
322 | //printf("convertNTLGF2X2CF\n"); |
---|
323 | CanonicalForm bigone; |
---|
324 | |
---|
325 | if (deg(poly)>0) |
---|
326 | { |
---|
327 | // poly is non-constant |
---|
328 | bigone=0; |
---|
329 | bigone.mapinto(); |
---|
330 | // Compute the canonicalform coefficient by coefficient, |
---|
331 | // bigone summarizes the result. |
---|
332 | // In constrast to the more general conversion to ZZpX |
---|
333 | // the only possible coefficients are zero |
---|
334 | // and one yielding the following simplified loop |
---|
335 | for (int j=0;j<=deg(poly);j++) |
---|
336 | { |
---|
337 | if (coeff(poly,j)!=0) bigone+=power(x,j); |
---|
338 | // *CanonicalForm(to_long(rep(coeff(poly,j))))) is not necessary any more; |
---|
339 | } |
---|
340 | } |
---|
341 | else |
---|
342 | { |
---|
343 | // poly is immediate |
---|
344 | bigone=CanonicalForm(to_long(rep(coeff(poly,0)))); |
---|
345 | bigone.mapinto(); |
---|
346 | } |
---|
347 | |
---|
348 | return bigone; |
---|
349 | } |
---|
350 | |
---|
351 | //////////////////////////////////////////////////////////////////////////////// |
---|
352 | /// NAME: convertNTLvec_pair_ZZpX_long2FacCFFList |
---|
353 | /// |
---|
354 | /// DESCRIPTION: |
---|
355 | /// Routine for converting a vector of polynomials from ZZpX to |
---|
356 | /// a CFFList of Factory. This routine will be used after a successful |
---|
357 | /// factorization of NTL to convert the result back to Factory. |
---|
358 | /// |
---|
359 | /// Additionally a variable x and the computed multiplicity, as a type ZZp |
---|
360 | /// of NTL, is needed as parameters indicating the main variable of the |
---|
361 | /// computed canonicalform and the multiplicity of the original polynomial. |
---|
362 | /// To guarantee the correct execution of the algorithm the characteristic |
---|
363 | /// has a be an arbitrary prime number. |
---|
364 | /// |
---|
365 | /// INPUT: A vector of polynomials over ZZp of type vec_pair_ZZ_pX_long and |
---|
366 | /// a variable x and a multiplicity of type ZZp |
---|
367 | /// OUTPUT: The converted list of polynomials of type CFFList, all polynomials |
---|
368 | /// have x as their main variable |
---|
369 | //////////////////////////////////////////////////////////////////////////////// |
---|
370 | |
---|
371 | CFFList convertNTLvec_pair_ZZpX_long2FacCFFList |
---|
372 | (const vec_pair_ZZ_pX_long & e,const ZZ_p & multi,const Variable & x) |
---|
373 | { |
---|
374 | //printf("convertNTLvec_pair_ZZpX_long2FacCFFList\n"); |
---|
375 | CFFList result; |
---|
376 | ZZ_pX polynom; |
---|
377 | CanonicalForm bigone; |
---|
378 | |
---|
379 | // Maybe, e may additionally be sorted with respect to increasing degree of x |
---|
380 | // but this is not |
---|
381 | //important for the factorization, but nevertheless would take computing time, |
---|
382 | // so it is omitted |
---|
383 | |
---|
384 | |
---|
385 | // Go through the vector e and compute the CFFList |
---|
386 | // again bigone summarizes the result |
---|
387 | for (int i=e.length()-1;i>=0;i--) |
---|
388 | { |
---|
389 | result.append(CFFactor(convertNTLZZpX2CF(e[i].a,x),e[i].b)); |
---|
390 | } |
---|
391 | // the multiplicity at pos 1 |
---|
392 | if (!IsOne(multi)) |
---|
393 | result.insert(CFFactor(CanonicalForm(to_long(rep(multi))),1)); |
---|
394 | return result; |
---|
395 | } |
---|
396 | CFFList convertNTLvec_pair_zzpX_long2FacCFFList |
---|
397 | (const vec_pair_zz_pX_long & e,const zz_p multi,const Variable & x) |
---|
398 | { |
---|
399 | //printf("convertNTLvec_pair_zzpX_long2FacCFFList\n"); |
---|
400 | CFFList result; |
---|
401 | zz_pX polynom; |
---|
402 | CanonicalForm bigone; |
---|
403 | |
---|
404 | // Maybe, e may additionally be sorted with respect to increasing degree of x |
---|
405 | // but this is not |
---|
406 | //important for the factorization, but nevertheless would take computing time, |
---|
407 | // so it is omitted |
---|
408 | |
---|
409 | |
---|
410 | // Go through the vector e and compute the CFFList |
---|
411 | // again bigone summarizes the result |
---|
412 | for (int i=e.length()-1;i>=0;i--) |
---|
413 | { |
---|
414 | result.append(CFFactor(convertNTLzzpX2CF(e[i].a,x),e[i].b)); |
---|
415 | } |
---|
416 | // the multiplicity at pos 1 |
---|
417 | if (!IsOne(multi)) |
---|
418 | result.insert(CFFactor(CanonicalForm(to_long(rep(multi))),1)); |
---|
419 | return result; |
---|
420 | } |
---|
421 | |
---|
422 | //////////////////////////////////////////////////////////////////////////////// |
---|
423 | /// NAME: convertNTLvec_pair_GF2X_long2FacCFFList |
---|
424 | /// |
---|
425 | /// DESCRIPTION: |
---|
426 | /// Routine for converting a vector of polynomials of type GF2X from |
---|
427 | /// NTL to a list CFFList of Factory. This routine will be used after a |
---|
428 | /// successful factorization of NTL to convert the result back to Factory. |
---|
429 | /// As usual this is simply a special case of the more general conversion |
---|
430 | /// routine but again speeded up by leaving out unnecessary steps. |
---|
431 | /// Additionally a variable x and the computed multiplicity, as type |
---|
432 | /// GF2 of NTL, are needed as parameters indicating the main variable of the |
---|
433 | /// computed canonicalform and the multiplicity of the original polynomial. |
---|
434 | /// To guarantee the correct execution of the algorithm the characteristic |
---|
435 | /// has a be an arbitrary prime number. |
---|
436 | /// |
---|
437 | /// INPUT: A vector of polynomials over GF2 of type vec_pair_GF2X_long and |
---|
438 | /// a variable x and a multiplicity of type GF2 |
---|
439 | /// OUTPUT: The converted list of polynomials of type CFFList, all |
---|
440 | /// polynomials have x as their main variable |
---|
441 | //////////////////////////////////////////////////////////////////////////////// |
---|
442 | |
---|
443 | CFFList convertNTLvec_pair_GF2X_long2FacCFFList |
---|
444 | (const vec_pair_GF2X_long& e, GF2 /*multi*/, const Variable & x) |
---|
445 | { |
---|
446 | //printf("convertNTLvec_pair_GF2X_long2FacCFFList\n"); |
---|
447 | CFFList result; |
---|
448 | GF2X polynom; |
---|
449 | long exponent; |
---|
450 | CanonicalForm bigone; |
---|
451 | |
---|
452 | // Maybe, e may additionally be sorted with respect to increasing degree of x |
---|
453 | // but this is not |
---|
454 | //important for the factorization, but nevertheless would take computing time |
---|
455 | // so it is omitted. |
---|
456 | |
---|
457 | //We do not have to worry about the multiplicity in GF2 since it equals one. |
---|
458 | |
---|
459 | // Go through the vector e and compute the CFFList |
---|
460 | // bigone summarizes the result again |
---|
461 | for (int i=e.length()-1;i>=0;i--) |
---|
462 | { |
---|
463 | bigone=0; |
---|
464 | |
---|
465 | polynom=e[i].a; |
---|
466 | exponent=e[i].b; |
---|
467 | for (int j=0;j<=deg(polynom);j++) |
---|
468 | { |
---|
469 | if (coeff(polynom,j)!=0) |
---|
470 | bigone += (power(x,j)*CanonicalForm(to_long(rep(coeff(polynom,j))))); |
---|
471 | } |
---|
472 | |
---|
473 | //append the converted polynomial to the CFFList |
---|
474 | result.append(CFFactor(bigone,exponent)); |
---|
475 | } |
---|
476 | return result; |
---|
477 | } |
---|
478 | |
---|
479 | STATIC_VAR unsigned char *cf_stringtemp; |
---|
480 | STATIC_VAR unsigned long cf_stringtemp_l=0L; |
---|
481 | //////////////////////////////////////////////////////////////////////////////// |
---|
482 | /// NAME: convertZZ2CF |
---|
483 | /// |
---|
484 | /// DESCRIPTION: |
---|
485 | /// Routine for conversion of integers represented in NTL as Type ZZ to |
---|
486 | /// integers in Factory represented as canonicalform. |
---|
487 | /// To guarantee the correct execution of the algorithm the characteristic |
---|
488 | /// has to equal zero. |
---|
489 | /// |
---|
490 | /// INPUT: The value coefficient of type ZZ that has to be converted |
---|
491 | /// OUTPUT: The converted Factory-integer of type canonicalform |
---|
492 | //////////////////////////////////////////////////////////////////////////////// |
---|
493 | CanonicalForm |
---|
494 | convertZZ2CF (const ZZ & a) |
---|
495 | { |
---|
496 | long coeff_long=to_long(a); |
---|
497 | |
---|
498 | CanonicalForm result; |
---|
499 | if ( (NumBits(a)<((long)NTL_ZZ_NBITS)) |
---|
500 | && (coeff_long>((long)MINIMMEDIATE)) |
---|
501 | && (coeff_long<((long)MAXIMMEDIATE))) |
---|
502 | { |
---|
503 | return CanonicalForm(coeff_long); |
---|
504 | } |
---|
505 | else |
---|
506 | { |
---|
507 | const long * rep = |
---|
508 | #if NTL_MAJOR_VERSION <= 6 |
---|
509 | static_cast<long *>( a.rep ); |
---|
510 | #elif NTL_MAJOR_VERSION <=9 |
---|
511 | static_cast<long *>( a.rep.rep ); // what about NTL7? |
---|
512 | #else |
---|
513 | (long*)( a.rep.rep ); |
---|
514 | #endif |
---|
515 | long sizeofrep= rep[1]; |
---|
516 | bool lessZero= false; |
---|
517 | if (sizeofrep < 0) |
---|
518 | { |
---|
519 | lessZero= true; |
---|
520 | sizeofrep= -sizeofrep; |
---|
521 | } |
---|
522 | if (cf_stringtemp_l == 0) |
---|
523 | { |
---|
524 | cf_stringtemp_l= sizeofrep*sizeof(mp_limb_t)*2; |
---|
525 | cf_stringtemp= (unsigned char*) Alloc (cf_stringtemp_l); |
---|
526 | } |
---|
527 | else if (cf_stringtemp_l < sizeofrep*sizeof(mp_limb_t)*2) |
---|
528 | { |
---|
529 | Free (cf_stringtemp, cf_stringtemp_l); |
---|
530 | cf_stringtemp_l= sizeofrep*sizeof(mp_limb_t)*2; |
---|
531 | cf_stringtemp= (unsigned char*) Alloc (cf_stringtemp_l); |
---|
532 | } |
---|
533 | int cc= mpn_get_str (cf_stringtemp, 16, (mp_limb_t *) ((rep) + 2), sizeofrep); |
---|
534 | |
---|
535 | char* cf_stringtemp2; |
---|
536 | if (lessZero) |
---|
537 | { |
---|
538 | cf_stringtemp2= new char [cc + 2]; |
---|
539 | cf_stringtemp2[0]='-'; |
---|
540 | for (int j= 1; j <= cc; j++) |
---|
541 | cf_stringtemp2[j]= IntValToChar ((int) cf_stringtemp [j-1]); |
---|
542 | cf_stringtemp2[cc+1]='\0'; |
---|
543 | } |
---|
544 | else |
---|
545 | { |
---|
546 | cf_stringtemp2= new char [cc + 1]; |
---|
547 | for (int j= 0; j < cc; j++) |
---|
548 | cf_stringtemp2[j]= IntValToChar ((int) cf_stringtemp [j]); |
---|
549 | cf_stringtemp2[cc]='\0'; |
---|
550 | } |
---|
551 | |
---|
552 | result= CanonicalForm (cf_stringtemp2, 16); |
---|
553 | delete [] cf_stringtemp2; |
---|
554 | } |
---|
555 | return result; |
---|
556 | } |
---|
557 | |
---|
558 | /*static char *cf_stringtemp; |
---|
559 | static char *cf_stringtemp2; |
---|
560 | static int cf_stringtemp_l=0; |
---|
561 | CanonicalForm convertZZ2CF(const ZZ & coefficient) |
---|
562 | { |
---|
563 | long coeff_long; |
---|
564 | //CanonicalForm tmp=0; |
---|
565 | char dummy[2]; |
---|
566 | int minusremainder=0; |
---|
567 | char numbers[]="0123456789abcdef"; |
---|
568 | |
---|
569 | coeff_long=to_long(coefficient); |
---|
570 | |
---|
571 | //Test whether coefficient can be represented as an immediate integer in Factory |
---|
572 | if ( (NumBits(coefficient)<((long)NTL_ZZ_NBITS)) |
---|
573 | && (coeff_long>((long)MINIMMEDIATE)) |
---|
574 | && (coeff_long<((long)MAXIMMEDIATE))) |
---|
575 | { |
---|
576 | // coefficient is immediate --> return the coefficient as canonicalform |
---|
577 | return CanonicalForm(coeff_long); |
---|
578 | } |
---|
579 | else |
---|
580 | { |
---|
581 | // coefficient is not immediate (gmp-number) |
---|
582 | if (cf_stringtemp_l==0) |
---|
583 | { |
---|
584 | cf_stringtemp=(char *)Alloc(1023); |
---|
585 | cf_stringtemp2=(char *)Alloc(1023); |
---|
586 | cf_stringtemp[0]='\0'; |
---|
587 | cf_stringtemp2[0]='\0'; |
---|
588 | cf_stringtemp_l=1023; |
---|
589 | } |
---|
590 | |
---|
591 | // convert coefficient to char* (input for gmp) |
---|
592 | dummy[1]='\0'; |
---|
593 | |
---|
594 | if (coefficient<0) |
---|
595 | { |
---|
596 | // negate coefficient, but store the sign in minusremainder |
---|
597 | minusremainder=1; |
---|
598 | coefficient=-coefficient; |
---|
599 | } |
---|
600 | |
---|
601 | int l=0; |
---|
602 | while (coefficient>15) |
---|
603 | { |
---|
604 | ZZ quotient,remaind; |
---|
605 | ZZ ten;ten=16; |
---|
606 | DivRem(quotient,remaind,coefficient,ten); |
---|
607 | dummy[0]=numbers[to_long(remaind)]; |
---|
608 | //tmp*=10; tmp+=to_long(remaind); |
---|
609 | |
---|
610 | l++; |
---|
611 | if (l>=cf_stringtemp_l-2) |
---|
612 | { |
---|
613 | Free(cf_stringtemp2,cf_stringtemp_l); |
---|
614 | char *p=(char *)Alloc(cf_stringtemp_l*2); |
---|
615 | //NTL_SNS |
---|
616 | memcpy(p,cf_stringtemp,cf_stringtemp_l); |
---|
617 | Free(cf_stringtemp,cf_stringtemp_l); |
---|
618 | cf_stringtemp_l*=2; |
---|
619 | cf_stringtemp=p; |
---|
620 | cf_stringtemp2=(char *)Alloc(cf_stringtemp_l); |
---|
621 | } |
---|
622 | cf_stringtemp[l-1]=dummy[0]; |
---|
623 | cf_stringtemp[l]='\0'; |
---|
624 | //strcat(stringtemp,dummy); |
---|
625 | |
---|
626 | coefficient=quotient; |
---|
627 | } |
---|
628 | //built up the string in dummy[0] |
---|
629 | dummy[0]=numbers[to_long(coefficient)]; |
---|
630 | //NTL_SNS |
---|
631 | l++; |
---|
632 | cf_stringtemp[l-1]=dummy[0]; |
---|
633 | cf_stringtemp[l]='\0'; |
---|
634 | //tmp*=10; tmp+=to_long(coefficient); |
---|
635 | |
---|
636 | if (minusremainder==1) |
---|
637 | { |
---|
638 | //Check whether coefficient has been negative at the start of the procedure |
---|
639 | cf_stringtemp2[0]='-'; |
---|
640 | //tmp*=(-1); |
---|
641 | } |
---|
642 | |
---|
643 | //reverse the list to obtain the correct string |
---|
644 | //NTL_SNS |
---|
645 | for (int i=l-1;i>=0;i--) // l ist the position of \0 |
---|
646 | { |
---|
647 | cf_stringtemp2[l-i-1+minusremainder]=cf_stringtemp[i]; |
---|
648 | } |
---|
649 | cf_stringtemp2[l+minusremainder]='\0'; |
---|
650 | } |
---|
651 | |
---|
652 | //convert the string to canonicalform using the char*-Constructor |
---|
653 | return CanonicalForm(cf_stringtemp2,16); |
---|
654 | //return tmp; |
---|
655 | }*/ |
---|
656 | |
---|
657 | //////////////////////////////////////////////////////////////////////////////// |
---|
658 | /// NAME: convertFacCF2NTLZZX |
---|
659 | /// |
---|
660 | /// DESCRIPTION: |
---|
661 | /// Routine for conversion of canonicalforms in Factory to polynomials |
---|
662 | /// of type ZZX of NTL. To guarantee the correct execution of the |
---|
663 | /// algorithm the characteristic has to equal zero. |
---|
664 | /// |
---|
665 | /// INPUT: The canonicalform that has to be converted |
---|
666 | /// OUTPUT: The converted NTL-polynom of type ZZX |
---|
667 | //////////////////////////////////////////////////////////////////////////////// |
---|
668 | |
---|
669 | ZZ convertFacCF2NTLZZ(const CanonicalForm & f) |
---|
670 | { |
---|
671 | ZZ temp; |
---|
672 | if (f.isImm()) temp=f.intval(); |
---|
673 | else |
---|
674 | { |
---|
675 | //Coefficient is a gmp-number |
---|
676 | mpz_t gmp_val; |
---|
677 | char* stringtemp; |
---|
678 | |
---|
679 | f.mpzval (gmp_val); |
---|
680 | int l=mpz_sizeinbase(gmp_val,10)+2; |
---|
681 | stringtemp=(char*)Alloc(l); |
---|
682 | stringtemp=mpz_get_str(stringtemp,10,gmp_val); |
---|
683 | mpz_clear(gmp_val); |
---|
684 | conv(temp,stringtemp); |
---|
685 | Free(stringtemp,l); |
---|
686 | } |
---|
687 | return temp; |
---|
688 | } |
---|
689 | |
---|
690 | ZZX convertFacCF2NTLZZX(const CanonicalForm & f) |
---|
691 | { |
---|
692 | ZZX ntl_poly; |
---|
693 | |
---|
694 | CFIterator i; |
---|
695 | i=f; |
---|
696 | |
---|
697 | int NTLcurrentExp=i.exp(); |
---|
698 | int largestExp=i.exp(); |
---|
699 | int k; |
---|
700 | |
---|
701 | //set the length of the NTL-polynomial |
---|
702 | ntl_poly.SetMaxLength(largestExp+1); |
---|
703 | |
---|
704 | //Go through the coefficients of the canonicalform and build up the NTL-polynomial |
---|
705 | for (;i.hasTerms();i++) |
---|
706 | { |
---|
707 | for (k=NTLcurrentExp;k>i.exp();k--) |
---|
708 | { |
---|
709 | SetCoeff(ntl_poly,k,0); |
---|
710 | } |
---|
711 | NTLcurrentExp=i.exp(); |
---|
712 | |
---|
713 | //Coefficient is a gmp-number |
---|
714 | ZZ temp=convertFacCF2NTLZZ(i.coeff()); |
---|
715 | |
---|
716 | //set the computed coefficient |
---|
717 | SetCoeff(ntl_poly,NTLcurrentExp,temp); |
---|
718 | |
---|
719 | NTLcurrentExp--; |
---|
720 | } |
---|
721 | for (k=NTLcurrentExp;k>=0;k--) |
---|
722 | { |
---|
723 | SetCoeff(ntl_poly,k,0); |
---|
724 | } |
---|
725 | |
---|
726 | //normalize the polynomial |
---|
727 | ntl_poly.normalize(); |
---|
728 | |
---|
729 | return ntl_poly; |
---|
730 | } |
---|
731 | |
---|
732 | //////////////////////////////////////////////////////////////////////////////// |
---|
733 | /// NAME: convertNTLvec_pair_ZZX_long2FacCFFList |
---|
734 | /// |
---|
735 | /// DESCRIPTION: |
---|
736 | /// Routine for converting a vector of polynomials from ZZ to a list |
---|
737 | /// CFFList of Factory. This routine will be used after a successful |
---|
738 | /// factorization of NTL to convert the result back to Factory. |
---|
739 | /// Additionally a variable x and the computed multiplicity, as a type |
---|
740 | /// ZZ of NTL, is needed as parameters indicating the main variable of the |
---|
741 | /// computed canonicalform and the multiplicity of the original polynomial. |
---|
742 | /// To guarantee the correct execution of the algorithm the characteristic |
---|
743 | /// has to equal zero. |
---|
744 | /// |
---|
745 | /// INPUT: A vector of polynomials over ZZ of type vec_pair_ZZX_long and |
---|
746 | /// a variable x and a multiplicity of type ZZ |
---|
747 | /// OUTPUT: The converted list of polynomials of type CFFList, all |
---|
748 | /// have x as their main variable |
---|
749 | //////////////////////////////////////////////////////////////////////////////// |
---|
750 | |
---|
751 | CFFList |
---|
752 | convertNTLvec_pair_ZZX_long2FacCFFList (const vec_pair_ZZX_long & e,const ZZ & multi,const Variable & x) |
---|
753 | { |
---|
754 | CFFList result; |
---|
755 | ZZX polynom; |
---|
756 | long exponent; |
---|
757 | CanonicalForm bigone; |
---|
758 | |
---|
759 | // Go through the vector e and build up the CFFList |
---|
760 | // As usual bigone summarizes the result |
---|
761 | for (int i=e.length()-1;i>=0;i--) |
---|
762 | { |
---|
763 | ZZ coefficient; |
---|
764 | polynom=e[i].a; |
---|
765 | exponent=e[i].b; |
---|
766 | bigone=convertNTLZZX2CF(polynom,x); |
---|
767 | //append the converted polynomial to the list |
---|
768 | result.append(CFFactor(bigone,exponent)); |
---|
769 | } |
---|
770 | // the multiplicity at pos 1 |
---|
771 | result.insert(CFFactor(convertZZ2CF(multi),1)); |
---|
772 | |
---|
773 | //return the converted list |
---|
774 | return result; |
---|
775 | } |
---|
776 | |
---|
777 | |
---|
778 | //////////////////////////////////////////////////////////////////////////////// |
---|
779 | /// NAME: convertNTLZZpX2CF |
---|
780 | /// |
---|
781 | /// DESCRIPTION: |
---|
782 | /// Routine for conversion of elements of arbitrary extensions of ZZp, |
---|
783 | /// having type ZZpE, of NTL to their corresponding values of type |
---|
784 | /// canonicalform in Factory. |
---|
785 | /// To guarantee the correct execution of the algorithm the characteristic |
---|
786 | /// has to be an arbitrary prime number and Factory has to compute in an |
---|
787 | /// extension of F_p. |
---|
788 | /// |
---|
789 | /// INPUT: The coefficient of type ZZpE and the variable x indicating the main// |
---|
790 | /// variable of the computed canonicalform |
---|
791 | /// OUTPUT: The converted value of coefficient as type canonicalform |
---|
792 | //////////////////////////////////////////////////////////////////////////////// |
---|
793 | |
---|
794 | CanonicalForm convertNTLZZpE2CF(const ZZ_pE & coefficient,const Variable & x) |
---|
795 | { |
---|
796 | return convertNTLZZpX2CF(rep(coefficient),x); |
---|
797 | } |
---|
798 | CanonicalForm convertNTLzzpE2CF(const zz_pE & coefficient,const Variable & x) |
---|
799 | { |
---|
800 | return convertNTLzzpX2CF(rep(coefficient),x); |
---|
801 | } |
---|
802 | |
---|
803 | //////////////////////////////////////////////////////////////////////////////// |
---|
804 | /// NAME: convertNTLvec_pair_ZZpEX_long2FacCFFList |
---|
805 | /// |
---|
806 | /// DESCRIPTION: |
---|
807 | /// Routine for converting a vector of polynomials from ZZpEX to a CFFList |
---|
808 | /// of Factory. This routine will be used after a successful factorization |
---|
809 | /// of NTL to convert the result back to Factory. |
---|
810 | /// Additionally a variable x and the computed multiplicity, as a type |
---|
811 | /// ZZpE of NTL, is needed as parameters indicating the main variable of the |
---|
812 | /// computed canonicalform and the multiplicity of the original polynomial. |
---|
813 | /// To guarantee the correct execution of the algorithm the characteristic |
---|
814 | /// has a be an arbitrary prime number p and computations have to be done |
---|
815 | /// in an extention of F_p. |
---|
816 | /// |
---|
817 | /// INPUT: A vector of polynomials over ZZpE of type vec_pair_ZZ_pEX_long and |
---|
818 | /// a variable x and a multiplicity of type ZZpE |
---|
819 | /// OUTPUT: The converted list of polynomials of type CFFList, all polynomials |
---|
820 | /// have x as their main variable |
---|
821 | //////////////////////////////////////////////////////////////////////////////// |
---|
822 | |
---|
823 | CFFList |
---|
824 | convertNTLvec_pair_ZZpEX_long2FacCFFList(const vec_pair_ZZ_pEX_long & e,const ZZ_pE & multi,const Variable & x,const Variable & alpha) |
---|
825 | { |
---|
826 | CFFList result; |
---|
827 | ZZ_pEX polynom; |
---|
828 | long exponent; |
---|
829 | CanonicalForm bigone; |
---|
830 | |
---|
831 | // Maybe, e may additionally be sorted with respect to increasing degree of x, but this is not |
---|
832 | //important for the factorization, but nevertheless would take computing time, so it is omitted |
---|
833 | |
---|
834 | // Go through the vector e and build up the CFFList |
---|
835 | // As usual bigone summarizes the result during every loop |
---|
836 | for (int i=e.length()-1;i>=0;i--) |
---|
837 | { |
---|
838 | bigone=0; |
---|
839 | |
---|
840 | polynom=e[i].a; |
---|
841 | exponent=e[i].b; |
---|
842 | |
---|
843 | for (int j=0;j<=deg(polynom);j++) |
---|
844 | { |
---|
845 | if (IsOne(coeff(polynom,j))) |
---|
846 | { |
---|
847 | bigone+=power(x,j); |
---|
848 | } |
---|
849 | else |
---|
850 | { |
---|
851 | CanonicalForm coefficient=convertNTLZZpE2CF(coeff(polynom,j),alpha); |
---|
852 | if (coeff(polynom,j)!=0) |
---|
853 | { |
---|
854 | bigone += (power(x,j)*coefficient); |
---|
855 | } |
---|
856 | } |
---|
857 | } |
---|
858 | //append the computed polynomials together with its exponent to the CFFList |
---|
859 | result.append(CFFactor(bigone,exponent)); |
---|
860 | } |
---|
861 | // Start by appending the multiplicity |
---|
862 | if (!IsOne(multi)) |
---|
863 | result.insert(CFFactor(convertNTLZZpE2CF(multi,alpha),1)); |
---|
864 | |
---|
865 | //return the computed CFFList |
---|
866 | return result; |
---|
867 | } |
---|
868 | CFFList |
---|
869 | convertNTLvec_pair_zzpEX_long2FacCFFList(const vec_pair_zz_pEX_long & e,const zz_pE & multi,const Variable & x,const Variable & alpha) |
---|
870 | { |
---|
871 | CFFList result; |
---|
872 | zz_pEX polynom; |
---|
873 | long exponent; |
---|
874 | CanonicalForm bigone; |
---|
875 | |
---|
876 | // Maybe, e may additionally be sorted with respect to increasing degree of x, but this is not |
---|
877 | //important for the factorization, but nevertheless would take computing time, so it is omitted |
---|
878 | |
---|
879 | // Go through the vector e and build up the CFFList |
---|
880 | // As usual bigone summarizes the result during every loop |
---|
881 | for (int i=e.length()-1;i>=0;i--) |
---|
882 | { |
---|
883 | bigone=0; |
---|
884 | |
---|
885 | polynom=e[i].a; |
---|
886 | exponent=e[i].b; |
---|
887 | |
---|
888 | for (int j=0;j<=deg(polynom);j++) |
---|
889 | { |
---|
890 | if (IsOne(coeff(polynom,j))) |
---|
891 | { |
---|
892 | bigone+=power(x,j); |
---|
893 | } |
---|
894 | else |
---|
895 | { |
---|
896 | CanonicalForm coefficient=convertNTLzzpE2CF(coeff(polynom,j),alpha); |
---|
897 | if (coeff(polynom,j)!=0) |
---|
898 | { |
---|
899 | bigone += (power(x,j)*coefficient); |
---|
900 | } |
---|
901 | } |
---|
902 | } |
---|
903 | //append the computed polynomials together with its exponent to the CFFList |
---|
904 | result.append(CFFactor(bigone,exponent)); |
---|
905 | } |
---|
906 | // Start by appending the multiplicity |
---|
907 | if (!IsOne(multi)) |
---|
908 | result.insert(CFFactor(convertNTLzzpE2CF(multi,alpha),1)); |
---|
909 | |
---|
910 | //return the computed CFFList |
---|
911 | return result; |
---|
912 | } |
---|
913 | |
---|
914 | //////////////////////////////////////////////////////////////////////////////// |
---|
915 | /// NAME: convertNTLGF2E2CF |
---|
916 | /// |
---|
917 | /// DESCRIPTION: |
---|
918 | /// Routine for conversion of elements of extensions of GF2, having type |
---|
919 | /// GF2E, of NTL to their corresponding values of type canonicalform in |
---|
920 | /// Factory. |
---|
921 | /// To guarantee the correct execution of the algorithm, the characteristic |
---|
922 | /// must equal two and Factory has to compute in an extension of F_2. |
---|
923 | /// As usual this is an optimized special case of the more general conversion |
---|
924 | /// routine from ZZpE to Factory. |
---|
925 | /// |
---|
926 | /// INPUT: The coefficient of type GF2E and the variable x indicating the |
---|
927 | /// main variable of the computed canonicalform |
---|
928 | /// OUTPUT: The converted value of coefficient as type canonicalform |
---|
929 | //////////////////////////////////////////////////////////////////////////////// |
---|
930 | |
---|
931 | CanonicalForm convertNTLGF2E2CF(const GF2E & coefficient,const Variable & x) |
---|
932 | { |
---|
933 | return convertNTLGF2X2CF(rep(coefficient),x); |
---|
934 | } |
---|
935 | |
---|
936 | //////////////////////////////////////////////////////////////////////////////// |
---|
937 | /// NAME: convertNTLvec_pair_GF2EX_long2FacCFFList |
---|
938 | /// |
---|
939 | /// DESCRIPTION: |
---|
940 | /// Routine for converting a vector of polynomials from GF2EX to a CFFList |
---|
941 | /// of Factory. This routine will be used after a successful factorization |
---|
942 | /// of NTL to convert the result back to Factory. |
---|
943 | /// This is a special, but optimized case of the more general conversion |
---|
944 | /// from ZZpE to canonicalform. |
---|
945 | /// Additionally a variable x and the computed multiplicity, as a type GF2E |
---|
946 | /// of NTL, is needed as parameters indicating the main variable of the |
---|
947 | /// computed canonicalform and the multiplicity of the original polynomial. |
---|
948 | /// To guarantee the correct execution of the algorithm the characteristic |
---|
949 | /// has to equal two and computations have to be done in an extention of F_2. |
---|
950 | /// |
---|
951 | /// INPUT: A vector of polynomials over GF2E of type vec_pair_GF2EX_long and |
---|
952 | /// a variable x and a multiplicity of type GF2E |
---|
953 | /// OUTPUT: The converted list of polynomials of type CFFList, all polynomials |
---|
954 | /// have x as their main variable |
---|
955 | //////////////////////////////////////////////////////////////////////////////// |
---|
956 | |
---|
957 | CFFList convertNTLvec_pair_GF2EX_long2FacCFFList |
---|
958 | (const vec_pair_GF2EX_long & e, const GF2E & multi, const Variable & x, const Variable & alpha) |
---|
959 | { |
---|
960 | CFFList result; |
---|
961 | GF2EX polynom; |
---|
962 | long exponent; |
---|
963 | CanonicalForm bigone; |
---|
964 | |
---|
965 | // Maybe, e may additionally be sorted with respect to increasing degree of x, but this is not |
---|
966 | //important for the factorization, but nevertheless would take computing time, so it is omitted |
---|
967 | |
---|
968 | // multiplicity is always one, so we do not have to worry about that |
---|
969 | |
---|
970 | // Go through the vector e and build up the CFFList |
---|
971 | // As usual bigone summarizes the result during every loop |
---|
972 | for (int i=e.length()-1;i>=0;i--) |
---|
973 | { |
---|
974 | bigone=0; |
---|
975 | |
---|
976 | polynom=e[i].a; |
---|
977 | exponent=e[i].b; |
---|
978 | |
---|
979 | for (int j=0;j<=deg(polynom);j++) |
---|
980 | { |
---|
981 | if (IsOne(coeff(polynom,j))) |
---|
982 | { |
---|
983 | bigone+=power(x,j); |
---|
984 | } |
---|
985 | else |
---|
986 | { |
---|
987 | CanonicalForm coefficient=convertNTLGF2E2CF(coeff(polynom,j),alpha); |
---|
988 | if (coeff(polynom,j)!=0) |
---|
989 | { |
---|
990 | bigone += (power(x,j)*coefficient); |
---|
991 | } |
---|
992 | } |
---|
993 | } |
---|
994 | |
---|
995 | // append the computed polynomial together with its multiplicity |
---|
996 | result.append(CFFactor(bigone,exponent)); |
---|
997 | |
---|
998 | } |
---|
999 | |
---|
1000 | if (!IsOne(multi)) |
---|
1001 | result.insert(CFFactor(convertNTLGF2E2CF(multi,alpha),1)); |
---|
1002 | |
---|
1003 | // return the computed CFFList |
---|
1004 | return result; |
---|
1005 | } |
---|
1006 | |
---|
1007 | //////////////////////////////////////////////////// |
---|
1008 | /// CanonicalForm in Z_2(a)[X] to NTL GF2EX |
---|
1009 | //////////////////////////////////////////////////// |
---|
1010 | GF2EX convertFacCF2NTLGF2EX(const CanonicalForm & f,const GF2X & mipo) |
---|
1011 | { |
---|
1012 | GF2E::init(mipo); |
---|
1013 | GF2EX result; |
---|
1014 | CFIterator i; |
---|
1015 | i=f; |
---|
1016 | |
---|
1017 | int NTLcurrentExp=i.exp(); |
---|
1018 | int largestExp=i.exp(); |
---|
1019 | int k; |
---|
1020 | |
---|
1021 | result.SetMaxLength(largestExp+1); |
---|
1022 | for(;i.hasTerms();i++) |
---|
1023 | { |
---|
1024 | for(k=NTLcurrentExp;k>i.exp();k--) SetCoeff(result,k,0); |
---|
1025 | NTLcurrentExp=i.exp(); |
---|
1026 | CanonicalForm c=i.coeff(); |
---|
1027 | GF2X cc=convertFacCF2NTLGF2X(c); |
---|
1028 | //ZZ_pE ccc; |
---|
1029 | //conv(ccc,cc); |
---|
1030 | SetCoeff(result,NTLcurrentExp,to_GF2E(cc)); |
---|
1031 | NTLcurrentExp--; |
---|
1032 | } |
---|
1033 | for(k=NTLcurrentExp;k>=0;k--) SetCoeff(result,k,0); |
---|
1034 | result.normalize(); |
---|
1035 | return result; |
---|
1036 | } |
---|
1037 | //////////////////////////////////////////////////// |
---|
1038 | /// CanonicalForm in Z_p(a)[X] to NTL ZZ_pEX |
---|
1039 | //////////////////////////////////////////////////// |
---|
1040 | ZZ_pEX convertFacCF2NTLZZ_pEX(const CanonicalForm & f, const ZZ_pX & mipo) |
---|
1041 | { |
---|
1042 | ZZ_pE::init(mipo); |
---|
1043 | ZZ_pEX result; |
---|
1044 | CFIterator i; |
---|
1045 | i=f; |
---|
1046 | |
---|
1047 | int NTLcurrentExp=i.exp(); |
---|
1048 | int largestExp=i.exp(); |
---|
1049 | int k; |
---|
1050 | |
---|
1051 | result.SetMaxLength(largestExp+1); |
---|
1052 | for(;i.hasTerms();i++) |
---|
1053 | { |
---|
1054 | for(k=NTLcurrentExp;k>i.exp();k--) SetCoeff(result,k,0); |
---|
1055 | NTLcurrentExp=i.exp(); |
---|
1056 | CanonicalForm c=i.coeff(); |
---|
1057 | ZZ_pX cc=convertFacCF2NTLZZpX(c); |
---|
1058 | //ZZ_pE ccc; |
---|
1059 | //conv(ccc,cc); |
---|
1060 | SetCoeff(result,NTLcurrentExp,to_ZZ_pE(cc)); |
---|
1061 | NTLcurrentExp--; |
---|
1062 | } |
---|
1063 | for(k=NTLcurrentExp;k>=0;k--) SetCoeff(result,k,0); |
---|
1064 | result.normalize(); |
---|
1065 | return result; |
---|
1066 | } |
---|
1067 | zz_pEX convertFacCF2NTLzz_pEX(const CanonicalForm & f, const zz_pX & mipo) |
---|
1068 | { |
---|
1069 | zz_pE::init(mipo); |
---|
1070 | zz_pEX result; |
---|
1071 | CFIterator i; |
---|
1072 | i=f; |
---|
1073 | |
---|
1074 | int NTLcurrentExp=i.exp(); |
---|
1075 | int largestExp=i.exp(); |
---|
1076 | int k; |
---|
1077 | |
---|
1078 | result.SetMaxLength(largestExp+1); |
---|
1079 | for(;i.hasTerms();i++) |
---|
1080 | { |
---|
1081 | for(k=NTLcurrentExp;k>i.exp();k--) SetCoeff(result,k,0); |
---|
1082 | NTLcurrentExp=i.exp(); |
---|
1083 | CanonicalForm c=i.coeff(); |
---|
1084 | zz_pX cc=convertFacCF2NTLzzpX(c); |
---|
1085 | //ZZ_pE ccc; |
---|
1086 | //conv(ccc,cc); |
---|
1087 | SetCoeff(result,NTLcurrentExp,to_zz_pE(cc)); |
---|
1088 | NTLcurrentExp--; |
---|
1089 | } |
---|
1090 | for(k=NTLcurrentExp;k>=0;k--) SetCoeff(result,k,0); |
---|
1091 | result.normalize(); |
---|
1092 | return result; |
---|
1093 | } |
---|
1094 | |
---|
1095 | CanonicalForm convertNTLzz_pEX2CF (const zz_pEX& f, const Variable & x, const Variable & alpha) |
---|
1096 | { |
---|
1097 | CanonicalForm bigone; |
---|
1098 | if (deg (f) > 0) |
---|
1099 | { |
---|
1100 | bigone= 0; |
---|
1101 | bigone.mapinto(); |
---|
1102 | for (int j=0;j<deg(f)+1;j++) |
---|
1103 | { |
---|
1104 | if (coeff(f,j)!=0) |
---|
1105 | { |
---|
1106 | bigone+=(power(x,j)*convertNTLzzpE2CF(coeff(f,j),alpha)); |
---|
1107 | } |
---|
1108 | } |
---|
1109 | } |
---|
1110 | else |
---|
1111 | { |
---|
1112 | bigone= convertNTLzzpE2CF(coeff(f,0),alpha); |
---|
1113 | bigone.mapinto(); |
---|
1114 | } |
---|
1115 | return bigone; |
---|
1116 | } |
---|
1117 | |
---|
1118 | CanonicalForm convertNTLZZ_pEX2CF (const ZZ_pEX& f, const Variable & x, const Variable & alpha) |
---|
1119 | { |
---|
1120 | CanonicalForm bigone; |
---|
1121 | if (deg (f) > 0) |
---|
1122 | { |
---|
1123 | bigone= 0; |
---|
1124 | bigone.mapinto(); |
---|
1125 | for (int j=0;j<deg(f)+1;j++) |
---|
1126 | { |
---|
1127 | if (coeff(f,j)!=0) |
---|
1128 | { |
---|
1129 | bigone+=(power(x,j)*convertNTLZZpE2CF(coeff(f,j),alpha)); |
---|
1130 | } |
---|
1131 | } |
---|
1132 | } |
---|
1133 | else |
---|
1134 | { |
---|
1135 | bigone= convertNTLZZpE2CF(coeff(f,0),alpha); |
---|
1136 | bigone.mapinto(); |
---|
1137 | } |
---|
1138 | return bigone; |
---|
1139 | } |
---|
1140 | //---------------------------------------------------------------------- |
---|
1141 | mat_ZZ* convertFacCFMatrix2NTLmat_ZZ(const CFMatrix &m) |
---|
1142 | { |
---|
1143 | mat_ZZ *res=new mat_ZZ; |
---|
1144 | res->SetDims(m.rows(),m.columns()); |
---|
1145 | |
---|
1146 | int i,j; |
---|
1147 | for(i=m.rows();i>0;i--) |
---|
1148 | { |
---|
1149 | for(j=m.columns();j>0;j--) |
---|
1150 | { |
---|
1151 | (*res)(i,j)=convertFacCF2NTLZZ(m(i,j)); |
---|
1152 | } |
---|
1153 | } |
---|
1154 | return res; |
---|
1155 | } |
---|
1156 | CFMatrix* convertNTLmat_ZZ2FacCFMatrix(const mat_ZZ &m) |
---|
1157 | { |
---|
1158 | CFMatrix *res=new CFMatrix(m.NumRows(),m.NumCols()); |
---|
1159 | int i,j; |
---|
1160 | for(i=res->rows();i>0;i--) |
---|
1161 | { |
---|
1162 | for(j=res->columns();j>0;j--) |
---|
1163 | { |
---|
1164 | (*res)(i,j)=convertZZ2CF(m(i,j)); |
---|
1165 | } |
---|
1166 | } |
---|
1167 | return res; |
---|
1168 | } |
---|
1169 | |
---|
1170 | mat_zz_p* convertFacCFMatrix2NTLmat_zz_p(const CFMatrix &m) |
---|
1171 | { |
---|
1172 | mat_zz_p *res=new mat_zz_p; |
---|
1173 | res->SetDims(m.rows(),m.columns()); |
---|
1174 | |
---|
1175 | int i,j; |
---|
1176 | for(i=m.rows();i>0;i--) |
---|
1177 | { |
---|
1178 | for(j=m.columns();j>0;j--) |
---|
1179 | { |
---|
1180 | if(!(m(i,j)).isImm()) printf("convertFacCFMatrix2NTLmat_zz_p: not imm.\n"); |
---|
1181 | (*res)(i,j)=(m(i,j)).intval(); |
---|
1182 | } |
---|
1183 | } |
---|
1184 | return res; |
---|
1185 | } |
---|
1186 | CFMatrix* convertNTLmat_zz_p2FacCFMatrix(const mat_zz_p &m) |
---|
1187 | { |
---|
1188 | CFMatrix *res=new CFMatrix(m.NumRows(),m.NumCols()); |
---|
1189 | int i,j; |
---|
1190 | for(i=res->rows();i>0;i--) |
---|
1191 | { |
---|
1192 | for(j=res->columns();j>0;j--) |
---|
1193 | { |
---|
1194 | (*res)(i,j)=CanonicalForm(to_long(rep(m(i,j)))); |
---|
1195 | } |
---|
1196 | } |
---|
1197 | return res; |
---|
1198 | } |
---|
1199 | mat_zz_pE* convertFacCFMatrix2NTLmat_zz_pE(const CFMatrix &m) |
---|
1200 | { |
---|
1201 | mat_zz_pE *res=new mat_zz_pE; |
---|
1202 | res->SetDims(m.rows(),m.columns()); |
---|
1203 | |
---|
1204 | int i,j; |
---|
1205 | for(i=m.rows();i>0;i--) |
---|
1206 | { |
---|
1207 | for(j=m.columns();j>0;j--) |
---|
1208 | { |
---|
1209 | zz_pX cc=convertFacCF2NTLzzpX(m(i,j)); |
---|
1210 | (*res)(i,j)=to_zz_pE(cc); |
---|
1211 | } |
---|
1212 | } |
---|
1213 | return res; |
---|
1214 | } |
---|
1215 | CFMatrix* convertNTLmat_zz_pE2FacCFMatrix(const mat_zz_pE &m, const Variable & alpha) |
---|
1216 | { |
---|
1217 | CFMatrix *res=new CFMatrix(m.NumRows(),m.NumCols()); |
---|
1218 | int i,j; |
---|
1219 | for(i=res->rows();i>0;i--) |
---|
1220 | { |
---|
1221 | for(j=res->columns();j>0;j--) |
---|
1222 | { |
---|
1223 | (*res)(i,j)=convertNTLzzpE2CF(m(i,j), alpha); |
---|
1224 | } |
---|
1225 | } |
---|
1226 | return res; |
---|
1227 | } |
---|
1228 | #endif |
---|