1 | #include "factoryconf.h" |
---|
2 | |
---|
3 | #ifdef HAVE_CSTDIO |
---|
4 | #include <cstdio> |
---|
5 | #else |
---|
6 | #include <stdio.h> |
---|
7 | #endif |
---|
8 | #ifndef NOSTREAMIO |
---|
9 | #ifdef HAVE_IOSTREAM_H |
---|
10 | #include <iostream.h> |
---|
11 | #elif defined(HAVE_IOSTREAM) |
---|
12 | #include <iostream> |
---|
13 | #endif |
---|
14 | #endif |
---|
15 | |
---|
16 | #include "cf_defs.h" |
---|
17 | #include "canonicalform.h" |
---|
18 | #include "cf_iter.h" |
---|
19 | #include "cf_primes.h" |
---|
20 | #include "cf_algorithm.h" |
---|
21 | #include "algext.h" |
---|
22 | #include "fieldGCD.h" |
---|
23 | #include "cf_map.h" |
---|
24 | #include "cf_generator.h" |
---|
25 | |
---|
26 | CanonicalForm reduce(const CanonicalForm & f, const CanonicalForm & M) |
---|
27 | { // polynomials in M.mvar() are considered coefficients |
---|
28 | // M univariate monic polynomial |
---|
29 | // the coefficients of f are reduced modulo M |
---|
30 | if(f.inBaseDomain() || f.level() < M.level()) |
---|
31 | return f; |
---|
32 | if(f.level() == M.level()) |
---|
33 | { |
---|
34 | if(f.degree() < M.degree()) |
---|
35 | return f; |
---|
36 | CanonicalForm tmp = f; |
---|
37 | do |
---|
38 | tmp -= lc(tmp)*M*power(M.mvar(),tmp.degree()-M.degree()); |
---|
39 | while(tmp.degree() >= M.degree()); |
---|
40 | return tmp; |
---|
41 | } |
---|
42 | // here: f.level() > M.level() |
---|
43 | CanonicalForm result = 0; |
---|
44 | for(CFIterator i=f; i.hasTerms(); i++) |
---|
45 | result += reduce(i.coeff(),M) * power(f.mvar(),i.exp()); |
---|
46 | return result; |
---|
47 | } |
---|
48 | |
---|
49 | void tryInvert( const CanonicalForm & F, const CanonicalForm & M, CanonicalForm & inv, bool & fail ) |
---|
50 | { // F, M are required to be "univariate" polynomials in an algebraic variable |
---|
51 | // we try to invert F modulo M |
---|
52 | if(F.inBaseDomain()) |
---|
53 | { |
---|
54 | if(F.isZero()) |
---|
55 | { |
---|
56 | fail = true; |
---|
57 | return; |
---|
58 | } |
---|
59 | inv = 1/F; |
---|
60 | return; |
---|
61 | } |
---|
62 | CanonicalForm b; |
---|
63 | Variable a = M.mvar(); |
---|
64 | Variable x = Variable(1); |
---|
65 | if(!extgcd( replacevar( F, a, x ), replacevar( M, a, x ), inv, b ).isOne()) |
---|
66 | fail = true; |
---|
67 | else |
---|
68 | inv = replacevar( inv, x, a ); // change back to alg var |
---|
69 | } |
---|
70 | |
---|
71 | void tryEuclid( const CanonicalForm & A, const CanonicalForm & B, const CanonicalForm & M, CanonicalForm & result, bool & fail ) |
---|
72 | { |
---|
73 | CanonicalForm P; |
---|
74 | if(A.inCoeffDomain()) |
---|
75 | { |
---|
76 | tryInvert( A, M, P, fail ); |
---|
77 | if(fail) |
---|
78 | return; |
---|
79 | result = 1; |
---|
80 | return; |
---|
81 | } |
---|
82 | if(B.inCoeffDomain()) |
---|
83 | { |
---|
84 | tryInvert( B, M, P, fail ); |
---|
85 | if(fail) |
---|
86 | return; |
---|
87 | result = 1; |
---|
88 | return; |
---|
89 | } |
---|
90 | // here: both not inCoeffDomain |
---|
91 | if( A.degree() > B.degree() ) |
---|
92 | { |
---|
93 | P = A; result = B; |
---|
94 | } |
---|
95 | else |
---|
96 | { |
---|
97 | P = B; result = A; |
---|
98 | } |
---|
99 | CanonicalForm inv; |
---|
100 | if( result.isZero() ) |
---|
101 | { |
---|
102 | tryInvert( Lc(P), M, inv, fail ); |
---|
103 | if(fail) |
---|
104 | return; |
---|
105 | result = inv*P; // monify result (not reduced, yet) |
---|
106 | return; |
---|
107 | } |
---|
108 | Variable x = P.mvar(); |
---|
109 | CanonicalForm rem; |
---|
110 | // here: degree(P) >= degree(result) |
---|
111 | while(true) |
---|
112 | { |
---|
113 | tryInvert( Lc(result), M, inv, fail ); |
---|
114 | if(fail) |
---|
115 | return; |
---|
116 | // here: Lc(result) is invertible modulo M |
---|
117 | rem = reduce( P - Lc(P)*inv*result*power( x, P.degree(x)-result.degree(x) ), M ); |
---|
118 | if( rem.isZero() ) |
---|
119 | { |
---|
120 | result *= inv; |
---|
121 | return; |
---|
122 | } |
---|
123 | if(result.degree(x) >= rem.degree(x)) |
---|
124 | { |
---|
125 | P = result; |
---|
126 | result = rem; |
---|
127 | } |
---|
128 | else |
---|
129 | P = rem; |
---|
130 | } |
---|
131 | } |
---|
132 | |
---|
133 | bool hasFirstAlgVar( const CanonicalForm & f, Variable & a ) |
---|
134 | { |
---|
135 | if( f.inBaseDomain() ) // f has NO alg. variable |
---|
136 | return false; |
---|
137 | if( f.level()<0 ) // f has only alg. vars, so take the first one |
---|
138 | { |
---|
139 | a = f.mvar(); |
---|
140 | return true; |
---|
141 | } |
---|
142 | for(CFIterator i=f; i.hasTerms(); i++) |
---|
143 | if( hasFirstAlgVar( i.coeff(), a )) |
---|
144 | return true; // 'a' is already set |
---|
145 | return false; |
---|
146 | } |
---|
147 | |
---|
148 | CanonicalForm univarQGCD( const CanonicalForm & F, const CanonicalForm & G ) |
---|
149 | { // F,G in Q(a)[x] |
---|
150 | CanonicalForm f, g, tmp, M, q, D, Dp, cl, newD, newq; |
---|
151 | int p, dp_deg, bound, i; |
---|
152 | bool fail; |
---|
153 | On(SW_RATIONAL); |
---|
154 | f = F * bCommonDen(F); |
---|
155 | g = G * bCommonDen(G); |
---|
156 | Variable a,b; |
---|
157 | if( !hasFirstAlgVar( f, a ) && !hasFirstAlgVar( g, b )) |
---|
158 | { |
---|
159 | // F and G are in Q[x], call... |
---|
160 | #ifdef HAVE_NTL |
---|
161 | if ( isOn( SW_USE_NTL_GCD_0 )) |
---|
162 | return gcd_univar_ntl0( f, g ); |
---|
163 | #endif |
---|
164 | return gcd_poly_univar0( f, g, false ); |
---|
165 | } |
---|
166 | if( b.level() > a.level() ) |
---|
167 | a = b; |
---|
168 | // here: a is the biggest alg. var in f and g |
---|
169 | tmp = getMipo(a); |
---|
170 | M = tmp * bCommonDen(tmp); |
---|
171 | Off(SW_RATIONAL); |
---|
172 | // calculate upper bound for degree of gcd |
---|
173 | bound = degree(f); |
---|
174 | i = degree(g); |
---|
175 | if( i < bound ) |
---|
176 | bound = i; |
---|
177 | |
---|
178 | cl = lc(M) * lc(f) * lc(g); |
---|
179 | q = 1; |
---|
180 | D = 0; |
---|
181 | for(i=cf_getNumBigPrimes()-1; i>-1; i--) |
---|
182 | { |
---|
183 | p = cf_getBigPrime(i); |
---|
184 | if( mod( cl, p ).isZero() ) // skip lc-bad primes |
---|
185 | continue; |
---|
186 | |
---|
187 | fail = false; |
---|
188 | setCharacteristic(p); |
---|
189 | tryEuclid( mapinto(f), mapinto(g), mapinto(M), Dp, fail ); |
---|
190 | setCharacteristic(0); |
---|
191 | if( fail ) // M splits in char p |
---|
192 | continue; |
---|
193 | |
---|
194 | dp_deg = degree(Dp); |
---|
195 | |
---|
196 | if( dp_deg == 0 ) // early termination |
---|
197 | { |
---|
198 | CanonicalForm inv; |
---|
199 | tryInvert(Dp, M, inv, fail); |
---|
200 | if(fail) |
---|
201 | continue; |
---|
202 | return CanonicalForm(1); |
---|
203 | } |
---|
204 | |
---|
205 | if( dp_deg > bound ) // current prime unlucky |
---|
206 | continue; |
---|
207 | |
---|
208 | if( dp_deg < bound ) // all previous primes unlucky |
---|
209 | { |
---|
210 | q = p; |
---|
211 | D = mapinto(Dp); // shortcut CRA |
---|
212 | bound = dp_deg; // tighten bound |
---|
213 | continue; |
---|
214 | } |
---|
215 | chineseRemainder( D, q, mapinto(Dp), p, newD, newq ); |
---|
216 | // newD = Dp mod p |
---|
217 | // newD = D mod q |
---|
218 | // newq = p*q |
---|
219 | q = newq; |
---|
220 | if( D != newD ) |
---|
221 | { |
---|
222 | D = newD; |
---|
223 | continue; |
---|
224 | } |
---|
225 | On( SW_RATIONAL ); |
---|
226 | tmp = Farey( D, q ); |
---|
227 | if( fdivides( tmp, f ) && fdivides( tmp, g )) // trial division |
---|
228 | { |
---|
229 | Off( SW_RATIONAL ); |
---|
230 | return tmp; |
---|
231 | } |
---|
232 | Off( SW_RATIONAL ); |
---|
233 | } |
---|
234 | // hopefully, we never reach this point |
---|
235 | Off( SW_USE_QGCD ); |
---|
236 | D = gcd( f, g ); |
---|
237 | On( SW_USE_QGCD ); |
---|
238 | return D; |
---|
239 | } |
---|
240 | |
---|
241 | |
---|
242 | |
---|
243 | CanonicalForm QGCD( const CanonicalForm & F, const CanonicalForm & G ); |
---|
244 | int * leadDeg(const CanonicalForm & f, int *degs); |
---|
245 | bool isLess(int *a, int *b, int lower, int upper); |
---|
246 | bool isEqual(int *a, int *b, int lower, int upper); |
---|
247 | CanonicalForm firstLC(const CanonicalForm & f); |
---|
248 | void tryCRA( const CanonicalForm & x1, const CanonicalForm & q1, const CanonicalForm & x2, const CanonicalForm & q2, const CanonicalForm & M, CanonicalForm & xnew, CanonicalForm & qnew, bool & fail ); |
---|
249 | void tryExtgcd( const CanonicalForm & F, const CanonicalForm & G, const CanonicalForm & M, CanonicalForm & result, CanonicalForm & s, CanonicalForm & t, bool & fail ); |
---|
250 | static CanonicalForm trycontent ( const CanonicalForm & f, const Variable & x, const CanonicalForm & M, bool & fail ); |
---|
251 | static CanonicalForm tryvcontent ( const CanonicalForm & f, const Variable & x, const CanonicalForm & M, bool & fail ); |
---|
252 | static CanonicalForm trycf_content ( const CanonicalForm & f, const CanonicalForm & g, const CanonicalForm & M, bool & fail ); |
---|
253 | static void tryDivide( const CanonicalForm & f, const CanonicalForm & g, const CanonicalForm & M, CanonicalForm & result, bool & divides, bool & fail ); |
---|
254 | |
---|
255 | |
---|
256 | void tryBrownGCD( const CanonicalForm & F, const CanonicalForm & G, const CanonicalForm & M, CanonicalForm & result, bool & fail ) |
---|
257 | { // assume F,G are multivariate polys over Z/p(a) for big prime p, M "univariate" polynomial in an algebraic variable |
---|
258 | // M is assumed to be monic |
---|
259 | if(F.isZero()) |
---|
260 | { |
---|
261 | if(G.isZero()) |
---|
262 | { |
---|
263 | result = G; // G is zero |
---|
264 | return; |
---|
265 | } |
---|
266 | if(G.inCoeffDomain()) |
---|
267 | { |
---|
268 | tryInvert(G,M,result,fail); |
---|
269 | if(fail) |
---|
270 | return; |
---|
271 | result = 1; |
---|
272 | return; |
---|
273 | } |
---|
274 | // try to make G monic modulo M |
---|
275 | CanonicalForm inv; |
---|
276 | tryInvert(Lc(G),M,inv,fail); |
---|
277 | if(fail) |
---|
278 | return; |
---|
279 | result = inv*G; |
---|
280 | return; |
---|
281 | } |
---|
282 | if(G.isZero()) // F is non-zero |
---|
283 | { |
---|
284 | if(F.inCoeffDomain()) |
---|
285 | { |
---|
286 | tryInvert(F,M,result,fail); |
---|
287 | if(fail) |
---|
288 | return; |
---|
289 | result = 1; |
---|
290 | return; |
---|
291 | } |
---|
292 | // try to make F monic modulo M |
---|
293 | CanonicalForm inv; |
---|
294 | tryInvert(Lc(F),M,inv,fail); |
---|
295 | if(fail) |
---|
296 | return; |
---|
297 | result = inv*F; |
---|
298 | return; |
---|
299 | } |
---|
300 | // here: F,G both nonzero |
---|
301 | if(F.inCoeffDomain()) |
---|
302 | { |
---|
303 | tryInvert(F,M,result,fail); |
---|
304 | if(fail) |
---|
305 | return; |
---|
306 | result = 1; |
---|
307 | return; |
---|
308 | } |
---|
309 | if(G.inCoeffDomain()) |
---|
310 | { |
---|
311 | tryInvert(G,M,result,fail); |
---|
312 | if(fail) |
---|
313 | return; |
---|
314 | result = 1; |
---|
315 | return; |
---|
316 | } |
---|
317 | CFMap MM,NN; |
---|
318 | CFArray ps(1,2); |
---|
319 | ps[1] = F; |
---|
320 | ps[2] = G; |
---|
321 | compress(ps,MM,NN); // maps MM, NN are created |
---|
322 | CanonicalForm f=MM(F); |
---|
323 | CanonicalForm g=MM(G); |
---|
324 | // here: f,g are compressed |
---|
325 | // compute largest variable in f or g (least one is Variable(1)) |
---|
326 | int mv = f.level(); |
---|
327 | if(g.level() > mv) |
---|
328 | mv = g.level(); |
---|
329 | // here: mv is level of the largest variable in f, g |
---|
330 | if(mv == 1) // f,g univariate |
---|
331 | { |
---|
332 | tryEuclid(f,g,M,result,fail); |
---|
333 | if(fail) |
---|
334 | return; |
---|
335 | result = NN(result); // do not forget to map back |
---|
336 | return; |
---|
337 | } |
---|
338 | // here: mv > 1 |
---|
339 | CanonicalForm cf = tryvcontent(f, Variable(2), M, fail); // cf is univariate poly in var(1) |
---|
340 | if(fail) |
---|
341 | return; |
---|
342 | CanonicalForm cg = tryvcontent(g, Variable(2), M, fail); |
---|
343 | if(fail) |
---|
344 | return; |
---|
345 | CanonicalForm c; |
---|
346 | tryEuclid(cf,cg,M,c,fail); |
---|
347 | if(fail) |
---|
348 | return; |
---|
349 | bool divides = true; |
---|
350 | CanonicalForm tmp; |
---|
351 | // f /= cf |
---|
352 | tryDivide(f,cf,M,tmp,divides,fail); // 'divides' is not checked |
---|
353 | if(fail) |
---|
354 | return; |
---|
355 | f = tmp; |
---|
356 | // g /= cg |
---|
357 | tryDivide(g,cg,M,tmp,divides,fail); // 'divides' is not checked |
---|
358 | if(fail) |
---|
359 | return; |
---|
360 | g = tmp; |
---|
361 | if(f.inCoeffDomain()) |
---|
362 | { |
---|
363 | tryInvert(f,M,result,fail); |
---|
364 | if(fail) |
---|
365 | return; |
---|
366 | result = NN(c); |
---|
367 | return; |
---|
368 | } |
---|
369 | if(g.inCoeffDomain()) |
---|
370 | { |
---|
371 | tryInvert(g,M,result,fail); |
---|
372 | if(fail) |
---|
373 | return; |
---|
374 | result = NN(c); |
---|
375 | return; |
---|
376 | } |
---|
377 | int *L = new int[mv+1]; // L is addressed by i from 2 to mv |
---|
378 | int *N = new int[mv+1]; |
---|
379 | for(int i=2; i<=mv; i++) |
---|
380 | L[i] = N[i] = 0; |
---|
381 | L = leadDeg(f, L); |
---|
382 | N = leadDeg(g, N); |
---|
383 | CanonicalForm gamma; |
---|
384 | tryEuclid( firstLC(f), firstLC(g), M, gamma, fail ); |
---|
385 | if(fail) |
---|
386 | return; |
---|
387 | for(int i=2; i<=mv; i++) // entries at i=0,1 not visited |
---|
388 | if(N[i] < L[i]) |
---|
389 | L[i] = N[i]; |
---|
390 | // L is now upper bound for degrees of gcd |
---|
391 | int *dg_im = new int[mv+1]; // for the degree vector of the image we don't need any entry at i=1 |
---|
392 | for(int i=2; i<=mv; i++) |
---|
393 | dg_im[i] = 0; // initialize |
---|
394 | CanonicalForm gamma_image, m=1; |
---|
395 | CanonicalForm gm=0; |
---|
396 | CanonicalForm g_image, alpha, gnew, mnew; |
---|
397 | FFGenerator gen = FFGenerator(); |
---|
398 | for(FFGenerator gen = FFGenerator(); gen.hasItems(); gen.next()) |
---|
399 | { |
---|
400 | alpha = gen.item(); |
---|
401 | gamma_image = reduce(gamma(alpha, Variable(1)),M); // plug in alpha for var(1) |
---|
402 | if(gamma_image.isZero()) // skip lc-bad points var(1)-alpha |
---|
403 | continue; |
---|
404 | tryBrownGCD( f(alpha, Variable(1)), g(alpha, Variable(1)), M, g_image, fail ); // recursive call with one var less |
---|
405 | if(fail) |
---|
406 | return; |
---|
407 | g_image = reduce(g_image, M); |
---|
408 | if(g_image.inCoeffDomain()) // early termination |
---|
409 | { |
---|
410 | tryInvert(g_image,M,result,fail); |
---|
411 | if(fail) |
---|
412 | return; |
---|
413 | result = NN(c); |
---|
414 | return; |
---|
415 | } |
---|
416 | for(int i=2; i<=mv; i++) |
---|
417 | dg_im[i] = 0; // reset (this is necessary, because some entries may not be updated by call to leadDeg) |
---|
418 | dg_im = leadDeg(g_image, dg_im); // dg_im cannot be NIL-pointer |
---|
419 | if(isEqual(dg_im, L, 2, mv)) |
---|
420 | { |
---|
421 | g_image /= lc(g_image); // make g_image monic over Z/p |
---|
422 | g_image *= gamma_image; // multiply by multiple of image lc(gcd) |
---|
423 | tryCRA( g_image, Variable(1)-alpha, gm, m, M, gnew, mnew, fail ); |
---|
424 | // gnew = gm mod m |
---|
425 | // gnew = g_image mod var(1)-alpha |
---|
426 | // mnew = m * (var(1)-alpha) |
---|
427 | if(fail) |
---|
428 | return; |
---|
429 | m = mnew; |
---|
430 | if(gnew == gm) // gnew did not change |
---|
431 | { |
---|
432 | cf = tryvcontent(gm, Variable(2), M, fail); |
---|
433 | if(fail) |
---|
434 | return; |
---|
435 | divides = true; |
---|
436 | tryDivide(gm,cf,M,g_image,divides,fail); // 'divides' is ignored |
---|
437 | if(fail) |
---|
438 | return; |
---|
439 | tryDivide(f,g_image,M,tmp,divides,fail); // trial division (f) |
---|
440 | if(fail) |
---|
441 | return; |
---|
442 | if(divides) |
---|
443 | { |
---|
444 | tryDivide(g,g_image,M,tmp,divides,fail); // trial division (g) |
---|
445 | if(fail) |
---|
446 | return; |
---|
447 | if(divides) |
---|
448 | { |
---|
449 | result = NN(c*g_image); |
---|
450 | return; |
---|
451 | } |
---|
452 | } |
---|
453 | } |
---|
454 | gm = gnew; |
---|
455 | continue; |
---|
456 | } |
---|
457 | |
---|
458 | if(isLess(L, dg_im, 2, mv)) // dg_im > L --> current point unlucky |
---|
459 | continue; |
---|
460 | |
---|
461 | // here: isLess(dg_im, L, 2, mv) --> all previous points were unlucky |
---|
462 | m = CanonicalForm(1); // reset |
---|
463 | gm = 0; // reset |
---|
464 | for(int i=2; i<=mv; i++) // tighten bound |
---|
465 | L[i] = dg_im[i]; |
---|
466 | } |
---|
467 | // we are out of evaluation points |
---|
468 | fail = true; |
---|
469 | } |
---|
470 | |
---|
471 | CanonicalForm QGCD( const CanonicalForm & F, const CanonicalForm & G ) |
---|
472 | { // f,g in Q(a)[x1,...,xn] |
---|
473 | if(F.isZero()) |
---|
474 | { |
---|
475 | if(G.isZero()) |
---|
476 | return G; // G is zero |
---|
477 | if(G.inCoeffDomain()) |
---|
478 | return CanonicalForm(1); |
---|
479 | return G/Lc(G); // return monic G |
---|
480 | } |
---|
481 | if(G.isZero()) // F is non-zero |
---|
482 | { |
---|
483 | if(F.inCoeffDomain()) |
---|
484 | return CanonicalForm(1); |
---|
485 | return F/Lc(F); // return monic F |
---|
486 | } |
---|
487 | if(F.inCoeffDomain() || G.inCoeffDomain()) |
---|
488 | return CanonicalForm(1); |
---|
489 | // here: both NOT inCoeffDomain |
---|
490 | CanonicalForm f, g, tmp, M, q, D, Dp, cl, newq, mipo; |
---|
491 | int p, i; |
---|
492 | int *bound, *other; // degree vectors |
---|
493 | bool fail; |
---|
494 | bool off_rational=!isOn(SW_RATIONAL); |
---|
495 | On( SW_RATIONAL ); // needed by bCommonDen |
---|
496 | f = F * bCommonDen(F); |
---|
497 | g = G * bCommonDen(G); |
---|
498 | Variable a, b; |
---|
499 | if(hasFirstAlgVar(f,a)) |
---|
500 | { |
---|
501 | if(hasFirstAlgVar(g,b)) |
---|
502 | { |
---|
503 | if(b.level() > a.level()) |
---|
504 | a = b; |
---|
505 | } |
---|
506 | } |
---|
507 | else |
---|
508 | { |
---|
509 | if(!hasFirstAlgVar(g,a))// both not in extension |
---|
510 | { |
---|
511 | Off( SW_RATIONAL ); |
---|
512 | Off( SW_USE_QGCD ); |
---|
513 | tmp = gcd( F, G ); |
---|
514 | On( SW_USE_QGCD ); |
---|
515 | if (off_rational) Off(SW_RATIONAL); |
---|
516 | return tmp; |
---|
517 | } |
---|
518 | } |
---|
519 | // here: a is the biggest alg. var in f and g AND some of f,g is in extension |
---|
520 | // (in the sequel b is used to swap alg/poly vars) |
---|
521 | setReduce(a,false); // do not reduce expressions modulo mipo |
---|
522 | tmp = getMipo(a); |
---|
523 | M = tmp * bCommonDen(tmp); |
---|
524 | // here: f, g in Z[a][x1,...,xn], M in Z[a] not necessarily monic |
---|
525 | Off( SW_RATIONAL ); // needed by mod |
---|
526 | // calculate upper bound for degree vector of gcd |
---|
527 | int mv = f.level(); i = g.level(); |
---|
528 | if(i > mv) |
---|
529 | mv = i; |
---|
530 | // here: mv is level of the largest variable in f, g |
---|
531 | b = Variable(mv+1); |
---|
532 | bound = new int[mv+1]; // 'bound' could be indexed from 0 to mv, but we will only use from 1 to mv |
---|
533 | other = new int[mv+1]; |
---|
534 | for(int i=1; i<=mv; i++) // initialize 'bound', 'other' with zeros |
---|
535 | bound[i] = other[i] = 0; |
---|
536 | bound = leadDeg(f,bound); // 'bound' is set the leading degree vector of f |
---|
537 | other = leadDeg(g,other); |
---|
538 | for(int i=1; i<=mv; i++) // entry at i=0 not visited |
---|
539 | if(other[i] < bound[i]) |
---|
540 | bound[i] = other[i]; |
---|
541 | // now 'bound' is the smaller vector |
---|
542 | cl = lc(M) * lc(f) * lc(g); |
---|
543 | q = 1; |
---|
544 | D = 0; |
---|
545 | for( i=cf_getNumBigPrimes()-1; i>-1; i-- ) |
---|
546 | { |
---|
547 | p = cf_getBigPrime(i); |
---|
548 | if( mod( cl, p ).isZero() ) // skip lc-bad primes |
---|
549 | continue; |
---|
550 | fail = false; |
---|
551 | setCharacteristic(p); |
---|
552 | mipo = mapinto(M); |
---|
553 | mipo /= mipo.lc(); |
---|
554 | // here: mipo is monic |
---|
555 | tryBrownGCD( mapinto(f), mapinto(g), mipo, Dp, fail ); |
---|
556 | Dp = reduce( Dp, mipo ); |
---|
557 | setCharacteristic(0); |
---|
558 | if( fail ) // mipo splits in char p |
---|
559 | continue; |
---|
560 | if( Dp.inCoeffDomain() ) // early termination |
---|
561 | { |
---|
562 | tryInvert(Dp,mipo,tmp,fail); // check if zero divisor |
---|
563 | if(fail) |
---|
564 | continue; |
---|
565 | setReduce(a,true); |
---|
566 | if (off_rational) Off(SW_RATIONAL); else On(SW_RATIONAL); |
---|
567 | return CanonicalForm(1); |
---|
568 | } |
---|
569 | // here: Dp NOT inCoeffDomain |
---|
570 | for(int i=1; i<=mv; i++) |
---|
571 | other[i] = 0; // reset (this is necessary, because some entries may not be updated by call to leadDeg) |
---|
572 | other = leadDeg(Dp,other); |
---|
573 | |
---|
574 | if(isEqual(bound, other, 1, mv)) // equal |
---|
575 | { |
---|
576 | chineseRemainder( D, q, replacevar( mapinto(Dp), a, b ), p, tmp, newq ); |
---|
577 | // tmp = Dp mod p |
---|
578 | // tmp = D mod q |
---|
579 | // newq = p*q |
---|
580 | q = newq; |
---|
581 | if( D != tmp ) |
---|
582 | D = tmp; |
---|
583 | On( SW_RATIONAL ); |
---|
584 | tmp = replacevar( Farey( D, q ), b, a ); // Farey and switch back to alg var |
---|
585 | setReduce(a,true); // reduce expressions modulo mipo |
---|
586 | On( SW_RATIONAL ); // needed by fdivides |
---|
587 | if( fdivides( tmp, f ) && fdivides( tmp, g )) // trial division |
---|
588 | { |
---|
589 | Off( SW_RATIONAL ); |
---|
590 | setReduce(a,true); |
---|
591 | if (off_rational) Off(SW_RATIONAL); else On(SW_RATIONAL); |
---|
592 | return tmp; |
---|
593 | } |
---|
594 | Off( SW_RATIONAL ); |
---|
595 | setReduce(a,false); // do not reduce expressions modulo mipo |
---|
596 | continue; |
---|
597 | } |
---|
598 | if( isLess(bound, other, 1, mv) ) // current prime unlucky |
---|
599 | continue; |
---|
600 | // here: isLess(other, bound, 1, mv) ) ==> all previous primes unlucky |
---|
601 | q = p; |
---|
602 | D = replacevar( mapinto(Dp), a, b ); // shortcut CRA // shortcut CRA |
---|
603 | for(int i=1; i<=mv; i++) // tighten bound |
---|
604 | bound[i] = other[i]; |
---|
605 | } |
---|
606 | // hopefully, we never reach this point |
---|
607 | setReduce(a,true); |
---|
608 | Off( SW_USE_QGCD ); |
---|
609 | D = gcd( f, g ); |
---|
610 | On( SW_USE_QGCD ); |
---|
611 | if (off_rational) Off(SW_RATIONAL); else On(SW_RATIONAL); |
---|
612 | return D; |
---|
613 | } |
---|
614 | |
---|
615 | |
---|
616 | int * leadDeg(const CanonicalForm & f, int *degs) |
---|
617 | { // leading degree vector w.r.t. lex. monomial order x(i+1) > x(i) |
---|
618 | // if f is in a coeff domain, the zero pointer is returned |
---|
619 | // 'a' should point to an array of sufficient size level(f)+1 |
---|
620 | if(f.inCoeffDomain()) |
---|
621 | return 0; |
---|
622 | CanonicalForm tmp = f; |
---|
623 | do |
---|
624 | { |
---|
625 | degs[tmp.level()] = tmp.degree(); |
---|
626 | tmp = LC(tmp); |
---|
627 | } |
---|
628 | while(!tmp.inCoeffDomain()); |
---|
629 | return degs; |
---|
630 | } |
---|
631 | |
---|
632 | |
---|
633 | bool isLess(int *a, int *b, int lower, int upper) |
---|
634 | { // compares the degree vectors a,b on the specified part. Note: x(i+1) > x(i) |
---|
635 | for(int i=upper; i>=lower; i--) |
---|
636 | if(a[i] == b[i]) |
---|
637 | continue; |
---|
638 | else |
---|
639 | return a[i] < b[i]; |
---|
640 | return true; |
---|
641 | } |
---|
642 | |
---|
643 | |
---|
644 | bool isEqual(int *a, int *b, int lower, int upper) |
---|
645 | { // compares the degree vectors a,b on the specified part. Note: x(i+1) > x(i) |
---|
646 | for(int i=lower; i<=upper; i++) |
---|
647 | if(a[i] != b[i]) |
---|
648 | return false; |
---|
649 | return true; |
---|
650 | } |
---|
651 | |
---|
652 | |
---|
653 | CanonicalForm firstLC(const CanonicalForm & f) |
---|
654 | { // returns the leading coefficient (LC) of level <= 1 |
---|
655 | CanonicalForm ret = f; |
---|
656 | while(ret.level() > 1) |
---|
657 | ret = LC(ret); |
---|
658 | return ret; |
---|
659 | } |
---|
660 | |
---|
661 | |
---|
662 | void tryCRA( const CanonicalForm & x1, const CanonicalForm & q1, const CanonicalForm & x2, const CanonicalForm & q2, const CanonicalForm & M, CanonicalForm & xnew, CanonicalForm & qnew, bool & fail ) |
---|
663 | { // as CRA, but takes care of zero divisors |
---|
664 | CanonicalForm tmp; |
---|
665 | if(x1.level() <= 1 && x2.level() <= 1) // base case |
---|
666 | { |
---|
667 | tryExtgcd(q1,q2,M,tmp,xnew,qnew,fail); |
---|
668 | if(fail) |
---|
669 | return; |
---|
670 | xnew = x1 + (x2-x1) * xnew * q1; |
---|
671 | qnew = q1*q2; |
---|
672 | xnew = mod(xnew,qnew); |
---|
673 | return; |
---|
674 | } |
---|
675 | CanonicalForm tmp2; |
---|
676 | xnew = 0; |
---|
677 | qnew = q1 * q2; |
---|
678 | // here: x1.level() > 1 || x2.level() > 1 |
---|
679 | if(x1.level() > x2.level()) |
---|
680 | { |
---|
681 | for(CFIterator i=x1; i.hasTerms(); i++) |
---|
682 | { |
---|
683 | if(i.exp() == 0) // const. term |
---|
684 | { |
---|
685 | tryCRA(i.coeff(),q1,x2,q2,M,tmp,tmp2,fail); |
---|
686 | if(fail) |
---|
687 | return; |
---|
688 | xnew += tmp; |
---|
689 | } |
---|
690 | else |
---|
691 | { |
---|
692 | tryCRA(i.coeff(),q1,0,q2,M,tmp,tmp2,fail); |
---|
693 | if(fail) |
---|
694 | return; |
---|
695 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
696 | } |
---|
697 | } |
---|
698 | return; |
---|
699 | } |
---|
700 | // here: x1.level() <= x2.level() && ( x1.level() > 1 || x2.level() > 1 ) |
---|
701 | if(x2.level() > x1.level()) |
---|
702 | { |
---|
703 | for(CFIterator j=x2; j.hasTerms(); j++) |
---|
704 | { |
---|
705 | if(j.exp() == 0) // const. term |
---|
706 | { |
---|
707 | tryCRA(x1,q1,j.coeff(),q2,M,tmp,tmp2,fail); |
---|
708 | if(fail) |
---|
709 | return; |
---|
710 | xnew += tmp; |
---|
711 | } |
---|
712 | else |
---|
713 | { |
---|
714 | tryCRA(0,q1,j.coeff(),q2,M,tmp,tmp2,fail); |
---|
715 | if(fail) |
---|
716 | return; |
---|
717 | xnew += tmp * power(x2.mvar(),j.exp()); |
---|
718 | } |
---|
719 | } |
---|
720 | return; |
---|
721 | } |
---|
722 | // here: x1.level() == x2.level() && x1.level() > 1 && x2.level() > 1 |
---|
723 | CFIterator i = x1; |
---|
724 | CFIterator j = x2; |
---|
725 | while(i.hasTerms() || j.hasTerms()) |
---|
726 | { |
---|
727 | if(i.hasTerms()) |
---|
728 | { |
---|
729 | if(j.hasTerms()) |
---|
730 | { |
---|
731 | if(i.exp() == j.exp()) |
---|
732 | { |
---|
733 | tryCRA(i.coeff(),q1,j.coeff(),q2,M,tmp,tmp2,fail); |
---|
734 | if(fail) |
---|
735 | return; |
---|
736 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
737 | i++; j++; |
---|
738 | } |
---|
739 | else |
---|
740 | { |
---|
741 | if(i.exp() < j.exp()) |
---|
742 | { |
---|
743 | tryCRA(i.coeff(),q1,0,q2,M,tmp,tmp2,fail); |
---|
744 | if(fail) |
---|
745 | return; |
---|
746 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
747 | i++; |
---|
748 | } |
---|
749 | else // i.exp() > j.exp() |
---|
750 | { |
---|
751 | tryCRA(0,q1,j.coeff(),q2,M,tmp,tmp2,fail); |
---|
752 | if(fail) |
---|
753 | return; |
---|
754 | xnew += tmp * power(x1.mvar(),j.exp()); |
---|
755 | j++; |
---|
756 | } |
---|
757 | } |
---|
758 | } |
---|
759 | else // j is out of terms |
---|
760 | { |
---|
761 | tryCRA(i.coeff(),q1,0,q2,M,tmp,tmp2,fail); |
---|
762 | if(fail) |
---|
763 | return; |
---|
764 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
765 | i++; |
---|
766 | } |
---|
767 | } |
---|
768 | else // i is out of terms |
---|
769 | { |
---|
770 | tryCRA(0,q1,j.coeff(),q2,M,tmp,tmp2,fail); |
---|
771 | if(fail) |
---|
772 | return; |
---|
773 | xnew += tmp * power(x1.mvar(),j.exp()); |
---|
774 | j++; |
---|
775 | } |
---|
776 | } |
---|
777 | } |
---|
778 | |
---|
779 | |
---|
780 | void tryExtgcd( const CanonicalForm & F, const CanonicalForm & G, const CanonicalForm & M, CanonicalForm & result, CanonicalForm & s, CanonicalForm & t, bool & fail ) |
---|
781 | { // F, G are univariate polynomials (i.e. they have exactly one polynomial variable) |
---|
782 | // F and G must have the same level AND level > 0 |
---|
783 | // we try to calculate gcd(F,G) = s*F + t*G |
---|
784 | // if a zero divisor is encontered, 'fail' is set to one |
---|
785 | // M is assumed to be monic |
---|
786 | CanonicalForm P; |
---|
787 | if(F.inCoeffDomain()) |
---|
788 | { |
---|
789 | tryInvert( F, M, P, fail ); |
---|
790 | if(fail) |
---|
791 | return; |
---|
792 | result = 1; |
---|
793 | s = P; t = 0; |
---|
794 | return; |
---|
795 | } |
---|
796 | if(G.inCoeffDomain()) |
---|
797 | { |
---|
798 | tryInvert( G, M, P, fail ); |
---|
799 | if(fail) |
---|
800 | return; |
---|
801 | result = 1; |
---|
802 | s = 0; t = P; |
---|
803 | return; |
---|
804 | } |
---|
805 | // here: both not inCoeffDomain |
---|
806 | CanonicalForm inv, rem, tmp, u, v, q, sum=0; |
---|
807 | if( F.degree() > G.degree() ) |
---|
808 | { |
---|
809 | P = F; result = G; s=v=0; t=u=1; |
---|
810 | } |
---|
811 | else |
---|
812 | { |
---|
813 | P = G; result = F; s=v=1; t=u=0; |
---|
814 | } |
---|
815 | Variable x = P.mvar(); |
---|
816 | // here: degree(P) >= degree(result) |
---|
817 | while(true) |
---|
818 | { |
---|
819 | tryInvert( Lc(result), M, inv, fail ); |
---|
820 | if(fail) |
---|
821 | return; |
---|
822 | // here: Lc(result) is invertible modulo M |
---|
823 | q = Lc(P)*inv*power( x, P.degree(x)-result.degree(x) ); |
---|
824 | rem = reduce( P - q*result, M ); |
---|
825 | if( rem.isZero() ) |
---|
826 | { |
---|
827 | s*=inv; |
---|
828 | t*=inv; |
---|
829 | result *= inv; // monify result |
---|
830 | return; |
---|
831 | } |
---|
832 | sum += q; |
---|
833 | if(result.degree(x) >= rem.degree(x)) |
---|
834 | { |
---|
835 | P=result; |
---|
836 | result=rem; |
---|
837 | tmp=u-sum*s; |
---|
838 | u=s; |
---|
839 | s=tmp; |
---|
840 | tmp=v-sum*t; |
---|
841 | v=t; |
---|
842 | t=tmp; |
---|
843 | sum = 0; // reset |
---|
844 | } |
---|
845 | else |
---|
846 | P = rem; |
---|
847 | } |
---|
848 | } |
---|
849 | |
---|
850 | |
---|
851 | static CanonicalForm trycontent ( const CanonicalForm & f, const Variable & x, const CanonicalForm & M, bool & fail ) |
---|
852 | { // as 'content', but takes care of zero divisors |
---|
853 | ASSERT( x.level() > 0, "cannot calculate content with respect to algebraic variable" ); |
---|
854 | Variable y = f.mvar(); |
---|
855 | if ( y == x ) |
---|
856 | return trycf_content( f, 0, M, fail ); |
---|
857 | if ( y < x ) |
---|
858 | return f; |
---|
859 | return swapvar( trycontent( swapvar( f, y, x ), y, M, fail ), y, x ); |
---|
860 | } |
---|
861 | |
---|
862 | |
---|
863 | static CanonicalForm tryvcontent ( const CanonicalForm & f, const Variable & x, const CanonicalForm & M, bool & fail ) |
---|
864 | { // as vcontent, but takes care of zero divisors |
---|
865 | ASSERT( x.level() > 0, "cannot calculate vcontent with respect to algebraic variable" ); |
---|
866 | if ( f.mvar() <= x ) |
---|
867 | return trycontent( f, x, M, fail ); |
---|
868 | CFIterator i; |
---|
869 | CanonicalForm d = 0, e, ret; |
---|
870 | for ( i = f; i.hasTerms() && ! d.isOne() && ! fail; i++ ) |
---|
871 | { |
---|
872 | e = tryvcontent( i.coeff(), x, M, fail ); |
---|
873 | if(fail) |
---|
874 | break; |
---|
875 | tryBrownGCD( d, e, M, ret, fail ); |
---|
876 | d = ret; |
---|
877 | } |
---|
878 | return d; |
---|
879 | } |
---|
880 | |
---|
881 | |
---|
882 | static CanonicalForm trycf_content ( const CanonicalForm & f, const CanonicalForm & g, const CanonicalForm & M, bool & fail ) |
---|
883 | { // as cf_content, but takes care of zero divisors |
---|
884 | if ( f.inPolyDomain() || ( f.inExtension() && ! getReduce( f.mvar() ) ) ) |
---|
885 | { |
---|
886 | CFIterator i = f; |
---|
887 | CanonicalForm tmp = g, result; |
---|
888 | while ( i.hasTerms() && ! tmp.isOne() && ! fail ) |
---|
889 | { |
---|
890 | tryBrownGCD( i.coeff(), tmp, M, result, fail ); |
---|
891 | tmp = result; |
---|
892 | i++; |
---|
893 | } |
---|
894 | return result; |
---|
895 | } |
---|
896 | return abs( f ); |
---|
897 | } |
---|
898 | |
---|
899 | |
---|
900 | static void tryDivide( const CanonicalForm & f, const CanonicalForm & g, const CanonicalForm & M, CanonicalForm & result, bool & divides, bool & fail ) |
---|
901 | { // M "univariate" monic polynomial |
---|
902 | // f, g polynomials with coeffs modulo M. |
---|
903 | // if f is divisible by g, 'divides' is set to 1 and 'result' == f/g mod M coefficientwise. |
---|
904 | // 'fail' is set to 1, iff a zero divisor is encountered. |
---|
905 | // divides==1 implies fail==0 |
---|
906 | // required: getReduce(M.mvar())==0 |
---|
907 | if(g.inBaseDomain()) |
---|
908 | { |
---|
909 | result = f/g; |
---|
910 | divides = true; |
---|
911 | return; |
---|
912 | } |
---|
913 | if(g.inCoeffDomain()) |
---|
914 | { |
---|
915 | tryInvert(g,M,result,fail); |
---|
916 | if(fail) |
---|
917 | return; |
---|
918 | result = reduce(f*result, M); |
---|
919 | divides = true; |
---|
920 | return; |
---|
921 | } |
---|
922 | // here: g NOT inCoeffDomain |
---|
923 | Variable x = g.mvar(); |
---|
924 | if(f.degree(x) < g.degree(x)) |
---|
925 | { |
---|
926 | divides = false; |
---|
927 | return; |
---|
928 | } |
---|
929 | // here: f.degree(x) > 0 and f.degree(x) >= g.degree(x) |
---|
930 | CanonicalForm F = f; |
---|
931 | CanonicalForm q, leadG = LC(g); |
---|
932 | result = 0; |
---|
933 | while(!F.isZero()) |
---|
934 | { |
---|
935 | tryDivide(F.LC(x),leadG,M,q,divides,fail); |
---|
936 | if(fail || !divides) |
---|
937 | return; |
---|
938 | if(F.degree(x)<g.degree(x)) |
---|
939 | { |
---|
940 | divides = false; |
---|
941 | return; |
---|
942 | } |
---|
943 | q *= power(x,F.degree(x)-g.degree(x)); |
---|
944 | result += q; |
---|
945 | F = reduce(F-q*g, M); |
---|
946 | } |
---|
947 | result = reduce(result, M); |
---|
948 | divides = true; |
---|
949 | } |
---|
950 | |
---|
951 | |
---|
952 | |
---|
953 | void tryCRA( const CanonicalForm & x1, const CanonicalForm & q1, const CanonicalForm & x2, const CanonicalForm & q2, CanonicalForm & xnew, CanonicalForm & qnew, bool & fail ) |
---|
954 | { // polys of level <= 1 are considered coefficients. q1,q2 are assumed to be coprime |
---|
955 | // xnew = x1 mod q1 (coefficientwise in the above sense) |
---|
956 | // xnew = x2 mod q2 |
---|
957 | // qnew = q1*q2 |
---|
958 | CanonicalForm tmp; |
---|
959 | if(x1.level() <= 1 && x2.level() <= 1) // base case |
---|
960 | { |
---|
961 | tryExtgcd(q1,q2,tmp,xnew,qnew,fail); |
---|
962 | if(fail) |
---|
963 | return; |
---|
964 | xnew = x1 + (x2-x1) * xnew * q1; |
---|
965 | qnew = q1*q2; |
---|
966 | xnew = mod(xnew,qnew); |
---|
967 | return; |
---|
968 | } |
---|
969 | CanonicalForm tmp2; |
---|
970 | xnew = 0; |
---|
971 | qnew = q1 * q2; |
---|
972 | // here: x1.level() > 1 || x2.level() > 1 |
---|
973 | if(x1.level() > x2.level()) |
---|
974 | { |
---|
975 | for(CFIterator i=x1; i.hasTerms(); i++) |
---|
976 | { |
---|
977 | if(i.exp() == 0) // const. term |
---|
978 | { |
---|
979 | tryCRA(i.coeff(),q1,x2,q2,tmp,tmp2,fail); |
---|
980 | if(fail) |
---|
981 | return; |
---|
982 | xnew += tmp; |
---|
983 | } |
---|
984 | else |
---|
985 | { |
---|
986 | tryCRA(i.coeff(),q1,0,q2,tmp,tmp2,fail); |
---|
987 | if(fail) |
---|
988 | return; |
---|
989 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
990 | } |
---|
991 | } |
---|
992 | return; |
---|
993 | } |
---|
994 | // here: x1.level() <= x2.level() && ( x1.level() > 1 || x2.level() > 1 ) |
---|
995 | if(x2.level() > x1.level()) |
---|
996 | { |
---|
997 | for(CFIterator j=x2; j.hasTerms(); j++) |
---|
998 | { |
---|
999 | if(j.exp() == 0) // const. term |
---|
1000 | { |
---|
1001 | tryCRA(x1,q1,j.coeff(),q2,tmp,tmp2,fail); |
---|
1002 | if(fail) |
---|
1003 | return; |
---|
1004 | xnew += tmp; |
---|
1005 | } |
---|
1006 | else |
---|
1007 | { |
---|
1008 | tryCRA(0,q1,j.coeff(),q2,tmp,tmp2,fail); |
---|
1009 | if(fail) |
---|
1010 | return; |
---|
1011 | xnew += tmp * power(x2.mvar(),j.exp()); |
---|
1012 | } |
---|
1013 | } |
---|
1014 | return; |
---|
1015 | } |
---|
1016 | // here: x1.level() == x2.level() && x1.level() > 1 && x2.level() > 1 |
---|
1017 | CFIterator i = x1; |
---|
1018 | CFIterator j = x2; |
---|
1019 | while(i.hasTerms() || j.hasTerms()) |
---|
1020 | { |
---|
1021 | if(i.hasTerms()) |
---|
1022 | { |
---|
1023 | if(j.hasTerms()) |
---|
1024 | { |
---|
1025 | if(i.exp() == j.exp()) |
---|
1026 | { |
---|
1027 | tryCRA(i.coeff(),q1,j.coeff(),q2,tmp,tmp2,fail); |
---|
1028 | if(fail) |
---|
1029 | return; |
---|
1030 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
1031 | i++; j++; |
---|
1032 | } |
---|
1033 | else |
---|
1034 | { |
---|
1035 | if(i.exp() < j.exp()) |
---|
1036 | { |
---|
1037 | tryCRA(i.coeff(),q1,0,q2,tmp,tmp2,fail); |
---|
1038 | if(fail) |
---|
1039 | return; |
---|
1040 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
1041 | i++; |
---|
1042 | } |
---|
1043 | else // i.exp() > j.exp() |
---|
1044 | { |
---|
1045 | tryCRA(0,q1,j.coeff(),q2,tmp,tmp2,fail); |
---|
1046 | if(fail) |
---|
1047 | return; |
---|
1048 | xnew += tmp * power(x1.mvar(),j.exp()); |
---|
1049 | j++; |
---|
1050 | } |
---|
1051 | } |
---|
1052 | } |
---|
1053 | else // j is out of terms |
---|
1054 | { |
---|
1055 | tryCRA(i.coeff(),q1,0,q2,tmp,tmp2,fail); |
---|
1056 | if(fail) |
---|
1057 | return; |
---|
1058 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
1059 | i++; |
---|
1060 | } |
---|
1061 | } |
---|
1062 | else // i is out of terms |
---|
1063 | { |
---|
1064 | tryCRA(0,q1,j.coeff(),q2,tmp,tmp2,fail); |
---|
1065 | if(fail) |
---|
1066 | return; |
---|
1067 | xnew += tmp * power(x1.mvar(),j.exp()); |
---|
1068 | j++; |
---|
1069 | } |
---|
1070 | } |
---|
1071 | } |
---|
1072 | |
---|
1073 | |
---|
1074 | void tryExtgcd( const CanonicalForm & F, const CanonicalForm & G, CanonicalForm & result, CanonicalForm & s, CanonicalForm & t, bool & fail ) |
---|
1075 | { |
---|
1076 | // F, G are univariate polynomials (i.e. they have exactly one polynomial variable) |
---|
1077 | // F and G must have the same level AND level > 0 |
---|
1078 | // we try to calculate gcd(f,g) = s*F + t*G |
---|
1079 | // if a zero divisor is encontered, 'fail' is set to one |
---|
1080 | Variable a, b; |
---|
1081 | if( !hasFirstAlgVar(F,a) && !hasFirstAlgVar(G,b) ) // note lazy evaluation |
---|
1082 | { |
---|
1083 | result = extgcd( F, G, s, t ); // no zero divisors possible |
---|
1084 | return; |
---|
1085 | } |
---|
1086 | if( b.level() > a.level() ) |
---|
1087 | a = b; |
---|
1088 | // here: a is the biggest alg. var in F and G |
---|
1089 | CanonicalForm M = getMipo(a); |
---|
1090 | CanonicalForm P; |
---|
1091 | if( degree(F) > degree(G) ) |
---|
1092 | { |
---|
1093 | P=F; result=G; s=0; t=1; |
---|
1094 | } |
---|
1095 | else |
---|
1096 | { |
---|
1097 | P=G; result=F; s=1; t=0; |
---|
1098 | } |
---|
1099 | CanonicalForm inv, rem, q, u, v; |
---|
1100 | // here: degree(P) >= degree(result) |
---|
1101 | while(true) |
---|
1102 | { |
---|
1103 | tryInvert( Lc(result), M, inv, fail ); |
---|
1104 | if(fail) |
---|
1105 | return; |
---|
1106 | // here: Lc(result) is invertible modulo M |
---|
1107 | q = Lc(P)*inv * power( P.mvar(), degree(P)-degree(result) ); |
---|
1108 | rem = P - q*result; |
---|
1109 | // here: s*F + t*G = result |
---|
1110 | if( rem.isZero() ) |
---|
1111 | { |
---|
1112 | s*=inv; |
---|
1113 | t*=inv; |
---|
1114 | result *= inv; // monify result |
---|
1115 | return; |
---|
1116 | } |
---|
1117 | P=result; |
---|
1118 | result=rem; |
---|
1119 | rem=u-q*s; |
---|
1120 | u=s; |
---|
1121 | s=rem; |
---|
1122 | rem=v-q*t; |
---|
1123 | v=t; |
---|
1124 | t=rem; |
---|
1125 | } |
---|
1126 | } |
---|