1 | #include "factoryconf.h" |
---|
2 | |
---|
3 | #ifdef HAVE_CSTDIO |
---|
4 | #include <cstdio> |
---|
5 | #else |
---|
6 | #include <stdio.h> |
---|
7 | #endif |
---|
8 | #ifndef NOSTREAMIO |
---|
9 | #ifdef HAVE_IOSTREAM_H |
---|
10 | #include <iostream.h> |
---|
11 | #elif defined(HAVE_IOSTREAM) |
---|
12 | #include <iostream> |
---|
13 | #endif |
---|
14 | #endif |
---|
15 | |
---|
16 | #include "cf_defs.h" |
---|
17 | #include "canonicalform.h" |
---|
18 | #include "cf_iter.h" |
---|
19 | #include "cf_primes.h" |
---|
20 | #include "cf_algorithm.h" |
---|
21 | #include "algext.h" |
---|
22 | #include "fieldGCD.h" |
---|
23 | #include "cf_map.h" |
---|
24 | #include "cf_generator.h" |
---|
25 | |
---|
26 | CanonicalForm reduce(const CanonicalForm & f, const CanonicalForm & M) |
---|
27 | { // polynomials in M.mvar() are considered coefficients |
---|
28 | // M univariate monic polynomial |
---|
29 | // the coefficients of f are reduced modulo M |
---|
30 | if(f.inBaseDomain() || f.level() < M.level()) |
---|
31 | return f; |
---|
32 | if(f.level() == M.level()) |
---|
33 | { |
---|
34 | if(f.degree() < M.degree()) |
---|
35 | return f; |
---|
36 | CanonicalForm tmp = f; |
---|
37 | do |
---|
38 | tmp -= lc(tmp)*M*power(M.mvar(),tmp.degree()-M.degree()); |
---|
39 | while(tmp.degree() >= M.degree()); |
---|
40 | return tmp; |
---|
41 | } |
---|
42 | // here: f.level() > M.level() |
---|
43 | CanonicalForm result = 0; |
---|
44 | for(CFIterator i=f; i.hasTerms(); i++) |
---|
45 | result += reduce(i.coeff(),M) * power(f.mvar(),i.exp()); |
---|
46 | return result; |
---|
47 | } |
---|
48 | |
---|
49 | void tryInvert( const CanonicalForm & F, const CanonicalForm & M, CanonicalForm & inv, bool & fail ) |
---|
50 | { // F, M are required to be "univariate" polynomials in an algebraic variable |
---|
51 | // we try to invert F modulo M |
---|
52 | if(F.inBaseDomain()) |
---|
53 | { |
---|
54 | if(F.isZero()) |
---|
55 | { |
---|
56 | fail = true; |
---|
57 | return; |
---|
58 | } |
---|
59 | inv = 1/F; |
---|
60 | return; |
---|
61 | } |
---|
62 | CanonicalForm b; |
---|
63 | Variable a = M.mvar(); |
---|
64 | Variable x = Variable(1); |
---|
65 | if(!extgcd( replacevar( F, a, x ), replacevar( M, a, x ), inv, b ).isOne()) |
---|
66 | fail = true; |
---|
67 | else |
---|
68 | inv = replacevar( inv, x, a ); // change back to alg var |
---|
69 | } |
---|
70 | |
---|
71 | void tryEuclid( const CanonicalForm & A, const CanonicalForm & B, const CanonicalForm & M, CanonicalForm & result, bool & fail ) |
---|
72 | { |
---|
73 | CanonicalForm P; |
---|
74 | if(A.inCoeffDomain()) |
---|
75 | { |
---|
76 | tryInvert( A, M, P, fail ); |
---|
77 | if(fail) |
---|
78 | return; |
---|
79 | result = 1; |
---|
80 | return; |
---|
81 | } |
---|
82 | if(B.inCoeffDomain()) |
---|
83 | { |
---|
84 | tryInvert( B, M, P, fail ); |
---|
85 | if(fail) |
---|
86 | return; |
---|
87 | result = 1; |
---|
88 | return; |
---|
89 | } |
---|
90 | // here: both not inCoeffDomain |
---|
91 | if( A.degree() > B.degree() ) |
---|
92 | { |
---|
93 | P = A; result = B; |
---|
94 | } |
---|
95 | else |
---|
96 | { |
---|
97 | P = B; result = A; |
---|
98 | } |
---|
99 | CanonicalForm inv; |
---|
100 | if( result.isZero() ) |
---|
101 | { |
---|
102 | tryInvert( Lc(P), M, inv, fail ); |
---|
103 | if(fail) |
---|
104 | return; |
---|
105 | result = inv*P; // monify result (not reduced, yet) |
---|
106 | return; |
---|
107 | } |
---|
108 | Variable x = P.mvar(); |
---|
109 | CanonicalForm rem; |
---|
110 | // here: degree(P) >= degree(result) |
---|
111 | while(true) |
---|
112 | { |
---|
113 | tryInvert( Lc(result), M, inv, fail ); |
---|
114 | if(fail) |
---|
115 | return; |
---|
116 | // here: Lc(result) is invertible modulo M |
---|
117 | rem = reduce( P - Lc(P)*inv*result*power( x, P.degree(x)-result.degree(x) ), M ); |
---|
118 | if( rem.isZero() ) |
---|
119 | { |
---|
120 | result *= inv; |
---|
121 | return; |
---|
122 | } |
---|
123 | if(result.degree(x) >= rem.degree(x)) |
---|
124 | { |
---|
125 | P = result; |
---|
126 | result = rem; |
---|
127 | } |
---|
128 | else |
---|
129 | P = rem; |
---|
130 | } |
---|
131 | } |
---|
132 | |
---|
133 | bool hasFirstAlgVar( const CanonicalForm & f, Variable & a ) |
---|
134 | { |
---|
135 | if( f.inBaseDomain() ) // f has NO alg. variable |
---|
136 | return false; |
---|
137 | if( f.level()<0 ) // f has only alg. vars, so take the first one |
---|
138 | { |
---|
139 | a = f.mvar(); |
---|
140 | return true; |
---|
141 | } |
---|
142 | for(CFIterator i=f; i.hasTerms(); i++) |
---|
143 | if( hasFirstAlgVar( i.coeff(), a )) |
---|
144 | return true; // 'a' is already set |
---|
145 | return false; |
---|
146 | } |
---|
147 | |
---|
148 | CanonicalForm QGCD( const CanonicalForm & F, const CanonicalForm & G ); |
---|
149 | int * leadDeg(const CanonicalForm & f, int *degs); |
---|
150 | bool isLess(int *a, int *b, int lower, int upper); |
---|
151 | bool isEqual(int *a, int *b, int lower, int upper); |
---|
152 | CanonicalForm firstLC(const CanonicalForm & f); |
---|
153 | void tryCRA( const CanonicalForm & x1, const CanonicalForm & q1, const CanonicalForm & x2, const CanonicalForm & q2, const CanonicalForm & M, CanonicalForm & xnew, CanonicalForm & qnew, bool & fail ); |
---|
154 | void tryExtgcd( const CanonicalForm & F, const CanonicalForm & G, const CanonicalForm & M, CanonicalForm & result, CanonicalForm & s, CanonicalForm & t, bool & fail ); |
---|
155 | static CanonicalForm trycontent ( const CanonicalForm & f, const Variable & x, const CanonicalForm & M, bool & fail ); |
---|
156 | static CanonicalForm tryvcontent ( const CanonicalForm & f, const Variable & x, const CanonicalForm & M, bool & fail ); |
---|
157 | static CanonicalForm trycf_content ( const CanonicalForm & f, const CanonicalForm & g, const CanonicalForm & M, bool & fail ); |
---|
158 | static void tryDivide( const CanonicalForm & f, const CanonicalForm & g, const CanonicalForm & M, CanonicalForm & result, bool & divides, bool & fail ); |
---|
159 | |
---|
160 | |
---|
161 | void tryBrownGCD( const CanonicalForm & F, const CanonicalForm & G, const CanonicalForm & M, CanonicalForm & result, bool & fail ) |
---|
162 | { // assume F,G are multivariate polys over Z/p(a) for big prime p, M "univariate" polynomial in an algebraic variable |
---|
163 | // M is assumed to be monic |
---|
164 | if(F.isZero()) |
---|
165 | { |
---|
166 | if(G.isZero()) |
---|
167 | { |
---|
168 | result = G; // G is zero |
---|
169 | return; |
---|
170 | } |
---|
171 | if(G.inCoeffDomain()) |
---|
172 | { |
---|
173 | tryInvert(G,M,result,fail); |
---|
174 | if(fail) |
---|
175 | return; |
---|
176 | result = 1; |
---|
177 | return; |
---|
178 | } |
---|
179 | // try to make G monic modulo M |
---|
180 | CanonicalForm inv; |
---|
181 | tryInvert(Lc(G),M,inv,fail); |
---|
182 | if(fail) |
---|
183 | return; |
---|
184 | result = inv*G; |
---|
185 | return; |
---|
186 | } |
---|
187 | if(G.isZero()) // F is non-zero |
---|
188 | { |
---|
189 | if(F.inCoeffDomain()) |
---|
190 | { |
---|
191 | tryInvert(F,M,result,fail); |
---|
192 | if(fail) |
---|
193 | return; |
---|
194 | result = 1; |
---|
195 | return; |
---|
196 | } |
---|
197 | // try to make F monic modulo M |
---|
198 | CanonicalForm inv; |
---|
199 | tryInvert(Lc(F),M,inv,fail); |
---|
200 | if(fail) |
---|
201 | return; |
---|
202 | result = inv*F; |
---|
203 | return; |
---|
204 | } |
---|
205 | // here: F,G both nonzero |
---|
206 | if(F.inCoeffDomain()) |
---|
207 | { |
---|
208 | tryInvert(F,M,result,fail); |
---|
209 | if(fail) |
---|
210 | return; |
---|
211 | result = 1; |
---|
212 | return; |
---|
213 | } |
---|
214 | if(G.inCoeffDomain()) |
---|
215 | { |
---|
216 | tryInvert(G,M,result,fail); |
---|
217 | if(fail) |
---|
218 | return; |
---|
219 | result = 1; |
---|
220 | return; |
---|
221 | } |
---|
222 | CFMap MM,NN; |
---|
223 | CFArray ps(1,2); |
---|
224 | ps[1] = F; |
---|
225 | ps[2] = G; |
---|
226 | compress(ps,MM,NN); // maps MM, NN are created |
---|
227 | CanonicalForm f=MM(F); |
---|
228 | CanonicalForm g=MM(G); |
---|
229 | // here: f,g are compressed |
---|
230 | // compute largest variable in f or g (least one is Variable(1)) |
---|
231 | int mv = f.level(); |
---|
232 | if(g.level() > mv) |
---|
233 | mv = g.level(); |
---|
234 | // here: mv is level of the largest variable in f, g |
---|
235 | if(mv == 1) // f,g univariate |
---|
236 | { |
---|
237 | tryEuclid(f,g,M,result,fail); |
---|
238 | if(fail) |
---|
239 | return; |
---|
240 | result = NN(result); // do not forget to map back |
---|
241 | return; |
---|
242 | } |
---|
243 | // here: mv > 1 |
---|
244 | CanonicalForm cf = tryvcontent(f, Variable(2), M, fail); // cf is univariate poly in var(1) |
---|
245 | if(fail) |
---|
246 | return; |
---|
247 | CanonicalForm cg = tryvcontent(g, Variable(2), M, fail); |
---|
248 | if(fail) |
---|
249 | return; |
---|
250 | CanonicalForm c; |
---|
251 | tryEuclid(cf,cg,M,c,fail); |
---|
252 | if(fail) |
---|
253 | return; |
---|
254 | bool divides = true; |
---|
255 | CanonicalForm tmp; |
---|
256 | // f /= cf |
---|
257 | tryDivide(f,cf,M,tmp,divides,fail); // 'divides' is not checked |
---|
258 | if(fail) |
---|
259 | return; |
---|
260 | f = tmp; |
---|
261 | // g /= cg |
---|
262 | tryDivide(g,cg,M,tmp,divides,fail); // 'divides' is not checked |
---|
263 | if(fail) |
---|
264 | return; |
---|
265 | g = tmp; |
---|
266 | if(f.inCoeffDomain()) |
---|
267 | { |
---|
268 | tryInvert(f,M,result,fail); |
---|
269 | if(fail) |
---|
270 | return; |
---|
271 | result = NN(c); |
---|
272 | return; |
---|
273 | } |
---|
274 | if(g.inCoeffDomain()) |
---|
275 | { |
---|
276 | tryInvert(g,M,result,fail); |
---|
277 | if(fail) |
---|
278 | return; |
---|
279 | result = NN(c); |
---|
280 | return; |
---|
281 | } |
---|
282 | int *L = new int[mv+1]; // L is addressed by i from 2 to mv |
---|
283 | int *N = new int[mv+1]; |
---|
284 | for(int i=2; i<=mv; i++) |
---|
285 | L[i] = N[i] = 0; |
---|
286 | L = leadDeg(f, L); |
---|
287 | N = leadDeg(g, N); |
---|
288 | CanonicalForm gamma; |
---|
289 | tryEuclid( firstLC(f), firstLC(g), M, gamma, fail ); |
---|
290 | if(fail) |
---|
291 | return; |
---|
292 | for(int i=2; i<=mv; i++) // entries at i=0,1 not visited |
---|
293 | if(N[i] < L[i]) |
---|
294 | L[i] = N[i]; |
---|
295 | // L is now upper bound for degrees of gcd |
---|
296 | int *dg_im = new int[mv+1]; // for the degree vector of the image we don't need any entry at i=1 |
---|
297 | for(int i=2; i<=mv; i++) |
---|
298 | dg_im[i] = 0; // initialize |
---|
299 | CanonicalForm gamma_image, m=1; |
---|
300 | CanonicalForm gm=0; |
---|
301 | CanonicalForm g_image, alpha, gnew, mnew; |
---|
302 | FFGenerator gen = FFGenerator(); |
---|
303 | for(FFGenerator gen = FFGenerator(); gen.hasItems(); gen.next()) |
---|
304 | { |
---|
305 | alpha = gen.item(); |
---|
306 | gamma_image = reduce(gamma(alpha, Variable(1)),M); // plug in alpha for var(1) |
---|
307 | if(gamma_image.isZero()) // skip lc-bad points var(1)-alpha |
---|
308 | continue; |
---|
309 | tryBrownGCD( f(alpha, Variable(1)), g(alpha, Variable(1)), M, g_image, fail ); // recursive call with one var less |
---|
310 | if(fail) |
---|
311 | return; |
---|
312 | g_image = reduce(g_image, M); |
---|
313 | if(g_image.inCoeffDomain()) // early termination |
---|
314 | { |
---|
315 | tryInvert(g_image,M,result,fail); |
---|
316 | if(fail) |
---|
317 | return; |
---|
318 | result = NN(c); |
---|
319 | return; |
---|
320 | } |
---|
321 | for(int i=2; i<=mv; i++) |
---|
322 | dg_im[i] = 0; // reset (this is necessary, because some entries may not be updated by call to leadDeg) |
---|
323 | dg_im = leadDeg(g_image, dg_im); // dg_im cannot be NIL-pointer |
---|
324 | if(isEqual(dg_im, L, 2, mv)) |
---|
325 | { |
---|
326 | g_image /= lc(g_image); // make g_image monic over Z/p |
---|
327 | g_image *= gamma_image; // multiply by multiple of image lc(gcd) |
---|
328 | tryCRA( g_image, Variable(1)-alpha, gm, m, M, gnew, mnew, fail ); |
---|
329 | // gnew = gm mod m |
---|
330 | // gnew = g_image mod var(1)-alpha |
---|
331 | // mnew = m * (var(1)-alpha) |
---|
332 | if(fail) |
---|
333 | return; |
---|
334 | m = mnew; |
---|
335 | if(gnew == gm) // gnew did not change |
---|
336 | { |
---|
337 | cf = tryvcontent(gm, Variable(2), M, fail); |
---|
338 | if(fail) |
---|
339 | return; |
---|
340 | divides = true; |
---|
341 | tryDivide(gm,cf,M,g_image,divides,fail); // 'divides' is ignored |
---|
342 | if(fail) |
---|
343 | return; |
---|
344 | tryDivide(f,g_image,M,tmp,divides,fail); // trial division (f) |
---|
345 | if(fail) |
---|
346 | return; |
---|
347 | if(divides) |
---|
348 | { |
---|
349 | tryDivide(g,g_image,M,tmp,divides,fail); // trial division (g) |
---|
350 | if(fail) |
---|
351 | return; |
---|
352 | if(divides) |
---|
353 | { |
---|
354 | result = NN(c*g_image); |
---|
355 | return; |
---|
356 | } |
---|
357 | } |
---|
358 | } |
---|
359 | gm = gnew; |
---|
360 | continue; |
---|
361 | } |
---|
362 | |
---|
363 | if(isLess(L, dg_im, 2, mv)) // dg_im > L --> current point unlucky |
---|
364 | continue; |
---|
365 | |
---|
366 | // here: isLess(dg_im, L, 2, mv) --> all previous points were unlucky |
---|
367 | m = CanonicalForm(1); // reset |
---|
368 | gm = 0; // reset |
---|
369 | for(int i=2; i<=mv; i++) // tighten bound |
---|
370 | L[i] = dg_im[i]; |
---|
371 | } |
---|
372 | // we are out of evaluation points |
---|
373 | fail = true; |
---|
374 | } |
---|
375 | |
---|
376 | CanonicalForm QGCD( const CanonicalForm & F, const CanonicalForm & G ) |
---|
377 | { // f,g in Q(a)[x1,...,xn] |
---|
378 | if(F.isZero()) |
---|
379 | { |
---|
380 | if(G.isZero()) |
---|
381 | return G; // G is zero |
---|
382 | if(G.inCoeffDomain()) |
---|
383 | return CanonicalForm(1); |
---|
384 | return G/Lc(G); // return monic G |
---|
385 | } |
---|
386 | if(G.isZero()) // F is non-zero |
---|
387 | { |
---|
388 | if(F.inCoeffDomain()) |
---|
389 | return CanonicalForm(1); |
---|
390 | return F/Lc(F); // return monic F |
---|
391 | } |
---|
392 | if(F.inCoeffDomain() || G.inCoeffDomain()) |
---|
393 | return CanonicalForm(1); |
---|
394 | // here: both NOT inCoeffDomain |
---|
395 | CanonicalForm f, g, tmp, M, q, D, Dp, cl, newq, mipo; |
---|
396 | int p, i; |
---|
397 | int *bound, *other; // degree vectors |
---|
398 | bool fail; |
---|
399 | bool off_rational=!isOn(SW_RATIONAL); |
---|
400 | On( SW_RATIONAL ); // needed by bCommonDen |
---|
401 | f = F * bCommonDen(F); |
---|
402 | g = G * bCommonDen(G); |
---|
403 | Variable a, b; |
---|
404 | if(hasFirstAlgVar(f,a)) |
---|
405 | { |
---|
406 | if(hasFirstAlgVar(g,b)) |
---|
407 | { |
---|
408 | if(b.level() > a.level()) |
---|
409 | a = b; |
---|
410 | } |
---|
411 | } |
---|
412 | else |
---|
413 | { |
---|
414 | if(!hasFirstAlgVar(g,a))// both not in extension |
---|
415 | { |
---|
416 | Off( SW_RATIONAL ); |
---|
417 | Off( SW_USE_QGCD ); |
---|
418 | tmp = gcd( F, G ); |
---|
419 | On( SW_USE_QGCD ); |
---|
420 | if (off_rational) Off(SW_RATIONAL); |
---|
421 | return tmp; |
---|
422 | } |
---|
423 | } |
---|
424 | // here: a is the biggest alg. var in f and g AND some of f,g is in extension |
---|
425 | // (in the sequel b is used to swap alg/poly vars) |
---|
426 | setReduce(a,false); // do not reduce expressions modulo mipo |
---|
427 | tmp = getMipo(a); |
---|
428 | M = tmp * bCommonDen(tmp); |
---|
429 | // here: f, g in Z[a][x1,...,xn], M in Z[a] not necessarily monic |
---|
430 | Off( SW_RATIONAL ); // needed by mod |
---|
431 | // calculate upper bound for degree vector of gcd |
---|
432 | int mv = f.level(); i = g.level(); |
---|
433 | if(i > mv) |
---|
434 | mv = i; |
---|
435 | // here: mv is level of the largest variable in f, g |
---|
436 | b = Variable(mv+1); |
---|
437 | bound = new int[mv+1]; // 'bound' could be indexed from 0 to mv, but we will only use from 1 to mv |
---|
438 | other = new int[mv+1]; |
---|
439 | for(int i=1; i<=mv; i++) // initialize 'bound', 'other' with zeros |
---|
440 | bound[i] = other[i] = 0; |
---|
441 | bound = leadDeg(f,bound); // 'bound' is set the leading degree vector of f |
---|
442 | other = leadDeg(g,other); |
---|
443 | for(int i=1; i<=mv; i++) // entry at i=0 not visited |
---|
444 | if(other[i] < bound[i]) |
---|
445 | bound[i] = other[i]; |
---|
446 | // now 'bound' is the smaller vector |
---|
447 | cl = lc(M) * lc(f) * lc(g); |
---|
448 | q = 1; |
---|
449 | D = 0; |
---|
450 | for( i=cf_getNumBigPrimes()-1; i>-1; i-- ) |
---|
451 | { |
---|
452 | p = cf_getBigPrime(i); |
---|
453 | if( mod( cl, p ).isZero() ) // skip lc-bad primes |
---|
454 | continue; |
---|
455 | fail = false; |
---|
456 | setCharacteristic(p); |
---|
457 | mipo = mapinto(M); |
---|
458 | mipo /= mipo.lc(); |
---|
459 | // here: mipo is monic |
---|
460 | tryBrownGCD( mapinto(f), mapinto(g), mipo, Dp, fail ); |
---|
461 | Dp = reduce( Dp, mipo ); |
---|
462 | setCharacteristic(0); |
---|
463 | if( fail ) // mipo splits in char p |
---|
464 | continue; |
---|
465 | if( Dp.inCoeffDomain() ) // early termination |
---|
466 | { |
---|
467 | tryInvert(Dp,mipo,tmp,fail); // check if zero divisor |
---|
468 | if(fail) |
---|
469 | continue; |
---|
470 | setReduce(a,true); |
---|
471 | if (off_rational) Off(SW_RATIONAL); else On(SW_RATIONAL); |
---|
472 | return CanonicalForm(1); |
---|
473 | } |
---|
474 | // here: Dp NOT inCoeffDomain |
---|
475 | for(int i=1; i<=mv; i++) |
---|
476 | other[i] = 0; // reset (this is necessary, because some entries may not be updated by call to leadDeg) |
---|
477 | other = leadDeg(Dp,other); |
---|
478 | |
---|
479 | if(isEqual(bound, other, 1, mv)) // equal |
---|
480 | { |
---|
481 | chineseRemainder( D, q, replacevar( mapinto(Dp), a, b ), p, tmp, newq ); |
---|
482 | // tmp = Dp mod p |
---|
483 | // tmp = D mod q |
---|
484 | // newq = p*q |
---|
485 | q = newq; |
---|
486 | if( D != tmp ) |
---|
487 | D = tmp; |
---|
488 | On( SW_RATIONAL ); |
---|
489 | tmp = replacevar( Farey( D, q ), b, a ); // Farey and switch back to alg var |
---|
490 | setReduce(a,true); // reduce expressions modulo mipo |
---|
491 | On( SW_RATIONAL ); // needed by fdivides |
---|
492 | if( fdivides( tmp, f ) && fdivides( tmp, g )) // trial division |
---|
493 | { |
---|
494 | Off( SW_RATIONAL ); |
---|
495 | setReduce(a,true); |
---|
496 | if (off_rational) Off(SW_RATIONAL); else On(SW_RATIONAL); |
---|
497 | return tmp; |
---|
498 | } |
---|
499 | Off( SW_RATIONAL ); |
---|
500 | setReduce(a,false); // do not reduce expressions modulo mipo |
---|
501 | continue; |
---|
502 | } |
---|
503 | if( isLess(bound, other, 1, mv) ) // current prime unlucky |
---|
504 | continue; |
---|
505 | // here: isLess(other, bound, 1, mv) ) ==> all previous primes unlucky |
---|
506 | q = p; |
---|
507 | D = replacevar( mapinto(Dp), a, b ); // shortcut CRA // shortcut CRA |
---|
508 | for(int i=1; i<=mv; i++) // tighten bound |
---|
509 | bound[i] = other[i]; |
---|
510 | } |
---|
511 | // hopefully, we never reach this point |
---|
512 | setReduce(a,true); |
---|
513 | Off( SW_USE_QGCD ); |
---|
514 | D = gcd( f, g ); |
---|
515 | On( SW_USE_QGCD ); |
---|
516 | if (off_rational) Off(SW_RATIONAL); else On(SW_RATIONAL); |
---|
517 | return D; |
---|
518 | } |
---|
519 | |
---|
520 | |
---|
521 | int * leadDeg(const CanonicalForm & f, int *degs) |
---|
522 | { // leading degree vector w.r.t. lex. monomial order x(i+1) > x(i) |
---|
523 | // if f is in a coeff domain, the zero pointer is returned |
---|
524 | // 'a' should point to an array of sufficient size level(f)+1 |
---|
525 | if(f.inCoeffDomain()) |
---|
526 | return 0; |
---|
527 | CanonicalForm tmp = f; |
---|
528 | do |
---|
529 | { |
---|
530 | degs[tmp.level()] = tmp.degree(); |
---|
531 | tmp = LC(tmp); |
---|
532 | } |
---|
533 | while(!tmp.inCoeffDomain()); |
---|
534 | return degs; |
---|
535 | } |
---|
536 | |
---|
537 | |
---|
538 | bool isLess(int *a, int *b, int lower, int upper) |
---|
539 | { // compares the degree vectors a,b on the specified part. Note: x(i+1) > x(i) |
---|
540 | for(int i=upper; i>=lower; i--) |
---|
541 | if(a[i] == b[i]) |
---|
542 | continue; |
---|
543 | else |
---|
544 | return a[i] < b[i]; |
---|
545 | return true; |
---|
546 | } |
---|
547 | |
---|
548 | |
---|
549 | bool isEqual(int *a, int *b, int lower, int upper) |
---|
550 | { // compares the degree vectors a,b on the specified part. Note: x(i+1) > x(i) |
---|
551 | for(int i=lower; i<=upper; i++) |
---|
552 | if(a[i] != b[i]) |
---|
553 | return false; |
---|
554 | return true; |
---|
555 | } |
---|
556 | |
---|
557 | |
---|
558 | CanonicalForm firstLC(const CanonicalForm & f) |
---|
559 | { // returns the leading coefficient (LC) of level <= 1 |
---|
560 | CanonicalForm ret = f; |
---|
561 | while(ret.level() > 1) |
---|
562 | ret = LC(ret); |
---|
563 | return ret; |
---|
564 | } |
---|
565 | |
---|
566 | |
---|
567 | void tryCRA( const CanonicalForm & x1, const CanonicalForm & q1, const CanonicalForm & x2, const CanonicalForm & q2, const CanonicalForm & M, CanonicalForm & xnew, CanonicalForm & qnew, bool & fail ) |
---|
568 | { // as CRA, but takes care of zero divisors |
---|
569 | CanonicalForm tmp; |
---|
570 | if(x1.level() <= 1 && x2.level() <= 1) // base case |
---|
571 | { |
---|
572 | tryExtgcd(q1,q2,M,tmp,xnew,qnew,fail); |
---|
573 | if(fail) |
---|
574 | return; |
---|
575 | xnew = x1 + (x2-x1) * xnew * q1; |
---|
576 | qnew = q1*q2; |
---|
577 | xnew = mod(xnew,qnew); |
---|
578 | return; |
---|
579 | } |
---|
580 | CanonicalForm tmp2; |
---|
581 | xnew = 0; |
---|
582 | qnew = q1 * q2; |
---|
583 | // here: x1.level() > 1 || x2.level() > 1 |
---|
584 | if(x1.level() > x2.level()) |
---|
585 | { |
---|
586 | for(CFIterator i=x1; i.hasTerms(); i++) |
---|
587 | { |
---|
588 | if(i.exp() == 0) // const. term |
---|
589 | { |
---|
590 | tryCRA(i.coeff(),q1,x2,q2,M,tmp,tmp2,fail); |
---|
591 | if(fail) |
---|
592 | return; |
---|
593 | xnew += tmp; |
---|
594 | } |
---|
595 | else |
---|
596 | { |
---|
597 | tryCRA(i.coeff(),q1,0,q2,M,tmp,tmp2,fail); |
---|
598 | if(fail) |
---|
599 | return; |
---|
600 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
601 | } |
---|
602 | } |
---|
603 | return; |
---|
604 | } |
---|
605 | // here: x1.level() <= x2.level() && ( x1.level() > 1 || x2.level() > 1 ) |
---|
606 | if(x2.level() > x1.level()) |
---|
607 | { |
---|
608 | for(CFIterator j=x2; j.hasTerms(); j++) |
---|
609 | { |
---|
610 | if(j.exp() == 0) // const. term |
---|
611 | { |
---|
612 | tryCRA(x1,q1,j.coeff(),q2,M,tmp,tmp2,fail); |
---|
613 | if(fail) |
---|
614 | return; |
---|
615 | xnew += tmp; |
---|
616 | } |
---|
617 | else |
---|
618 | { |
---|
619 | tryCRA(0,q1,j.coeff(),q2,M,tmp,tmp2,fail); |
---|
620 | if(fail) |
---|
621 | return; |
---|
622 | xnew += tmp * power(x2.mvar(),j.exp()); |
---|
623 | } |
---|
624 | } |
---|
625 | return; |
---|
626 | } |
---|
627 | // here: x1.level() == x2.level() && x1.level() > 1 && x2.level() > 1 |
---|
628 | CFIterator i = x1; |
---|
629 | CFIterator j = x2; |
---|
630 | while(i.hasTerms() || j.hasTerms()) |
---|
631 | { |
---|
632 | if(i.hasTerms()) |
---|
633 | { |
---|
634 | if(j.hasTerms()) |
---|
635 | { |
---|
636 | if(i.exp() == j.exp()) |
---|
637 | { |
---|
638 | tryCRA(i.coeff(),q1,j.coeff(),q2,M,tmp,tmp2,fail); |
---|
639 | if(fail) |
---|
640 | return; |
---|
641 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
642 | i++; j++; |
---|
643 | } |
---|
644 | else |
---|
645 | { |
---|
646 | if(i.exp() < j.exp()) |
---|
647 | { |
---|
648 | tryCRA(i.coeff(),q1,0,q2,M,tmp,tmp2,fail); |
---|
649 | if(fail) |
---|
650 | return; |
---|
651 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
652 | i++; |
---|
653 | } |
---|
654 | else // i.exp() > j.exp() |
---|
655 | { |
---|
656 | tryCRA(0,q1,j.coeff(),q2,M,tmp,tmp2,fail); |
---|
657 | if(fail) |
---|
658 | return; |
---|
659 | xnew += tmp * power(x1.mvar(),j.exp()); |
---|
660 | j++; |
---|
661 | } |
---|
662 | } |
---|
663 | } |
---|
664 | else // j is out of terms |
---|
665 | { |
---|
666 | tryCRA(i.coeff(),q1,0,q2,M,tmp,tmp2,fail); |
---|
667 | if(fail) |
---|
668 | return; |
---|
669 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
670 | i++; |
---|
671 | } |
---|
672 | } |
---|
673 | else // i is out of terms |
---|
674 | { |
---|
675 | tryCRA(0,q1,j.coeff(),q2,M,tmp,tmp2,fail); |
---|
676 | if(fail) |
---|
677 | return; |
---|
678 | xnew += tmp * power(x1.mvar(),j.exp()); |
---|
679 | j++; |
---|
680 | } |
---|
681 | } |
---|
682 | } |
---|
683 | |
---|
684 | |
---|
685 | void tryExtgcd( const CanonicalForm & F, const CanonicalForm & G, const CanonicalForm & M, CanonicalForm & result, CanonicalForm & s, CanonicalForm & t, bool & fail ) |
---|
686 | { // F, G are univariate polynomials (i.e. they have exactly one polynomial variable) |
---|
687 | // F and G must have the same level AND level > 0 |
---|
688 | // we try to calculate gcd(F,G) = s*F + t*G |
---|
689 | // if a zero divisor is encontered, 'fail' is set to one |
---|
690 | // M is assumed to be monic |
---|
691 | CanonicalForm P; |
---|
692 | if(F.inCoeffDomain()) |
---|
693 | { |
---|
694 | tryInvert( F, M, P, fail ); |
---|
695 | if(fail) |
---|
696 | return; |
---|
697 | result = 1; |
---|
698 | s = P; t = 0; |
---|
699 | return; |
---|
700 | } |
---|
701 | if(G.inCoeffDomain()) |
---|
702 | { |
---|
703 | tryInvert( G, M, P, fail ); |
---|
704 | if(fail) |
---|
705 | return; |
---|
706 | result = 1; |
---|
707 | s = 0; t = P; |
---|
708 | return; |
---|
709 | } |
---|
710 | // here: both not inCoeffDomain |
---|
711 | CanonicalForm inv, rem, tmp, u, v, q, sum=0; |
---|
712 | if( F.degree() > G.degree() ) |
---|
713 | { |
---|
714 | P = F; result = G; s=v=0; t=u=1; |
---|
715 | } |
---|
716 | else |
---|
717 | { |
---|
718 | P = G; result = F; s=v=1; t=u=0; |
---|
719 | } |
---|
720 | Variable x = P.mvar(); |
---|
721 | // here: degree(P) >= degree(result) |
---|
722 | while(true) |
---|
723 | { |
---|
724 | tryInvert( Lc(result), M, inv, fail ); |
---|
725 | if(fail) |
---|
726 | return; |
---|
727 | // here: Lc(result) is invertible modulo M |
---|
728 | q = Lc(P)*inv*power( x, P.degree(x)-result.degree(x) ); |
---|
729 | rem = reduce( P - q*result, M ); |
---|
730 | if( rem.isZero() ) |
---|
731 | { |
---|
732 | s*=inv; |
---|
733 | t*=inv; |
---|
734 | result *= inv; // monify result |
---|
735 | return; |
---|
736 | } |
---|
737 | sum += q; |
---|
738 | if(result.degree(x) >= rem.degree(x)) |
---|
739 | { |
---|
740 | P=result; |
---|
741 | result=rem; |
---|
742 | tmp=u-sum*s; |
---|
743 | u=s; |
---|
744 | s=tmp; |
---|
745 | tmp=v-sum*t; |
---|
746 | v=t; |
---|
747 | t=tmp; |
---|
748 | sum = 0; // reset |
---|
749 | } |
---|
750 | else |
---|
751 | P = rem; |
---|
752 | } |
---|
753 | } |
---|
754 | |
---|
755 | |
---|
756 | static CanonicalForm trycontent ( const CanonicalForm & f, const Variable & x, const CanonicalForm & M, bool & fail ) |
---|
757 | { // as 'content', but takes care of zero divisors |
---|
758 | ASSERT( x.level() > 0, "cannot calculate content with respect to algebraic variable" ); |
---|
759 | Variable y = f.mvar(); |
---|
760 | if ( y == x ) |
---|
761 | return trycf_content( f, 0, M, fail ); |
---|
762 | if ( y < x ) |
---|
763 | return f; |
---|
764 | return swapvar( trycontent( swapvar( f, y, x ), y, M, fail ), y, x ); |
---|
765 | } |
---|
766 | |
---|
767 | |
---|
768 | static CanonicalForm tryvcontent ( const CanonicalForm & f, const Variable & x, const CanonicalForm & M, bool & fail ) |
---|
769 | { // as vcontent, but takes care of zero divisors |
---|
770 | ASSERT( x.level() > 0, "cannot calculate vcontent with respect to algebraic variable" ); |
---|
771 | if ( f.mvar() <= x ) |
---|
772 | return trycontent( f, x, M, fail ); |
---|
773 | CFIterator i; |
---|
774 | CanonicalForm d = 0, e, ret; |
---|
775 | for ( i = f; i.hasTerms() && ! d.isOne() && ! fail; i++ ) |
---|
776 | { |
---|
777 | e = tryvcontent( i.coeff(), x, M, fail ); |
---|
778 | if(fail) |
---|
779 | break; |
---|
780 | tryBrownGCD( d, e, M, ret, fail ); |
---|
781 | d = ret; |
---|
782 | } |
---|
783 | return d; |
---|
784 | } |
---|
785 | |
---|
786 | |
---|
787 | static CanonicalForm trycf_content ( const CanonicalForm & f, const CanonicalForm & g, const CanonicalForm & M, bool & fail ) |
---|
788 | { // as cf_content, but takes care of zero divisors |
---|
789 | if ( f.inPolyDomain() || ( f.inExtension() && ! getReduce( f.mvar() ) ) ) |
---|
790 | { |
---|
791 | CFIterator i = f; |
---|
792 | CanonicalForm tmp = g, result; |
---|
793 | while ( i.hasTerms() && ! tmp.isOne() && ! fail ) |
---|
794 | { |
---|
795 | tryBrownGCD( i.coeff(), tmp, M, result, fail ); |
---|
796 | tmp = result; |
---|
797 | i++; |
---|
798 | } |
---|
799 | return result; |
---|
800 | } |
---|
801 | return abs( f ); |
---|
802 | } |
---|
803 | |
---|
804 | |
---|
805 | static void tryDivide( const CanonicalForm & f, const CanonicalForm & g, const CanonicalForm & M, CanonicalForm & result, bool & divides, bool & fail ) |
---|
806 | { // M "univariate" monic polynomial |
---|
807 | // f, g polynomials with coeffs modulo M. |
---|
808 | // if f is divisible by g, 'divides' is set to 1 and 'result' == f/g mod M coefficientwise. |
---|
809 | // 'fail' is set to 1, iff a zero divisor is encountered. |
---|
810 | // divides==1 implies fail==0 |
---|
811 | // required: getReduce(M.mvar())==0 |
---|
812 | if(g.inBaseDomain()) |
---|
813 | { |
---|
814 | result = f/g; |
---|
815 | divides = true; |
---|
816 | return; |
---|
817 | } |
---|
818 | if(g.inCoeffDomain()) |
---|
819 | { |
---|
820 | tryInvert(g,M,result,fail); |
---|
821 | if(fail) |
---|
822 | return; |
---|
823 | result = reduce(f*result, M); |
---|
824 | divides = true; |
---|
825 | return; |
---|
826 | } |
---|
827 | // here: g NOT inCoeffDomain |
---|
828 | Variable x = g.mvar(); |
---|
829 | if(f.degree(x) < g.degree(x)) |
---|
830 | { |
---|
831 | divides = false; |
---|
832 | return; |
---|
833 | } |
---|
834 | // here: f.degree(x) > 0 and f.degree(x) >= g.degree(x) |
---|
835 | CanonicalForm F = f; |
---|
836 | CanonicalForm q, leadG = LC(g); |
---|
837 | result = 0; |
---|
838 | while(!F.isZero()) |
---|
839 | { |
---|
840 | tryDivide(F.LC(x),leadG,M,q,divides,fail); |
---|
841 | if(fail || !divides) |
---|
842 | return; |
---|
843 | if(F.degree(x)<g.degree(x)) |
---|
844 | { |
---|
845 | divides = false; |
---|
846 | return; |
---|
847 | } |
---|
848 | q *= power(x,F.degree(x)-g.degree(x)); |
---|
849 | result += q; |
---|
850 | F = reduce(F-q*g, M); |
---|
851 | } |
---|
852 | result = reduce(result, M); |
---|
853 | divides = true; |
---|
854 | } |
---|
855 | |
---|
856 | |
---|
857 | |
---|
858 | void tryCRA( const CanonicalForm & x1, const CanonicalForm & q1, const CanonicalForm & x2, const CanonicalForm & q2, CanonicalForm & xnew, CanonicalForm & qnew, bool & fail ) |
---|
859 | { // polys of level <= 1 are considered coefficients. q1,q2 are assumed to be coprime |
---|
860 | // xnew = x1 mod q1 (coefficientwise in the above sense) |
---|
861 | // xnew = x2 mod q2 |
---|
862 | // qnew = q1*q2 |
---|
863 | CanonicalForm tmp; |
---|
864 | if(x1.level() <= 1 && x2.level() <= 1) // base case |
---|
865 | { |
---|
866 | tryExtgcd(q1,q2,tmp,xnew,qnew,fail); |
---|
867 | if(fail) |
---|
868 | return; |
---|
869 | xnew = x1 + (x2-x1) * xnew * q1; |
---|
870 | qnew = q1*q2; |
---|
871 | xnew = mod(xnew,qnew); |
---|
872 | return; |
---|
873 | } |
---|
874 | CanonicalForm tmp2; |
---|
875 | xnew = 0; |
---|
876 | qnew = q1 * q2; |
---|
877 | // here: x1.level() > 1 || x2.level() > 1 |
---|
878 | if(x1.level() > x2.level()) |
---|
879 | { |
---|
880 | for(CFIterator i=x1; i.hasTerms(); i++) |
---|
881 | { |
---|
882 | if(i.exp() == 0) // const. term |
---|
883 | { |
---|
884 | tryCRA(i.coeff(),q1,x2,q2,tmp,tmp2,fail); |
---|
885 | if(fail) |
---|
886 | return; |
---|
887 | xnew += tmp; |
---|
888 | } |
---|
889 | else |
---|
890 | { |
---|
891 | tryCRA(i.coeff(),q1,0,q2,tmp,tmp2,fail); |
---|
892 | if(fail) |
---|
893 | return; |
---|
894 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
895 | } |
---|
896 | } |
---|
897 | return; |
---|
898 | } |
---|
899 | // here: x1.level() <= x2.level() && ( x1.level() > 1 || x2.level() > 1 ) |
---|
900 | if(x2.level() > x1.level()) |
---|
901 | { |
---|
902 | for(CFIterator j=x2; j.hasTerms(); j++) |
---|
903 | { |
---|
904 | if(j.exp() == 0) // const. term |
---|
905 | { |
---|
906 | tryCRA(x1,q1,j.coeff(),q2,tmp,tmp2,fail); |
---|
907 | if(fail) |
---|
908 | return; |
---|
909 | xnew += tmp; |
---|
910 | } |
---|
911 | else |
---|
912 | { |
---|
913 | tryCRA(0,q1,j.coeff(),q2,tmp,tmp2,fail); |
---|
914 | if(fail) |
---|
915 | return; |
---|
916 | xnew += tmp * power(x2.mvar(),j.exp()); |
---|
917 | } |
---|
918 | } |
---|
919 | return; |
---|
920 | } |
---|
921 | // here: x1.level() == x2.level() && x1.level() > 1 && x2.level() > 1 |
---|
922 | CFIterator i = x1; |
---|
923 | CFIterator j = x2; |
---|
924 | while(i.hasTerms() || j.hasTerms()) |
---|
925 | { |
---|
926 | if(i.hasTerms()) |
---|
927 | { |
---|
928 | if(j.hasTerms()) |
---|
929 | { |
---|
930 | if(i.exp() == j.exp()) |
---|
931 | { |
---|
932 | tryCRA(i.coeff(),q1,j.coeff(),q2,tmp,tmp2,fail); |
---|
933 | if(fail) |
---|
934 | return; |
---|
935 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
936 | i++; j++; |
---|
937 | } |
---|
938 | else |
---|
939 | { |
---|
940 | if(i.exp() < j.exp()) |
---|
941 | { |
---|
942 | tryCRA(i.coeff(),q1,0,q2,tmp,tmp2,fail); |
---|
943 | if(fail) |
---|
944 | return; |
---|
945 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
946 | i++; |
---|
947 | } |
---|
948 | else // i.exp() > j.exp() |
---|
949 | { |
---|
950 | tryCRA(0,q1,j.coeff(),q2,tmp,tmp2,fail); |
---|
951 | if(fail) |
---|
952 | return; |
---|
953 | xnew += tmp * power(x1.mvar(),j.exp()); |
---|
954 | j++; |
---|
955 | } |
---|
956 | } |
---|
957 | } |
---|
958 | else // j is out of terms |
---|
959 | { |
---|
960 | tryCRA(i.coeff(),q1,0,q2,tmp,tmp2,fail); |
---|
961 | if(fail) |
---|
962 | return; |
---|
963 | xnew += tmp * power(x1.mvar(),i.exp()); |
---|
964 | i++; |
---|
965 | } |
---|
966 | } |
---|
967 | else // i is out of terms |
---|
968 | { |
---|
969 | tryCRA(0,q1,j.coeff(),q2,tmp,tmp2,fail); |
---|
970 | if(fail) |
---|
971 | return; |
---|
972 | xnew += tmp * power(x1.mvar(),j.exp()); |
---|
973 | j++; |
---|
974 | } |
---|
975 | } |
---|
976 | } |
---|
977 | |
---|
978 | |
---|
979 | void tryExtgcd( const CanonicalForm & F, const CanonicalForm & G, CanonicalForm & result, CanonicalForm & s, CanonicalForm & t, bool & fail ) |
---|
980 | { |
---|
981 | // F, G are univariate polynomials (i.e. they have exactly one polynomial variable) |
---|
982 | // F and G must have the same level AND level > 0 |
---|
983 | // we try to calculate gcd(f,g) = s*F + t*G |
---|
984 | // if a zero divisor is encontered, 'fail' is set to one |
---|
985 | Variable a, b; |
---|
986 | if( !hasFirstAlgVar(F,a) && !hasFirstAlgVar(G,b) ) // note lazy evaluation |
---|
987 | { |
---|
988 | result = extgcd( F, G, s, t ); // no zero divisors possible |
---|
989 | return; |
---|
990 | } |
---|
991 | if( b.level() > a.level() ) |
---|
992 | a = b; |
---|
993 | // here: a is the biggest alg. var in F and G |
---|
994 | CanonicalForm M = getMipo(a); |
---|
995 | CanonicalForm P; |
---|
996 | if( degree(F) > degree(G) ) |
---|
997 | { |
---|
998 | P=F; result=G; s=0; t=1; |
---|
999 | } |
---|
1000 | else |
---|
1001 | { |
---|
1002 | P=G; result=F; s=1; t=0; |
---|
1003 | } |
---|
1004 | CanonicalForm inv, rem, q, u, v; |
---|
1005 | // here: degree(P) >= degree(result) |
---|
1006 | while(true) |
---|
1007 | { |
---|
1008 | tryInvert( Lc(result), M, inv, fail ); |
---|
1009 | if(fail) |
---|
1010 | return; |
---|
1011 | // here: Lc(result) is invertible modulo M |
---|
1012 | q = Lc(P)*inv * power( P.mvar(), degree(P)-degree(result) ); |
---|
1013 | rem = P - q*result; |
---|
1014 | // here: s*F + t*G = result |
---|
1015 | if( rem.isZero() ) |
---|
1016 | { |
---|
1017 | s*=inv; |
---|
1018 | t*=inv; |
---|
1019 | result *= inv; // monify result |
---|
1020 | return; |
---|
1021 | } |
---|
1022 | P=result; |
---|
1023 | result=rem; |
---|
1024 | rem=u-q*s; |
---|
1025 | u=s; |
---|
1026 | s=rem; |
---|
1027 | rem=v-q*t; |
---|
1028 | v=t; |
---|
1029 | t=rem; |
---|
1030 | } |
---|
1031 | } |
---|