1 | #include <factory/factoryconf.h> |
---|
2 | |
---|
3 | #ifndef NOSTREAMIO |
---|
4 | #ifdef HAVE_CSTDIO |
---|
5 | #include <cstdio> |
---|
6 | #else |
---|
7 | #include <stdio.h> |
---|
8 | #endif |
---|
9 | #ifdef HAVE_IOSTREAM_H |
---|
10 | #include <iostream.h> |
---|
11 | #elif defined(HAVE_IOSTREAM) |
---|
12 | #include <iostream> |
---|
13 | #endif |
---|
14 | #endif |
---|
15 | |
---|
16 | #include "templates/ftmpl_functions.h" |
---|
17 | #include "cf_defs.h" |
---|
18 | #include "canonicalform.h" |
---|
19 | #include "cf_iter.h" |
---|
20 | #include "cf_primes.h" |
---|
21 | #include "cf_algorithm.h" |
---|
22 | #include "algext.h" |
---|
23 | #include "fieldGCD.h" |
---|
24 | #include "cf_map.h" |
---|
25 | #include "cf_generator.h" |
---|
26 | |
---|
27 | /// compressing two polynomials F and G, M is used for compressing, |
---|
28 | /// N to reverse the compression |
---|
29 | static |
---|
30 | int myCompress (const CanonicalForm& F, const CanonicalForm& G, CFMap & M, |
---|
31 | CFMap & N, bool topLevel) |
---|
32 | { |
---|
33 | int n= tmax (F.level(), G.level()); |
---|
34 | int * degsf= new int [n + 1]; |
---|
35 | int * degsg= new int [n + 1]; |
---|
36 | |
---|
37 | for (int i = 0; i <= n; i++) |
---|
38 | degsf[i]= degsg[i]= 0; |
---|
39 | |
---|
40 | degsf= degrees (F, degsf); |
---|
41 | degsg= degrees (G, degsg); |
---|
42 | |
---|
43 | int both_non_zero= 0; |
---|
44 | int f_zero= 0; |
---|
45 | int g_zero= 0; |
---|
46 | int both_zero= 0; |
---|
47 | |
---|
48 | if (topLevel) |
---|
49 | { |
---|
50 | for (int i= 1; i <= n; i++) |
---|
51 | { |
---|
52 | if (degsf[i] != 0 && degsg[i] != 0) |
---|
53 | { |
---|
54 | both_non_zero++; |
---|
55 | continue; |
---|
56 | } |
---|
57 | if (degsf[i] == 0 && degsg[i] != 0 && i <= G.level()) |
---|
58 | { |
---|
59 | f_zero++; |
---|
60 | continue; |
---|
61 | } |
---|
62 | if (degsg[i] == 0 && degsf[i] && i <= F.level()) |
---|
63 | { |
---|
64 | g_zero++; |
---|
65 | continue; |
---|
66 | } |
---|
67 | } |
---|
68 | |
---|
69 | if (both_non_zero == 0) |
---|
70 | { |
---|
71 | delete [] degsf; |
---|
72 | delete [] degsg; |
---|
73 | return 0; |
---|
74 | } |
---|
75 | |
---|
76 | // map Variables which do not occur in both polynomials to higher levels |
---|
77 | int k= 1; |
---|
78 | int l= 1; |
---|
79 | for (int i= 1; i <= n; i++) |
---|
80 | { |
---|
81 | if (degsf[i] != 0 && degsg[i] == 0 && i <= F.level()) |
---|
82 | { |
---|
83 | if (k + both_non_zero != i) |
---|
84 | { |
---|
85 | M.newpair (Variable (i), Variable (k + both_non_zero)); |
---|
86 | N.newpair (Variable (k + both_non_zero), Variable (i)); |
---|
87 | } |
---|
88 | k++; |
---|
89 | } |
---|
90 | if (degsf[i] == 0 && degsg[i] != 0 && i <= G.level()) |
---|
91 | { |
---|
92 | if (l + g_zero + both_non_zero != i) |
---|
93 | { |
---|
94 | M.newpair (Variable (i), Variable (l + g_zero + both_non_zero)); |
---|
95 | N.newpair (Variable (l + g_zero + both_non_zero), Variable (i)); |
---|
96 | } |
---|
97 | l++; |
---|
98 | } |
---|
99 | } |
---|
100 | |
---|
101 | // sort Variables x_{i} in increasing order of |
---|
102 | // min(deg_{x_{i}}(f),deg_{x_{i}}(g)) |
---|
103 | int m= tmax (F.level(), G.level()); |
---|
104 | int min_max_deg; |
---|
105 | k= both_non_zero; |
---|
106 | l= 0; |
---|
107 | int i= 1; |
---|
108 | while (k > 0) |
---|
109 | { |
---|
110 | if (degsf [i] != 0 && degsg [i] != 0) |
---|
111 | min_max_deg= tmax (degsf[i], degsg[i]); |
---|
112 | else |
---|
113 | min_max_deg= 0; |
---|
114 | while (min_max_deg == 0) |
---|
115 | { |
---|
116 | i++; |
---|
117 | min_max_deg= tmax (degsf[i], degsg[i]); |
---|
118 | if (degsf [i] != 0 && degsg [i] != 0) |
---|
119 | min_max_deg= tmax (degsf[i], degsg[i]); |
---|
120 | else |
---|
121 | min_max_deg= 0; |
---|
122 | } |
---|
123 | for (int j= i + 1; j <= m; j++) |
---|
124 | { |
---|
125 | if (tmax (degsf[j],degsg[j]) <= min_max_deg && degsf[j] != 0 && degsg [j] != 0) |
---|
126 | { |
---|
127 | min_max_deg= tmax (degsf[j], degsg[j]); |
---|
128 | l= j; |
---|
129 | } |
---|
130 | } |
---|
131 | if (l != 0) |
---|
132 | { |
---|
133 | if (l != k) |
---|
134 | { |
---|
135 | M.newpair (Variable (l), Variable(k)); |
---|
136 | N.newpair (Variable (k), Variable(l)); |
---|
137 | degsf[l]= 0; |
---|
138 | degsg[l]= 0; |
---|
139 | l= 0; |
---|
140 | } |
---|
141 | else |
---|
142 | { |
---|
143 | degsf[l]= 0; |
---|
144 | degsg[l]= 0; |
---|
145 | l= 0; |
---|
146 | } |
---|
147 | } |
---|
148 | else if (l == 0) |
---|
149 | { |
---|
150 | if (i != k) |
---|
151 | { |
---|
152 | M.newpair (Variable (i), Variable (k)); |
---|
153 | N.newpair (Variable (k), Variable (i)); |
---|
154 | degsf[i]= 0; |
---|
155 | degsg[i]= 0; |
---|
156 | } |
---|
157 | else |
---|
158 | { |
---|
159 | degsf[i]= 0; |
---|
160 | degsg[i]= 0; |
---|
161 | } |
---|
162 | i++; |
---|
163 | } |
---|
164 | k--; |
---|
165 | } |
---|
166 | } |
---|
167 | else |
---|
168 | { |
---|
169 | //arrange Variables such that no gaps occur |
---|
170 | for (int i= 1; i <= n; i++) |
---|
171 | { |
---|
172 | if (degsf[i] == 0 && degsg[i] == 0) |
---|
173 | { |
---|
174 | both_zero++; |
---|
175 | continue; |
---|
176 | } |
---|
177 | else |
---|
178 | { |
---|
179 | if (both_zero != 0) |
---|
180 | { |
---|
181 | M.newpair (Variable (i), Variable (i - both_zero)); |
---|
182 | N.newpair (Variable (i - both_zero), Variable (i)); |
---|
183 | } |
---|
184 | } |
---|
185 | } |
---|
186 | } |
---|
187 | |
---|
188 | delete [] degsf; |
---|
189 | delete [] degsg; |
---|
190 | |
---|
191 | return 1; |
---|
192 | } |
---|
193 | |
---|
194 | void tryInvert( const CanonicalForm & F, const CanonicalForm & M, CanonicalForm & inv, bool & fail ) |
---|
195 | { // F, M are required to be "univariate" polynomials in an algebraic variable |
---|
196 | // we try to invert F modulo M |
---|
197 | if(F.inBaseDomain()) |
---|
198 | { |
---|
199 | if(F.isZero()) |
---|
200 | { |
---|
201 | fail = true; |
---|
202 | return; |
---|
203 | } |
---|
204 | inv = 1/F; |
---|
205 | return; |
---|
206 | } |
---|
207 | CanonicalForm b; |
---|
208 | Variable a = M.mvar(); |
---|
209 | Variable x = Variable(1); |
---|
210 | if(!extgcd( replacevar( F, a, x ), replacevar( M, a, x ), inv, b ).isOne()) |
---|
211 | fail = true; |
---|
212 | else |
---|
213 | inv = replacevar( inv, x, a ); // change back to alg var |
---|
214 | } |
---|
215 | |
---|
216 | void tryDivrem (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
217 | CanonicalForm& R, CanonicalForm& inv, const CanonicalForm& mipo, |
---|
218 | bool& fail) |
---|
219 | { |
---|
220 | if (F.inCoeffDomain()) |
---|
221 | { |
---|
222 | Q= 0; |
---|
223 | R= F; |
---|
224 | return; |
---|
225 | } |
---|
226 | |
---|
227 | CanonicalForm A, B; |
---|
228 | Variable x= F.mvar(); |
---|
229 | A= F; |
---|
230 | B= G; |
---|
231 | int degA= degree (A, x); |
---|
232 | int degB= degree (B, x); |
---|
233 | |
---|
234 | if (degA < degB) |
---|
235 | { |
---|
236 | R= A; |
---|
237 | Q= 0; |
---|
238 | return; |
---|
239 | } |
---|
240 | |
---|
241 | tryInvert (Lc (B), mipo, inv, fail); |
---|
242 | if (fail) |
---|
243 | return; |
---|
244 | |
---|
245 | R= A; |
---|
246 | Q= 0; |
---|
247 | CanonicalForm Qi; |
---|
248 | for (int i= degA -degB; i >= 0; i--) |
---|
249 | { |
---|
250 | if (degree (R, x) == i + degB) |
---|
251 | { |
---|
252 | Qi= Lc (R)*inv*power (x, i); |
---|
253 | Qi= reduce (Qi, mipo); |
---|
254 | R -= Qi*B; |
---|
255 | R= reduce (R, mipo); |
---|
256 | Q += Qi; |
---|
257 | } |
---|
258 | } |
---|
259 | } |
---|
260 | |
---|
261 | void tryEuclid( const CanonicalForm & A, const CanonicalForm & B, const CanonicalForm & M, CanonicalForm & result, bool & fail ) |
---|
262 | { |
---|
263 | CanonicalForm P; |
---|
264 | if(A.inCoeffDomain()) |
---|
265 | { |
---|
266 | tryInvert( A, M, P, fail ); |
---|
267 | if(fail) |
---|
268 | return; |
---|
269 | result = 1; |
---|
270 | return; |
---|
271 | } |
---|
272 | if(B.inCoeffDomain()) |
---|
273 | { |
---|
274 | tryInvert( B, M, P, fail ); |
---|
275 | if(fail) |
---|
276 | return; |
---|
277 | result = 1; |
---|
278 | return; |
---|
279 | } |
---|
280 | // here: both not inCoeffDomain |
---|
281 | if( A.degree() > B.degree() ) |
---|
282 | { |
---|
283 | P = A; result = B; |
---|
284 | } |
---|
285 | else |
---|
286 | { |
---|
287 | P = B; result = A; |
---|
288 | } |
---|
289 | CanonicalForm inv; |
---|
290 | if( result.isZero() ) |
---|
291 | { |
---|
292 | tryInvert( Lc(P), M, inv, fail ); |
---|
293 | if(fail) |
---|
294 | return; |
---|
295 | result = inv*P; // monify result (not reduced, yet) |
---|
296 | result= reduce (result, M); |
---|
297 | return; |
---|
298 | } |
---|
299 | Variable x = P.mvar(); |
---|
300 | CanonicalForm rem, Q; |
---|
301 | // here: degree(P) >= degree(result) |
---|
302 | while(true) |
---|
303 | { |
---|
304 | tryDivrem (P, result, Q, rem, inv, M, fail); |
---|
305 | if (fail) |
---|
306 | return; |
---|
307 | if( rem.isZero() ) |
---|
308 | { |
---|
309 | result *= inv; |
---|
310 | result= reduce (result, M); |
---|
311 | return; |
---|
312 | } |
---|
313 | if(result.degree(x) >= rem.degree(x)) |
---|
314 | { |
---|
315 | P = result; |
---|
316 | result = rem; |
---|
317 | } |
---|
318 | else |
---|
319 | P = rem; |
---|
320 | } |
---|
321 | } |
---|
322 | |
---|
323 | bool hasFirstAlgVar( const CanonicalForm & f, Variable & a ) |
---|
324 | { |
---|
325 | if( f.inBaseDomain() ) // f has NO alg. variable |
---|
326 | return false; |
---|
327 | if( f.level()<0 ) // f has only alg. vars, so take the first one |
---|
328 | { |
---|
329 | a = f.mvar(); |
---|
330 | return true; |
---|
331 | } |
---|
332 | for(CFIterator i=f; i.hasTerms(); i++) |
---|
333 | if( hasFirstAlgVar( i.coeff(), a )) |
---|
334 | return true; // 'a' is already set |
---|
335 | return false; |
---|
336 | } |
---|
337 | |
---|
338 | CanonicalForm QGCD( const CanonicalForm & F, const CanonicalForm & G ); |
---|
339 | int * leadDeg(const CanonicalForm & f, int *degs); |
---|
340 | bool isLess(int *a, int *b, int lower, int upper); |
---|
341 | bool isEqual(int *a, int *b, int lower, int upper); |
---|
342 | CanonicalForm firstLC(const CanonicalForm & f); |
---|
343 | static CanonicalForm trycontent ( const CanonicalForm & f, const Variable & x, const CanonicalForm & M, bool & fail ); |
---|
344 | static CanonicalForm tryvcontent ( const CanonicalForm & f, const Variable & x, const CanonicalForm & M, bool & fail ); |
---|
345 | static CanonicalForm trycf_content ( const CanonicalForm & f, const CanonicalForm & g, const CanonicalForm & M, bool & fail ); |
---|
346 | static void tryDivide( const CanonicalForm & f, const CanonicalForm & g, const CanonicalForm & M, CanonicalForm & result, bool & divides, bool & fail ); |
---|
347 | |
---|
348 | static inline CanonicalForm |
---|
349 | tryNewtonInterp (const CanonicalForm alpha, const CanonicalForm u, |
---|
350 | const CanonicalForm newtonPoly, const CanonicalForm oldInterPoly, |
---|
351 | const Variable & x, const CanonicalForm& M, bool& fail) |
---|
352 | { |
---|
353 | CanonicalForm interPoly; |
---|
354 | |
---|
355 | CanonicalForm inv; |
---|
356 | tryInvert (newtonPoly (alpha, x), M, inv, fail); |
---|
357 | if (fail) |
---|
358 | return 0; |
---|
359 | |
---|
360 | interPoly= oldInterPoly+reduce ((u - oldInterPoly (alpha, x))*inv*newtonPoly, M); |
---|
361 | return interPoly; |
---|
362 | } |
---|
363 | |
---|
364 | void tryBrownGCD( const CanonicalForm & F, const CanonicalForm & G, const CanonicalForm & M, CanonicalForm & result, bool & fail, bool topLevel ) |
---|
365 | { // assume F,G are multivariate polys over Z/p(a) for big prime p, M "univariate" polynomial in an algebraic variable |
---|
366 | // M is assumed to be monic |
---|
367 | if(F.isZero()) |
---|
368 | { |
---|
369 | if(G.isZero()) |
---|
370 | { |
---|
371 | result = G; // G is zero |
---|
372 | return; |
---|
373 | } |
---|
374 | if(G.inCoeffDomain()) |
---|
375 | { |
---|
376 | tryInvert(G,M,result,fail); |
---|
377 | if(fail) |
---|
378 | return; |
---|
379 | result = 1; |
---|
380 | return; |
---|
381 | } |
---|
382 | // try to make G monic modulo M |
---|
383 | CanonicalForm inv; |
---|
384 | tryInvert(Lc(G),M,inv,fail); |
---|
385 | if(fail) |
---|
386 | return; |
---|
387 | result = inv*G; |
---|
388 | result= reduce (result, M); |
---|
389 | return; |
---|
390 | } |
---|
391 | if(G.isZero()) // F is non-zero |
---|
392 | { |
---|
393 | if(F.inCoeffDomain()) |
---|
394 | { |
---|
395 | tryInvert(F,M,result,fail); |
---|
396 | if(fail) |
---|
397 | return; |
---|
398 | result = 1; |
---|
399 | return; |
---|
400 | } |
---|
401 | // try to make F monic modulo M |
---|
402 | CanonicalForm inv; |
---|
403 | tryInvert(Lc(F),M,inv,fail); |
---|
404 | if(fail) |
---|
405 | return; |
---|
406 | result = inv*F; |
---|
407 | result= reduce (result, M); |
---|
408 | return; |
---|
409 | } |
---|
410 | // here: F,G both nonzero |
---|
411 | if(F.inCoeffDomain()) |
---|
412 | { |
---|
413 | tryInvert(F,M,result,fail); |
---|
414 | if(fail) |
---|
415 | return; |
---|
416 | result = 1; |
---|
417 | return; |
---|
418 | } |
---|
419 | if(G.inCoeffDomain()) |
---|
420 | { |
---|
421 | tryInvert(G,M,result,fail); |
---|
422 | if(fail) |
---|
423 | return; |
---|
424 | result = 1; |
---|
425 | return; |
---|
426 | } |
---|
427 | CFMap MM,NN; |
---|
428 | int lev= myCompress (F, G, MM, NN, topLevel); |
---|
429 | if (lev == 0) |
---|
430 | { |
---|
431 | result= 1; |
---|
432 | return; |
---|
433 | } |
---|
434 | CanonicalForm f=MM(F); |
---|
435 | CanonicalForm g=MM(G); |
---|
436 | // here: f,g are compressed |
---|
437 | // compute largest variable in f or g (least one is Variable(1)) |
---|
438 | int mv = f.level(); |
---|
439 | if(g.level() > mv) |
---|
440 | mv = g.level(); |
---|
441 | // here: mv is level of the largest variable in f, g |
---|
442 | if(mv == 1) // f,g univariate |
---|
443 | { |
---|
444 | tryEuclid(f,g,M,result,fail); |
---|
445 | if(fail) |
---|
446 | return; |
---|
447 | result= NN (reduce (result, M)); // do not forget to map back |
---|
448 | return; |
---|
449 | } |
---|
450 | // here: mv > 1 |
---|
451 | CanonicalForm cf = tryvcontent(f, Variable(2), M, fail); // cf is univariate poly in var(1) |
---|
452 | if(fail) |
---|
453 | return; |
---|
454 | CanonicalForm cg = tryvcontent(g, Variable(2), M, fail); |
---|
455 | if(fail) |
---|
456 | return; |
---|
457 | CanonicalForm c; |
---|
458 | tryEuclid(cf,cg,M,c,fail); |
---|
459 | if(fail) |
---|
460 | return; |
---|
461 | // f /= cf |
---|
462 | f.tryDiv (cf, M, fail); |
---|
463 | if(fail) |
---|
464 | return; |
---|
465 | // g /= cg |
---|
466 | g.tryDiv (cg, M, fail); |
---|
467 | if(fail) |
---|
468 | return; |
---|
469 | if(f.inCoeffDomain()) |
---|
470 | { |
---|
471 | tryInvert(f,M,result,fail); |
---|
472 | if(fail) |
---|
473 | return; |
---|
474 | result = NN(c); |
---|
475 | return; |
---|
476 | } |
---|
477 | if(g.inCoeffDomain()) |
---|
478 | { |
---|
479 | tryInvert(g,M,result,fail); |
---|
480 | if(fail) |
---|
481 | return; |
---|
482 | result = NN(c); |
---|
483 | return; |
---|
484 | } |
---|
485 | int *L = new int[mv+1]; // L is addressed by i from 2 to mv |
---|
486 | int *N = new int[mv+1]; |
---|
487 | for(int i=2; i<=mv; i++) |
---|
488 | L[i] = N[i] = 0; |
---|
489 | L = leadDeg(f, L); |
---|
490 | N = leadDeg(g, N); |
---|
491 | CanonicalForm gamma; |
---|
492 | tryEuclid( firstLC(f), firstLC(g), M, gamma, fail ); |
---|
493 | if(fail) |
---|
494 | return; |
---|
495 | for(int i=2; i<=mv; i++) // entries at i=0,1 not visited |
---|
496 | if(N[i] < L[i]) |
---|
497 | L[i] = N[i]; |
---|
498 | // L is now upper bound for degrees of gcd |
---|
499 | int *dg_im = new int[mv+1]; // for the degree vector of the image we don't need any entry at i=1 |
---|
500 | for(int i=2; i<=mv; i++) |
---|
501 | dg_im[i] = 0; // initialize |
---|
502 | CanonicalForm gamma_image, m=1; |
---|
503 | CanonicalForm gm=0; |
---|
504 | CanonicalForm g_image, alpha, gnew; |
---|
505 | FFGenerator gen = FFGenerator(); |
---|
506 | Variable x= Variable (1); |
---|
507 | bool divides= true; |
---|
508 | for(FFGenerator gen = FFGenerator(); gen.hasItems(); gen.next()) |
---|
509 | { |
---|
510 | alpha = gen.item(); |
---|
511 | gamma_image = reduce(gamma(alpha, x),M); // plug in alpha for var(1) |
---|
512 | if(gamma_image.isZero()) // skip lc-bad points var(1)-alpha |
---|
513 | continue; |
---|
514 | tryBrownGCD( f(alpha, x), g(alpha, x), M, g_image, fail, false ); // recursive call with one var less |
---|
515 | if(fail) |
---|
516 | return; |
---|
517 | g_image = reduce(g_image, M); |
---|
518 | if(g_image.inCoeffDomain()) // early termination |
---|
519 | { |
---|
520 | tryInvert(g_image,M,result,fail); |
---|
521 | if(fail) |
---|
522 | return; |
---|
523 | result = NN(c); |
---|
524 | return; |
---|
525 | } |
---|
526 | for(int i=2; i<=mv; i++) |
---|
527 | dg_im[i] = 0; // reset (this is necessary, because some entries may not be updated by call to leadDeg) |
---|
528 | dg_im = leadDeg(g_image, dg_im); // dg_im cannot be NIL-pointer |
---|
529 | if(isEqual(dg_im, L, 2, mv)) |
---|
530 | { |
---|
531 | CanonicalForm inv; |
---|
532 | tryInvert (firstLC (g_image), M, inv, fail); |
---|
533 | if (fail) |
---|
534 | return; |
---|
535 | g_image *= inv; |
---|
536 | g_image *= gamma_image; // multiply by multiple of image lc(gcd) |
---|
537 | g_image= reduce (g_image, M); |
---|
538 | gnew= tryNewtonInterp (alpha, g_image, m, gm, x, M, fail); |
---|
539 | // gnew = gm mod m |
---|
540 | // gnew = g_image mod var(1)-alpha |
---|
541 | // mnew = m * (var(1)-alpha) |
---|
542 | if(fail) |
---|
543 | return; |
---|
544 | m *= (x - alpha); |
---|
545 | if(gnew == gm) // gnew did not change |
---|
546 | { |
---|
547 | cf = tryvcontent(gm, Variable(2), M, fail); |
---|
548 | if(fail) |
---|
549 | return; |
---|
550 | divides = true; |
---|
551 | g_image= gm; |
---|
552 | g_image.tryDiv (cf, M, fail); |
---|
553 | if(fail) |
---|
554 | return; |
---|
555 | divides= tryFdivides (g_image,f, M, fail); // trial division (f) |
---|
556 | if(fail) |
---|
557 | return; |
---|
558 | if(divides) |
---|
559 | { |
---|
560 | bool divides2= tryFdivides (g_image,g, M, fail); // trial division (g) |
---|
561 | if(fail) |
---|
562 | return; |
---|
563 | if(divides2) |
---|
564 | { |
---|
565 | result = NN(reduce (c*g_image, M)); |
---|
566 | return; |
---|
567 | } |
---|
568 | } |
---|
569 | } |
---|
570 | gm = gnew; |
---|
571 | continue; |
---|
572 | } |
---|
573 | |
---|
574 | if(isLess(L, dg_im, 2, mv)) // dg_im > L --> current point unlucky |
---|
575 | continue; |
---|
576 | |
---|
577 | // here: isLess(dg_im, L, 2, mv) --> all previous points were unlucky |
---|
578 | m = CanonicalForm(1); // reset |
---|
579 | gm = 0; // reset |
---|
580 | for(int i=2; i<=mv; i++) // tighten bound |
---|
581 | L[i] = dg_im[i]; |
---|
582 | } |
---|
583 | // we are out of evaluation points |
---|
584 | fail = true; |
---|
585 | } |
---|
586 | |
---|
587 | CanonicalForm QGCD( const CanonicalForm & F, const CanonicalForm & G ) |
---|
588 | { // f,g in Q(a)[x1,...,xn] |
---|
589 | if(F.isZero()) |
---|
590 | { |
---|
591 | if(G.isZero()) |
---|
592 | return G; // G is zero |
---|
593 | if(G.inCoeffDomain()) |
---|
594 | return CanonicalForm(1); |
---|
595 | return G/Lc(G); // return monic G |
---|
596 | } |
---|
597 | if(G.isZero()) // F is non-zero |
---|
598 | { |
---|
599 | if(F.inCoeffDomain()) |
---|
600 | return CanonicalForm(1); |
---|
601 | return F/Lc(F); // return monic F |
---|
602 | } |
---|
603 | if(F.inCoeffDomain() || G.inCoeffDomain()) |
---|
604 | return CanonicalForm(1); |
---|
605 | // here: both NOT inCoeffDomain |
---|
606 | CanonicalForm f, g, tmp, M, q, D, Dp, cl, newq, mipo; |
---|
607 | int p, i; |
---|
608 | int *bound, *other; // degree vectors |
---|
609 | bool fail; |
---|
610 | bool off_rational=!isOn(SW_RATIONAL); |
---|
611 | On( SW_RATIONAL ); // needed by bCommonDen |
---|
612 | f = F * bCommonDen(F); |
---|
613 | g = G * bCommonDen(G); |
---|
614 | Variable a, b; |
---|
615 | if(hasFirstAlgVar(f,a)) |
---|
616 | { |
---|
617 | if(hasFirstAlgVar(g,b)) |
---|
618 | { |
---|
619 | if(b.level() > a.level()) |
---|
620 | a = b; |
---|
621 | } |
---|
622 | } |
---|
623 | else |
---|
624 | { |
---|
625 | if(!hasFirstAlgVar(g,a))// both not in extension |
---|
626 | { |
---|
627 | Off( SW_RATIONAL ); |
---|
628 | Off( SW_USE_QGCD ); |
---|
629 | tmp = gcd( F, G ); |
---|
630 | On( SW_USE_QGCD ); |
---|
631 | if (off_rational) Off(SW_RATIONAL); |
---|
632 | return tmp; |
---|
633 | } |
---|
634 | } |
---|
635 | // here: a is the biggest alg. var in f and g AND some of f,g is in extension |
---|
636 | // (in the sequel b is used to swap alg/poly vars) |
---|
637 | setReduce(a,false); // do not reduce expressions modulo mipo |
---|
638 | tmp = getMipo(a); |
---|
639 | M = tmp * bCommonDen(tmp); |
---|
640 | // here: f, g in Z[a][x1,...,xn], M in Z[a] not necessarily monic |
---|
641 | Off( SW_RATIONAL ); // needed by mod |
---|
642 | // calculate upper bound for degree vector of gcd |
---|
643 | int mv = f.level(); i = g.level(); |
---|
644 | if(i > mv) |
---|
645 | mv = i; |
---|
646 | // here: mv is level of the largest variable in f, g |
---|
647 | b = Variable(mv+1); |
---|
648 | bound = new int[mv+1]; // 'bound' could be indexed from 0 to mv, but we will only use from 1 to mv |
---|
649 | other = new int[mv+1]; |
---|
650 | for(int i=1; i<=mv; i++) // initialize 'bound', 'other' with zeros |
---|
651 | bound[i] = other[i] = 0; |
---|
652 | bound = leadDeg(f,bound); // 'bound' is set the leading degree vector of f |
---|
653 | other = leadDeg(g,other); |
---|
654 | for(int i=1; i<=mv; i++) // entry at i=0 not visited |
---|
655 | if(other[i] < bound[i]) |
---|
656 | bound[i] = other[i]; |
---|
657 | // now 'bound' is the smaller vector |
---|
658 | cl = lc(M) * lc(f) * lc(g); |
---|
659 | q = 1; |
---|
660 | D = 0; |
---|
661 | CanonicalForm test= 0; |
---|
662 | bool equal= false; |
---|
663 | for( i=cf_getNumBigPrimes()-1; i>-1; i-- ) |
---|
664 | { |
---|
665 | p = cf_getBigPrime(i); |
---|
666 | if( mod( cl, p ).isZero() ) // skip lc-bad primes |
---|
667 | continue; |
---|
668 | fail = false; |
---|
669 | setCharacteristic(p); |
---|
670 | mipo = mapinto(M); |
---|
671 | mipo /= mipo.lc(); |
---|
672 | // here: mipo is monic |
---|
673 | tryBrownGCD( mapinto(f), mapinto(g), mipo, Dp, fail ); |
---|
674 | if( fail ) // mipo splits in char p |
---|
675 | continue; |
---|
676 | if( Dp.inCoeffDomain() ) // early termination |
---|
677 | { |
---|
678 | tryInvert(Dp,mipo,tmp,fail); // check if zero divisor |
---|
679 | if(fail) |
---|
680 | continue; |
---|
681 | setReduce(a,true); |
---|
682 | if (off_rational) Off(SW_RATIONAL); else On(SW_RATIONAL); |
---|
683 | setCharacteristic(0); |
---|
684 | return CanonicalForm(1); |
---|
685 | } |
---|
686 | setCharacteristic(0); |
---|
687 | // here: Dp NOT inCoeffDomain |
---|
688 | for(int i=1; i<=mv; i++) |
---|
689 | other[i] = 0; // reset (this is necessary, because some entries may not be updated by call to leadDeg) |
---|
690 | other = leadDeg(Dp,other); |
---|
691 | |
---|
692 | if(isEqual(bound, other, 1, mv)) // equal |
---|
693 | { |
---|
694 | chineseRemainder( D, q, replacevar( mapinto(Dp), a, b ), p, tmp, newq ); |
---|
695 | // tmp = Dp mod p |
---|
696 | // tmp = D mod q |
---|
697 | // newq = p*q |
---|
698 | q = newq; |
---|
699 | if( D != tmp ) |
---|
700 | D = tmp; |
---|
701 | On( SW_RATIONAL ); |
---|
702 | tmp = replacevar( Farey( D, q ), b, a ); // Farey and switch back to alg var |
---|
703 | setReduce(a,true); // reduce expressions modulo mipo |
---|
704 | On( SW_RATIONAL ); // needed by fdivides |
---|
705 | if (test != tmp) |
---|
706 | test= tmp; |
---|
707 | else |
---|
708 | equal= true; // modular image did not add any new information |
---|
709 | if(equal && fdivides( tmp, f ) && fdivides( tmp, g )) // trial division |
---|
710 | { |
---|
711 | Off( SW_RATIONAL ); |
---|
712 | setReduce(a,true); |
---|
713 | if (off_rational) Off(SW_RATIONAL); else On(SW_RATIONAL); |
---|
714 | return tmp; |
---|
715 | } |
---|
716 | Off( SW_RATIONAL ); |
---|
717 | setReduce(a,false); // do not reduce expressions modulo mipo |
---|
718 | continue; |
---|
719 | } |
---|
720 | if( isLess(bound, other, 1, mv) ) // current prime unlucky |
---|
721 | continue; |
---|
722 | // here: isLess(other, bound, 1, mv) ) ==> all previous primes unlucky |
---|
723 | q = p; |
---|
724 | D = replacevar( mapinto(Dp), a, b ); // shortcut CRA // shortcut CRA |
---|
725 | for(int i=1; i<=mv; i++) // tighten bound |
---|
726 | bound[i] = other[i]; |
---|
727 | } |
---|
728 | // hopefully, we never reach this point |
---|
729 | setReduce(a,true); |
---|
730 | Off( SW_USE_QGCD ); |
---|
731 | D = gcd( f, g ); |
---|
732 | On( SW_USE_QGCD ); |
---|
733 | if (off_rational) Off(SW_RATIONAL); else On(SW_RATIONAL); |
---|
734 | return D; |
---|
735 | } |
---|
736 | |
---|
737 | |
---|
738 | int * leadDeg(const CanonicalForm & f, int *degs) |
---|
739 | { // leading degree vector w.r.t. lex. monomial order x(i+1) > x(i) |
---|
740 | // if f is in a coeff domain, the zero pointer is returned |
---|
741 | // 'a' should point to an array of sufficient size level(f)+1 |
---|
742 | if(f.inCoeffDomain()) |
---|
743 | return 0; |
---|
744 | CanonicalForm tmp = f; |
---|
745 | do |
---|
746 | { |
---|
747 | degs[tmp.level()] = tmp.degree(); |
---|
748 | tmp = LC(tmp); |
---|
749 | } |
---|
750 | while(!tmp.inCoeffDomain()); |
---|
751 | return degs; |
---|
752 | } |
---|
753 | |
---|
754 | |
---|
755 | bool isLess(int *a, int *b, int lower, int upper) |
---|
756 | { // compares the degree vectors a,b on the specified part. Note: x(i+1) > x(i) |
---|
757 | for(int i=upper; i>=lower; i--) |
---|
758 | if(a[i] == b[i]) |
---|
759 | continue; |
---|
760 | else |
---|
761 | return a[i] < b[i]; |
---|
762 | return true; |
---|
763 | } |
---|
764 | |
---|
765 | |
---|
766 | bool isEqual(int *a, int *b, int lower, int upper) |
---|
767 | { // compares the degree vectors a,b on the specified part. Note: x(i+1) > x(i) |
---|
768 | for(int i=lower; i<=upper; i++) |
---|
769 | if(a[i] != b[i]) |
---|
770 | return false; |
---|
771 | return true; |
---|
772 | } |
---|
773 | |
---|
774 | |
---|
775 | CanonicalForm firstLC(const CanonicalForm & f) |
---|
776 | { // returns the leading coefficient (LC) of level <= 1 |
---|
777 | CanonicalForm ret = f; |
---|
778 | while(ret.level() > 1) |
---|
779 | ret = LC(ret); |
---|
780 | return ret; |
---|
781 | } |
---|
782 | |
---|
783 | void tryExtgcd( const CanonicalForm & F, const CanonicalForm & G, const CanonicalForm & M, CanonicalForm & result, CanonicalForm & s, CanonicalForm & t, bool & fail ) |
---|
784 | { // F, G are univariate polynomials (i.e. they have exactly one polynomial variable) |
---|
785 | // F and G must have the same level AND level > 0 |
---|
786 | // we try to calculate gcd(F,G) = s*F + t*G |
---|
787 | // if a zero divisor is encontered, 'fail' is set to one |
---|
788 | // M is assumed to be monic |
---|
789 | CanonicalForm P; |
---|
790 | if(F.inCoeffDomain()) |
---|
791 | { |
---|
792 | tryInvert( F, M, P, fail ); |
---|
793 | if(fail) |
---|
794 | return; |
---|
795 | result = 1; |
---|
796 | s = P; t = 0; |
---|
797 | return; |
---|
798 | } |
---|
799 | if(G.inCoeffDomain()) |
---|
800 | { |
---|
801 | tryInvert( G, M, P, fail ); |
---|
802 | if(fail) |
---|
803 | return; |
---|
804 | result = 1; |
---|
805 | s = 0; t = P; |
---|
806 | return; |
---|
807 | } |
---|
808 | // here: both not inCoeffDomain |
---|
809 | CanonicalForm inv, rem, tmp, u, v, q, sum=0; |
---|
810 | if( F.degree() > G.degree() ) |
---|
811 | { |
---|
812 | P = F; result = G; s=v=0; t=u=1; |
---|
813 | } |
---|
814 | else |
---|
815 | { |
---|
816 | P = G; result = F; s=v=1; t=u=0; |
---|
817 | } |
---|
818 | Variable x = P.mvar(); |
---|
819 | // here: degree(P) >= degree(result) |
---|
820 | while(true) |
---|
821 | { |
---|
822 | tryDivrem (P, result, q, rem, inv, M, fail); |
---|
823 | if(fail) |
---|
824 | return; |
---|
825 | if( rem.isZero() ) |
---|
826 | { |
---|
827 | s*=inv; |
---|
828 | s= reduce (s, M); |
---|
829 | t*=inv; |
---|
830 | t= reduce (t, M); |
---|
831 | result *= inv; // monify result |
---|
832 | result= reduce (result, M); |
---|
833 | return; |
---|
834 | } |
---|
835 | sum += q; |
---|
836 | if(result.degree(x) >= rem.degree(x)) |
---|
837 | { |
---|
838 | P=result; |
---|
839 | result=rem; |
---|
840 | tmp=u-sum*s; |
---|
841 | u=s; |
---|
842 | s=tmp; |
---|
843 | tmp=v-sum*t; |
---|
844 | v=t; |
---|
845 | t=tmp; |
---|
846 | sum = 0; // reset |
---|
847 | } |
---|
848 | else |
---|
849 | P = rem; |
---|
850 | } |
---|
851 | } |
---|
852 | |
---|
853 | |
---|
854 | static CanonicalForm trycontent ( const CanonicalForm & f, const Variable & x, const CanonicalForm & M, bool & fail ) |
---|
855 | { // as 'content', but takes care of zero divisors |
---|
856 | ASSERT( x.level() > 0, "cannot calculate content with respect to algebraic variable" ); |
---|
857 | Variable y = f.mvar(); |
---|
858 | if ( y == x ) |
---|
859 | return trycf_content( f, 0, M, fail ); |
---|
860 | if ( y < x ) |
---|
861 | return f; |
---|
862 | return swapvar( trycontent( swapvar( f, y, x ), y, M, fail ), y, x ); |
---|
863 | } |
---|
864 | |
---|
865 | |
---|
866 | static CanonicalForm tryvcontent ( const CanonicalForm & f, const Variable & x, const CanonicalForm & M, bool & fail ) |
---|
867 | { // as vcontent, but takes care of zero divisors |
---|
868 | ASSERT( x.level() > 0, "cannot calculate vcontent with respect to algebraic variable" ); |
---|
869 | if ( f.mvar() <= x ) |
---|
870 | return trycontent( f, x, M, fail ); |
---|
871 | CFIterator i; |
---|
872 | CanonicalForm d = 0, e, ret; |
---|
873 | for ( i = f; i.hasTerms() && ! d.isOne() && ! fail; i++ ) |
---|
874 | { |
---|
875 | e = tryvcontent( i.coeff(), x, M, fail ); |
---|
876 | if(fail) |
---|
877 | break; |
---|
878 | tryBrownGCD( d, e, M, ret, fail ); |
---|
879 | d = ret; |
---|
880 | } |
---|
881 | return d; |
---|
882 | } |
---|
883 | |
---|
884 | |
---|
885 | static CanonicalForm trycf_content ( const CanonicalForm & f, const CanonicalForm & g, const CanonicalForm & M, bool & fail ) |
---|
886 | { // as cf_content, but takes care of zero divisors |
---|
887 | if ( f.inPolyDomain() || ( f.inExtension() && ! getReduce( f.mvar() ) ) ) |
---|
888 | { |
---|
889 | CFIterator i = f; |
---|
890 | CanonicalForm tmp = g, result; |
---|
891 | while ( i.hasTerms() && ! tmp.isOne() && ! fail ) |
---|
892 | { |
---|
893 | tryBrownGCD( i.coeff(), tmp, M, result, fail ); |
---|
894 | tmp = result; |
---|
895 | i++; |
---|
896 | } |
---|
897 | return result; |
---|
898 | } |
---|
899 | return abs( f ); |
---|
900 | } |
---|
901 | |
---|
902 | |
---|
903 | static void tryDivide( const CanonicalForm & f, const CanonicalForm & g, const CanonicalForm & M, CanonicalForm & result, bool & divides, bool & fail ) |
---|
904 | { // M "univariate" monic polynomial |
---|
905 | // f, g polynomials with coeffs modulo M. |
---|
906 | // if f is divisible by g, 'divides' is set to 1 and 'result' == f/g mod M coefficientwise. |
---|
907 | // 'fail' is set to 1, iff a zero divisor is encountered. |
---|
908 | // divides==1 implies fail==0 |
---|
909 | // required: getReduce(M.mvar())==0 |
---|
910 | if(g.inBaseDomain()) |
---|
911 | { |
---|
912 | result = f/g; |
---|
913 | divides = true; |
---|
914 | return; |
---|
915 | } |
---|
916 | if(g.inCoeffDomain()) |
---|
917 | { |
---|
918 | tryInvert(g,M,result,fail); |
---|
919 | if(fail) |
---|
920 | return; |
---|
921 | result = reduce(f*result, M); |
---|
922 | divides = true; |
---|
923 | return; |
---|
924 | } |
---|
925 | // here: g NOT inCoeffDomain |
---|
926 | Variable x = g.mvar(); |
---|
927 | if(f.degree(x) < g.degree(x)) |
---|
928 | { |
---|
929 | divides = false; |
---|
930 | return; |
---|
931 | } |
---|
932 | // here: f.degree(x) > 0 and f.degree(x) >= g.degree(x) |
---|
933 | CanonicalForm F = f; |
---|
934 | CanonicalForm q, leadG = LC(g); |
---|
935 | result = 0; |
---|
936 | while(!F.isZero()) |
---|
937 | { |
---|
938 | tryDivide(F.LC(x),leadG,M,q,divides,fail); |
---|
939 | if(fail || !divides) |
---|
940 | return; |
---|
941 | if(F.degree(x)<g.degree(x)) |
---|
942 | { |
---|
943 | divides = false; |
---|
944 | return; |
---|
945 | } |
---|
946 | q *= power(x,F.degree(x)-g.degree(x)); |
---|
947 | result += q; |
---|
948 | F = reduce(F-q*g, M); |
---|
949 | } |
---|
950 | result = reduce(result, M); |
---|
951 | divides = true; |
---|
952 | } |
---|
953 | |
---|
954 | void tryExtgcd( const CanonicalForm & F, const CanonicalForm & G, CanonicalForm & result, CanonicalForm & s, CanonicalForm & t, bool & fail ) |
---|
955 | { |
---|
956 | // F, G are univariate polynomials (i.e. they have exactly one polynomial variable) |
---|
957 | // F and G must have the same level AND level > 0 |
---|
958 | // we try to calculate gcd(f,g) = s*F + t*G |
---|
959 | // if a zero divisor is encontered, 'fail' is set to one |
---|
960 | Variable a, b; |
---|
961 | if( !hasFirstAlgVar(F,a) && !hasFirstAlgVar(G,b) ) // note lazy evaluation |
---|
962 | { |
---|
963 | result = extgcd( F, G, s, t ); // no zero divisors possible |
---|
964 | return; |
---|
965 | } |
---|
966 | if( b.level() > a.level() ) |
---|
967 | a = b; |
---|
968 | // here: a is the biggest alg. var in F and G |
---|
969 | CanonicalForm M = getMipo(a); |
---|
970 | CanonicalForm P; |
---|
971 | if( degree(F) > degree(G) ) |
---|
972 | { |
---|
973 | P=F; result=G; s=0; t=1; |
---|
974 | } |
---|
975 | else |
---|
976 | { |
---|
977 | P=G; result=F; s=1; t=0; |
---|
978 | } |
---|
979 | CanonicalForm inv, rem, q, u, v; |
---|
980 | // here: degree(P) >= degree(result) |
---|
981 | while(true) |
---|
982 | { |
---|
983 | tryInvert( Lc(result), M, inv, fail ); |
---|
984 | if(fail) |
---|
985 | return; |
---|
986 | // here: Lc(result) is invertible modulo M |
---|
987 | q = Lc(P)*inv * power( P.mvar(), degree(P)-degree(result) ); |
---|
988 | rem = P - q*result; |
---|
989 | // here: s*F + t*G = result |
---|
990 | if( rem.isZero() ) |
---|
991 | { |
---|
992 | s*=inv; |
---|
993 | t*=inv; |
---|
994 | result *= inv; // monify result |
---|
995 | return; |
---|
996 | } |
---|
997 | P=result; |
---|
998 | result=rem; |
---|
999 | rem=u-q*s; |
---|
1000 | u=s; |
---|
1001 | s=rem; |
---|
1002 | rem=v-q*t; |
---|
1003 | v=t; |
---|
1004 | t=rem; |
---|
1005 | } |
---|
1006 | } |
---|
1007 | |
---|
1008 | void tryCRA( const CanonicalForm & x1, const CanonicalForm & q1, const CanonicalForm & x2, const CanonicalForm & q2, CanonicalForm & xnew, CanonicalForm & qnew, bool & fail ) |
---|
1009 | { // polys of level <= 1 are considered coefficients. q1,q2 are assumed to be coprime |
---|
1010 | // xnew = x1 mod q1 (coefficientwise in the above sense) |
---|
1011 | // xnew = x2 mod q2 |
---|
1012 | // qnew = q1*q2 |
---|
1013 | CanonicalForm tmp; |
---|
1014 | if(x1.level() <= 1 && x2.level() <= 1) // base case |
---|
1015 | { |
---|
1016 | tryExtgcd(q1,q2,tmp,xnew,qnew,fail); |
---|
1017 | if(fail) |
---|
1018 | return; |
---|
1019 | xnew = x1 + (x2-x1) * xnew * q1; |
---|
1020 | qnew = q1*q2; |
---|
1021 | xnew = mod(xnew,qnew); |
---|
1022 | return; |
---|
1023 | } |
---|
1024 | CanonicalForm tmp2; |
---|
1025 | xnew = 0; |
---|
1026 | qnew = q1 * q2; |
---|
1027 | // here: x1.level() > 1 || x2.level() > 1 |
---|
1028 | if(x1.level() > x2.level()) |
---|
1029 | { |
---|
1030 | for(CFIterator i=x1; i.hasTerms(); i++) |
---|
1031 | { |
---|
1032 | if(i.exp() == 0) // const. term |
---|
1033 | { |
---|
1034 | tryCRA(i.coeff(),q1,x2,q2,tmp,tmp2,fail); |
---|
1035 | if(fail) |
---|
1036 | return; |
---|
1037 | xnew += tmp; |
---|
1038 | } |
---|
1039 | else |
---|
1040 | { |
---|
1041 | tryCRA(i.coeff(),q1,0,q2,tmp,tmp2,fail); |
---|
1042 | if(fail) |
---|
1043 | return; |
---|
1044 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
1045 | } |
---|
1046 | } |
---|
1047 | return; |
---|
1048 | } |
---|
1049 | // here: x1.level() <= x2.level() && ( x1.level() > 1 || x2.level() > 1 ) |
---|
1050 | if(x2.level() > x1.level()) |
---|
1051 | { |
---|
1052 | for(CFIterator j=x2; j.hasTerms(); j++) |
---|
1053 | { |
---|
1054 | if(j.exp() == 0) // const. term |
---|
1055 | { |
---|
1056 | tryCRA(x1,q1,j.coeff(),q2,tmp,tmp2,fail); |
---|
1057 | if(fail) |
---|
1058 | return; |
---|
1059 | xnew += tmp; |
---|
1060 | } |
---|
1061 | else |
---|
1062 | { |
---|
1063 | tryCRA(0,q1,j.coeff(),q2,tmp,tmp2,fail); |
---|
1064 | if(fail) |
---|
1065 | return; |
---|
1066 | xnew += tmp * power(x2.mvar(),j.exp()); |
---|
1067 | } |
---|
1068 | } |
---|
1069 | return; |
---|
1070 | } |
---|
1071 | // here: x1.level() == x2.level() && x1.level() > 1 && x2.level() > 1 |
---|
1072 | CFIterator i = x1; |
---|
1073 | CFIterator j = x2; |
---|
1074 | while(i.hasTerms() || j.hasTerms()) |
---|
1075 | { |
---|
1076 | if(i.hasTerms()) |
---|
1077 | { |
---|
1078 | if(j.hasTerms()) |
---|
1079 | { |
---|
1080 | if(i.exp() == j.exp()) |
---|
1081 | { |
---|
1082 | tryCRA(i.coeff(),q1,j.coeff(),q2,tmp,tmp2,fail); |
---|
1083 | if(fail) |
---|
1084 | return; |
---|
1085 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
1086 | i++; j++; |
---|
1087 | } |
---|
1088 | else |
---|
1089 | { |
---|
1090 | if(i.exp() < j.exp()) |
---|
1091 | { |
---|
1092 | tryCRA(i.coeff(),q1,0,q2,tmp,tmp2,fail); |
---|
1093 | if(fail) |
---|
1094 | return; |
---|
1095 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
1096 | i++; |
---|
1097 | } |
---|
1098 | else // i.exp() > j.exp() |
---|
1099 | { |
---|
1100 | tryCRA(0,q1,j.coeff(),q2,tmp,tmp2,fail); |
---|
1101 | if(fail) |
---|
1102 | return; |
---|
1103 | xnew += tmp * power(x1.mvar(),j.exp()); |
---|
1104 | j++; |
---|
1105 | } |
---|
1106 | } |
---|
1107 | } |
---|
1108 | else // j is out of terms |
---|
1109 | { |
---|
1110 | tryCRA(i.coeff(),q1,0,q2,tmp,tmp2,fail); |
---|
1111 | if(fail) |
---|
1112 | return; |
---|
1113 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
1114 | i++; |
---|
1115 | } |
---|
1116 | } |
---|
1117 | else // i is out of terms |
---|
1118 | { |
---|
1119 | tryCRA(0,q1,j.coeff(),q2,tmp,tmp2,fail); |
---|
1120 | if(fail) |
---|
1121 | return; |
---|
1122 | xnew += tmp * power(x1.mvar(),j.exp()); |
---|
1123 | j++; |
---|
1124 | } |
---|
1125 | } |
---|
1126 | } |
---|
1127 | |
---|