1 | #include "factory.h" |
---|
2 | #ifdef HAVE_BIFAC |
---|
3 | #include "lgs.h" |
---|
4 | #include "bifacConfig.h" |
---|
5 | |
---|
6 | #define BIFAC_BASIS_OF_G_CHECK 1 |
---|
7 | void Reduce( bool ); |
---|
8 | CanonicalForm Bigcd( const CanonicalForm& f, const CanonicalForm& g); |
---|
9 | |
---|
10 | CanonicalForm MyContent( const CanonicalForm& F, const Variable& x); |
---|
11 | CFFList Mysqrfree( const CanonicalForm& F ); |
---|
12 | |
---|
13 | |
---|
14 | CanonicalForm MyGCDmod( const CanonicalForm & a,const CanonicalForm & b); |
---|
15 | CFFList RelFactorize(const CanonicalForm & h); |
---|
16 | |
---|
17 | //====== global definitions =================== |
---|
18 | Variable x( 'x' ); |
---|
19 | Variable y( 'y' ); |
---|
20 | Variable z( 'z' ); |
---|
21 | Variable e( 'e' ); |
---|
22 | |
---|
23 | |
---|
24 | /////////////////////////////////////////////////////// |
---|
25 | // Class for storing polynomials as vectors. |
---|
26 | // Enables fast access to a certain degree. |
---|
27 | /////////////////////////////////////////////////////// |
---|
28 | |
---|
29 | //================================================== |
---|
30 | class PolyVector |
---|
31 | //================================================== |
---|
32 | { |
---|
33 | public: |
---|
34 | PolyVector ( void ){ |
---|
35 | m = -1; |
---|
36 | } |
---|
37 | virtual ~PolyVector( void ){ |
---|
38 | if( m!= -1) delete[] value; |
---|
39 | } |
---|
40 | void init (CanonicalForm f){ |
---|
41 | if( f.level()<0 ) |
---|
42 | { |
---|
43 | m = 0; |
---|
44 | n = 0; |
---|
45 | value = new CanonicalForm[1]; |
---|
46 | value[0] = f; |
---|
47 | } |
---|
48 | else |
---|
49 | { |
---|
50 | m = degree(f,x); |
---|
51 | n = degree(f,y); |
---|
52 | ASSERT( m>0 || n>0, "Input is not a polynomial"); |
---|
53 | int correction = 1; // univariate polynomials |
---|
54 | if( n==0) correction = n+1; |
---|
55 | |
---|
56 | value = new CanonicalForm[m*(n+1)+n+1]; |
---|
57 | for(int i=0; i<=m*(n+1)+n; i++) value[i]=0; |
---|
58 | |
---|
59 | |
---|
60 | for ( CFIterator i = f; i.hasTerms(); i++ ) { |
---|
61 | for ( CFIterator j = i.coeff(); j.hasTerms(); j++ ){ |
---|
62 | if( i.coeff().mvar().level()< 0 ){ |
---|
63 | value[ 0*(n+1) + i.exp()*correction ] = j.coeff();} |
---|
64 | else{ |
---|
65 | value[ j.exp()*(n+1) + i.exp()*correction ] = j.coeff();}}} |
---|
66 | } |
---|
67 | } |
---|
68 | |
---|
69 | void push(int mm, int nn, CanonicalForm v){ |
---|
70 | ASSERT( 0<=mm<=m && 0<=nn<=n, "Wrong Index in PolyVector"); |
---|
71 | value[mm*(n+1)+nn] = v; |
---|
72 | } |
---|
73 | CanonicalForm get(int mm, int nn){ |
---|
74 | |
---|
75 | if( 0<=mm && mm<=m && 0<=nn && nn<=n ) |
---|
76 | return value[mm*(n+1)+nn]; |
---|
77 | else |
---|
78 | return 0; |
---|
79 | } |
---|
80 | #ifndef NOSTREAMIO |
---|
81 | friend ostream & operator<< ( ostream & s, const PolyVector& V ){ |
---|
82 | for (int i=0;i<=V.m;i++) |
---|
83 | { |
---|
84 | s << "["; |
---|
85 | for (int j=0;j<=V.n;j++) |
---|
86 | s << V.value[i*(V.n+1)+j] << ", "; |
---|
87 | s << "]\n"; |
---|
88 | } |
---|
89 | return s; |
---|
90 | } |
---|
91 | #endif /* NOSTREAMIO */ |
---|
92 | |
---|
93 | |
---|
94 | private: |
---|
95 | int m; // Degree in x |
---|
96 | int n; // Degree in y |
---|
97 | CanonicalForm* value; // Value: index = m*(n+1)+n |
---|
98 | }; |
---|
99 | ////////// END of PolyVector /////////////////////////// |
---|
100 | |
---|
101 | |
---|
102 | |
---|
103 | |
---|
104 | ///////////////////////////////////////////////////////// |
---|
105 | // |
---|
106 | // Default class declarations |
---|
107 | // |
---|
108 | ///////////////////////////////////////////////////////// |
---|
109 | |
---|
110 | |
---|
111 | |
---|
112 | //--<>--------------------------------- |
---|
113 | BIFAC::BIFAC( void )// KONSTRUKTOR |
---|
114 | //--<>--------------------------------- |
---|
115 | { |
---|
116 | } |
---|
117 | |
---|
118 | //--<>--------------------------------- |
---|
119 | BIFAC::~BIFAC( void )// DESTRUKTOR |
---|
120 | //--<>--------------------------------- |
---|
121 | { |
---|
122 | } |
---|
123 | |
---|
124 | |
---|
125 | ///////////////////////////////////////////////////////// |
---|
126 | // |
---|
127 | // Auxiliary functions |
---|
128 | // |
---|
129 | ///////////////////////////////////////////////////////// |
---|
130 | |
---|
131 | // //--<>--------------------------------- |
---|
132 | // void BIFAC::matrix_drucken( CFMatrix M ) |
---|
133 | // //--<>--------------------------------- |
---|
134 | // { |
---|
135 | // int i,j; |
---|
136 | // char* name="matrix.ppm"; |
---|
137 | |
---|
138 | // // === Datei löschen === |
---|
139 | |
---|
140 | // ofstream* aus = new ofstream(name, ios::out); |
---|
141 | // delete aus; |
---|
142 | |
---|
143 | |
---|
144 | // // === Jetzt immer nur anhängen === |
---|
145 | |
---|
146 | // aus = new ofstream(name, ios::app); |
---|
147 | // *aus << "// Zeilen Spalten\n" |
---|
148 | // << "// x-Koord. y-Koord. Wert\n"; |
---|
149 | |
---|
150 | // *aus << M.rows() << " " << M.columns() << endl; |
---|
151 | |
---|
152 | |
---|
153 | // // === Noch nicht bearbeitet Teile === |
---|
154 | |
---|
155 | // for( i=0; i<M.rows(); i++) |
---|
156 | // for( j=0; j<M.columns(); j++) |
---|
157 | // *aus << i << " " << j << " " << M(i+1,j+1) << endl;; |
---|
158 | // delete aus; |
---|
159 | // } |
---|
160 | |
---|
161 | //======================================================= |
---|
162 | void BIFAC::passedTime() |
---|
163 | //======================================================= |
---|
164 | { |
---|
165 | ; |
---|
166 | } |
---|
167 | |
---|
168 | |
---|
169 | //======================================================= |
---|
170 | long int BIFAC::anz_terme( CanonicalForm & f ) |
---|
171 | //======================================================= |
---|
172 | { |
---|
173 | long int z=0; |
---|
174 | |
---|
175 | for ( CFIterator i = f; i.hasTerms(); i++ ) |
---|
176 | for ( CFIterator j = i.coeff(); j.hasTerms(); j++ ) |
---|
177 | z++; |
---|
178 | return( z ); |
---|
179 | } |
---|
180 | |
---|
181 | //======================================================= |
---|
182 | void BIFAC::biGanzMachen( CanonicalForm & f ) |
---|
183 | //======================================================= |
---|
184 | { |
---|
185 | CanonicalForm ggT; |
---|
186 | bool init = false; |
---|
187 | Off( SW_RATIONAL ); |
---|
188 | |
---|
189 | for ( CFIterator i = f; i.hasTerms(); i++ ) |
---|
190 | for ( CFIterator j = i.coeff(); j.hasTerms(); j++ ) |
---|
191 | { |
---|
192 | if( !init ) |
---|
193 | { |
---|
194 | ggT = j.coeff(); |
---|
195 | init = true; |
---|
196 | } |
---|
197 | else |
---|
198 | ggT = gcd(j.coeff(), ggT); |
---|
199 | } |
---|
200 | f /= ggT; |
---|
201 | On( SW_RATIONAL ); |
---|
202 | } |
---|
203 | |
---|
204 | //======================================================= |
---|
205 | void BIFAC::biNormieren( CanonicalForm & f ) |
---|
206 | //======================================================= |
---|
207 | { |
---|
208 | if ( getCharacteristic() == 0 ) |
---|
209 | { |
---|
210 | for ( CFIterator i = f; i.hasTerms(); i++ ) |
---|
211 | for ( CFIterator j = i.coeff(); j.hasTerms(); j++ ) |
---|
212 | if( j.coeff().den() != 1 ) |
---|
213 | { |
---|
214 | f *= j.coeff().den(); |
---|
215 | biNormieren( f ); |
---|
216 | } |
---|
217 | biGanzMachen( f ); |
---|
218 | } |
---|
219 | else |
---|
220 | { |
---|
221 | f /= LC(f); |
---|
222 | } |
---|
223 | } |
---|
224 | |
---|
225 | |
---|
226 | //======================================================= |
---|
227 | // * Convert the basis vectors of G into polynomials |
---|
228 | // * Validate the solutions |
---|
229 | //======================================================= |
---|
230 | CFList BIFAC::matrix2basis(CFMatrix A, int dim, int m, int n, CanonicalForm f) |
---|
231 | //======================================================= |
---|
232 | { |
---|
233 | Variable x('x'), y('y'); |
---|
234 | int i,j,k; |
---|
235 | CanonicalForm g,h,ff; |
---|
236 | CFList Lg, Lh; |
---|
237 | |
---|
238 | // === Construction of the 'g's ==== |
---|
239 | for(k=1; k<=dim; k++) |
---|
240 | { |
---|
241 | g=0; |
---|
242 | for(i=0; i<=m-1; i++) |
---|
243 | for(j=0; j<=n; j++) |
---|
244 | g += A(k, i*(n+1)+j+1)* power(x,i) * power(y,j); |
---|
245 | Lg.append(g); |
---|
246 | } |
---|
247 | |
---|
248 | /////////// START VALIDATION //////////////////////////////////// |
---|
249 | if (BIFAC_BASIS_OF_G_CHECK) |
---|
250 | { |
---|
251 | |
---|
252 | // === Construction of the 'h's ==== |
---|
253 | for(k=1; k<=dim; k++) |
---|
254 | { |
---|
255 | h=0; |
---|
256 | for(i=0; i<=m; i++) |
---|
257 | for(j=0; j<n; j++) |
---|
258 | h += A(k, i*n+j+1 +m*(n+1))* power(x,i) * power(y,j); |
---|
259 | Lh.append(h); |
---|
260 | } |
---|
261 | |
---|
262 | // === Is the solution correct? === |
---|
263 | CFListIterator itg=Lg; |
---|
264 | CFListIterator ith=Lh; |
---|
265 | for( ; itg.hasItem(); itg++, ith++) |
---|
266 | { |
---|
267 | g = itg.getItem(); |
---|
268 | h = ith.getItem(); |
---|
269 | ff = f*(deriv(g,y)-deriv(h,x)) +h*deriv(f,x) -g*deriv(f,y); |
---|
270 | if( !ff.isZero()) { |
---|
271 | #ifndef NOSTREAMIO |
---|
272 | AUSGABE_ERR("* Falsche Polynome!"); |
---|
273 | exit (1); |
---|
274 | #else |
---|
275 | printf("wrong polys\n"); |
---|
276 | break; |
---|
277 | #endif |
---|
278 | } |
---|
279 | } |
---|
280 | } |
---|
281 | /////////// END VALIDATION //////////////////////////////////// |
---|
282 | |
---|
283 | return (Lg); |
---|
284 | } |
---|
285 | |
---|
286 | ///////////////////////////////////////////////////////// |
---|
287 | // |
---|
288 | // Main functions |
---|
289 | // |
---|
290 | ///////////////////////////////////////////////////////// |
---|
291 | |
---|
292 | //======================================================= |
---|
293 | // * Create the matrix belonging to G |
---|
294 | // * Compute a basis of the kernel |
---|
295 | //======================================================= |
---|
296 | CFList BIFAC::basisOfG(CanonicalForm f) |
---|
297 | //======================================================= |
---|
298 | { |
---|
299 | |
---|
300 | |
---|
301 | int m = degree(f,x); |
---|
302 | int n = degree(f,y); |
---|
303 | int r,s, ii,jj; |
---|
304 | |
---|
305 | |
---|
306 | // ======= Creation of the system of linear equations for G ============= |
---|
307 | int rows = 4*m*n; |
---|
308 | int columns = m*(n+1) + (m+1)*n; |
---|
309 | |
---|
310 | CFMatrix M(rows, columns); // Remember: The first index is (1,1) -- not (0,0)! |
---|
311 | |
---|
312 | for ( CFIterator i = f; i.hasTerms(); i++ ) // All coeffizients of y |
---|
313 | { |
---|
314 | for ( CFIterator j = i.coeff(); j.hasTerms(); j++ ) // All coeffizients of x |
---|
315 | { |
---|
316 | r = j.exp(); // x^r |
---|
317 | s = i.exp(); // y^s |
---|
318 | |
---|
319 | // Now we regard g_{ii,jj) |
---|
320 | for( ii=0; ii<m; ii++) |
---|
321 | for( jj=0; jj<=n; jj++) |
---|
322 | { |
---|
323 | if( s>= 1) M( (r+ii)*2*n +(jj+s-1)+1, ii*(n+1)+jj +1) += -j.coeff() * s; |
---|
324 | if( jj>= 1) M( (r+ii)*2*n +(jj+s-1)+1, ii*(n+1)+jj +1) += j.coeff() * jj; |
---|
325 | } |
---|
326 | |
---|
327 | // Now we regard h_{ii,jj} |
---|
328 | for( ii=0; ii<=m; ii++) |
---|
329 | for( jj=0; jj<n; jj++) |
---|
330 | { |
---|
331 | if( r>= 1) M( (r+ii-1)*2*n +(jj+s)+1, (ii*n)+jj +m*(n+1) +1) += j.coeff() * r; |
---|
332 | if( ii>= 1) M( (r+ii-1)*2*n +(jj+s)+1, (ii*n) +jj +m*(n+1) +1) += -j.coeff() * ii; |
---|
333 | } |
---|
334 | } |
---|
335 | } |
---|
336 | // ========= Solving the system of linear equations for G ============= |
---|
337 | |
---|
338 | // matrix_drucken(M); // ********************************** |
---|
339 | |
---|
340 | LGS L(rows,columns); |
---|
341 | |
---|
342 | CFMatrix Z(1,columns); |
---|
343 | for( ii=1; ii<=rows; ii++) |
---|
344 | { |
---|
345 | for( jj=1; jj<=columns; jj++) |
---|
346 | Z(1,jj) = M(ii,jj); // Copy the ii-th row |
---|
347 | L.new_row(Z); |
---|
348 | } |
---|
349 | |
---|
350 | if( L.corank() == 1 ) |
---|
351 | { |
---|
352 | CFList Lg; |
---|
353 | Lg.append(f); |
---|
354 | return(Lg); |
---|
355 | } |
---|
356 | // L.print(); |
---|
357 | CFMatrix basis = L.GetKernelBasis(); |
---|
358 | |
---|
359 | // ============= TEST AUF KORREKTHEIT /start) ==== |
---|
360 | CanonicalForm tmp; |
---|
361 | for(int k=1; k<= L.corank(); k++) |
---|
362 | for(int i=1; i<=rows; i++) |
---|
363 | { |
---|
364 | tmp =0; |
---|
365 | for(int j=1; j<=columns; j++) |
---|
366 | tmp += M(i,j) * basis(k,j); |
---|
367 | if( tmp!= 0) { |
---|
368 | exit(17); |
---|
369 | } |
---|
370 | } |
---|
371 | // ============= TEST AUF KORREKTHEIT (ende) ==== |
---|
372 | return ( matrix2basis( basis, L.corank(), m,n,f ) ); |
---|
373 | } |
---|
374 | |
---|
375 | //======================================================= |
---|
376 | // Compute a r x r - matrix A=(a_ij) for |
---|
377 | // gg_i = SUM a_ij * g_j * f_x (mod f) |
---|
378 | // Return a list consisting of |
---|
379 | // r x (r+1) Matrix A |
---|
380 | // the last columns contains only the indices of the |
---|
381 | // first r linear independent lines |
---|
382 | // REMARK: this is used by BIFAC::createEg but NOT by createEgUni!! |
---|
383 | //======================================================= |
---|
384 | CFMatrix BIFAC::createA (CFList G, CanonicalForm f) |
---|
385 | //======================================================= |
---|
386 | { |
---|
387 | // === Declarations === |
---|
388 | int m,n; |
---|
389 | int i,j,e; |
---|
390 | int r = G.length(); // number of factors |
---|
391 | |
---|
392 | LGS L(r,r,true); |
---|
393 | // LGS L(r,r); |
---|
394 | CFMatrix Z(1,r); |
---|
395 | CFMatrix A(r,r+2); // the last two column contain the bi-degree |
---|
396 | |
---|
397 | CanonicalForm fx = deriv(f,x); |
---|
398 | PolyVector* gifx = new PolyVector[r]; |
---|
399 | |
---|
400 | // === Convert polynomials into vectors === |
---|
401 | i=0; |
---|
402 | CanonicalForm q; |
---|
403 | |
---|
404 | for( CFListIterator it=G; it.hasItem(); it++, i++){ |
---|
405 | |
---|
406 | gifx[i].init( (it.getItem()*fx)%f ); |
---|
407 | } |
---|
408 | |
---|
409 | // === Search linear independent lines === |
---|
410 | |
---|
411 | e=1; // row number of A |
---|
412 | n=0; // |
---|
413 | m=0; // |
---|
414 | while (L.rank() != r ) |
---|
415 | { |
---|
416 | for(j=0;j<r;j++) |
---|
417 | Z(1,j+1) = gifx[j].get(m,n); |
---|
418 | if( L.new_row(Z,0) ) // linear independent row? |
---|
419 | { |
---|
420 | ASSERT( e<=r, "Wrong index in matrix"); |
---|
421 | A(e,r+1) = m; // Degree in x |
---|
422 | A(e,r+2) = n; // Degree in y |
---|
423 | e++; |
---|
424 | } |
---|
425 | if (m>n) n++; |
---|
426 | else { m++; n=0; } |
---|
427 | } |
---|
428 | L.print(); |
---|
429 | |
---|
430 | L.inverse(A); |
---|
431 | |
---|
432 | // === Clean up == |
---|
433 | delete[] gifx; |
---|
434 | |
---|
435 | return A; |
---|
436 | } |
---|
437 | |
---|
438 | //======================================================= |
---|
439 | CanonicalForm BIFAC::create_g (CFList G) |
---|
440 | //======================================================= |
---|
441 | { |
---|
442 | CanonicalForm g = 0; |
---|
443 | int i = 0; |
---|
444 | |
---|
445 | int r = G.length(); // number of factors |
---|
446 | float SS = 10*( r*(r-1) / ( 2*( (100- (float) EgSeparable)/100)) ); |
---|
447 | int S = (int) SS +1; |
---|
448 | |
---|
449 | IntRandom RANDOM(S); |
---|
450 | |
---|
451 | int* rand_coeff1 = new int[r]; |
---|
452 | |
---|
453 | |
---|
454 | // static for debugging |
---|
455 | // rand_coeff1[0] = 12; rand_coeff1[1] = 91; rand_coeff1[2] = 42; |
---|
456 | |
---|
457 | for( CFListIterator it=G; it.hasItem(); it++, i++) |
---|
458 | { |
---|
459 | rand_coeff1[i] = RANDOM.generate().intval(); |
---|
460 | |
---|
461 | g += rand_coeff1[i] * it.getItem(); |
---|
462 | } |
---|
463 | |
---|
464 | delete[] rand_coeff1; |
---|
465 | |
---|
466 | return g; |
---|
467 | } |
---|
468 | |
---|
469 | ///////////////////////////////////////////////////////////// |
---|
470 | // This subroutine creates the polynomials Eg(x) and g |
---|
471 | // by using the 'bivariate' methode'. |
---|
472 | // REMARK: There is a 'univariate methode' as well |
---|
473 | // which ought to be faster! |
---|
474 | //////////////////////////////////////////////////////////// |
---|
475 | //======================================================= |
---|
476 | CFList BIFAC::createEg (CFList G, CanonicalForm f) |
---|
477 | //======================================================= |
---|
478 | { |
---|
479 | |
---|
480 | |
---|
481 | CFMatrix NEU = createA(G,f); |
---|
482 | // passedTime(); |
---|
483 | |
---|
484 | bool suitable1 = false; // Is Eg by chance unsuitable? |
---|
485 | bool suitable2 = false; // Is on of g*g_i or g_i*f_x zero? |
---|
486 | |
---|
487 | // === (0) Preparation === |
---|
488 | CanonicalForm g; |
---|
489 | CanonicalForm Eg; |
---|
490 | CanonicalForm fx = deriv(f,x); |
---|
491 | |
---|
492 | int i,j,e; |
---|
493 | int r = G.length(); // number of factors |
---|
494 | // float SS = ( r*(r-1) / ( 2*( (100- (float) EgSeparable)/100)) ); |
---|
495 | // int S = (int) SS +1; |
---|
496 | |
---|
497 | // IntRandom RANDOM(S); |
---|
498 | // int* rand_coeff = new int[r]; |
---|
499 | CFMatrix A(r,r); |
---|
500 | CanonicalForm* gi = new CanonicalForm[r]; |
---|
501 | CanonicalForm* ggi = new CanonicalForm[r]; |
---|
502 | PolyVector* v_ggi = new PolyVector [r]; |
---|
503 | |
---|
504 | |
---|
505 | |
---|
506 | i=0; |
---|
507 | for( CFListIterator it=G; it.hasItem(); it++, i++) |
---|
508 | gi[i] = it.getItem(); |
---|
509 | |
---|
510 | while ( !suitable1 ) |
---|
511 | { |
---|
512 | |
---|
513 | suitable2 = false; |
---|
514 | // === (1) Creating g === |
---|
515 | while ( !suitable2 ) |
---|
516 | { |
---|
517 | // i=0; |
---|
518 | // g=0; |
---|
519 | // for( CFListIterator it=G; it.hasItem(); it++, i++) |
---|
520 | // { |
---|
521 | // gi[i] = it.getItem(); |
---|
522 | // rand_coeff[i] = RANDOM.generate().intval(); |
---|
523 | // g += rand_coeff[i] * it.getItem(); |
---|
524 | // } |
---|
525 | g = create_g( G ); |
---|
526 | |
---|
527 | // === (2) Computing g_i * g === |
---|
528 | // |
---|
529 | for(i=0; i<r; i++){ |
---|
530 | |
---|
531 | ggi[i] = (g*gi[i])%f; // seite 10 |
---|
532 | } |
---|
533 | |
---|
534 | // === Check if all polynomials are <> 0 === |
---|
535 | suitable2 = true; // It should be fine, but ... |
---|
536 | if( g.isZero() ) |
---|
537 | suitable2 = false; |
---|
538 | // else |
---|
539 | // for(i=0; i<r; i++) |
---|
540 | // if( ggi[i].isZero() ) |
---|
541 | // suitable2 = false; |
---|
542 | |
---|
543 | } // end of Žwhile ( !suitable2 )Ž |
---|
544 | |
---|
545 | // === (3) Computing Eg(x) === |
---|
546 | |
---|
547 | for(i=0;i<r;i++) // Get Polynomials as vectors |
---|
548 | v_ggi[i].init(ggi[i]); |
---|
549 | |
---|
550 | // Matrix A |
---|
551 | for(i=1; i<=r; i++) |
---|
552 | for( j=1; j<=r; j++) |
---|
553 | { |
---|
554 | A(i,j) = 0; |
---|
555 | for( e=1; e<=r; e++) |
---|
556 | { |
---|
557 | |
---|
558 | |
---|
559 | A(i,j) += ( NEU(j,e ) * v_ggi[i-1].get(NEU(e,r+1).intval(),(NEU(e,r+2).intval() ))); |
---|
560 | |
---|
561 | |
---|
562 | // |
---|
563 | |
---|
564 | } |
---|
565 | } |
---|
566 | |
---|
567 | for(j=1; j<=r; j++) |
---|
568 | A(j,j) -= x; |
---|
569 | Eg = determinant(A,r); |
---|
570 | // exit(1); |
---|
571 | // === (4) Is Eg(x) suitable? === |
---|
572 | if( MyGCDmod(Eg, deriv(Eg,x)) == 1 ) |
---|
573 | suitable1 = true; |
---|
574 | else |
---|
575 | { |
---|
576 | } |
---|
577 | } // end of Žwhile ( !suitable1 )Ž |
---|
578 | |
---|
579 | // Delete trash |
---|
580 | |
---|
581 | |
---|
582 | |
---|
583 | delete[] v_ggi; |
---|
584 | delete[] gi; |
---|
585 | delete[] ggi; |
---|
586 | // delete[] rand_coeff; |
---|
587 | |
---|
588 | CFList LL; |
---|
589 | LL.append(Eg); |
---|
590 | LL.append(g); |
---|
591 | return (LL); |
---|
592 | } |
---|
593 | // ///////////////////////////////////////////////////////////// |
---|
594 | // // It is possible to take univariate polynomials |
---|
595 | // // with y:=c for a suitable c. |
---|
596 | // // c is suitable iff gcd( f(x,c), f_x(x,c)) = 1. |
---|
597 | // //////////////////////////////////////////////////////////// |
---|
598 | // |
---|
599 | //======================================================= |
---|
600 | CFList BIFAC::createEgUni (CFList G, CanonicalForm f) |
---|
601 | //======================================================= |
---|
602 | { |
---|
603 | |
---|
604 | int i,ii,k; |
---|
605 | CanonicalForm ff, ffx,g, gg, Eg; |
---|
606 | |
---|
607 | |
---|
608 | bool suitable1 = false; // Is Eg unsuitable? |
---|
609 | bool suitable2 = false; // Is on of g*g_i or g_i*f_x zero? |
---|
610 | bool suitable3 = false; // Is 'konst' unsuitable? |
---|
611 | |
---|
612 | // ======================== |
---|
613 | // = (0) Preparation = |
---|
614 | // ======================== |
---|
615 | int konst = 0; |
---|
616 | CanonicalForm fx = deriv(f,x); |
---|
617 | int m = degree(f,x); |
---|
618 | int r = G.length(); // number of factors |
---|
619 | int S = (int) ((float) ( r*(r-1) / ( 2*( (100- (float) EgSeparable)/100)) )+1); |
---|
620 | |
---|
621 | |
---|
622 | int* rand_coeff = new int[r]; |
---|
623 | CanonicalForm* gi = new CanonicalForm[r]; |
---|
624 | CanonicalForm* ggi = new CanonicalForm[r]; |
---|
625 | |
---|
626 | CFMatrix A(r,r); // We have to find the matrix A, |
---|
627 | CFMatrix Z(1,r); // `Vector` for data transportation |
---|
628 | CFMatrix AA(m,r); // but first we generate AA. |
---|
629 | CFMatrix AI(r,r+1); // |
---|
630 | LGS L(r,r,true); |
---|
631 | IntRandom RANDOM(S); |
---|
632 | |
---|
633 | |
---|
634 | // ========================================================== |
---|
635 | // = (1) Find a suitable constant to make bivariate = |
---|
636 | // = polynomials univariate. Try the following numbers = |
---|
637 | // = 0, 1, -1, 2, -2, 3,... = |
---|
638 | // ========================================================== |
---|
639 | |
---|
640 | while ( !suitable3 ) |
---|
641 | { |
---|
642 | ff = f(konst,'y'); |
---|
643 | ffx = fx(konst,'y'); |
---|
644 | |
---|
645 | if( gcd(ff, ffx) == 1) |
---|
646 | suitable3 = true; |
---|
647 | else |
---|
648 | { |
---|
649 | konst *= -1; |
---|
650 | if( konst >= 0 ) |
---|
651 | konst++; |
---|
652 | } |
---|
653 | } |
---|
654 | |
---|
655 | |
---|
656 | // =============================================== |
---|
657 | // = (2) Make g_i univariate = |
---|
658 | // =============================================== |
---|
659 | i=0; |
---|
660 | for( CFListIterator it=G; it.hasItem(); it++, i++) |
---|
661 | { |
---|
662 | gi[i] = it.getItem()(konst,'y'); |
---|
663 | } |
---|
664 | |
---|
665 | // =============================================== |
---|
666 | // = (3) Compute the matrices 'AA' and 'AI' = |
---|
667 | // =============================================== |
---|
668 | |
---|
669 | |
---|
670 | for( i=0; i<r; i++) // First store all coeffizients in AA. |
---|
671 | { |
---|
672 | ggi[i] = (gi[i]*ffx)%ff; // now we have degree < m. |
---|
673 | //biNormieren(ggi[i]); |
---|
674 | for ( CFIterator j = ggi[i]; j.hasTerms(); j++ ) |
---|
675 | AA( j.exp()+1, i+1) = j.coeff(); |
---|
676 | } |
---|
677 | |
---|
678 | |
---|
679 | // Now find the lin. indep. rows. |
---|
680 | i = 1; |
---|
681 | ii = 1; // row number of A |
---|
682 | while (L.rank() != r ) |
---|
683 | { |
---|
684 | ASSERT( i<=m, "Too few linear independent rows!"); |
---|
685 | |
---|
686 | for (k=1; k<=r; k++) |
---|
687 | Z(1,k) = AA(i,k); |
---|
688 | if( L.new_row(Z,0) ) // linear independent row? |
---|
689 | { |
---|
690 | ASSERT( ii<=r, "Wrong index in matrix"); |
---|
691 | AI(ii,r+1) = i; // Degree in x |
---|
692 | ii++; |
---|
693 | } |
---|
694 | i++; |
---|
695 | L.print(); |
---|
696 | } |
---|
697 | L.inverse(AI); |
---|
698 | |
---|
699 | |
---|
700 | // ============================================== |
---|
701 | // = (4) Big loop to find a suitable 'Eg(x) = |
---|
702 | // ============================================== |
---|
703 | |
---|
704 | while ( !suitable1 ) // Is Eg(x) suitable? -> Check at the end of this procedure! |
---|
705 | { |
---|
706 | suitable2 = false; // In case we need a second loop |
---|
707 | |
---|
708 | // ================================================ |
---|
709 | // = (4a) Find a suitable 'g' = |
---|
710 | // ================================================ |
---|
711 | // rand_coeff[0] = 0; |
---|
712 | // rand_coeff[1] = 4; |
---|
713 | |
---|
714 | |
---|
715 | while ( !suitable2 ) |
---|
716 | { |
---|
717 | // === (i) Creating g === |
---|
718 | i=0; |
---|
719 | g=0; |
---|
720 | for( CFListIterator it=G; it.hasItem(); it++, i++) |
---|
721 | { |
---|
722 | rand_coeff[i] = RANDOM.generate().intval(); |
---|
723 | g += rand_coeff[i] * it.getItem(); |
---|
724 | } |
---|
725 | gg = g(konst,'y'); // univariate! |
---|
726 | for(i=0; i<r; i++) ggi[i] = (gi[i]*gg)%ff; // !! Redefinition of ggi !! |
---|
727 | |
---|
728 | // === (ii) Check if all polynomials are <> 0 === |
---|
729 | suitable2 = true; // It should be fine, but ... |
---|
730 | if( gg.isZero() ) |
---|
731 | suitable2 = false; |
---|
732 | // else |
---|
733 | // for(i=0; i<r; i++) |
---|
734 | // if( ggi[i].isZero() ) |
---|
735 | // suitable2 = false; |
---|
736 | } // end of Žwhile ( !suitable2 )Ž |
---|
737 | |
---|
738 | // createRg(g,f); |
---|
739 | |
---|
740 | // =============================================== |
---|
741 | // = (b) Compute matrix 'A' = |
---|
742 | // =============================================== |
---|
743 | for(i=1; i<=r; i++) |
---|
744 | { |
---|
745 | for( ii=1; ii<=m; ii++) |
---|
746 | AA (ii,1) = 0; // !! Redefinition of AA !! |
---|
747 | for ( CFIterator j = ggi[i-1]; j.hasTerms(); j++ ) |
---|
748 | AA( j.exp()+1, 1) = j.coeff(); |
---|
749 | |
---|
750 | for( ii=1; ii<=r; ii++) |
---|
751 | { |
---|
752 | A(i,ii) = 0; |
---|
753 | for( k=1; k<=r; k++) |
---|
754 | A(i,ii) += ( AI(ii,k ) * AA( AI(k, r+1 ).intval(),1) ); |
---|
755 | } |
---|
756 | } |
---|
757 | for(i=1; i<=r; i++) |
---|
758 | A(i,i) -= x; |
---|
759 | |
---|
760 | // =============================================== |
---|
761 | // = (c) Compute Eg(x) and check it = |
---|
762 | // =============================================== |
---|
763 | |
---|
764 | Eg = determinant(A,r); |
---|
765 | if( gcd(Eg, deriv(Eg,x)) == 1 ) |
---|
766 | { |
---|
767 | suitable1 = true; |
---|
768 | } |
---|
769 | } // end of Žwhile ( !suitable1 )Ž |
---|
770 | |
---|
771 | |
---|
772 | // ============================================== |
---|
773 | // = (5) Prepare for leaving = |
---|
774 | // ============================================== |
---|
775 | |
---|
776 | delete[] gi; |
---|
777 | delete[] ggi; |
---|
778 | delete[] rand_coeff; |
---|
779 | |
---|
780 | CFList LL; |
---|
781 | LL.append(Eg); |
---|
782 | LL.append(g); |
---|
783 | |
---|
784 | return (LL); |
---|
785 | } |
---|
786 | ///////////////////////////////////////////////////////////// |
---|
787 | // This subroutine creates the polynomials Rg(x) |
---|
788 | // which can be used instead of Eg(x). |
---|
789 | // No basis of G is neccessary, only one element |
---|
790 | //////////////////////////////////////////////////////////// |
---|
791 | //======================================================= |
---|
792 | CFList BIFAC::createRg (CFList G, CanonicalForm f) |
---|
793 | //======================================================= |
---|
794 | { |
---|
795 | |
---|
796 | // cerr << "* Was ist wenn g versagt???? -> Ausbauen\n"; |
---|
797 | |
---|
798 | CanonicalForm fx = deriv(f,x); |
---|
799 | CanonicalForm Rg; |
---|
800 | CanonicalForm g = create_g(G); |
---|
801 | |
---|
802 | |
---|
803 | // =============================================== |
---|
804 | // = (1) Find a suitable constant = |
---|
805 | // =============================================== |
---|
806 | |
---|
807 | CanonicalForm alpha=1; |
---|
808 | |
---|
809 | while( resultant( f, fx, x)(alpha) == 0 ) |
---|
810 | { |
---|
811 | //while( resultant( f, fx, x)(alpha).inCoeffDomain() != true ) |
---|
812 | //alpha +=1; |
---|
813 | } |
---|
814 | |
---|
815 | |
---|
816 | // =============================================== |
---|
817 | // = (2) Find a suitable constant = |
---|
818 | // =============================================== |
---|
819 | |
---|
820 | Rg = resultant( f(alpha,y), g(alpha,y)-z*fx(alpha,y), x); |
---|
821 | |
---|
822 | |
---|
823 | CFList LL; |
---|
824 | LL.append(Rg(x,z)); |
---|
825 | LL.append(g); |
---|
826 | return (LL); |
---|
827 | } |
---|
828 | ///////////////////////////////////////////////////////// |
---|
829 | // Compute the absolute and rational factorization of |
---|
830 | // the univariate polynomial 'ff^grad'. |
---|
831 | //======================================================= |
---|
832 | void BIFAC::unifac (CanonicalForm ff, int grad) |
---|
833 | //======================================================= |
---|
834 | { |
---|
835 | |
---|
836 | CFFList factorsUni; |
---|
837 | CFFList factorsAbs; |
---|
838 | CanonicalForm tmp; |
---|
839 | |
---|
840 | factorsUni = AbsFactorize(ff); |
---|
841 | |
---|
842 | for( CFFListIterator l=factorsUni; l.hasItem(); l++) |
---|
843 | if( ! l.getItem().factor().inBaseDomain() ) |
---|
844 | { |
---|
845 | gl_RL.append( CFFactor( l.getItem().factor(),l.getItem().exp()*grad) ); |
---|
846 | } |
---|
847 | |
---|
848 | |
---|
849 | } |
---|
850 | |
---|
851 | |
---|
852 | /////////////////////////////////////////////////////// |
---|
853 | // Compute the rational factor of f belonging to phi |
---|
854 | //======================================================= |
---|
855 | CanonicalForm BIFAC::RationalFactor (CanonicalForm phi, CanonicalForm ff, \ |
---|
856 | CanonicalForm fx, CanonicalForm g) |
---|
857 | //======================================================= |
---|
858 | { |
---|
859 | |
---|
860 | CanonicalForm h,hh; |
---|
861 | // CanonicalForm fx = deriv(f,x); |
---|
862 | |
---|
863 | for ( CFIterator it = phi; it.hasTerms(); it++ ) |
---|
864 | h += it.coeff() * power(fx,phi.degree()-it.exp())*power(g,it.exp()); |
---|
865 | |
---|
866 | |
---|
867 | hh = Bigcd(ff, h); |
---|
868 | |
---|
869 | return(hh); |
---|
870 | } |
---|
871 | //======================================================= |
---|
872 | void BIFAC::RationalFactorizationOnly (CFFList Phis, CanonicalForm f0, CanonicalForm g) |
---|
873 | //======================================================= |
---|
874 | { |
---|
875 | CanonicalForm h,ff; |
---|
876 | CanonicalForm fx = deriv(f0,x); |
---|
877 | |
---|
878 | for( CFFListIterator i=Phis; i.hasItem(); i++) |
---|
879 | { |
---|
880 | ASSERT( i.getItem().exp() == 1 , "Wrong factor of Eg"); // degree must be 1 |
---|
881 | CanonicalForm phi = i.getItem().factor(); |
---|
882 | |
---|
883 | if( ! phi.inBaseDomain()) |
---|
884 | { |
---|
885 | h = RationalFactor(phi,f0,fx,g); |
---|
886 | gl_RL.append( CFFactor(h,exponent )); |
---|
887 | ff = f0; |
---|
888 | f0 /= h; |
---|
889 | ASSERT( f0*h==ff, "Wrong factor found"); |
---|
890 | } |
---|
891 | } |
---|
892 | } |
---|
893 | |
---|
894 | //======================================================= |
---|
895 | CFList BIFAC::getAbsoluteFactors (CanonicalForm f1, CanonicalForm phi) |
---|
896 | //======================================================= |
---|
897 | { |
---|
898 | CanonicalForm fac; |
---|
899 | CanonicalForm root; |
---|
900 | CFList AbsFac; |
---|
901 | |
---|
902 | CFFList Fac = factorize(phi,e); |
---|
903 | for( CFFListIterator i=Fac; i.hasItem(); i++) |
---|
904 | { |
---|
905 | fac = i.getItem().factor(); |
---|
906 | if( taildegree(fac) > 0 ) // case: phi = a * x |
---|
907 | root = 0; |
---|
908 | else |
---|
909 | root = -tailcoeff(fac)/lc(fac); |
---|
910 | |
---|
911 | |
---|
912 | AbsFac.append( f1(root,e) ); |
---|
913 | AbsFac.append( i.getItem().exp() * exponent); |
---|
914 | AbsFac.append( phi ); // Polynomial of the field extension |
---|
915 | } |
---|
916 | return AbsFac; |
---|
917 | } |
---|
918 | //======================================================= |
---|
919 | void BIFAC::AbsoluteFactorization (CFFList Phis, CanonicalForm ff, CanonicalForm g) |
---|
920 | //======================================================= |
---|
921 | { |
---|
922 | |
---|
923 | int ii; |
---|
924 | if( getCharacteristic() == 0 ) |
---|
925 | { |
---|
926 | //cerr << "* Charcteristic 0 is not yet implemented! => Aborting!\n"; |
---|
927 | exit(1); |
---|
928 | } |
---|
929 | |
---|
930 | |
---|
931 | CFList AbsFac; |
---|
932 | CanonicalForm phi; |
---|
933 | CanonicalForm h, h_abs, h_res, h_rat; |
---|
934 | CanonicalForm fx = deriv(ff,x); |
---|
935 | |
---|
936 | |
---|
937 | for( CFFListIterator i=Phis; i.hasItem(); i++) |
---|
938 | { |
---|
939 | ASSERT( i.getItem().exp() == 1 , "Wrong factor of Eg"); // degree must be 1 |
---|
940 | phi = i.getItem().factor(); |
---|
941 | |
---|
942 | if( ! phi.inBaseDomain()) |
---|
943 | { |
---|
944 | |
---|
945 | // === Case 1: phi has degree 1 === |
---|
946 | if( phi.degree() == 1 ) |
---|
947 | { |
---|
948 | if( taildegree(phi) > 0 ) // case: phi = a * x |
---|
949 | h = gcd( ff,g ); |
---|
950 | else // case: phi = a * x + c |
---|
951 | { |
---|
952 | h = gcd( ff, g+tailcoeff(phi)/lc(phi)*fx); |
---|
953 | } |
---|
954 | |
---|
955 | //biNormieren( h ); |
---|
956 | gl_AL.append(h); // Factor of degree 1 |
---|
957 | gl_AL.append(exponent); // Multiplicity (exponent) |
---|
958 | gl_AL.append(0); // No field extension |
---|
959 | } else |
---|
960 | { |
---|
961 | // === Case 2: phi has degree > 1 === |
---|
962 | e=rootOf(phi, 'e'); |
---|
963 | h = gcd( ff, g-e*fx); |
---|
964 | //biNormieren( h ); |
---|
965 | |
---|
966 | AbsFac = getAbsoluteFactors(h, phi); |
---|
967 | for( CFListIterator l=AbsFac; l.hasItem(); l++) |
---|
968 | gl_AL.append( l.getItem() ); |
---|
969 | |
---|
970 | |
---|
971 | // === (1) Get the rational factor by multi- === |
---|
972 | // === plication of the absolute factor. === |
---|
973 | h_abs=1; |
---|
974 | ii = 0; |
---|
975 | |
---|
976 | for( CFListIterator l=AbsFac; l.hasItem(); l++) |
---|
977 | { |
---|
978 | ii++; |
---|
979 | if (ii%3 == 1 ) |
---|
980 | h_abs *= l.getItem(); |
---|
981 | } |
---|
982 | //biNormieren( h_abs ); |
---|
983 | |
---|
984 | |
---|
985 | // === (2) Compute the rational factor === |
---|
986 | // === by using the resultant. === |
---|
987 | h_res = resultant(phi(z,x), h(z,e), z); |
---|
988 | //biNormieren( h_res ); |
---|
989 | |
---|
990 | |
---|
991 | // === (3) Compute the rational factor by ignoring === |
---|
992 | // === all knowledge of absolute factors. === |
---|
993 | h_rat = RationalFactor(phi, ff,fx, g); |
---|
994 | //biNormieren( h_rat ); |
---|
995 | |
---|
996 | ASSERT( (h_abs == h_res) && (h_res == h_rat), "Wrong rational factor ?!?"); |
---|
997 | h = h_abs; |
---|
998 | } |
---|
999 | // End of absolute factorization. |
---|
1000 | gl_RL.append(CFFactor( h,exponent )); // Save the rational factor |
---|
1001 | ff/=h; |
---|
1002 | } |
---|
1003 | } |
---|
1004 | } |
---|
1005 | |
---|
1006 | |
---|
1007 | //====================================================== |
---|
1008 | // Factorization of a squarefree bivariate polynomial |
---|
1009 | // in which every factor appears only once. |
---|
1010 | // Do we need a complete factorization ('absolute' is true) |
---|
1011 | // or only a rational factorization ('absolute' false)? |
---|
1012 | //====================================================== |
---|
1013 | void BIFAC::bifacSqrFree(CanonicalForm ff) |
---|
1014 | //======================================================= |
---|
1015 | { |
---|
1016 | |
---|
1017 | int anz=0; // number of factors without field elements |
---|
1018 | |
---|
1019 | CFList G = basisOfG(ff); |
---|
1020 | |
---|
1021 | CFList LL; |
---|
1022 | CanonicalForm Eg,g; |
---|
1023 | |
---|
1024 | |
---|
1025 | |
---|
1026 | // Case 1: There is only one rational & absolute factor === |
---|
1027 | if( G.length() == 1 ){ // There is only one |
---|
1028 | gl_RL.append( CFFactor(ff, exponent)); // rational factor |
---|
1029 | gl_AL.append( ff ); |
---|
1030 | gl_AL.append( exponent ); |
---|
1031 | gl_AL.append( 0 ); |
---|
1032 | } |
---|
1033 | else // Case 2: There is more than one absolute factor === |
---|
1034 | { |
---|
1035 | // LL = createEg(G,ff); |
---|
1036 | // LL = createEgUni(G,ff); // Hier ist noch ein FEHLER !!!! |
---|
1037 | |
---|
1038 | LL = createRg( G, ff); // viel langsamer als EgUni |
---|
1039 | |
---|
1040 | |
---|
1041 | Eg = LL.getFirst(); |
---|
1042 | Eg = Eg/LC(Eg); |
---|
1043 | |
---|
1044 | g = LL.getLast(); |
---|
1045 | |
---|
1046 | // g = G.getFirst(); |
---|
1047 | |
---|
1048 | |
---|
1049 | CFFList PHI = AbsFactorize( Eg ); |
---|
1050 | |
---|
1051 | CFFListIterator J=PHI; |
---|
1052 | CanonicalForm Eg2=1; |
---|
1053 | for ( ; J.hasItem(); J++) |
---|
1054 | { Eg2 = Eg2 * J.getItem().factor(); } |
---|
1055 | |
---|
1056 | // === Is Eg(x) irreducible ? === |
---|
1057 | anz=0; |
---|
1058 | |
---|
1059 | // PHI = AbsFactorize( Eg) ; |
---|
1060 | // |
---|
1061 | |
---|
1062 | for( CFFListIterator i=PHI; i.hasItem(); i++) { |
---|
1063 | if( !i.getItem().factor().inBaseDomain()) |
---|
1064 | anz++; |
---|
1065 | } |
---|
1066 | |
---|
1067 | /* if( absolute ) // Only for a absolute factorization |
---|
1068 | AbsoluteFactorization( PHI,ff, g); |
---|
1069 | else // only for a rational factorization |
---|
1070 | { */ |
---|
1071 | if( anz==1 ){ ; |
---|
1072 | gl_RL.append( CFFactor(ff,exponent));} |
---|
1073 | else |
---|
1074 | RationalFactorizationOnly( PHI,ff, g); |
---|
1075 | /* } */ |
---|
1076 | } |
---|
1077 | } |
---|
1078 | |
---|
1079 | ///////////////////////////////////////////// |
---|
1080 | // Main procedure for the factorization |
---|
1081 | // of the bivariate polynomial 'f'. |
---|
1082 | // REMARK: 'f' might be univariate, too. |
---|
1083 | //--<>--------------------------------- |
---|
1084 | void BIFAC::bifacMain(CanonicalForm f) |
---|
1085 | //--<>--------------------------------- |
---|
1086 | { |
---|
1087 | |
---|
1088 | |
---|
1089 | CanonicalForm ff, ggT; |
---|
1090 | |
---|
1091 | // =============================================== |
---|
1092 | // = (1) Trivial case: Input is a constant = |
---|
1093 | // =============================================== |
---|
1094 | |
---|
1095 | if( f.inBaseDomain() ) |
---|
1096 | { |
---|
1097 | gl_AL.append(f); // store polynomial |
---|
1098 | gl_AL.append(1); // store exponent |
---|
1099 | gl_AL.append(0); // store ŽpolynomialŽ for field extension |
---|
1100 | |
---|
1101 | gl_RL.append( CFFactor(f,1) ); // store polynomial |
---|
1102 | return; |
---|
1103 | } |
---|
1104 | |
---|
1105 | // =============================================== |
---|
1106 | // = STEP: Squarefree decomposition = |
---|
1107 | // =============================================== |
---|
1108 | |
---|
1109 | |
---|
1110 | CFFList Q =Mysqrfree(f); |
---|
1111 | // |
---|
1112 | // cout << Q << endl; |
---|
1113 | // |
---|
1114 | |
---|
1115 | |
---|
1116 | |
---|
1117 | // ========================================================= |
---|
1118 | // = STEP: Factorization of the squarefree decomposition = |
---|
1119 | // ========================================================= |
---|
1120 | |
---|
1121 | |
---|
1122 | for( CFFListIterator i=Q; i.hasItem(); i++) |
---|
1123 | { |
---|
1124 | |
---|
1125 | if( i.getItem().factor().level() < 0 ) ; |
---|
1126 | else |
---|
1127 | { |
---|
1128 | if( ( degree(i.getItem().factor(),x) == 0 || degree( i.getItem().factor(),y) == 0) ) { |
---|
1129 | // case: univariate |
---|
1130 | unifac( i.getItem().factor(), i.getItem().exp() ); } |
---|
1131 | else // case: bivariate |
---|
1132 | { |
---|
1133 | exponent = i.getItem().exp(); // global variable |
---|
1134 | CanonicalForm dumm = i.getItem().factor(); |
---|
1135 | dumm = dumm.LC(); |
---|
1136 | if( dumm.level() > 0 ){ dumm = 1; } |
---|
1137 | bifacSqrFree(i.getItem().factor()/dumm ); |
---|
1138 | } |
---|
1139 | }} |
---|
1140 | |
---|
1141 | |
---|
1142 | } |
---|
1143 | |
---|
1144 | |
---|
1145 | /////////////////////////////////////////////////////// |
---|
1146 | // Find the least prime so that the factorization |
---|
1147 | // works. |
---|
1148 | /////////////////////////////////////////////////////// |
---|
1149 | |
---|
1150 | //======================================================= |
---|
1151 | int BIFAC::findCharacteristic(CanonicalForm f) |
---|
1152 | //======================================================= |
---|
1153 | { |
---|
1154 | int min = (2*degree(f,'x')-1)*degree(f,'y'); |
---|
1155 | int nr=0; |
---|
1156 | |
---|
1157 | if( min >= 32003 ) return ( 32003 ); // this is the maximum |
---|
1158 | |
---|
1159 | // Find the smallest poosible prime |
---|
1160 | while ( cf_getPrime(nr) < min) { nr++; } |
---|
1161 | return ( cf_getPrime(nr) ); |
---|
1162 | } |
---|
1163 | |
---|
1164 | ///////////////////////////////////////////////////////// |
---|
1165 | // |
---|
1166 | // PUBLIC functions |
---|
1167 | // |
---|
1168 | ///////////////////////////////////////////////////////// |
---|
1169 | |
---|
1170 | // convert the result of the factorization from |
---|
1171 | // the intern storage type into the public one. |
---|
1172 | // Also, check the correctness of the solution |
---|
1173 | // and, if neccessary, change the characteristic. |
---|
1174 | //--<>--------------------------------- |
---|
1175 | void BIFAC::convertResult(CanonicalForm & f, int ch, int sw) |
---|
1176 | //--<>--------------------------------- |
---|
1177 | { |
---|
1178 | |
---|
1179 | CanonicalForm ff = 1; |
---|
1180 | CanonicalForm c; |
---|
1181 | |
---|
1182 | CFFList aL; |
---|
1183 | |
---|
1184 | //cout << gl_RL<<endl; |
---|
1185 | |
---|
1186 | if( sw ) |
---|
1187 | { |
---|
1188 | Variable W('W'); |
---|
1189 | for( CFFListIterator i=gl_RL; i.hasItem(); i++) |
---|
1190 | { |
---|
1191 | c = i.getItem().factor(); |
---|
1192 | c = c(W,y); |
---|
1193 | c = c(y,x); |
---|
1194 | c = c(x,W); |
---|
1195 | aL.append( CFFactor( c, i.getItem().exp() )); |
---|
1196 | } |
---|
1197 | |
---|
1198 | f = f(W,y); f=f(y,x); f=f(x,W); |
---|
1199 | } |
---|
1200 | else aL = gl_RL; |
---|
1201 | |
---|
1202 | gl_RL = aL; |
---|
1203 | |
---|
1204 | //cout << aL; |
---|
1205 | |
---|
1206 | |
---|
1207 | |
---|
1208 | // ========== OUTPUT ===================== |
---|
1209 | /* for( CFFListIterator i=aL; i.hasItem(); i++) |
---|
1210 | { |
---|
1211 | cout << "(" << i.getItem().factor() << ")"; |
---|
1212 | if( i.getItem().exp() != 1 ) |
---|
1213 | cout << "^" << i.getItem().exp(); |
---|
1214 | cout << " * "; |
---|
1215 | } */ |
---|
1216 | |
---|
1217 | |
---|
1218 | // cout << "\n* Test auf Korrektheit ..."; |
---|
1219 | |
---|
1220 | |
---|
1221 | for( CFFListIterator i=aL; i.hasItem(); i++) |
---|
1222 | { |
---|
1223 | ff *= power(i.getItem().factor(), i.getItem().exp() ); |
---|
1224 | // cout << " ff = " << ff |
---|
1225 | // << "\n a^b = " << i.getItem().factor() << " ^ " << i.getItem().exp() << endl; |
---|
1226 | } |
---|
1227 | c = f.LC()/ff.LC(); |
---|
1228 | |
---|
1229 | ff *= c; |
---|
1230 | |
---|
1231 | |
---|
1232 | // cout << "\n\nOriginal f = " << f << "\n\nff = " << ff |
---|
1233 | // << "\n\nDiff = " << f-ff << endl << "Quot "<< f/ff <<endl; |
---|
1234 | // cout << "degree 0: " << c << endl; |
---|
1235 | |
---|
1236 | |
---|
1237 | #ifndef NOSTREAMIO |
---|
1238 | if( f != ff ) cout << "\n\nOriginal f = " << f << "\n\nff = " << ff |
---|
1239 | << "\n\nDiff = " << f-ff << endl << "Quot "<< f/ff <<endl; |
---|
1240 | #endif |
---|
1241 | ASSERT( f==ff, "Wrong rational factorization. Abborting!"); |
---|
1242 | // cout << " [OK]\n"; |
---|
1243 | |
---|
1244 | } |
---|
1245 | //--<>--------------------------------- |
---|
1246 | void BIFAC::bifac(CanonicalForm f, bool abs) |
---|
1247 | //--<>--------------------------------- |
---|
1248 | { |
---|
1249 | absolute = 1; // global variables |
---|
1250 | CFList factors; |
---|
1251 | int ch = getCharacteristic(); |
---|
1252 | int ch2; |
---|
1253 | |
---|
1254 | |
---|
1255 | ASSERT( ch==0 && !isOn(SW_RATIONAL), "Integer numbers not allowed" ); |
---|
1256 | |
---|
1257 | |
---|
1258 | // === Check the characteristic === |
---|
1259 | if( ch != 0 ) |
---|
1260 | { |
---|
1261 | ch2 = findCharacteristic(f); |
---|
1262 | if( ch < ch2 ) |
---|
1263 | { |
---|
1264 | // setCharacteristic( ch2 ); |
---|
1265 | f = mapinto(f); |
---|
1266 | |
---|
1267 | // PROVISORISCH |
---|
1268 | //cerr << "\n Characteristic is too small!" |
---|
1269 | // << "\n The result might be wrong!\n\n"; |
---|
1270 | exit(1); |
---|
1271 | |
---|
1272 | } else ; |
---|
1273 | } |
---|
1274 | |
---|
1275 | Variable W('W'); |
---|
1276 | CanonicalForm l; |
---|
1277 | int sw = 0; |
---|
1278 | |
---|
1279 | if( degree(f,x) < degree(f,y) ) { |
---|
1280 | f = f(W,x); f = f(x,y); f=f(y,W); |
---|
1281 | sw = 1; |
---|
1282 | } |
---|
1283 | l = f.LC(); |
---|
1284 | |
---|
1285 | if( l.level()<0 ) { f = f/f.LC(); gl_RL.append( CFFactor(l,1) ); } |
---|
1286 | |
---|
1287 | |
---|
1288 | bifacMain(f); // start the computation |
---|
1289 | |
---|
1290 | convertResult(f,ch, sw) ; // and convert the result |
---|
1291 | } |
---|
1292 | |
---|
1293 | // ============== end of 'bifac.cc' ================== |
---|
1294 | #endif |
---|