1 | /* emacs edit mode for this file is -*- C++ -*- */ |
---|
2 | |
---|
3 | #ifdef HAVE_CONFIG_H |
---|
4 | #include "config.h" |
---|
5 | #endif /* HAVE_CONFIG_H */ |
---|
6 | |
---|
7 | #include "cf_assert.h" |
---|
8 | #include "cf_factory.h" |
---|
9 | |
---|
10 | #include "cf_defs.h" |
---|
11 | #include "cf_globals.h" |
---|
12 | #include "canonicalform.h" |
---|
13 | #include "cf_iter.h" |
---|
14 | #include "int_cf.h" |
---|
15 | #include "cf_algorithm.h" |
---|
16 | #include "imm.h" |
---|
17 | #include "gfops.h" |
---|
18 | |
---|
19 | #include <factory/cf_gmp.h> |
---|
20 | |
---|
21 | |
---|
22 | #ifndef NOSTREAMIO |
---|
23 | CanonicalForm readCF( ISTREAM& ); |
---|
24 | #endif /* NOSTREAMIO */ |
---|
25 | |
---|
26 | //{{{ constructors, destructors, selectors |
---|
27 | CanonicalForm::CanonicalForm( const char * str, const int base ) : value( CFFactory::basic( str, base ) ) |
---|
28 | { |
---|
29 | } |
---|
30 | |
---|
31 | InternalCF* |
---|
32 | CanonicalForm::getval() const |
---|
33 | { |
---|
34 | if ( is_imm( value ) ) |
---|
35 | return value; |
---|
36 | else |
---|
37 | return value->copyObject(); |
---|
38 | } |
---|
39 | |
---|
40 | CanonicalForm |
---|
41 | CanonicalForm::deepCopy() const |
---|
42 | { |
---|
43 | if ( is_imm( value ) ) |
---|
44 | return *this; |
---|
45 | else |
---|
46 | return CanonicalForm( value->deepCopyObject() ); |
---|
47 | } |
---|
48 | |
---|
49 | void |
---|
50 | CanonicalForm::mpzval(mpz_t val) const |
---|
51 | { |
---|
52 | ASSERT (!is_imm (value) && value->levelcoeff() == IntegerDomain, "non-immediate integer expected"); |
---|
53 | getmpi (value, val); |
---|
54 | } |
---|
55 | //}}} |
---|
56 | |
---|
57 | //{{{ predicates |
---|
58 | #if 0 |
---|
59 | bool |
---|
60 | CanonicalForm::isImm() const |
---|
61 | { |
---|
62 | return is_imm( value ); |
---|
63 | } |
---|
64 | #endif |
---|
65 | |
---|
66 | bool |
---|
67 | CanonicalForm::inZ() const |
---|
68 | { |
---|
69 | if ( is_imm( value ) == INTMARK ) |
---|
70 | return true; |
---|
71 | else if ( is_imm( value ) ) |
---|
72 | return false; |
---|
73 | else |
---|
74 | return value->levelcoeff() == IntegerDomain; |
---|
75 | } |
---|
76 | |
---|
77 | bool |
---|
78 | CanonicalForm::inQ() const |
---|
79 | { |
---|
80 | if ( is_imm( value ) == INTMARK ) |
---|
81 | return true; |
---|
82 | else if ( is_imm( value ) ) |
---|
83 | return false; |
---|
84 | else |
---|
85 | return value->levelcoeff() == IntegerDomain || |
---|
86 | value->levelcoeff() == RationalDomain; |
---|
87 | } |
---|
88 | |
---|
89 | bool |
---|
90 | CanonicalForm::inFF() const |
---|
91 | { |
---|
92 | return is_imm( value ) == FFMARK; |
---|
93 | } |
---|
94 | |
---|
95 | bool |
---|
96 | CanonicalForm::inGF() const |
---|
97 | { |
---|
98 | return is_imm( value ) == GFMARK; |
---|
99 | } |
---|
100 | |
---|
101 | bool |
---|
102 | CanonicalForm::inPP() const |
---|
103 | { |
---|
104 | return ! is_imm( value ) && ( value->levelcoeff() == PrimePowerDomain ); |
---|
105 | } |
---|
106 | |
---|
107 | bool |
---|
108 | CanonicalForm::inBaseDomain() const |
---|
109 | { |
---|
110 | if ( is_imm( value ) ) |
---|
111 | return true; |
---|
112 | else |
---|
113 | return value->inBaseDomain(); |
---|
114 | } |
---|
115 | |
---|
116 | bool |
---|
117 | CanonicalForm::inExtension() const |
---|
118 | { |
---|
119 | if ( is_imm( value ) ) |
---|
120 | return false; |
---|
121 | else |
---|
122 | return value->inExtension(); |
---|
123 | } |
---|
124 | |
---|
125 | bool |
---|
126 | CanonicalForm::inCoeffDomain() const |
---|
127 | { |
---|
128 | if ( is_imm( value ) ) |
---|
129 | return true; |
---|
130 | else |
---|
131 | return value->inCoeffDomain(); |
---|
132 | } |
---|
133 | |
---|
134 | bool |
---|
135 | CanonicalForm::inPolyDomain() const |
---|
136 | { |
---|
137 | if ( is_imm( value ) ) |
---|
138 | return false; |
---|
139 | else |
---|
140 | return value->inPolyDomain(); |
---|
141 | } |
---|
142 | |
---|
143 | bool |
---|
144 | CanonicalForm::inQuotDomain() const |
---|
145 | { |
---|
146 | if ( is_imm( value ) ) |
---|
147 | return false; |
---|
148 | else |
---|
149 | return value->inQuotDomain(); |
---|
150 | } |
---|
151 | |
---|
152 | bool |
---|
153 | CanonicalForm::isFFinGF() const |
---|
154 | { |
---|
155 | return is_imm( value ) == GFMARK && gf_isff( imm2int( value ) ); |
---|
156 | } |
---|
157 | |
---|
158 | bool |
---|
159 | CanonicalForm::isUnivariate() const |
---|
160 | { |
---|
161 | if ( is_imm( value ) ) |
---|
162 | return false; |
---|
163 | else |
---|
164 | return value->isUnivariate(); |
---|
165 | } |
---|
166 | |
---|
167 | // is_homogeneous returns 1 iff f is homogeneous, 0 otherwise// |
---|
168 | bool |
---|
169 | CanonicalForm::isHomogeneous() const |
---|
170 | { |
---|
171 | if (this->isZero()) return true; |
---|
172 | else if (this->inCoeffDomain()) return true; |
---|
173 | else |
---|
174 | { |
---|
175 | #if 0 |
---|
176 | CFIterator i; |
---|
177 | int cdeg = -2, dummy; |
---|
178 | for ( i = *this; i.hasTerms(); i++ ) |
---|
179 | { |
---|
180 | if (!(i.coeff().isHomogeneous())) return false; |
---|
181 | if ( (dummy = totaldegree( i.coeff() ) + i.exp()) != cdeg ) |
---|
182 | { |
---|
183 | if (cdeg == -2) cdeg = dummy; |
---|
184 | else return false; |
---|
185 | } |
---|
186 | } |
---|
187 | return true; |
---|
188 | #else |
---|
189 | CFList termlist= get_Terms(*this); |
---|
190 | CFListIterator i; |
---|
191 | int deg= totaldegree(termlist.getFirst()); |
---|
192 | |
---|
193 | for ( i=termlist; i.hasItem(); i++ ) |
---|
194 | if ( totaldegree(i.getItem()) != deg ) return false; |
---|
195 | return true; |
---|
196 | #endif |
---|
197 | } |
---|
198 | } |
---|
199 | |
---|
200 | //}}} |
---|
201 | |
---|
202 | //{{{ conversion functions |
---|
203 | long |
---|
204 | CanonicalForm::intval() const |
---|
205 | { |
---|
206 | if ( is_imm( value ) ) |
---|
207 | return imm_intval( value ); |
---|
208 | else |
---|
209 | return value->intval(); |
---|
210 | } |
---|
211 | |
---|
212 | CanonicalForm |
---|
213 | CanonicalForm::mapinto () const |
---|
214 | { |
---|
215 | //ASSERT( is_imm( value ) || ! value->inExtension(), "cannot map into different Extension" ); |
---|
216 | if ( is_imm( value ) ) |
---|
217 | if ( getCharacteristic() == 0 ) |
---|
218 | if ( is_imm( value ) == FFMARK ) |
---|
219 | return CanonicalForm( int2imm( ff_symmetric( imm2int( value ) ) ) ); |
---|
220 | else if ( is_imm( value ) == GFMARK ) |
---|
221 | return CanonicalForm( int2imm( ff_symmetric( gf_gf2ff( imm2int( value ) ) ) ) ); |
---|
222 | else |
---|
223 | return *this; |
---|
224 | else if ( CFFactory::gettype() == PrimePowerDomain ) |
---|
225 | return CanonicalForm( CFFactory::basic( imm2int( value ) ) ); |
---|
226 | else if ( getGFDegree() == 1 ) |
---|
227 | return CanonicalForm( int2imm_p( ff_norm( imm2int( value ) ) ) ); |
---|
228 | else |
---|
229 | return CanonicalForm( int2imm_gf( gf_int2gf( imm2int( value ) ) ) ); |
---|
230 | else if ( value->inBaseDomain() ) |
---|
231 | if ( getCharacteristic() == 0 ) |
---|
232 | if ( value->levelcoeff() == PrimePowerDomain ) |
---|
233 | return CFFactory::basic( getmpi( value, true ) ); |
---|
234 | else |
---|
235 | return *this; |
---|
236 | else if ( CFFactory::gettype() == PrimePowerDomain ) |
---|
237 | { |
---|
238 | ASSERT( value->levelcoeff() == PrimePowerDomain || value->levelcoeff() == IntegerDomain, "no proper map defined" ); |
---|
239 | if ( value->levelcoeff() == PrimePowerDomain ) |
---|
240 | return *this; |
---|
241 | else |
---|
242 | return CFFactory::basic( getmpi( value ) ); |
---|
243 | } |
---|
244 | else |
---|
245 | { |
---|
246 | int val; |
---|
247 | if ( value->levelcoeff() == IntegerDomain ) |
---|
248 | val = value->intmod( ff_prime ); |
---|
249 | else if ( value->levelcoeff() == RationalDomain ) |
---|
250 | return num().mapinto() / den().mapinto(); |
---|
251 | else { |
---|
252 | ASSERT( 0, "illegal domain" ); |
---|
253 | return 0; |
---|
254 | } |
---|
255 | if ( getGFDegree() > 1 ) |
---|
256 | return CanonicalForm( int2imm_gf( gf_int2gf( val ) ) ); |
---|
257 | else |
---|
258 | return CanonicalForm( int2imm_p( val ) ); |
---|
259 | } |
---|
260 | else |
---|
261 | { |
---|
262 | Variable x = value->variable(); |
---|
263 | CanonicalForm result; |
---|
264 | for ( CFIterator i = *this; i.hasTerms(); i++ ) |
---|
265 | result += (power( x, i.exp() ) * i.coeff().mapinto()); |
---|
266 | return result; |
---|
267 | } |
---|
268 | } |
---|
269 | //}}} |
---|
270 | |
---|
271 | //{{{ CanonicalForm CanonicalForm::lc (), Lc (), LC (), LC ( v ) const |
---|
272 | //{{{ docu |
---|
273 | // |
---|
274 | // lc(), Lc(), LC() - leading coefficient functions. |
---|
275 | // |
---|
276 | // All methods return CO if CO is in a base domain. |
---|
277 | // |
---|
278 | // lc() returns the leading coefficient of CO with respect to |
---|
279 | // lexicographic ordering. Elements in an algebraic extension |
---|
280 | // are considered polynomials so lc() always returns a leading |
---|
281 | // coefficient in a base domain. This method is useful to get |
---|
282 | // the base domain over which CO is defined. |
---|
283 | // |
---|
284 | // Lc() returns the leading coefficient of CO with respect to |
---|
285 | // lexicographic ordering. In contrast to lc() elements in an |
---|
286 | // algebraic extension are considered coefficients so Lc() always |
---|
287 | // returns a leading coefficient in a coefficient domain. |
---|
288 | // |
---|
289 | // LC() returns the leading coefficient of CO where CO is |
---|
290 | // considered a univariate polynomial in its main variable. An |
---|
291 | // element of an algebraic extension is considered an univariate |
---|
292 | // polynomial, too. |
---|
293 | // |
---|
294 | // LC( v ) returns the leading coefficient of CO where CO is |
---|
295 | // considered an univariate polynomial in the polynomial variable |
---|
296 | // v. |
---|
297 | // Note: If v is less than the main variable of CO we have to |
---|
298 | // swap variables which may be quite expensive. |
---|
299 | // |
---|
300 | // Examples: |
---|
301 | // Let x < y be polynomial variables, a an algebraic variable. |
---|
302 | // |
---|
303 | // (3*a*x*y^2+y+x).lc() = 3 |
---|
304 | // (3*a*x*y^2+y+x).Lc() = 3*a |
---|
305 | // (3*a*x*y^2+y+x).LC() = 3*a*x |
---|
306 | // (3*a*x*y^2+y+x).LC( x ) = 3*a*y^2+1 |
---|
307 | // |
---|
308 | // (3*a^2+4*a).lc() = 3 |
---|
309 | // (3*a^2+4*a).Lc() = 3*a^2+4*a |
---|
310 | // (3*a^2+4*a).LC() = 3 |
---|
311 | // (3*a^2+4*a).LC( x ) = 3*a^2+4*a |
---|
312 | // |
---|
313 | // See also: InternalCF::lc(), InternalCF::Lc(), InternalCF::LC(), |
---|
314 | // InternalPoly::lc(), InternalPoly::Lc(), InternalPoly::LC(), |
---|
315 | // ::lc(), ::Lc(), ::LC(), ::LC( v ) |
---|
316 | // |
---|
317 | //}}} |
---|
318 | CanonicalForm |
---|
319 | CanonicalForm::lc () const |
---|
320 | { |
---|
321 | if ( is_imm( value ) ) |
---|
322 | return *this; |
---|
323 | else |
---|
324 | return value->lc(); |
---|
325 | } |
---|
326 | |
---|
327 | CanonicalForm |
---|
328 | CanonicalForm::Lc () const |
---|
329 | { |
---|
330 | if ( is_imm( value ) || value->inCoeffDomain() ) |
---|
331 | return *this; |
---|
332 | else |
---|
333 | return value->Lc(); |
---|
334 | } |
---|
335 | |
---|
336 | CanonicalForm |
---|
337 | CanonicalForm::LC () const |
---|
338 | { |
---|
339 | if ( is_imm( value ) ) |
---|
340 | return *this; |
---|
341 | else |
---|
342 | return value->LC(); |
---|
343 | } |
---|
344 | |
---|
345 | CanonicalForm |
---|
346 | CanonicalForm::LC ( const Variable & v ) const |
---|
347 | { |
---|
348 | if ( is_imm( value ) || value->inCoeffDomain() ) |
---|
349 | return *this; |
---|
350 | |
---|
351 | Variable x = value->variable(); |
---|
352 | if ( v > x ) |
---|
353 | return *this; |
---|
354 | else if ( v == x ) |
---|
355 | return value->LC(); |
---|
356 | else { |
---|
357 | CanonicalForm f = swapvar( *this, v, x ); |
---|
358 | if ( f.mvar() == x ) |
---|
359 | return swapvar( f.value->LC(), v, x ); |
---|
360 | else |
---|
361 | // v did not occur in f |
---|
362 | return *this; |
---|
363 | } |
---|
364 | } |
---|
365 | //}}} |
---|
366 | |
---|
367 | //{{{ int CanonicalForm::degree (), degree ( v ) const |
---|
368 | //{{{ docu |
---|
369 | // |
---|
370 | // degree() - degree methods. |
---|
371 | // |
---|
372 | // Both methods returns -1 for the zero polynomial and 0 if |
---|
373 | // CO is in a base domain. |
---|
374 | // |
---|
375 | // degree() returns the degree of CO in its main variable. |
---|
376 | // Elements in an algebraic extension are considered polynomials. |
---|
377 | // |
---|
378 | // degree( v ) returns the degree of CO with respect to v. |
---|
379 | // Elements in an algebraic extension are considered polynomials, |
---|
380 | // and v may be algebraic. |
---|
381 | // |
---|
382 | // See also: InternalCf::degree(), InternalPoly::degree(), |
---|
383 | // ::degree(), ::degree( v ) |
---|
384 | // |
---|
385 | //}}} |
---|
386 | int |
---|
387 | CanonicalForm::degree() const |
---|
388 | { |
---|
389 | int what = is_imm( value ); |
---|
390 | if ( what ) |
---|
391 | if ( what == FFMARK ) |
---|
392 | return imm_iszero_p( value ) ? -1 : 0; |
---|
393 | else if ( what == INTMARK ) |
---|
394 | return imm_iszero( value ) ? -1 : 0; |
---|
395 | else |
---|
396 | return imm_iszero_gf( value ) ? -1 : 0; |
---|
397 | else |
---|
398 | return value->degree(); |
---|
399 | } |
---|
400 | |
---|
401 | int |
---|
402 | CanonicalForm::degree( const Variable & v ) const |
---|
403 | { |
---|
404 | int what = is_imm( value ); |
---|
405 | #if 0 |
---|
406 | if ( what ) |
---|
407 | if ( what == FFMARK ) |
---|
408 | return imm_iszero_p( value ) ? -1 : 0; |
---|
409 | else if ( what == INTMARK ) |
---|
410 | return imm_iszero( value ) ? -1 : 0; |
---|
411 | else |
---|
412 | return imm_iszero_gf( value ) ? -1 : 0; |
---|
413 | else if ( value->inBaseDomain() ) |
---|
414 | return value->degree(); |
---|
415 | #else |
---|
416 | switch(what) |
---|
417 | { |
---|
418 | case FFMARK: return imm_iszero_p( value ) ? -1 : 0; |
---|
419 | case INTMARK: return imm_iszero( value ) ? -1 : 0; |
---|
420 | case GFMARK: return imm_iszero_gf( value ) ? -1 : 0; |
---|
421 | case 0: if ( value->inBaseDomain() ) |
---|
422 | return value->degree(); |
---|
423 | break; |
---|
424 | } |
---|
425 | #endif |
---|
426 | |
---|
427 | Variable x = value->variable(); |
---|
428 | if ( v == x ) |
---|
429 | return value->degree(); |
---|
430 | else if ( v > x ) |
---|
431 | // relatively to v, f is in a coefficient ring |
---|
432 | return 0; |
---|
433 | else { |
---|
434 | int coeffdeg, result = 0; |
---|
435 | // search for maximum of coefficient degree |
---|
436 | for ( CFIterator i = *this; i.hasTerms(); i++ ) { |
---|
437 | coeffdeg = i.coeff().degree( v ); |
---|
438 | if ( coeffdeg > result ) |
---|
439 | result = coeffdeg; |
---|
440 | } |
---|
441 | return result; |
---|
442 | } |
---|
443 | } |
---|
444 | //}}} |
---|
445 | |
---|
446 | //{{{ CanonicalForm CanonicalForm::tailcoeff (), int CanonicalForm::taildegree () const |
---|
447 | //{{{ docu |
---|
448 | // |
---|
449 | // tailcoeff(), taildegree() - return least coefficient and |
---|
450 | // degree, resp. |
---|
451 | // |
---|
452 | // tailcoeff() returns the coefficient of the term with the least |
---|
453 | // degree in CO where CO is considered an univariate polynomial |
---|
454 | // in its main variable. Elements in an algebraic extension are |
---|
455 | // considered coefficients. |
---|
456 | // |
---|
457 | // taildegree() returns -1 for the zero polynomial, 0 if CO is in |
---|
458 | // a base domain, otherwise the least degree of CO where CO is |
---|
459 | // considered a univariate polynomial in its main variable. In |
---|
460 | // contrast to tailcoeff(), elements in an algebraic extension |
---|
461 | // are considered polynomials, not coefficients, and such may |
---|
462 | // have a taildegree larger than zero. |
---|
463 | // |
---|
464 | // tailcoeff( v ) returns the tail coefficient of CO where CO is |
---|
465 | // considered an univariate polynomial in the polynomial variable |
---|
466 | // v. |
---|
467 | // Note: If v is less than the main variable of CO we have to |
---|
468 | // swap variables which may be quite expensive. |
---|
469 | // |
---|
470 | // See also: InternalCF::tailcoeff(), InternalCF::tailcoeff(), |
---|
471 | // InternalPoly::tailcoeff(), InternalPoly::taildegree, |
---|
472 | // ::tailcoeff(), ::taildegree() |
---|
473 | // |
---|
474 | //}}} |
---|
475 | CanonicalForm |
---|
476 | CanonicalForm::tailcoeff () const |
---|
477 | { |
---|
478 | if ( is_imm( value ) || value->inCoeffDomain() ) |
---|
479 | return *this; |
---|
480 | else |
---|
481 | return value->tailcoeff(); |
---|
482 | } |
---|
483 | |
---|
484 | CanonicalForm |
---|
485 | CanonicalForm::tailcoeff (const Variable& v) const |
---|
486 | { |
---|
487 | if ( is_imm( value ) || value->inCoeffDomain() ) |
---|
488 | return *this; |
---|
489 | |
---|
490 | Variable x = value->variable(); |
---|
491 | if ( v > x ) |
---|
492 | return *this; |
---|
493 | else if ( v == x ) |
---|
494 | return value->tailcoeff(); |
---|
495 | else { |
---|
496 | CanonicalForm f = swapvar( *this, v, x ); |
---|
497 | if ( f.mvar() == x ) |
---|
498 | return swapvar( f.value->tailcoeff(), v, x ); |
---|
499 | else |
---|
500 | // v did not occur in f |
---|
501 | return *this; |
---|
502 | } |
---|
503 | } |
---|
504 | |
---|
505 | int |
---|
506 | CanonicalForm::taildegree () const |
---|
507 | { |
---|
508 | int what = is_imm( value ); |
---|
509 | if ( what ) |
---|
510 | if ( what == FFMARK ) |
---|
511 | return imm_iszero_p( value ) ? -1 : 0; |
---|
512 | else if ( what == INTMARK ) |
---|
513 | return imm_iszero( value ) ? -1 : 0; |
---|
514 | else |
---|
515 | return imm_iszero_gf( value ) ? -1 : 0; |
---|
516 | else |
---|
517 | return value->taildegree(); |
---|
518 | } |
---|
519 | //}}} |
---|
520 | |
---|
521 | //{{{ int CanonicalForm::level (), Variable CanonicalForm::mvar () const |
---|
522 | //{{{ docu |
---|
523 | // |
---|
524 | // level(), mvar() - return level and main variable of CO. |
---|
525 | // |
---|
526 | // level() returns the level of CO. For a list of the levels and |
---|
527 | // their meanings, see cf_defs.h. |
---|
528 | // |
---|
529 | // mvar() returns the main variable of CO or Variable() if CO is |
---|
530 | // in a base domain. |
---|
531 | // |
---|
532 | // See also: InternalCF::level(), InternalCF::variable(), |
---|
533 | // InternalPoly::level(), InternalPoly::variable(), ::level(), |
---|
534 | // ::mvar() |
---|
535 | // |
---|
536 | //}}} |
---|
537 | int |
---|
538 | CanonicalForm::level () const |
---|
539 | { |
---|
540 | if ( is_imm( value ) ) |
---|
541 | return LEVELBASE; |
---|
542 | else |
---|
543 | return value->level(); |
---|
544 | } |
---|
545 | |
---|
546 | Variable |
---|
547 | CanonicalForm::mvar () const |
---|
548 | { |
---|
549 | if ( is_imm( value ) ) |
---|
550 | return Variable(); |
---|
551 | else |
---|
552 | return value->variable(); |
---|
553 | } |
---|
554 | //}}} |
---|
555 | |
---|
556 | //{{{ CanonicalForm CanonicalForm::num (), den () const |
---|
557 | //{{{ docu |
---|
558 | // |
---|
559 | // num(), den() - return numinator and denominator of CO. |
---|
560 | // |
---|
561 | // num() returns the numinator of CO if CO is a rational number, |
---|
562 | // CO itself otherwise. |
---|
563 | // |
---|
564 | // den() returns the denominator of CO if CO is a rational |
---|
565 | // number, 1 (from the current domain!) otherwise. |
---|
566 | // |
---|
567 | // See also: InternalCF::num(), InternalCF::den(), |
---|
568 | // InternalRational::num(), InternalRational::den(), ::num(), |
---|
569 | // ::den() |
---|
570 | // |
---|
571 | //}}} |
---|
572 | CanonicalForm |
---|
573 | CanonicalForm::num () const |
---|
574 | { |
---|
575 | if ( is_imm( value ) ) |
---|
576 | return *this; |
---|
577 | else |
---|
578 | return CanonicalForm( value->num() ); |
---|
579 | } |
---|
580 | |
---|
581 | CanonicalForm |
---|
582 | CanonicalForm::den () const |
---|
583 | { |
---|
584 | if ( is_imm( value ) ) |
---|
585 | return CanonicalForm( 1 ); |
---|
586 | else |
---|
587 | return CanonicalForm( value->den() ); |
---|
588 | } |
---|
589 | //}}} |
---|
590 | |
---|
591 | //{{{ assignment operators |
---|
592 | CanonicalForm & |
---|
593 | CanonicalForm::operator += ( const CanonicalForm & cf ) |
---|
594 | { |
---|
595 | int what = is_imm( value ); |
---|
596 | if ( what ) { |
---|
597 | ASSERT ( ! is_imm( cf.value ) || (what==is_imm( cf.value )), "illegal base coefficients" ); |
---|
598 | if ( (what = is_imm( cf.value )) == FFMARK ) |
---|
599 | value = imm_add_p( value, cf.value ); |
---|
600 | else if ( what == GFMARK ) |
---|
601 | value = imm_add_gf( value, cf.value ); |
---|
602 | else if ( what ) |
---|
603 | value = imm_add( value, cf.value ); |
---|
604 | else { |
---|
605 | InternalCF * dummy = cf.value->copyObject(); |
---|
606 | value = dummy->addcoeff( value ); |
---|
607 | } |
---|
608 | } |
---|
609 | else if ( is_imm( cf.value ) ) |
---|
610 | value = value->addcoeff( cf.value ); |
---|
611 | else if ( value->level() == cf.value->level() ) { |
---|
612 | if ( value->levelcoeff() == cf.value->levelcoeff() ) |
---|
613 | value = value->addsame( cf.value ); |
---|
614 | else if ( value->levelcoeff() > cf.value->levelcoeff() ) |
---|
615 | value = value->addcoeff( cf.value ); |
---|
616 | else { |
---|
617 | InternalCF * dummy = cf.value->copyObject(); |
---|
618 | dummy = dummy->addcoeff( value ); |
---|
619 | if ( value->deleteObject() ) delete value; |
---|
620 | value = dummy; |
---|
621 | } |
---|
622 | } |
---|
623 | else if ( level() > cf.level() ) |
---|
624 | value = value->addcoeff( cf.value ); |
---|
625 | else { |
---|
626 | InternalCF * dummy = cf.value->copyObject(); |
---|
627 | dummy = dummy->addcoeff( value ); |
---|
628 | if ( value->deleteObject() ) delete value; |
---|
629 | value = dummy; |
---|
630 | } |
---|
631 | return *this; |
---|
632 | } |
---|
633 | |
---|
634 | CanonicalForm & |
---|
635 | CanonicalForm::operator -= ( const CanonicalForm & cf ) |
---|
636 | { |
---|
637 | int what = is_imm( value ); |
---|
638 | if ( what ) { |
---|
639 | ASSERT ( ! is_imm( cf.value ) || (what==is_imm( cf.value )), "illegal base coefficients" ); |
---|
640 | if ( (what = is_imm( cf.value )) == FFMARK ) |
---|
641 | value = imm_sub_p( value, cf.value ); |
---|
642 | else if ( what == GFMARK ) |
---|
643 | value = imm_sub_gf( value, cf.value ); |
---|
644 | else if ( what ) |
---|
645 | value = imm_sub( value, cf.value ); |
---|
646 | else { |
---|
647 | InternalCF * dummy = cf.value->copyObject(); |
---|
648 | value = dummy->subcoeff( value, true ); |
---|
649 | } |
---|
650 | } |
---|
651 | else if ( is_imm( cf.value ) ) |
---|
652 | value = value->subcoeff( cf.value, false ); |
---|
653 | else if ( value->level() == cf.value->level() ) { |
---|
654 | if ( value->levelcoeff() == cf.value->levelcoeff() ) |
---|
655 | value = value->subsame( cf.value ); |
---|
656 | else if ( value->levelcoeff() > cf.value->levelcoeff() ) |
---|
657 | value = value->subcoeff( cf.value, false ); |
---|
658 | else { |
---|
659 | InternalCF * dummy = cf.value->copyObject(); |
---|
660 | dummy = dummy->subcoeff( value, true ); |
---|
661 | if ( value->deleteObject() ) delete value; |
---|
662 | value = dummy; |
---|
663 | } |
---|
664 | } |
---|
665 | else if ( level() > cf.level() ) |
---|
666 | value = value->subcoeff( cf.value, false ); |
---|
667 | else { |
---|
668 | InternalCF * dummy = cf.value->copyObject(); |
---|
669 | dummy = dummy->subcoeff( value, true ); |
---|
670 | if ( value->deleteObject() ) delete value; |
---|
671 | value = dummy; |
---|
672 | } |
---|
673 | return *this; |
---|
674 | } |
---|
675 | |
---|
676 | CanonicalForm & |
---|
677 | CanonicalForm::operator *= ( const CanonicalForm & cf ) |
---|
678 | { |
---|
679 | int what = is_imm( value ); |
---|
680 | if ( what ) { |
---|
681 | ASSERT ( ! is_imm( cf.value ) || (what==is_imm( cf.value )), "illegal base coefficients" ); |
---|
682 | if ( (what = is_imm( cf.value )) == FFMARK ) |
---|
683 | value = imm_mul_p( value, cf.value ); |
---|
684 | else if ( what == GFMARK ) |
---|
685 | value = imm_mul_gf( value, cf.value ); |
---|
686 | else if ( what ) |
---|
687 | value = imm_mul( value, cf.value ); |
---|
688 | else { |
---|
689 | InternalCF * dummy = cf.value->copyObject(); |
---|
690 | value = dummy->mulcoeff( value ); |
---|
691 | } |
---|
692 | } |
---|
693 | else if ( is_imm( cf.value ) ) |
---|
694 | value = value->mulcoeff( cf.value ); |
---|
695 | else if ( value->level() == cf.value->level() ) { |
---|
696 | if ( value->levelcoeff() == cf.value->levelcoeff() ) |
---|
697 | value = value->mulsame( cf.value ); |
---|
698 | else if ( value->levelcoeff() > cf.value->levelcoeff() ) |
---|
699 | value = value->mulcoeff( cf.value ); |
---|
700 | else { |
---|
701 | InternalCF * dummy = cf.value->copyObject(); |
---|
702 | dummy = dummy->mulcoeff( value ); |
---|
703 | if ( value->deleteObject() ) delete value; |
---|
704 | value = dummy; |
---|
705 | } |
---|
706 | } |
---|
707 | else if ( level() > cf.level() ) |
---|
708 | value = value->mulcoeff( cf.value ); |
---|
709 | else { |
---|
710 | InternalCF * dummy = cf.value->copyObject(); |
---|
711 | dummy = dummy->mulcoeff( value ); |
---|
712 | if ( value->deleteObject() ) delete value; |
---|
713 | value = dummy; |
---|
714 | } |
---|
715 | return *this; |
---|
716 | } |
---|
717 | |
---|
718 | CanonicalForm & |
---|
719 | CanonicalForm::operator /= ( const CanonicalForm & cf ) |
---|
720 | { |
---|
721 | int what = is_imm( value ); |
---|
722 | if ( what ) { |
---|
723 | ASSERT ( ! is_imm( cf.value ) || (what==is_imm( cf.value )), "illegal base coefficients" ); |
---|
724 | if ( (what = is_imm( cf.value )) == FFMARK ) |
---|
725 | value = imm_div_p( value, cf.value ); |
---|
726 | else if ( what == GFMARK ) |
---|
727 | value = imm_div_gf( value, cf.value ); |
---|
728 | else if ( what ) |
---|
729 | value = imm_divrat( value, cf.value ); |
---|
730 | else { |
---|
731 | InternalCF * dummy = cf.value->copyObject(); |
---|
732 | value = dummy->dividecoeff( value, true ); |
---|
733 | } |
---|
734 | } |
---|
735 | else if ( is_imm( cf.value ) ) |
---|
736 | value = value->dividecoeff( cf.value, false ); |
---|
737 | else if ( value->level() == cf.value->level() ) { |
---|
738 | if ( value->levelcoeff() == cf.value->levelcoeff() ) |
---|
739 | value = value->dividesame( cf.value ); |
---|
740 | else if ( value->levelcoeff() > cf.value->levelcoeff() ) |
---|
741 | value = value->dividecoeff( cf.value, false ); |
---|
742 | else { |
---|
743 | InternalCF * dummy = cf.value->copyObject(); |
---|
744 | dummy = dummy->dividecoeff( value, true ); |
---|
745 | if ( value->deleteObject() ) delete value; |
---|
746 | value = dummy; |
---|
747 | } |
---|
748 | } |
---|
749 | else if ( level() > cf.level() ) |
---|
750 | value = value->dividecoeff( cf.value, false ); |
---|
751 | else { |
---|
752 | InternalCF * dummy = cf.value->copyObject(); |
---|
753 | dummy = dummy->dividecoeff( value, true ); |
---|
754 | if ( value->deleteObject() ) delete value; |
---|
755 | value = dummy; |
---|
756 | } |
---|
757 | return *this; |
---|
758 | } |
---|
759 | |
---|
760 | CanonicalForm & |
---|
761 | CanonicalForm::div ( const CanonicalForm & cf ) |
---|
762 | { |
---|
763 | int what = is_imm( value ); |
---|
764 | if ( what ) { |
---|
765 | ASSERT ( ! is_imm( cf.value ) || (what==is_imm( cf.value )), "illegal base coefficients" ); |
---|
766 | if ( (what = is_imm( cf.value )) == FFMARK ) |
---|
767 | value = imm_div_p( value, cf.value ); |
---|
768 | else if ( what == GFMARK ) |
---|
769 | value = imm_div_gf( value, cf.value ); |
---|
770 | else if ( what ) |
---|
771 | value = imm_div( value, cf.value ); |
---|
772 | else { |
---|
773 | InternalCF * dummy = cf.value->copyObject(); |
---|
774 | value = dummy->divcoeff( value, true ); |
---|
775 | } |
---|
776 | } |
---|
777 | else if ( is_imm( cf.value ) ) |
---|
778 | value = value->divcoeff( cf.value, false ); |
---|
779 | else if ( value->level() == cf.value->level() ) { |
---|
780 | if ( value->levelcoeff() == cf.value->levelcoeff() ) |
---|
781 | value = value->divsame( cf.value ); |
---|
782 | else if ( value->levelcoeff() > cf.value->levelcoeff() ) |
---|
783 | value = value->divcoeff( cf.value, false ); |
---|
784 | else { |
---|
785 | InternalCF * dummy = cf.value->copyObject(); |
---|
786 | dummy = dummy->divcoeff( value, true ); |
---|
787 | if ( value->deleteObject() ) delete value; |
---|
788 | value = dummy; |
---|
789 | } |
---|
790 | } |
---|
791 | else if ( level() > cf.level() ) |
---|
792 | value = value->divcoeff( cf.value, false ); |
---|
793 | else { |
---|
794 | InternalCF * dummy = cf.value->copyObject(); |
---|
795 | dummy = dummy->divcoeff( value, true ); |
---|
796 | if ( value->deleteObject() ) delete value; |
---|
797 | value = dummy; |
---|
798 | } |
---|
799 | return *this; |
---|
800 | } |
---|
801 | |
---|
802 | //same as divremt but handles zero divisors in case we are in Z_p[x]/(f) where f is not irreducible |
---|
803 | CanonicalForm & |
---|
804 | CanonicalForm::tryDiv ( const CanonicalForm & cf, const CanonicalForm& M, bool& fail ) |
---|
805 | { |
---|
806 | ASSERT (getCharacteristic() > 0, "expected positive characteristic"); |
---|
807 | ASSERT (!getReduce (M.mvar()), "do not reduce modulo M"); |
---|
808 | fail= false; |
---|
809 | int what = is_imm( value ); |
---|
810 | if ( what ) { |
---|
811 | ASSERT ( ! is_imm( cf.value ) || (what==is_imm( cf.value )), "illegal base coefficients" ); |
---|
812 | if ( (what = is_imm( cf.value )) == FFMARK ) |
---|
813 | value = imm_div_p( value, cf.value ); |
---|
814 | else if ( what == GFMARK ) |
---|
815 | value = imm_div_gf( value, cf.value ); |
---|
816 | else { |
---|
817 | InternalCF * dummy = cf.value->copyObject(); |
---|
818 | value = dummy->divcoeff( value, true ); |
---|
819 | } |
---|
820 | } |
---|
821 | else if ( is_imm( cf.value ) ) |
---|
822 | value = value->tryDivcoeff (cf.value, false, M, fail); |
---|
823 | else if ( value->level() == cf.value->level() ) { |
---|
824 | if ( value->levelcoeff() == cf.value->levelcoeff() ) |
---|
825 | value = value->tryDivsame( cf.value, M, fail ); |
---|
826 | else if ( value->levelcoeff() > cf.value->levelcoeff() ) |
---|
827 | value = value->tryDivcoeff( cf.value, false, M, fail ); |
---|
828 | else { |
---|
829 | InternalCF * dummy = cf.value->copyObject(); |
---|
830 | dummy = dummy->tryDivcoeff( value, true, M, fail ); |
---|
831 | if ( value->deleteObject() ) delete value; |
---|
832 | value = dummy; |
---|
833 | } |
---|
834 | } |
---|
835 | else if ( level() > cf.level() ) |
---|
836 | value = value->tryDivcoeff( cf.value, false, M, fail ); |
---|
837 | else { |
---|
838 | InternalCF * dummy = cf.value->copyObject(); |
---|
839 | dummy = dummy->tryDivcoeff( value, true, M, fail ); |
---|
840 | if ( value->deleteObject() ) delete value; |
---|
841 | value = dummy; |
---|
842 | } |
---|
843 | return *this; |
---|
844 | } |
---|
845 | |
---|
846 | CanonicalForm & |
---|
847 | CanonicalForm::operator %= ( const CanonicalForm & cf ) |
---|
848 | { |
---|
849 | int what = is_imm( value ); |
---|
850 | if ( what ) { |
---|
851 | ASSERT ( ! is_imm( cf.value ) || (what==is_imm( cf.value )), "illegal base coefficients" ); |
---|
852 | if ( (what = is_imm( cf.value )) == FFMARK ) |
---|
853 | value = imm_mod_p( value, cf.value ); |
---|
854 | else if ( what == GFMARK ) |
---|
855 | value = imm_mod_gf( value, cf.value ); |
---|
856 | else if ( what ) |
---|
857 | value = imm_mod( value, cf.value ); |
---|
858 | else { |
---|
859 | InternalCF * dummy = cf.value->copyObject(); |
---|
860 | value = dummy->modulocoeff( value, true ); |
---|
861 | } |
---|
862 | } |
---|
863 | else if ( is_imm( cf.value ) ) |
---|
864 | value = value->modulocoeff( cf.value, false ); |
---|
865 | else if ( value->level() == cf.value->level() ) { |
---|
866 | if ( value->levelcoeff() == cf.value->levelcoeff() ) |
---|
867 | value = value->modulosame( cf.value ); |
---|
868 | else if ( value->levelcoeff() > cf.value->levelcoeff() ) |
---|
869 | value = value->modulocoeff( cf.value, false ); |
---|
870 | else { |
---|
871 | InternalCF * dummy = cf.value->copyObject(); |
---|
872 | dummy = dummy->modulocoeff( value, true ); |
---|
873 | if ( value->deleteObject() ) delete value; |
---|
874 | value = dummy; |
---|
875 | } |
---|
876 | } |
---|
877 | else if ( level() > cf.level() ) |
---|
878 | value = value->modulocoeff( cf.value, false ); |
---|
879 | else { |
---|
880 | InternalCF * dummy = cf.value->copyObject(); |
---|
881 | dummy = dummy->modulocoeff( value, true ); |
---|
882 | if ( value->deleteObject() ) delete value; |
---|
883 | value = dummy; |
---|
884 | } |
---|
885 | return *this; |
---|
886 | } |
---|
887 | |
---|
888 | CanonicalForm & |
---|
889 | CanonicalForm::mod ( const CanonicalForm & cf ) |
---|
890 | { |
---|
891 | int what = is_imm( value ); |
---|
892 | if ( what ) { |
---|
893 | ASSERT ( ! is_imm( cf.value ) || (what==is_imm( cf.value )), "illegal base coefficients" ); |
---|
894 | if ( (what = is_imm( cf.value )) == FFMARK ) |
---|
895 | value = imm_mod_p( value, cf.value ); |
---|
896 | else if ( what == GFMARK ) |
---|
897 | value = imm_mod_gf( value, cf.value ); |
---|
898 | else if ( what ) |
---|
899 | value = imm_mod( value, cf.value ); |
---|
900 | else { |
---|
901 | InternalCF * dummy = cf.value->copyObject(); |
---|
902 | value = dummy->modcoeff( value, true ); |
---|
903 | } |
---|
904 | } |
---|
905 | else if ( is_imm( cf.value ) ) |
---|
906 | value = value->modcoeff( cf.value, false ); |
---|
907 | else if ( value->level() == cf.value->level() ) { |
---|
908 | if ( value->levelcoeff() == cf.value->levelcoeff() ) |
---|
909 | value = value->modsame( cf.value ); |
---|
910 | else if ( value->levelcoeff() > cf.value->levelcoeff() ) |
---|
911 | value = value->modcoeff( cf.value, false ); |
---|
912 | else { |
---|
913 | InternalCF * dummy = cf.value->copyObject(); |
---|
914 | dummy = dummy->modcoeff( value, true ); |
---|
915 | if ( value->deleteObject() ) delete value; |
---|
916 | value = dummy; |
---|
917 | } |
---|
918 | } |
---|
919 | else if ( level() > cf.level() ) |
---|
920 | value = value->modcoeff( cf.value, false ); |
---|
921 | else { |
---|
922 | InternalCF * dummy = cf.value->copyObject(); |
---|
923 | dummy = dummy->modcoeff( value, true ); |
---|
924 | if ( value->deleteObject() ) delete value; |
---|
925 | value = dummy; |
---|
926 | } |
---|
927 | return *this; |
---|
928 | } |
---|
929 | |
---|
930 | void |
---|
931 | divrem ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & q, CanonicalForm & r ) |
---|
932 | { |
---|
933 | InternalCF * qq = 0, * rr = 0; |
---|
934 | int what = is_imm( f.value ); |
---|
935 | if ( what ) |
---|
936 | if ( is_imm( g.value ) ) { |
---|
937 | if ( what == FFMARK ) |
---|
938 | imm_divrem_p( f.value, g.value, qq, rr ); |
---|
939 | else if ( what == GFMARK ) |
---|
940 | imm_divrem_gf( f.value, g.value, qq, rr ); |
---|
941 | else |
---|
942 | imm_divrem( f.value, g.value, qq, rr ); |
---|
943 | } |
---|
944 | else |
---|
945 | g.value->divremcoeff( f.value, qq, rr, true ); |
---|
946 | else if ( (what=is_imm( g.value )) ) |
---|
947 | f.value->divremcoeff( g.value, qq, rr, false ); |
---|
948 | else if ( f.value->level() == g.value->level() ) |
---|
949 | if ( f.value->levelcoeff() == g.value->levelcoeff() ) |
---|
950 | f.value->divremsame( g.value, qq, rr ); |
---|
951 | else if ( f.value->levelcoeff() > g.value->levelcoeff() ) |
---|
952 | f.value->divremcoeff( g.value, qq, rr, false ); |
---|
953 | else |
---|
954 | g.value->divremcoeff( f.value, qq, rr, true ); |
---|
955 | else if ( f.value->level() > g.value->level() ) |
---|
956 | f.value->divremcoeff( g.value, qq, rr, false ); |
---|
957 | else |
---|
958 | g.value->divremcoeff( f.value, qq, rr, true ); |
---|
959 | ASSERT( qq != 0 && rr != 0, "error in divrem" ); |
---|
960 | q = CanonicalForm( qq ); |
---|
961 | r = CanonicalForm( rr ); |
---|
962 | } |
---|
963 | |
---|
964 | bool |
---|
965 | divremt ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & q, CanonicalForm & r ) |
---|
966 | { |
---|
967 | InternalCF * qq = 0, * rr = 0; |
---|
968 | int what = is_imm( f.value ); |
---|
969 | bool result = true; |
---|
970 | if ( what ) |
---|
971 | if ( is_imm( g.value ) ) { |
---|
972 | if ( what == FFMARK ) |
---|
973 | imm_divrem_p( f.value, g.value, qq, rr ); |
---|
974 | else if ( what == GFMARK ) |
---|
975 | imm_divrem_gf( f.value, g.value, qq, rr ); |
---|
976 | else |
---|
977 | imm_divrem( f.value, g.value, qq, rr ); |
---|
978 | } |
---|
979 | else |
---|
980 | result = g.value->divremcoefft( f.value, qq, rr, true ); |
---|
981 | else if ( (what=is_imm( g.value )) ) |
---|
982 | result = f.value->divremcoefft( g.value, qq, rr, false ); |
---|
983 | else if ( f.value->level() == g.value->level() ) |
---|
984 | if ( f.value->levelcoeff() == g.value->levelcoeff() ) |
---|
985 | result = f.value->divremsamet( g.value, qq, rr ); |
---|
986 | else if ( f.value->levelcoeff() > g.value->levelcoeff() ) |
---|
987 | result = f.value->divremcoefft( g.value, qq, rr, false ); |
---|
988 | else |
---|
989 | result = g.value->divremcoefft( f.value, qq, rr, true ); |
---|
990 | else if ( f.value->level() > g.value->level() ) |
---|
991 | result = f.value->divremcoefft( g.value, qq, rr, false ); |
---|
992 | else |
---|
993 | result = g.value->divremcoefft( f.value, qq, rr, true ); |
---|
994 | if ( result ) { |
---|
995 | ASSERT( qq != 0 && rr != 0, "error in divrem" ); |
---|
996 | q = CanonicalForm( qq ); |
---|
997 | r = CanonicalForm( rr ); |
---|
998 | } |
---|
999 | else { |
---|
1000 | q = 0; r = 0; |
---|
1001 | } |
---|
1002 | return result; |
---|
1003 | } |
---|
1004 | |
---|
1005 | //same as divremt but handles zero divisors in case we are in Z_p[x]/(f) where f is not irreducible |
---|
1006 | bool |
---|
1007 | tryDivremt ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & q, CanonicalForm & r, const CanonicalForm& M, bool& fail ) |
---|
1008 | { |
---|
1009 | ASSERT (getCharacteristic() > 0, "expected positive characteristic"); |
---|
1010 | ASSERT (!getReduce (M.mvar()), "do not reduce modulo M"); |
---|
1011 | fail= false; |
---|
1012 | InternalCF * qq = 0, * rr = 0; |
---|
1013 | int what = is_imm( f.value ); |
---|
1014 | bool result = true; |
---|
1015 | if ( what ) |
---|
1016 | if ( is_imm( g.value ) ) { |
---|
1017 | if ( what == FFMARK ) |
---|
1018 | imm_divrem_p( f.value, g.value, qq, rr ); |
---|
1019 | else if ( what == GFMARK ) |
---|
1020 | imm_divrem_gf( f.value, g.value, qq, rr ); |
---|
1021 | } |
---|
1022 | else |
---|
1023 | result = g.value->tryDivremcoefft( f.value, qq, rr, true, M, fail ); |
---|
1024 | else if ( (what=is_imm( g.value )) ) |
---|
1025 | result = f.value->tryDivremcoefft( g.value, qq, rr, false, M, fail ); |
---|
1026 | else if ( f.value->level() == g.value->level() ) |
---|
1027 | if ( f.value->levelcoeff() == g.value->levelcoeff() ) |
---|
1028 | result = f.value->tryDivremsamet( g.value, qq, rr, M, fail ); |
---|
1029 | else if ( f.value->levelcoeff() > g.value->levelcoeff() ) |
---|
1030 | result = f.value->tryDivremcoefft( g.value, qq, rr, false, M, fail ); |
---|
1031 | else |
---|
1032 | result = g.value->tryDivremcoefft( f.value, qq, rr, true, M, fail ); |
---|
1033 | else if ( f.value->level() > g.value->level() ) |
---|
1034 | result = f.value->tryDivremcoefft( g.value, qq, rr, false, M, fail ); |
---|
1035 | else |
---|
1036 | result = g.value->tryDivremcoefft( f.value, qq, rr, true, M, fail ); |
---|
1037 | if (fail) |
---|
1038 | { |
---|
1039 | q= 0; |
---|
1040 | r= 0; |
---|
1041 | return false; |
---|
1042 | } |
---|
1043 | if ( result ) { |
---|
1044 | ASSERT( qq != 0 && rr != 0, "error in divrem" ); |
---|
1045 | q = CanonicalForm( qq ); |
---|
1046 | r = CanonicalForm( rr ); |
---|
1047 | q= reduce (q, M); |
---|
1048 | r= reduce (r, M); |
---|
1049 | } |
---|
1050 | else { |
---|
1051 | q = 0; r = 0; |
---|
1052 | } |
---|
1053 | return result; |
---|
1054 | } |
---|
1055 | |
---|
1056 | //}}} |
---|
1057 | |
---|
1058 | //{{{ CanonicalForm CanonicalForm::operator () ( f ), operator () ( f, v ) const |
---|
1059 | //{{{ docu |
---|
1060 | // |
---|
1061 | // operator ()() - evaluation operator. |
---|
1062 | // |
---|
1063 | // Both operators return CO if CO is in a base domain. |
---|
1064 | // |
---|
1065 | // operator () ( f ) returns CO with f inserted for the main |
---|
1066 | // variable. Elements in an algebraic extension are considered |
---|
1067 | // polynomials. |
---|
1068 | // |
---|
1069 | // operator () ( f, v ) returns CO with f inserted for v. |
---|
1070 | // Elements in an algebraic extension are considered polynomials |
---|
1071 | // and v may be an algebraic variable. |
---|
1072 | // |
---|
1073 | //}}} |
---|
1074 | CanonicalForm |
---|
1075 | CanonicalForm::operator () ( const CanonicalForm & f ) const |
---|
1076 | { |
---|
1077 | if ( is_imm( value ) || value->inBaseDomain() ) |
---|
1078 | return *this; |
---|
1079 | else { |
---|
1080 | #if 0 |
---|
1081 | CFIterator i = *this; |
---|
1082 | int lastExp = i.exp(); |
---|
1083 | CanonicalForm result = i.coeff(); |
---|
1084 | i++; |
---|
1085 | while ( i.hasTerms() ) { |
---|
1086 | if ( (lastExp - i.exp()) == 1 ) |
---|
1087 | result *= f; |
---|
1088 | else |
---|
1089 | result *= power( f, lastExp - i.exp() ); |
---|
1090 | result += i.coeff(); |
---|
1091 | lastExp = i.exp(); |
---|
1092 | i++; |
---|
1093 | } |
---|
1094 | if ( lastExp != 0 ) |
---|
1095 | result *= power( f, lastExp ); |
---|
1096 | #else |
---|
1097 | CFIterator i = *this; |
---|
1098 | int lastExp = i.exp(); |
---|
1099 | CanonicalForm result = i.coeff(); |
---|
1100 | i++; |
---|
1101 | while ( i.hasTerms() ) |
---|
1102 | { |
---|
1103 | int i_exp=i.exp(); |
---|
1104 | if ( (lastExp - i_exp /* i.exp()*/) == 1 ) |
---|
1105 | result *= f; |
---|
1106 | else |
---|
1107 | result *= power( f, lastExp - i_exp /*i.exp()*/ ); |
---|
1108 | result += i.coeff(); |
---|
1109 | lastExp = i_exp /*i.exp()*/; |
---|
1110 | i++; |
---|
1111 | } |
---|
1112 | if ( lastExp != 0 ) |
---|
1113 | result *= power( f, lastExp ); |
---|
1114 | #endif |
---|
1115 | return result; |
---|
1116 | } |
---|
1117 | } |
---|
1118 | |
---|
1119 | CanonicalForm |
---|
1120 | CanonicalForm::operator () ( const CanonicalForm & f, const Variable & v ) const |
---|
1121 | { |
---|
1122 | if ( is_imm( value ) || value->inBaseDomain() ) |
---|
1123 | return *this; |
---|
1124 | |
---|
1125 | Variable x = value->variable(); |
---|
1126 | if ( v > x ) |
---|
1127 | return *this; |
---|
1128 | else if ( v == x ) |
---|
1129 | return (*this)( f ); |
---|
1130 | else { |
---|
1131 | // v is less than main variable of f |
---|
1132 | CanonicalForm result = 0; |
---|
1133 | for ( CFIterator i = *this; i.hasTerms(); i++ ) |
---|
1134 | result += i.coeff()( f, v ) * power( x, i.exp() ); |
---|
1135 | return result; |
---|
1136 | } |
---|
1137 | } |
---|
1138 | //}}} |
---|
1139 | |
---|
1140 | //{{{ CanonicalForm CanonicalForm::operator [] ( int i ) const |
---|
1141 | //{{{ docu |
---|
1142 | // |
---|
1143 | // operator []() - return i'th coefficient from CO. |
---|
1144 | // |
---|
1145 | // Returns CO if CO is in a base domain and i equals zero. |
---|
1146 | // Returns zero (from the current domain) if CO is in a base |
---|
1147 | // domain and i is larger than zero. Otherwise, returns the |
---|
1148 | // coefficient to x^i in CO (if x denotes the main variable of |
---|
1149 | // CO) or zero if CO does not contain x^i. Elements in an |
---|
1150 | // algebraic extension are considered polynomials. i should be |
---|
1151 | // larger or equal zero. |
---|
1152 | // |
---|
1153 | // Note: Never use a loop like |
---|
1154 | // |
---|
1155 | // for ( int i = degree( f ); i >= 0; i-- ) |
---|
1156 | // foo( i, f[ i ] ); |
---|
1157 | // |
---|
1158 | // which is much slower than |
---|
1159 | // |
---|
1160 | // for ( int i = degree( f ), CFIterator I = f; I.hasTerms(); I++ ) { |
---|
1161 | // // fill gap with zeroes |
---|
1162 | // for ( ; i > I.exp(); i-- ) |
---|
1163 | // foo( i, 0 ); |
---|
1164 | // // at this point, i == I.exp() |
---|
1165 | // foo( i, i.coeff() ); |
---|
1166 | // i--; |
---|
1167 | // } |
---|
1168 | // // work through trailing zeroes |
---|
1169 | // for ( ; i >= 0; i-- ) |
---|
1170 | // foo( i, 0 ); |
---|
1171 | // |
---|
1172 | //}}} |
---|
1173 | CanonicalForm |
---|
1174 | CanonicalForm::operator [] ( int i ) const |
---|
1175 | { |
---|
1176 | ASSERT( i >= 0, "index to operator [] less than zero" ); |
---|
1177 | if ( is_imm( value ) ) |
---|
1178 | if ( i == 0 ) |
---|
1179 | return *this; |
---|
1180 | else |
---|
1181 | return CanonicalForm( 0 ); |
---|
1182 | else |
---|
1183 | return value->coeff( i ); |
---|
1184 | } |
---|
1185 | //}}} |
---|
1186 | |
---|
1187 | //{{{ CanonicalForm CanonicalForm::deriv (), deriv ( x ) |
---|
1188 | //{{{ docu |
---|
1189 | // |
---|
1190 | // deriv() - return the formal derivation of CO. |
---|
1191 | // |
---|
1192 | // deriv() derives CO with respect to its main variable. Returns |
---|
1193 | // zero from the current domain if f is in a coefficient domain. |
---|
1194 | // |
---|
1195 | // deriv( x ) derives CO with respect to x. x should be a |
---|
1196 | // polynomial variable. Returns zero from the current domain if |
---|
1197 | // f is in a coefficient domain. |
---|
1198 | // |
---|
1199 | // See also: ::deriv() |
---|
1200 | // |
---|
1201 | //}}} |
---|
1202 | CanonicalForm |
---|
1203 | CanonicalForm::deriv () const |
---|
1204 | { |
---|
1205 | if ( is_imm( value ) || value->inCoeffDomain() ) |
---|
1206 | return CanonicalForm( 0 ); |
---|
1207 | else { |
---|
1208 | CanonicalForm result = 0; |
---|
1209 | Variable x = value->variable(); |
---|
1210 | for ( CFIterator i = *this; i.hasTerms(); i++ ) |
---|
1211 | if ( i.exp() > 0 ) |
---|
1212 | result += power( x, i.exp()-1 ) * i.coeff() * i.exp(); |
---|
1213 | return result; |
---|
1214 | } |
---|
1215 | } |
---|
1216 | |
---|
1217 | CanonicalForm |
---|
1218 | CanonicalForm::deriv ( const Variable & x ) const |
---|
1219 | { |
---|
1220 | ASSERT( x.level() > 0, "cannot derive with respect to algebraic variables" ); |
---|
1221 | if ( is_imm( value ) || value->inCoeffDomain() ) |
---|
1222 | return CanonicalForm( 0 ); |
---|
1223 | |
---|
1224 | Variable y = value->variable(); |
---|
1225 | if ( x > y ) |
---|
1226 | return CanonicalForm( 0 ); |
---|
1227 | else if ( x == y ) |
---|
1228 | return deriv(); |
---|
1229 | else { |
---|
1230 | CanonicalForm result = 0; |
---|
1231 | for ( CFIterator i = *this; i.hasTerms(); i++ ) |
---|
1232 | result += i.coeff().deriv( x ) * power( y, i.exp() ); |
---|
1233 | return result; |
---|
1234 | } |
---|
1235 | } |
---|
1236 | //}}} |
---|
1237 | |
---|
1238 | //{{{ int CanonicalForm::sign () const |
---|
1239 | //{{{ docu |
---|
1240 | // |
---|
1241 | // sign() - return sign of CO. |
---|
1242 | // |
---|
1243 | // If CO is an integer or a rational number, the sign is defined |
---|
1244 | // as usual. If CO is an element of a prime power domain or of |
---|
1245 | // FF(p) and SW_SYMMETRIC_FF is on, the sign of CO is the sign of |
---|
1246 | // the symmetric representation of CO. If CO is in GF(q) or in |
---|
1247 | // FF(p) and SW_SYMMETRIC_FF is off, the sign of CO is zero iff |
---|
1248 | // CO is zero, otherwise the sign is one. |
---|
1249 | // |
---|
1250 | // If CO is a polynomial or in an extension of one of the base |
---|
1251 | // domains, the sign of CO is the sign of its leading |
---|
1252 | // coefficient. |
---|
1253 | // |
---|
1254 | // See also: InternalCF::sign(), InternalInteger::sign(), |
---|
1255 | // InternalPrimePower::sign(), InternalRational::sign(), |
---|
1256 | // InternalPoly::sign(), imm_sign(), gf_sign() |
---|
1257 | // |
---|
1258 | //}}} |
---|
1259 | int |
---|
1260 | CanonicalForm::sign () const |
---|
1261 | { |
---|
1262 | if ( is_imm( value ) ) |
---|
1263 | return imm_sign( value ); |
---|
1264 | else |
---|
1265 | return value->sign(); |
---|
1266 | } |
---|
1267 | //}}} |
---|
1268 | |
---|
1269 | //{{{ CanonicalForm CanonicalForm::sqrt () const |
---|
1270 | //{{{ docu |
---|
1271 | // |
---|
1272 | // sqrt() - calculate integer square root. |
---|
1273 | // |
---|
1274 | // CO has to be an integer greater or equal zero. Returns the |
---|
1275 | // largest integer less or equal sqrt(CO). |
---|
1276 | // |
---|
1277 | // In the immediate case, we use the newton method to find the |
---|
1278 | // root. The algorithm is from H. Cohen - 'A Course in |
---|
1279 | // Computational Algebraic Number Theory', ch. 1.7.1. |
---|
1280 | // |
---|
1281 | // See also: InternalCF::sqrt(), InternalInteger::sqrt(), ::sqrt() |
---|
1282 | // |
---|
1283 | //}}} |
---|
1284 | CanonicalForm |
---|
1285 | CanonicalForm::sqrt () const |
---|
1286 | { |
---|
1287 | if ( is_imm( value ) ) { |
---|
1288 | ASSERT( is_imm( value ) == INTMARK, "sqrt() not implemented" ); |
---|
1289 | long n = imm2int( value ); |
---|
1290 | ASSERT( n >= 0, "arg to sqrt() less than zero" ); |
---|
1291 | if ( n == 0 || n == 1 ) |
---|
1292 | return CanonicalForm( n ); |
---|
1293 | else { |
---|
1294 | long x, y = n; |
---|
1295 | do { |
---|
1296 | x = y; |
---|
1297 | // the intermediate result may not fit into an |
---|
1298 | // integer, but the result does |
---|
1299 | y = (unsigned long)(x + n/x)/2; |
---|
1300 | } while ( y < x ); |
---|
1301 | return CanonicalForm( x ); |
---|
1302 | } |
---|
1303 | } |
---|
1304 | else |
---|
1305 | return CanonicalForm( value->sqrt() ); |
---|
1306 | } |
---|
1307 | //}}} |
---|
1308 | |
---|
1309 | //{{{ int CanonicalForm::ilog2 () const |
---|
1310 | //{{{ docu |
---|
1311 | // |
---|
1312 | // ilog2() - integer logarithm to base 2. |
---|
1313 | // |
---|
1314 | // Returns the largest integer less or equal logarithm of CO to |
---|
1315 | // base 2. CO should be a positive integer. |
---|
1316 | // |
---|
1317 | // See also: InternalCF::ilog2(), InternalInteger::ilog2(), ::ilog2() |
---|
1318 | // |
---|
1319 | //}}} |
---|
1320 | int |
---|
1321 | CanonicalForm::ilog2 () const |
---|
1322 | { |
---|
1323 | if ( is_imm( value ) ) |
---|
1324 | { |
---|
1325 | ASSERT( is_imm( value ) == INTMARK, "ilog2() not implemented" ); |
---|
1326 | long a = imm2int( value ); |
---|
1327 | ASSERT( a > 0, "arg to ilog2() less or equal zero" ); |
---|
1328 | int n = -1; |
---|
1329 | while ( a > 0 ) |
---|
1330 | { |
---|
1331 | n++; |
---|
1332 | a /=2; |
---|
1333 | } |
---|
1334 | return n; |
---|
1335 | } |
---|
1336 | else |
---|
1337 | return value->ilog2(); |
---|
1338 | } |
---|
1339 | //}}} |
---|
1340 | |
---|
1341 | //{{{ bool operator ==, operator != ( const CanonicalForm & lhs, const CanonicalForm & rhs ) |
---|
1342 | //{{{ docu |
---|
1343 | // |
---|
1344 | // operator ==(), operator !=() - compare canonical forms on |
---|
1345 | // (in)equality. |
---|
1346 | // |
---|
1347 | // operator ==() returns true iff lhs equals rhs. |
---|
1348 | // operator !=() returns true iff lhs does not equal rhs. |
---|
1349 | // |
---|
1350 | // This is the point in factory where we essentially use that |
---|
1351 | // CanonicalForms in fact are canonical. There must not be two |
---|
1352 | // different representations of the same mathematical object, |
---|
1353 | // otherwise, such (in)equality will not be recognized by these |
---|
1354 | // operators. In other word, we rely on the fact that structural |
---|
1355 | // different factory objects in any case represent different |
---|
1356 | // mathematical objects. |
---|
1357 | // |
---|
1358 | // So we use the following procedure to test on equality (and |
---|
1359 | // analogously on inequality). First, we check whether lhs.value |
---|
1360 | // equals rhs.value. If so we are ready and return true. |
---|
1361 | // Second, if one of the operands is immediate, but the other one |
---|
1362 | // not, we return false. Third, if the operand's levels differ |
---|
1363 | // we return false. Fourth, if the operand's levelcoeffs differ |
---|
1364 | // we return false. At last, we call the corresponding internal |
---|
1365 | // method to compare both operands. |
---|
1366 | // |
---|
1367 | // Both operands should have coefficients from the same base domain. |
---|
1368 | // |
---|
1369 | // Note: To compare with the zero or the unit of the current domain, |
---|
1370 | // you better use the methods `CanonicalForm::isZero()' or |
---|
1371 | // `CanonicalForm::isOne()', resp., than something like `f == 0', |
---|
1372 | // since the latter is quite a lot slower. |
---|
1373 | // |
---|
1374 | // See also: InternalCF::comparesame(), |
---|
1375 | // InternalInteger::comparesame(), InternalRational::comparesame(), |
---|
1376 | // InternalPrimePower::comparesame(), InternalPoly::comparesame() |
---|
1377 | // |
---|
1378 | //}}} |
---|
1379 | bool |
---|
1380 | operator == ( const CanonicalForm & lhs, const CanonicalForm & rhs ) |
---|
1381 | { |
---|
1382 | if ( lhs.value == rhs.value ) |
---|
1383 | return true; |
---|
1384 | else if ( is_imm( rhs.value ) || is_imm( lhs.value ) ) { |
---|
1385 | ASSERT( ! is_imm( rhs.value ) || |
---|
1386 | ! is_imm( lhs.value ) || |
---|
1387 | is_imm( rhs.value ) == is_imm( lhs.value ), |
---|
1388 | "incompatible operands" ); |
---|
1389 | return false; |
---|
1390 | } |
---|
1391 | else if ( lhs.value->level() != rhs.value->level() ) |
---|
1392 | return false; |
---|
1393 | else if ( lhs.value->levelcoeff() != rhs.value->levelcoeff() ) |
---|
1394 | return false; |
---|
1395 | else |
---|
1396 | return rhs.value->comparesame( lhs.value ) == 0; |
---|
1397 | } |
---|
1398 | |
---|
1399 | bool |
---|
1400 | operator != ( const CanonicalForm & lhs, const CanonicalForm & rhs ) |
---|
1401 | { |
---|
1402 | if ( lhs.value == rhs.value ) |
---|
1403 | return false; |
---|
1404 | else if ( is_imm( rhs.value ) || is_imm( lhs.value ) ) { |
---|
1405 | ASSERT( ! is_imm( rhs.value ) || |
---|
1406 | ! is_imm( lhs.value ) || |
---|
1407 | is_imm( rhs.value ) == is_imm( lhs.value ), |
---|
1408 | "incompatible operands" ); |
---|
1409 | return true; |
---|
1410 | } |
---|
1411 | else if ( lhs.value->level() != rhs.value->level() ) |
---|
1412 | return true; |
---|
1413 | else if ( lhs.value->levelcoeff() != rhs.value->levelcoeff() ) |
---|
1414 | return true; |
---|
1415 | else return rhs.value->comparesame( lhs.value ) != 0; |
---|
1416 | } |
---|
1417 | //}}} |
---|
1418 | |
---|
1419 | //{{{ bool operator >, operator < ( const CanonicalForm & lhs, const CanonicalForm & rhs ) |
---|
1420 | //{{{ docu |
---|
1421 | // |
---|
1422 | // operator >(), operator <() - compare canonical forms. on size or |
---|
1423 | // level. |
---|
1424 | // |
---|
1425 | // The most common and most useful application of these operators |
---|
1426 | // is to compare two integers or rationals, of course. However, |
---|
1427 | // these operators are defined on all other base domains and on |
---|
1428 | // polynomials, too. From a mathematical point of view this may |
---|
1429 | // seem meaningless, since there is no ordering on finite fields |
---|
1430 | // or on polynomials respecting the algebraic structure. |
---|
1431 | // Nevertheless, from a programmer's point of view it may be |
---|
1432 | // sensible to order these objects, e.g. to sort them. |
---|
1433 | // |
---|
1434 | // Therefore, the ordering defined by these operators in any case |
---|
1435 | // is a total ordering which fulfills the law of trichotomy. |
---|
1436 | // |
---|
1437 | // It is clear how this is done in the case of the integers and |
---|
1438 | // the rationals. For finite fields, all you can say is that |
---|
1439 | // zero is the minimal element w.r.t. the ordering, the other |
---|
1440 | // elements are ordered in an arbitrary (but total!) way. For |
---|
1441 | // polynomials, you have an ordering derived from the |
---|
1442 | // lexicographical ordering of monomials. E.g. if lm(f) < lm(g) |
---|
1443 | // w.r.t. lexicographic ordering, then f < g. For more details, |
---|
1444 | // refer to the documentation of `InternalPoly::operator <()'. |
---|
1445 | // |
---|
1446 | // Both operands should have coefficients from the same base domain. |
---|
1447 | // |
---|
1448 | // The scheme how both operators are implemented is allmost the |
---|
1449 | // same as for the assignment operators (check for immediates, |
---|
1450 | // then check levels, then check levelcoeffs, then call the |
---|
1451 | // appropriate internal comparesame()/comparecoeff() method). |
---|
1452 | // For more information, confer to the overview for the |
---|
1453 | // arithmetic operators. |
---|
1454 | // |
---|
1455 | // See also: InternalCF::comparesame(), |
---|
1456 | // InternalInteger::comparesame(), InternalRational::comparesame(), |
---|
1457 | // InternalPrimePower::comparesame(), InternalPoly::comparesame(), |
---|
1458 | // InternalCF::comparecoeff(), InternalInteger::comparecoeff(), |
---|
1459 | // InternalRational::comparecoeff(), |
---|
1460 | // InternalPrimePower::comparecoeff(), InternalPoly::comparecoeff(), |
---|
1461 | // imm_cmp(), imm_cmp_p(), imm_cmp_gf() |
---|
1462 | // |
---|
1463 | //}}} |
---|
1464 | bool |
---|
1465 | operator > ( const CanonicalForm & lhs, const CanonicalForm & rhs ) |
---|
1466 | { |
---|
1467 | int what = is_imm( rhs.value ); |
---|
1468 | if ( is_imm( lhs.value ) ) { |
---|
1469 | ASSERT( ! what || (what == is_imm( lhs.value )), "incompatible operands" ); |
---|
1470 | if ( what == 0 ) |
---|
1471 | return rhs.value->comparecoeff( lhs.value ) < 0; |
---|
1472 | else if ( what == INTMARK ) |
---|
1473 | return imm_cmp( lhs.value, rhs.value ) > 0; |
---|
1474 | else if ( what == FFMARK ) |
---|
1475 | return imm_cmp_p( lhs.value, rhs.value ) > 0; |
---|
1476 | else |
---|
1477 | return imm_cmp_gf( lhs.value, rhs.value ) > 0; |
---|
1478 | } |
---|
1479 | else if ( what ) |
---|
1480 | return lhs.value->comparecoeff( rhs.value ) > 0; |
---|
1481 | else if ( lhs.value->level() == rhs.value->level() ) |
---|
1482 | if ( lhs.value->levelcoeff() == rhs.value->levelcoeff() ) |
---|
1483 | return lhs.value->comparesame( rhs.value ) > 0; |
---|
1484 | else if ( lhs.value->levelcoeff() > rhs.value->levelcoeff() ) |
---|
1485 | return lhs.value->comparecoeff( rhs.value ) > 0; |
---|
1486 | else |
---|
1487 | return rhs.value->comparecoeff( lhs.value ) < 0; |
---|
1488 | else |
---|
1489 | return lhs.value->level() > rhs.value->level(); |
---|
1490 | } |
---|
1491 | |
---|
1492 | bool |
---|
1493 | operator < ( const CanonicalForm & lhs, const CanonicalForm & rhs ) |
---|
1494 | { |
---|
1495 | int what = is_imm( rhs.value ); |
---|
1496 | if ( is_imm( lhs.value ) ) { |
---|
1497 | ASSERT( ! what || (what == is_imm( lhs.value )), "incompatible operands" ); |
---|
1498 | if ( what == 0 ) |
---|
1499 | return rhs.value->comparecoeff( lhs.value ) > 0; |
---|
1500 | else if ( what == INTMARK ) |
---|
1501 | return imm_cmp( lhs.value, rhs.value ) < 0; |
---|
1502 | else if ( what == FFMARK ) |
---|
1503 | return imm_cmp_p( lhs.value, rhs.value ) < 0; |
---|
1504 | else |
---|
1505 | return imm_cmp_gf( lhs.value, rhs.value ) < 0; |
---|
1506 | } |
---|
1507 | else if ( what ) |
---|
1508 | return lhs.value->comparecoeff( rhs.value ) < 0; |
---|
1509 | else if ( lhs.value->level() == rhs.value->level() ) |
---|
1510 | if ( lhs.value->levelcoeff() == rhs.value->levelcoeff() ) |
---|
1511 | return lhs.value->comparesame( rhs.value ) < 0; |
---|
1512 | else if ( lhs.value->levelcoeff() > rhs.value->levelcoeff() ) |
---|
1513 | return lhs.value->comparecoeff( rhs.value ) < 0; |
---|
1514 | else |
---|
1515 | return rhs.value->comparecoeff( lhs.value ) > 0; |
---|
1516 | else |
---|
1517 | return lhs.value->level() < rhs.value->level(); |
---|
1518 | } |
---|
1519 | //}}} |
---|
1520 | |
---|
1521 | //{{{ CanonicalForm bgcd ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
1522 | //{{{ docu |
---|
1523 | // |
---|
1524 | // bgcd() - return base coefficient gcd. |
---|
1525 | // |
---|
1526 | // If both f and g are integers and `SW_RATIONAL' is off the |
---|
1527 | // positive greatest common divisor of f and g is returned. |
---|
1528 | // Otherwise, if `SW_RATIONAL' is on or one of f and g is not an |
---|
1529 | // integer, the greatest common divisor is trivial: either zero |
---|
1530 | // if f and g equal zero or one (both from the current domain). |
---|
1531 | // |
---|
1532 | // f and g should come from one base domain which should be not |
---|
1533 | // the prime power domain. |
---|
1534 | // |
---|
1535 | // Implementation: |
---|
1536 | // |
---|
1537 | // CanonicalForm::bgcd() handles the immediate case with a |
---|
1538 | // standard euclidean algorithm. For the non-immediate cases |
---|
1539 | // `InternalCF::bgcdsame()' or `InternalCF::bgcdcoeff()', resp. are |
---|
1540 | // called following the usual level/levelcoeff approach. |
---|
1541 | // |
---|
1542 | // InternalCF::bgcdsame() and |
---|
1543 | // InternalCF::bgcdcoeff() throw an assertion ("not implemented") |
---|
1544 | // |
---|
1545 | // InternalInteger::bgcdsame() is a wrapper around `mpz_gcd()' |
---|
1546 | // which takes some care about immediate results and the sign |
---|
1547 | // of the result |
---|
1548 | // InternalInteger::bgcdcoeff() is a wrapper around |
---|
1549 | // `mpz_gcd_ui()' which takes some care about the sign |
---|
1550 | // of the result |
---|
1551 | // |
---|
1552 | // InternalRational::bgcdsame() and |
---|
1553 | // InternalRational::bgcdcoeff() always return one |
---|
1554 | // |
---|
1555 | //}}} |
---|
1556 | CanonicalForm |
---|
1557 | bgcd ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
1558 | { |
---|
1559 | // check immediate cases |
---|
1560 | int what = is_imm( g.value ); |
---|
1561 | if ( is_imm( f.value ) ) |
---|
1562 | { |
---|
1563 | ASSERT( ! what || (what == is_imm( f.value )), "incompatible operands" ); |
---|
1564 | if ( what == 0 ) |
---|
1565 | return g.value->bgcdcoeff( f.value ); |
---|
1566 | else if ( what == INTMARK && ! cf_glob_switches.isOn( SW_RATIONAL ) ) |
---|
1567 | { |
---|
1568 | // calculate gcd using standard integer |
---|
1569 | // arithmetic |
---|
1570 | long fInt = imm2int( f.value ); |
---|
1571 | long gInt = imm2int( g.value ); |
---|
1572 | |
---|
1573 | if ( fInt < 0 ) fInt = -fInt; |
---|
1574 | if ( gInt < 0 ) gInt = -gInt; |
---|
1575 | // swap fInt and gInt |
---|
1576 | if ( gInt > fInt ) |
---|
1577 | { |
---|
1578 | long swap = gInt; |
---|
1579 | gInt = fInt; |
---|
1580 | fInt = swap; |
---|
1581 | } |
---|
1582 | |
---|
1583 | // now, 0 <= gInt <= fInt. Start the loop. |
---|
1584 | while ( gInt ) |
---|
1585 | { |
---|
1586 | // calculate (fInt, gInt) = (gInt, fInt%gInt) |
---|
1587 | long r = fInt % gInt; |
---|
1588 | fInt = gInt; |
---|
1589 | gInt = r; |
---|
1590 | } |
---|
1591 | |
---|
1592 | return CanonicalForm( fInt ); |
---|
1593 | } |
---|
1594 | else |
---|
1595 | // we do not go for maximal speed for these stupid |
---|
1596 | // special cases |
---|
1597 | return CanonicalForm( f.isZero() && g.isZero() ? 0 : 1 ); |
---|
1598 | } |
---|
1599 | else if ( what ) |
---|
1600 | return f.value->bgcdcoeff( g.value ); |
---|
1601 | |
---|
1602 | int fLevel = f.value->level(); |
---|
1603 | int gLevel = g.value->level(); |
---|
1604 | |
---|
1605 | // check levels |
---|
1606 | if ( fLevel == gLevel ) |
---|
1607 | { |
---|
1608 | fLevel = f.value->levelcoeff(); |
---|
1609 | gLevel = g.value->levelcoeff(); |
---|
1610 | |
---|
1611 | // check levelcoeffs |
---|
1612 | if ( fLevel == gLevel ) |
---|
1613 | return f.value->bgcdsame( g.value ); |
---|
1614 | else if ( fLevel < gLevel ) |
---|
1615 | return g.value->bgcdcoeff( f.value ); |
---|
1616 | else |
---|
1617 | return f.value->bgcdcoeff( g.value ); |
---|
1618 | } |
---|
1619 | else if ( fLevel < gLevel ) |
---|
1620 | return g.value->bgcdcoeff( f.value ); |
---|
1621 | else |
---|
1622 | return f.value->bgcdcoeff( g.value ); |
---|
1623 | } |
---|
1624 | //}}} |
---|
1625 | |
---|
1626 | //{{{ CanonicalForm bextgcd ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & a, CanonicalForm & b ) |
---|
1627 | //{{{ docu |
---|
1628 | // |
---|
1629 | // bextgcd() - return base coefficient extended gcd. |
---|
1630 | // |
---|
1631 | //}}} |
---|
1632 | CanonicalForm |
---|
1633 | bextgcd ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & a, CanonicalForm & b ) |
---|
1634 | { |
---|
1635 | // check immediate cases |
---|
1636 | int what = is_imm( g.value ); |
---|
1637 | if ( is_imm( f.value ) ) { |
---|
1638 | ASSERT( ! what || (what == is_imm( f.value )), "incompatible operands" ); |
---|
1639 | if ( what == 0 ) |
---|
1640 | return g.value->bextgcdcoeff( f.value, b, a ); |
---|
1641 | else if ( what == INTMARK && ! cf_glob_switches.isOn( SW_RATIONAL ) ) { |
---|
1642 | // calculate extended gcd using standard integer |
---|
1643 | // arithmetic |
---|
1644 | long fInt = imm2int( f.value ); |
---|
1645 | long gInt = imm2int( g.value ); |
---|
1646 | |
---|
1647 | // to avoid any system dpendencies with `%', we work |
---|
1648 | // with positive numbers only. To a pity, we have to |
---|
1649 | // redo all the checks when assigning to a and b. |
---|
1650 | if ( fInt < 0 ) fInt = -fInt; |
---|
1651 | if ( gInt < 0 ) gInt = -gInt; |
---|
1652 | // swap fInt and gInt |
---|
1653 | if ( gInt > fInt ) { |
---|
1654 | long swap = gInt; |
---|
1655 | gInt = fInt; |
---|
1656 | fInt = swap; |
---|
1657 | } |
---|
1658 | |
---|
1659 | long u = 1; long v = 0; |
---|
1660 | long uNext = 0; long vNext = 1; |
---|
1661 | |
---|
1662 | // at any step, we have: |
---|
1663 | // fInt_0 * u + gInt_0 * v = fInt |
---|
1664 | // fInt_0 * uNext + gInt_0 * vNext = gInt |
---|
1665 | // where fInt_0 and gInt_0 denote the values of fint |
---|
1666 | // and gInt, resp., at the beginning |
---|
1667 | while ( gInt ) { |
---|
1668 | long r = fInt % gInt; |
---|
1669 | long q = fInt / gInt; |
---|
1670 | long uSwap = u - q * uNext; |
---|
1671 | long vSwap = v - q * vNext; |
---|
1672 | |
---|
1673 | // update variables |
---|
1674 | fInt = gInt; |
---|
1675 | gInt = r; |
---|
1676 | u = uNext; v = vNext; |
---|
1677 | uNext = uSwap; vNext = vSwap; |
---|
1678 | } |
---|
1679 | |
---|
1680 | // now, assign to a and b |
---|
1681 | long fTest = imm2int( f.value ); |
---|
1682 | long gTest = imm2int( g.value ); |
---|
1683 | if ( gTest > fTest ) { |
---|
1684 | a = v; b = u; |
---|
1685 | } else { |
---|
1686 | a = u; b = v; |
---|
1687 | } |
---|
1688 | if ( fTest < 0 ) a = -a; |
---|
1689 | if ( gTest < 0 ) b = -b; |
---|
1690 | return CanonicalForm( fInt ); |
---|
1691 | } else |
---|
1692 | // stupid special cases |
---|
1693 | if ( ! f.isZero() ) { |
---|
1694 | a = 1/f; b = 0; return CanonicalForm( 1 ); |
---|
1695 | } else if ( ! g.isZero() ) { |
---|
1696 | a = 0; b = 1/g; return CanonicalForm( 1 ); |
---|
1697 | } else { |
---|
1698 | a = 0; b = 0; return CanonicalForm( 0 ); |
---|
1699 | } |
---|
1700 | } |
---|
1701 | else if ( what ) |
---|
1702 | return f.value->bextgcdcoeff( g.value, a, b ); |
---|
1703 | |
---|
1704 | int fLevel = f.value->level(); |
---|
1705 | int gLevel = g.value->level(); |
---|
1706 | |
---|
1707 | // check levels |
---|
1708 | if ( fLevel == gLevel ) { |
---|
1709 | fLevel = f.value->levelcoeff(); |
---|
1710 | gLevel = g.value->levelcoeff(); |
---|
1711 | |
---|
1712 | // check levelcoeffs |
---|
1713 | if ( fLevel == gLevel ) |
---|
1714 | return f.value->bextgcdsame( g.value, a, b ); |
---|
1715 | else if ( fLevel < gLevel ) |
---|
1716 | return g.value->bextgcdcoeff( f.value, b, a ); |
---|
1717 | else |
---|
1718 | return f.value->bextgcdcoeff( g.value, a, b ); |
---|
1719 | } |
---|
1720 | else if ( fLevel < gLevel ) |
---|
1721 | return g.value->bextgcdcoeff( f.value, b, a ); |
---|
1722 | else |
---|
1723 | return f.value->bextgcdcoeff( g.value, a, b ); |
---|
1724 | } |
---|
1725 | //}}} |
---|
1726 | |
---|
1727 | CanonicalForm |
---|
1728 | blcm ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
1729 | { |
---|
1730 | if ( f.isZero() || g.isZero() ) |
---|
1731 | return CanonicalForm( 0 ); |
---|
1732 | /* |
---|
1733 | else if (f.isOne()) |
---|
1734 | return g; |
---|
1735 | else if (g.isOne()) |
---|
1736 | return f; |
---|
1737 | */ |
---|
1738 | else |
---|
1739 | return (f / bgcd( f, g )) * g; |
---|
1740 | } |
---|
1741 | |
---|
1742 | //{{{ input/output |
---|
1743 | #ifndef NOSTREAMIO |
---|
1744 | void |
---|
1745 | CanonicalForm::print( OSTREAM & os, char * str ) const |
---|
1746 | { |
---|
1747 | if ( is_imm( value ) ) |
---|
1748 | imm_print( os, value, str ); |
---|
1749 | else |
---|
1750 | value->print( os, str ); |
---|
1751 | } |
---|
1752 | |
---|
1753 | void |
---|
1754 | CanonicalForm::print( OSTREAM & os ) const |
---|
1755 | { |
---|
1756 | if ( is_imm( value ) ) |
---|
1757 | imm_print( os, value, "" ); |
---|
1758 | else |
---|
1759 | value->print( os, "" ); |
---|
1760 | } |
---|
1761 | |
---|
1762 | OSTREAM& |
---|
1763 | operator << ( OSTREAM & os, const CanonicalForm & cf ) |
---|
1764 | { |
---|
1765 | cf.print( os, "" ); |
---|
1766 | return os; |
---|
1767 | } |
---|
1768 | |
---|
1769 | ISTREAM& |
---|
1770 | operator >> ( ISTREAM & is, CanonicalForm & cf ) |
---|
1771 | { |
---|
1772 | cf = readCF( is ); |
---|
1773 | return is; |
---|
1774 | } |
---|
1775 | #endif /* NOSTREAMIO */ |
---|
1776 | //}}} |
---|
1777 | |
---|
1778 | //{{{ genOne(), genZero() |
---|
1779 | CanonicalForm |
---|
1780 | CanonicalForm::genZero() const |
---|
1781 | { |
---|
1782 | int what = is_imm( value ); |
---|
1783 | if ( what == FFMARK ) |
---|
1784 | return CanonicalForm( CFFactory::basic( FiniteFieldDomain, 0L ) ); |
---|
1785 | else if ( what == GFMARK ) |
---|
1786 | return CanonicalForm( CFFactory::basic( GaloisFieldDomain, 0L ) ); |
---|
1787 | else if ( what ) |
---|
1788 | return CanonicalForm( CFFactory::basic( IntegerDomain, 0L ) ); |
---|
1789 | else |
---|
1790 | return CanonicalForm( value->genZero() ); |
---|
1791 | } |
---|
1792 | |
---|
1793 | CanonicalForm |
---|
1794 | CanonicalForm::genOne() const |
---|
1795 | { |
---|
1796 | int what = is_imm( value ); |
---|
1797 | if ( what == FFMARK ) |
---|
1798 | return CanonicalForm( CFFactory::basic( FiniteFieldDomain, 1L ) ); |
---|
1799 | else if ( what == GFMARK ) |
---|
1800 | return CanonicalForm( CFFactory::basic( GaloisFieldDomain, 1L ) ); |
---|
1801 | else if ( what ) |
---|
1802 | return CanonicalForm( CFFactory::basic( IntegerDomain, 1L ) ); |
---|
1803 | else |
---|
1804 | return CanonicalForm( value->genOne() ); |
---|
1805 | } |
---|
1806 | //}}} |
---|
1807 | |
---|
1808 | //{{{ exponentiation |
---|
1809 | CanonicalForm |
---|
1810 | power ( const CanonicalForm & f, int n ) |
---|
1811 | { |
---|
1812 | ASSERT( n >= 0, "illegal exponent" ); |
---|
1813 | if ( f.isZero() ) |
---|
1814 | return 0; |
---|
1815 | else if ( f.isOne() ) |
---|
1816 | return f; |
---|
1817 | else if ( f == -1 ) |
---|
1818 | { |
---|
1819 | if ( n % 2 == 0 ) |
---|
1820 | return 1; |
---|
1821 | else |
---|
1822 | return -1; |
---|
1823 | } |
---|
1824 | else if ( n == 0 ) |
---|
1825 | return 1; |
---|
1826 | |
---|
1827 | //else if (f.inGF()) |
---|
1828 | //{ |
---|
1829 | //} |
---|
1830 | else |
---|
1831 | { |
---|
1832 | CanonicalForm g,h; |
---|
1833 | h=f; |
---|
1834 | while(n%2==0) |
---|
1835 | { |
---|
1836 | h*=h; |
---|
1837 | n/=2; |
---|
1838 | } |
---|
1839 | g=h; |
---|
1840 | while(1) |
---|
1841 | { |
---|
1842 | n/=2; |
---|
1843 | if(n==0) |
---|
1844 | return g; |
---|
1845 | h*=h; |
---|
1846 | if(n%2!=0) g*=h; |
---|
1847 | } |
---|
1848 | } |
---|
1849 | } |
---|
1850 | |
---|
1851 | CanonicalForm |
---|
1852 | power ( const Variable & v, int n ) |
---|
1853 | { |
---|
1854 | //ASSERT( n >= 0, "illegal exponent" ); |
---|
1855 | if ( n == 0 ) |
---|
1856 | return 1; |
---|
1857 | else if ( n == 1 ) |
---|
1858 | return v; |
---|
1859 | else if (( v.level() < 0 ) && (hasMipo(v))) |
---|
1860 | { |
---|
1861 | CanonicalForm result( v, n-1 ); |
---|
1862 | return result * v; |
---|
1863 | } |
---|
1864 | else |
---|
1865 | return CanonicalForm( v, n ); |
---|
1866 | } |
---|
1867 | //}}} |
---|
1868 | |
---|
1869 | //{{{ switches |
---|
1870 | void |
---|
1871 | On( int sw ) |
---|
1872 | { |
---|
1873 | cf_glob_switches.On( sw ); |
---|
1874 | } |
---|
1875 | |
---|
1876 | void |
---|
1877 | Off( int sw ) |
---|
1878 | { |
---|
1879 | cf_glob_switches.Off( sw ); |
---|
1880 | } |
---|
1881 | |
---|
1882 | bool |
---|
1883 | isOn( int sw ) |
---|
1884 | { |
---|
1885 | return cf_glob_switches.isOn( sw ); |
---|
1886 | } |
---|
1887 | //}}} |
---|