1 | /* emacs edit mode for this file is -*- C++ -*- */ |
---|
2 | |
---|
3 | #ifdef HAVE_CONFIG_H |
---|
4 | #include "config.h" |
---|
5 | #endif /* HAVE_CONFIG_H */ |
---|
6 | |
---|
7 | #include "cf_assert.h" |
---|
8 | #include "cf_factory.h" |
---|
9 | |
---|
10 | #include "cf_defs.h" |
---|
11 | #include "cf_globals.h" |
---|
12 | #include "canonicalform.h" |
---|
13 | #include "cf_iter.h" |
---|
14 | #include "int_cf.h" |
---|
15 | #include "cf_algorithm.h" |
---|
16 | #include "imm.h" |
---|
17 | #include "gfops.h" |
---|
18 | #include "facMul.h" |
---|
19 | |
---|
20 | #include <factory/cf_gmp.h> |
---|
21 | |
---|
22 | |
---|
23 | #ifndef NOSTREAMIO |
---|
24 | CanonicalForm readCF( ISTREAM& ); |
---|
25 | #endif /* NOSTREAMIO */ |
---|
26 | |
---|
27 | //{{{ constructors, destructors, selectors |
---|
28 | CanonicalForm::CanonicalForm( const char * str, const int base ) : value( CFFactory::basic( str, base ) ) |
---|
29 | { |
---|
30 | } |
---|
31 | |
---|
32 | InternalCF* |
---|
33 | CanonicalForm::getval() const |
---|
34 | { |
---|
35 | if ( is_imm( value ) ) |
---|
36 | return value; |
---|
37 | else |
---|
38 | return value->copyObject(); |
---|
39 | } |
---|
40 | |
---|
41 | CanonicalForm |
---|
42 | CanonicalForm::deepCopy() const |
---|
43 | { |
---|
44 | if ( is_imm( value ) ) |
---|
45 | return *this; |
---|
46 | else |
---|
47 | return CanonicalForm( value->deepCopyObject() ); |
---|
48 | } |
---|
49 | |
---|
50 | void |
---|
51 | CanonicalForm::mpzval(mpz_t val) const |
---|
52 | { |
---|
53 | ASSERT (!is_imm (value) && value->levelcoeff() == IntegerDomain, "non-immediate integer expected"); |
---|
54 | getmpi (value, val); |
---|
55 | } |
---|
56 | //}}} |
---|
57 | |
---|
58 | //{{{ predicates |
---|
59 | #if 0 |
---|
60 | bool |
---|
61 | CanonicalForm::isImm() const |
---|
62 | { |
---|
63 | return is_imm( value ); |
---|
64 | } |
---|
65 | #endif |
---|
66 | |
---|
67 | bool |
---|
68 | CanonicalForm::inZ() const |
---|
69 | { |
---|
70 | if ( is_imm( value ) == INTMARK ) |
---|
71 | return true; |
---|
72 | else if ( is_imm( value ) ) |
---|
73 | return false; |
---|
74 | else |
---|
75 | return value->levelcoeff() == IntegerDomain; |
---|
76 | } |
---|
77 | |
---|
78 | bool |
---|
79 | CanonicalForm::inQ() const |
---|
80 | { |
---|
81 | if ( is_imm( value ) == INTMARK ) |
---|
82 | return true; |
---|
83 | else if ( is_imm( value ) ) |
---|
84 | return false; |
---|
85 | else |
---|
86 | return value->levelcoeff() == IntegerDomain || |
---|
87 | value->levelcoeff() == RationalDomain; |
---|
88 | } |
---|
89 | |
---|
90 | bool |
---|
91 | CanonicalForm::inFF() const |
---|
92 | { |
---|
93 | return is_imm( value ) == FFMARK; |
---|
94 | } |
---|
95 | |
---|
96 | bool |
---|
97 | CanonicalForm::inGF() const |
---|
98 | { |
---|
99 | return is_imm( value ) == GFMARK; |
---|
100 | } |
---|
101 | |
---|
102 | bool |
---|
103 | CanonicalForm::inBaseDomain() const |
---|
104 | { |
---|
105 | if ( is_imm( value ) ) |
---|
106 | return true; |
---|
107 | else |
---|
108 | return value->inBaseDomain(); |
---|
109 | } |
---|
110 | |
---|
111 | bool |
---|
112 | CanonicalForm::inExtension() const |
---|
113 | { |
---|
114 | if ( is_imm( value ) ) |
---|
115 | return false; |
---|
116 | else |
---|
117 | return value->inExtension(); |
---|
118 | } |
---|
119 | |
---|
120 | bool |
---|
121 | CanonicalForm::inCoeffDomain() const |
---|
122 | { |
---|
123 | if ( is_imm( value ) ) |
---|
124 | return true; |
---|
125 | else |
---|
126 | return value->inCoeffDomain(); |
---|
127 | } |
---|
128 | |
---|
129 | bool |
---|
130 | CanonicalForm::inPolyDomain() const |
---|
131 | { |
---|
132 | if ( is_imm( value ) ) |
---|
133 | return false; |
---|
134 | else |
---|
135 | return value->inPolyDomain(); |
---|
136 | } |
---|
137 | |
---|
138 | bool |
---|
139 | CanonicalForm::inQuotDomain() const |
---|
140 | { |
---|
141 | if ( is_imm( value ) ) |
---|
142 | return false; |
---|
143 | else |
---|
144 | return value->inQuotDomain(); |
---|
145 | } |
---|
146 | |
---|
147 | bool |
---|
148 | CanonicalForm::isFFinGF() const |
---|
149 | { |
---|
150 | return is_imm( value ) == GFMARK && gf_isff( imm2int( value ) ); |
---|
151 | } |
---|
152 | |
---|
153 | bool |
---|
154 | CanonicalForm::isUnivariate() const |
---|
155 | { |
---|
156 | if ( is_imm( value ) ) |
---|
157 | return false; |
---|
158 | else |
---|
159 | return value->isUnivariate(); |
---|
160 | } |
---|
161 | |
---|
162 | // is_homogeneous returns 1 iff f is homogeneous, 0 otherwise// |
---|
163 | bool |
---|
164 | CanonicalForm::isHomogeneous() const |
---|
165 | { |
---|
166 | if (this->isZero()) return true; |
---|
167 | else if (this->inCoeffDomain()) return true; |
---|
168 | else |
---|
169 | { |
---|
170 | #if 0 |
---|
171 | CFIterator i; |
---|
172 | int cdeg = -2, dummy; |
---|
173 | for ( i = *this; i.hasTerms(); i++ ) |
---|
174 | { |
---|
175 | if (!(i.coeff().isHomogeneous())) return false; |
---|
176 | if ( (dummy = totaldegree( i.coeff() ) + i.exp()) != cdeg ) |
---|
177 | { |
---|
178 | if (cdeg == -2) cdeg = dummy; |
---|
179 | else return false; |
---|
180 | } |
---|
181 | } |
---|
182 | return true; |
---|
183 | #else |
---|
184 | CFList termlist= get_Terms(*this); |
---|
185 | CFListIterator i; |
---|
186 | int deg= totaldegree(termlist.getFirst()); |
---|
187 | |
---|
188 | for ( i=termlist; i.hasItem(); i++ ) |
---|
189 | if ( totaldegree(i.getItem()) != deg ) return false; |
---|
190 | return true; |
---|
191 | #endif |
---|
192 | } |
---|
193 | } |
---|
194 | |
---|
195 | //}}} |
---|
196 | |
---|
197 | //{{{ conversion functions |
---|
198 | long |
---|
199 | CanonicalForm::intval() const |
---|
200 | { |
---|
201 | if ( is_imm( value ) ) |
---|
202 | return imm_intval( value ); |
---|
203 | else |
---|
204 | return value->intval(); |
---|
205 | } |
---|
206 | |
---|
207 | CanonicalForm |
---|
208 | CanonicalForm::mapinto () const |
---|
209 | { |
---|
210 | //ASSERT( is_imm( value ) || ! value->inExtension(), "cannot map into different Extension" ); |
---|
211 | if ( is_imm( value ) ) |
---|
212 | if ( getCharacteristic() == 0 ) |
---|
213 | if ( is_imm( value ) == FFMARK ) |
---|
214 | return CanonicalForm( int2imm( ff_symmetric( imm2int( value ) ) ) ); |
---|
215 | else if ( is_imm( value ) == GFMARK ) |
---|
216 | return CanonicalForm( int2imm( ff_symmetric( gf_gf2ff( imm2int( value ) ) ) ) ); |
---|
217 | else |
---|
218 | return *this; |
---|
219 | else if ( getGFDegree() == 1 ) |
---|
220 | return CanonicalForm( int2imm_p( ff_norm( imm2int( value ) ) ) ); |
---|
221 | else |
---|
222 | return CanonicalForm( int2imm_gf( gf_int2gf( imm2int( value ) ) ) ); |
---|
223 | else if ( value->inBaseDomain() ) |
---|
224 | if ( getCharacteristic() == 0 ) |
---|
225 | return *this; |
---|
226 | else |
---|
227 | { |
---|
228 | int val; |
---|
229 | if ( value->levelcoeff() == IntegerDomain ) |
---|
230 | val = value->intmod( ff_prime ); |
---|
231 | else if ( value->levelcoeff() == RationalDomain ) |
---|
232 | return num().mapinto() / den().mapinto(); |
---|
233 | else { |
---|
234 | ASSERT( 0, "illegal domain" ); |
---|
235 | return 0; |
---|
236 | } |
---|
237 | if ( getGFDegree() > 1 ) |
---|
238 | return CanonicalForm( int2imm_gf( gf_int2gf( val ) ) ); |
---|
239 | else |
---|
240 | return CanonicalForm( int2imm_p( val ) ); |
---|
241 | } |
---|
242 | else |
---|
243 | { |
---|
244 | Variable x = value->variable(); |
---|
245 | CanonicalForm result; |
---|
246 | for ( CFIterator i = *this; i.hasTerms(); i++ ) |
---|
247 | result += (power( x, i.exp() ) * i.coeff().mapinto()); |
---|
248 | return result; |
---|
249 | } |
---|
250 | } |
---|
251 | //}}} |
---|
252 | |
---|
253 | //{{{ CanonicalForm CanonicalForm::lc (), Lc (), LC (), LC ( v ) const |
---|
254 | //{{{ docu |
---|
255 | // |
---|
256 | // lc(), Lc(), LC() - leading coefficient functions. |
---|
257 | // |
---|
258 | // All methods return CO if CO is in a base domain. |
---|
259 | // |
---|
260 | // lc() returns the leading coefficient of CO with respect to |
---|
261 | // lexicographic ordering. Elements in an algebraic extension |
---|
262 | // are considered polynomials so lc() always returns a leading |
---|
263 | // coefficient in a base domain. This method is useful to get |
---|
264 | // the base domain over which CO is defined. |
---|
265 | // |
---|
266 | // Lc() returns the leading coefficient of CO with respect to |
---|
267 | // lexicographic ordering. In contrast to lc() elements in an |
---|
268 | // algebraic extension are considered coefficients so Lc() always |
---|
269 | // returns a leading coefficient in a coefficient domain. |
---|
270 | // |
---|
271 | // LC() returns the leading coefficient of CO where CO is |
---|
272 | // considered a univariate polynomial in its main variable. An |
---|
273 | // element of an algebraic extension is considered an univariate |
---|
274 | // polynomial, too. |
---|
275 | // |
---|
276 | // LC( v ) returns the leading coefficient of CO where CO is |
---|
277 | // considered an univariate polynomial in the polynomial variable |
---|
278 | // v. |
---|
279 | // Note: If v is less than the main variable of CO we have to |
---|
280 | // swap variables which may be quite expensive. |
---|
281 | // |
---|
282 | // Examples: |
---|
283 | // Let x < y be polynomial variables, a an algebraic variable. |
---|
284 | // |
---|
285 | // (3*a*x*y^2+y+x).lc() = 3 |
---|
286 | // (3*a*x*y^2+y+x).Lc() = 3*a |
---|
287 | // (3*a*x*y^2+y+x).LC() = 3*a*x |
---|
288 | // (3*a*x*y^2+y+x).LC( x ) = 3*a*y^2+1 |
---|
289 | // |
---|
290 | // (3*a^2+4*a).lc() = 3 |
---|
291 | // (3*a^2+4*a).Lc() = 3*a^2+4*a |
---|
292 | // (3*a^2+4*a).LC() = 3 |
---|
293 | // (3*a^2+4*a).LC( x ) = 3*a^2+4*a |
---|
294 | // |
---|
295 | // See also: InternalCF::lc(), InternalCF::Lc(), InternalCF::LC(), |
---|
296 | // InternalPoly::lc(), InternalPoly::Lc(), InternalPoly::LC(), |
---|
297 | // ::lc(), ::Lc(), ::LC(), ::LC( v ) |
---|
298 | // |
---|
299 | //}}} |
---|
300 | CanonicalForm |
---|
301 | CanonicalForm::lc () const |
---|
302 | { |
---|
303 | if ( is_imm( value ) ) |
---|
304 | return *this; |
---|
305 | else |
---|
306 | return value->lc(); |
---|
307 | } |
---|
308 | |
---|
309 | CanonicalForm |
---|
310 | CanonicalForm::Lc () const |
---|
311 | { |
---|
312 | if ( is_imm( value ) || value->inCoeffDomain() ) |
---|
313 | return *this; |
---|
314 | else |
---|
315 | return value->Lc(); |
---|
316 | } |
---|
317 | |
---|
318 | CanonicalForm |
---|
319 | CanonicalForm::LC () const |
---|
320 | { |
---|
321 | if ( is_imm( value ) ) |
---|
322 | return *this; |
---|
323 | else |
---|
324 | return value->LC(); |
---|
325 | } |
---|
326 | |
---|
327 | CanonicalForm |
---|
328 | CanonicalForm::LC ( const Variable & v ) const |
---|
329 | { |
---|
330 | if ( is_imm( value ) || value->inCoeffDomain() ) |
---|
331 | return *this; |
---|
332 | |
---|
333 | Variable x = value->variable(); |
---|
334 | if ( v > x ) |
---|
335 | return *this; |
---|
336 | else if ( v == x ) |
---|
337 | return value->LC(); |
---|
338 | else { |
---|
339 | CanonicalForm f = swapvar( *this, v, x ); |
---|
340 | if ( f.mvar() == x ) |
---|
341 | return swapvar( f.value->LC(), v, x ); |
---|
342 | else |
---|
343 | // v did not occur in f |
---|
344 | return *this; |
---|
345 | } |
---|
346 | } |
---|
347 | //}}} |
---|
348 | |
---|
349 | //{{{ int CanonicalForm::degree (), degree ( v ) const |
---|
350 | //{{{ docu |
---|
351 | // |
---|
352 | // degree() - degree methods. |
---|
353 | // |
---|
354 | // Both methods returns -1 for the zero polynomial and 0 if |
---|
355 | // CO is in a base domain. |
---|
356 | // |
---|
357 | // degree() returns the degree of CO in its main variable. |
---|
358 | // Elements in an algebraic extension are considered polynomials. |
---|
359 | // |
---|
360 | // degree( v ) returns the degree of CO with respect to v. |
---|
361 | // Elements in an algebraic extension are considered polynomials, |
---|
362 | // and v may be algebraic. |
---|
363 | // |
---|
364 | // See also: InternalCf::degree(), InternalPoly::degree(), |
---|
365 | // ::degree(), ::degree( v ) |
---|
366 | // |
---|
367 | //}}} |
---|
368 | int |
---|
369 | CanonicalForm::degree() const |
---|
370 | { |
---|
371 | int what = is_imm( value ); |
---|
372 | if ( what ) |
---|
373 | if ( what == FFMARK ) |
---|
374 | return imm_iszero_p( value ) ? -1 : 0; |
---|
375 | else if ( what == INTMARK ) |
---|
376 | return imm_iszero( value ) ? -1 : 0; |
---|
377 | else |
---|
378 | return imm_iszero_gf( value ) ? -1 : 0; |
---|
379 | else |
---|
380 | return value->degree(); |
---|
381 | } |
---|
382 | |
---|
383 | int |
---|
384 | CanonicalForm::degree( const Variable & v ) const |
---|
385 | { |
---|
386 | int what = is_imm( value ); |
---|
387 | #if 0 |
---|
388 | if ( what ) |
---|
389 | if ( what == FFMARK ) |
---|
390 | return imm_iszero_p( value ) ? -1 : 0; |
---|
391 | else if ( what == INTMARK ) |
---|
392 | return imm_iszero( value ) ? -1 : 0; |
---|
393 | else |
---|
394 | return imm_iszero_gf( value ) ? -1 : 0; |
---|
395 | else if ( value->inBaseDomain() ) |
---|
396 | return value->degree(); |
---|
397 | #else |
---|
398 | switch(what) |
---|
399 | { |
---|
400 | case FFMARK: return imm_iszero_p( value ) ? -1 : 0; |
---|
401 | case INTMARK: return imm_iszero( value ) ? -1 : 0; |
---|
402 | case GFMARK: return imm_iszero_gf( value ) ? -1 : 0; |
---|
403 | case 0: if ( value->inBaseDomain() ) |
---|
404 | return value->degree(); |
---|
405 | break; |
---|
406 | } |
---|
407 | #endif |
---|
408 | |
---|
409 | Variable x = value->variable(); |
---|
410 | if ( v == x ) |
---|
411 | return value->degree(); |
---|
412 | else if ( v > x ) |
---|
413 | // relatively to v, f is in a coefficient ring |
---|
414 | return 0; |
---|
415 | else { |
---|
416 | int coeffdeg, result = 0; |
---|
417 | // search for maximum of coefficient degree |
---|
418 | for ( CFIterator i = *this; i.hasTerms(); i++ ) { |
---|
419 | coeffdeg = i.coeff().degree( v ); |
---|
420 | if ( coeffdeg > result ) |
---|
421 | result = coeffdeg; |
---|
422 | } |
---|
423 | return result; |
---|
424 | } |
---|
425 | } |
---|
426 | //}}} |
---|
427 | |
---|
428 | //{{{ CanonicalForm CanonicalForm::tailcoeff (), int CanonicalForm::taildegree () const |
---|
429 | //{{{ docu |
---|
430 | // |
---|
431 | // tailcoeff(), taildegree() - return least coefficient and |
---|
432 | // degree, resp. |
---|
433 | // |
---|
434 | // tailcoeff() returns the coefficient of the term with the least |
---|
435 | // degree in CO where CO is considered an univariate polynomial |
---|
436 | // in its main variable. Elements in an algebraic extension are |
---|
437 | // considered coefficients. |
---|
438 | // |
---|
439 | // taildegree() returns -1 for the zero polynomial, 0 if CO is in |
---|
440 | // a base domain, otherwise the least degree of CO where CO is |
---|
441 | // considered a univariate polynomial in its main variable. In |
---|
442 | // contrast to tailcoeff(), elements in an algebraic extension |
---|
443 | // are considered polynomials, not coefficients, and such may |
---|
444 | // have a taildegree larger than zero. |
---|
445 | // |
---|
446 | // tailcoeff( v ) returns the tail coefficient of CO where CO is |
---|
447 | // considered an univariate polynomial in the polynomial variable |
---|
448 | // v. |
---|
449 | // Note: If v is less than the main variable of CO we have to |
---|
450 | // swap variables which may be quite expensive. |
---|
451 | // |
---|
452 | // See also: InternalCF::tailcoeff(), InternalCF::tailcoeff(), |
---|
453 | // InternalPoly::tailcoeff(), InternalPoly::taildegree, |
---|
454 | // ::tailcoeff(), ::taildegree() |
---|
455 | // |
---|
456 | //}}} |
---|
457 | CanonicalForm |
---|
458 | CanonicalForm::tailcoeff () const |
---|
459 | { |
---|
460 | if ( is_imm( value ) || value->inCoeffDomain() ) |
---|
461 | return *this; |
---|
462 | else |
---|
463 | return value->tailcoeff(); |
---|
464 | } |
---|
465 | |
---|
466 | CanonicalForm |
---|
467 | CanonicalForm::tailcoeff (const Variable& v) const |
---|
468 | { |
---|
469 | if ( is_imm( value ) || value->inCoeffDomain() ) |
---|
470 | return *this; |
---|
471 | |
---|
472 | Variable x = value->variable(); |
---|
473 | if ( v > x ) |
---|
474 | return *this; |
---|
475 | else if ( v == x ) |
---|
476 | return value->tailcoeff(); |
---|
477 | else { |
---|
478 | CanonicalForm f = swapvar( *this, v, x ); |
---|
479 | if ( f.mvar() == x ) |
---|
480 | return swapvar( f.value->tailcoeff(), v, x ); |
---|
481 | else |
---|
482 | // v did not occur in f |
---|
483 | return *this; |
---|
484 | } |
---|
485 | } |
---|
486 | |
---|
487 | int |
---|
488 | CanonicalForm::taildegree () const |
---|
489 | { |
---|
490 | int what = is_imm( value ); |
---|
491 | if ( what ) |
---|
492 | if ( what == FFMARK ) |
---|
493 | return imm_iszero_p( value ) ? -1 : 0; |
---|
494 | else if ( what == INTMARK ) |
---|
495 | return imm_iszero( value ) ? -1 : 0; |
---|
496 | else |
---|
497 | return imm_iszero_gf( value ) ? -1 : 0; |
---|
498 | else |
---|
499 | return value->taildegree(); |
---|
500 | } |
---|
501 | //}}} |
---|
502 | |
---|
503 | //{{{ int CanonicalForm::level (), Variable CanonicalForm::mvar () const |
---|
504 | //{{{ docu |
---|
505 | // |
---|
506 | // level(), mvar() - return level and main variable of CO. |
---|
507 | // |
---|
508 | // level() returns the level of CO. For a list of the levels and |
---|
509 | // their meanings, see cf_defs.h. |
---|
510 | // |
---|
511 | // mvar() returns the main variable of CO or Variable() if CO is |
---|
512 | // in a base domain. |
---|
513 | // |
---|
514 | // See also: InternalCF::level(), InternalCF::variable(), |
---|
515 | // InternalPoly::level(), InternalPoly::variable(), ::level(), |
---|
516 | // ::mvar() |
---|
517 | // |
---|
518 | //}}} |
---|
519 | int |
---|
520 | CanonicalForm::level () const |
---|
521 | { |
---|
522 | if ( is_imm( value ) ) |
---|
523 | return LEVELBASE; |
---|
524 | else |
---|
525 | return value->level(); |
---|
526 | } |
---|
527 | |
---|
528 | Variable |
---|
529 | CanonicalForm::mvar () const |
---|
530 | { |
---|
531 | if ( is_imm( value ) ) |
---|
532 | return Variable(); |
---|
533 | else |
---|
534 | return value->variable(); |
---|
535 | } |
---|
536 | //}}} |
---|
537 | |
---|
538 | //{{{ CanonicalForm CanonicalForm::num (), den () const |
---|
539 | //{{{ docu |
---|
540 | // |
---|
541 | // num(), den() - return numinator and denominator of CO. |
---|
542 | // |
---|
543 | // num() returns the numinator of CO if CO is a rational number, |
---|
544 | // CO itself otherwise. |
---|
545 | // |
---|
546 | // den() returns the denominator of CO if CO is a rational |
---|
547 | // number, 1 (from the current domain!) otherwise. |
---|
548 | // |
---|
549 | // See also: InternalCF::num(), InternalCF::den(), |
---|
550 | // InternalRational::num(), InternalRational::den(), ::num(), |
---|
551 | // ::den() |
---|
552 | // |
---|
553 | //}}} |
---|
554 | CanonicalForm |
---|
555 | CanonicalForm::num () const |
---|
556 | { |
---|
557 | if ( is_imm( value ) ) |
---|
558 | return *this; |
---|
559 | else |
---|
560 | return CanonicalForm( value->num() ); |
---|
561 | } |
---|
562 | |
---|
563 | CanonicalForm |
---|
564 | CanonicalForm::den () const |
---|
565 | { |
---|
566 | if ( is_imm( value ) ) |
---|
567 | return CanonicalForm( 1 ); |
---|
568 | else |
---|
569 | return CanonicalForm( value->den() ); |
---|
570 | } |
---|
571 | //}}} |
---|
572 | |
---|
573 | //{{{ assignment operators |
---|
574 | CanonicalForm & |
---|
575 | CanonicalForm::operator += ( const CanonicalForm & cf ) |
---|
576 | { |
---|
577 | int what = is_imm( value ); |
---|
578 | if ( what ) { |
---|
579 | ASSERT ( ! is_imm( cf.value ) || (what==is_imm( cf.value )), "illegal base coefficients" ); |
---|
580 | if ( (what = is_imm( cf.value )) == FFMARK ) |
---|
581 | value = imm_add_p( value, cf.value ); |
---|
582 | else if ( what == GFMARK ) |
---|
583 | value = imm_add_gf( value, cf.value ); |
---|
584 | else if ( what ) |
---|
585 | value = imm_add( value, cf.value ); |
---|
586 | else { |
---|
587 | InternalCF * dummy = cf.value->copyObject(); |
---|
588 | value = dummy->addcoeff( value ); |
---|
589 | } |
---|
590 | } |
---|
591 | else if ( is_imm( cf.value ) ) |
---|
592 | value = value->addcoeff( cf.value ); |
---|
593 | else if ( value->level() == cf.value->level() ) { |
---|
594 | if ( value->levelcoeff() == cf.value->levelcoeff() ) |
---|
595 | value = value->addsame( cf.value ); |
---|
596 | else if ( value->levelcoeff() > cf.value->levelcoeff() ) |
---|
597 | value = value->addcoeff( cf.value ); |
---|
598 | else { |
---|
599 | InternalCF * dummy = cf.value->copyObject(); |
---|
600 | dummy = dummy->addcoeff( value ); |
---|
601 | if ( value->deleteObject() ) delete value; |
---|
602 | value = dummy; |
---|
603 | } |
---|
604 | } |
---|
605 | else if ( level() > cf.level() ) |
---|
606 | value = value->addcoeff( cf.value ); |
---|
607 | else { |
---|
608 | InternalCF * dummy = cf.value->copyObject(); |
---|
609 | dummy = dummy->addcoeff( value ); |
---|
610 | if ( value->deleteObject() ) delete value; |
---|
611 | value = dummy; |
---|
612 | } |
---|
613 | return *this; |
---|
614 | } |
---|
615 | |
---|
616 | CanonicalForm & |
---|
617 | CanonicalForm::operator -= ( const CanonicalForm & cf ) |
---|
618 | { |
---|
619 | int what = is_imm( value ); |
---|
620 | if ( what ) { |
---|
621 | ASSERT ( ! is_imm( cf.value ) || (what==is_imm( cf.value )), "illegal base coefficients" ); |
---|
622 | if ( (what = is_imm( cf.value )) == FFMARK ) |
---|
623 | value = imm_sub_p( value, cf.value ); |
---|
624 | else if ( what == GFMARK ) |
---|
625 | value = imm_sub_gf( value, cf.value ); |
---|
626 | else if ( what ) |
---|
627 | value = imm_sub( value, cf.value ); |
---|
628 | else { |
---|
629 | InternalCF * dummy = cf.value->copyObject(); |
---|
630 | value = dummy->subcoeff( value, true ); |
---|
631 | } |
---|
632 | } |
---|
633 | else if ( is_imm( cf.value ) ) |
---|
634 | value = value->subcoeff( cf.value, false ); |
---|
635 | else if ( value->level() == cf.value->level() ) { |
---|
636 | if ( value->levelcoeff() == cf.value->levelcoeff() ) |
---|
637 | value = value->subsame( cf.value ); |
---|
638 | else if ( value->levelcoeff() > cf.value->levelcoeff() ) |
---|
639 | value = value->subcoeff( cf.value, false ); |
---|
640 | else { |
---|
641 | InternalCF * dummy = cf.value->copyObject(); |
---|
642 | dummy = dummy->subcoeff( value, true ); |
---|
643 | if ( value->deleteObject() ) delete value; |
---|
644 | value = dummy; |
---|
645 | } |
---|
646 | } |
---|
647 | else if ( level() > cf.level() ) |
---|
648 | value = value->subcoeff( cf.value, false ); |
---|
649 | else { |
---|
650 | InternalCF * dummy = cf.value->copyObject(); |
---|
651 | dummy = dummy->subcoeff( value, true ); |
---|
652 | if ( value->deleteObject() ) delete value; |
---|
653 | value = dummy; |
---|
654 | } |
---|
655 | return *this; |
---|
656 | } |
---|
657 | |
---|
658 | CanonicalForm & |
---|
659 | CanonicalForm::operator *= ( const CanonicalForm & cf ) |
---|
660 | { |
---|
661 | int what = is_imm( value ); |
---|
662 | if ( what ) { |
---|
663 | ASSERT ( ! is_imm( cf.value ) || (what==is_imm( cf.value )), "illegal base coefficients" ); |
---|
664 | if ( (what = is_imm( cf.value )) == FFMARK ) |
---|
665 | value = imm_mul_p( value, cf.value ); |
---|
666 | else if ( what == GFMARK ) |
---|
667 | value = imm_mul_gf( value, cf.value ); |
---|
668 | else if ( what ) |
---|
669 | value = imm_mul( value, cf.value ); |
---|
670 | else { |
---|
671 | InternalCF * dummy = cf.value->copyObject(); |
---|
672 | value = dummy->mulcoeff( value ); |
---|
673 | } |
---|
674 | } |
---|
675 | else if ( is_imm( cf.value ) ) |
---|
676 | value = value->mulcoeff( cf.value ); |
---|
677 | else if ( value->level() == cf.value->level() ) { |
---|
678 | if (value->levelcoeff() == cf.value->levelcoeff() && cf.isUnivariate() && (*this).isUnivariate()) |
---|
679 | { |
---|
680 | if (value->level() < 0 || CFFactory::gettype() == GaloisFieldDomain || (size (cf) <= 10 || size (*this) <= 10) ) |
---|
681 | value = value->mulsame( cf.value ); |
---|
682 | else |
---|
683 | *this= mulNTL (*this, cf); |
---|
684 | } |
---|
685 | else if (value->levelcoeff() == cf.value->levelcoeff() && (!cf.isUnivariate() || !(*this).isUnivariate())) |
---|
686 | value = value->mulsame( cf.value ); |
---|
687 | else if ( value->levelcoeff() > cf.value->levelcoeff() ) |
---|
688 | value = value->mulcoeff( cf.value ); |
---|
689 | else { |
---|
690 | InternalCF * dummy = cf.value->copyObject(); |
---|
691 | dummy = dummy->mulcoeff( value ); |
---|
692 | if ( value->deleteObject() ) delete value; |
---|
693 | value = dummy; |
---|
694 | } |
---|
695 | } |
---|
696 | else if ( level() > cf.level() ) |
---|
697 | value = value->mulcoeff( cf.value ); |
---|
698 | else { |
---|
699 | InternalCF * dummy = cf.value->copyObject(); |
---|
700 | dummy = dummy->mulcoeff( value ); |
---|
701 | if ( value->deleteObject() ) delete value; |
---|
702 | value = dummy; |
---|
703 | } |
---|
704 | return *this; |
---|
705 | } |
---|
706 | |
---|
707 | CanonicalForm & |
---|
708 | CanonicalForm::operator /= ( const CanonicalForm & cf ) |
---|
709 | { |
---|
710 | int what = is_imm( value ); |
---|
711 | if ( what ) { |
---|
712 | ASSERT ( ! is_imm( cf.value ) || (what==is_imm( cf.value )), "illegal base coefficients" ); |
---|
713 | if ( (what = is_imm( cf.value )) == FFMARK ) |
---|
714 | value = imm_div_p( value, cf.value ); |
---|
715 | else if ( what == GFMARK ) |
---|
716 | value = imm_div_gf( value, cf.value ); |
---|
717 | else if ( what ) |
---|
718 | value = imm_divrat( value, cf.value ); |
---|
719 | else { |
---|
720 | InternalCF * dummy = cf.value->copyObject(); |
---|
721 | value = dummy->dividecoeff( value, true ); |
---|
722 | } |
---|
723 | } |
---|
724 | else if ( is_imm( cf.value ) ) |
---|
725 | value = value->dividecoeff( cf.value, false ); |
---|
726 | else if ( value->level() == cf.value->level() ) { |
---|
727 | if ( value->levelcoeff() == cf.value->levelcoeff() ) |
---|
728 | value = value->dividesame( cf.value ); |
---|
729 | else if ( value->levelcoeff() > cf.value->levelcoeff() ) |
---|
730 | value = value->dividecoeff( cf.value, false ); |
---|
731 | else { |
---|
732 | InternalCF * dummy = cf.value->copyObject(); |
---|
733 | dummy = dummy->dividecoeff( value, true ); |
---|
734 | if ( value->deleteObject() ) delete value; |
---|
735 | value = dummy; |
---|
736 | } |
---|
737 | } |
---|
738 | else if ( level() > cf.level() ) |
---|
739 | value = value->dividecoeff( cf.value, false ); |
---|
740 | else { |
---|
741 | InternalCF * dummy = cf.value->copyObject(); |
---|
742 | dummy = dummy->dividecoeff( value, true ); |
---|
743 | if ( value->deleteObject() ) delete value; |
---|
744 | value = dummy; |
---|
745 | } |
---|
746 | return *this; |
---|
747 | } |
---|
748 | |
---|
749 | CanonicalForm & |
---|
750 | CanonicalForm::div ( const CanonicalForm & cf ) |
---|
751 | { |
---|
752 | int what = is_imm( value ); |
---|
753 | if ( what ) { |
---|
754 | ASSERT ( ! is_imm( cf.value ) || (what==is_imm( cf.value )), "illegal base coefficients" ); |
---|
755 | if ( (what = is_imm( cf.value )) == FFMARK ) |
---|
756 | value = imm_div_p( value, cf.value ); |
---|
757 | else if ( what == GFMARK ) |
---|
758 | value = imm_div_gf( value, cf.value ); |
---|
759 | else if ( what ) |
---|
760 | value = imm_div( value, cf.value ); |
---|
761 | else { |
---|
762 | InternalCF * dummy = cf.value->copyObject(); |
---|
763 | value = dummy->divcoeff( value, true ); |
---|
764 | } |
---|
765 | } |
---|
766 | else if ( is_imm( cf.value ) ) |
---|
767 | value = value->divcoeff( cf.value, false ); |
---|
768 | else if ( value->level() == cf.value->level() ) { |
---|
769 | if ( value->levelcoeff() == cf.value->levelcoeff() ) |
---|
770 | value = value->divsame( cf.value ); |
---|
771 | else if ( value->levelcoeff() > cf.value->levelcoeff() ) |
---|
772 | value = value->divcoeff( cf.value, false ); |
---|
773 | else { |
---|
774 | InternalCF * dummy = cf.value->copyObject(); |
---|
775 | dummy = dummy->divcoeff( value, true ); |
---|
776 | if ( value->deleteObject() ) delete value; |
---|
777 | value = dummy; |
---|
778 | } |
---|
779 | } |
---|
780 | else if ( level() > cf.level() ) |
---|
781 | value = value->divcoeff( cf.value, false ); |
---|
782 | else { |
---|
783 | InternalCF * dummy = cf.value->copyObject(); |
---|
784 | dummy = dummy->divcoeff( value, true ); |
---|
785 | if ( value->deleteObject() ) delete value; |
---|
786 | value = dummy; |
---|
787 | } |
---|
788 | return *this; |
---|
789 | } |
---|
790 | |
---|
791 | //same as divremt but handles zero divisors in case we are in Z_p[x]/(f) where f is not irreducible |
---|
792 | CanonicalForm & |
---|
793 | CanonicalForm::tryDiv ( const CanonicalForm & cf, const CanonicalForm& M, bool& fail ) |
---|
794 | { |
---|
795 | ASSERT (getCharacteristic() > 0, "expected positive characteristic"); |
---|
796 | ASSERT (!getReduce (M.mvar()), "do not reduce modulo M"); |
---|
797 | fail= false; |
---|
798 | int what = is_imm( value ); |
---|
799 | if ( what ) { |
---|
800 | ASSERT ( ! is_imm( cf.value ) || (what==is_imm( cf.value )), "illegal base coefficients" ); |
---|
801 | if ( (what = is_imm( cf.value )) == FFMARK ) |
---|
802 | value = imm_div_p( value, cf.value ); |
---|
803 | else if ( what == GFMARK ) |
---|
804 | value = imm_div_gf( value, cf.value ); |
---|
805 | else { |
---|
806 | InternalCF * dummy = cf.value->copyObject(); |
---|
807 | value = dummy->divcoeff( value, true ); |
---|
808 | } |
---|
809 | } |
---|
810 | else if ( is_imm( cf.value ) ) |
---|
811 | value = value->tryDivcoeff (cf.value, false, M, fail); |
---|
812 | else if ( value->level() == cf.value->level() ) { |
---|
813 | if ( value->levelcoeff() == cf.value->levelcoeff() ) |
---|
814 | value = value->tryDivsame( cf.value, M, fail ); |
---|
815 | else if ( value->levelcoeff() > cf.value->levelcoeff() ) |
---|
816 | value = value->tryDivcoeff( cf.value, false, M, fail ); |
---|
817 | else { |
---|
818 | InternalCF * dummy = cf.value->copyObject(); |
---|
819 | dummy = dummy->tryDivcoeff( value, true, M, fail ); |
---|
820 | if ( value->deleteObject() ) delete value; |
---|
821 | value = dummy; |
---|
822 | } |
---|
823 | } |
---|
824 | else if ( level() > cf.level() ) |
---|
825 | value = value->tryDivcoeff( cf.value, false, M, fail ); |
---|
826 | else { |
---|
827 | InternalCF * dummy = cf.value->copyObject(); |
---|
828 | dummy = dummy->tryDivcoeff( value, true, M, fail ); |
---|
829 | if ( value->deleteObject() ) delete value; |
---|
830 | value = dummy; |
---|
831 | } |
---|
832 | return *this; |
---|
833 | } |
---|
834 | |
---|
835 | CanonicalForm & |
---|
836 | CanonicalForm::operator %= ( const CanonicalForm & cf ) |
---|
837 | { |
---|
838 | int what = is_imm( value ); |
---|
839 | if ( what ) { |
---|
840 | ASSERT ( ! is_imm( cf.value ) || (what==is_imm( cf.value )), "illegal base coefficients" ); |
---|
841 | if ( (what = is_imm( cf.value )) == FFMARK ) |
---|
842 | value = imm_mod_p( value, cf.value ); |
---|
843 | else if ( what == GFMARK ) |
---|
844 | value = imm_mod_gf( value, cf.value ); |
---|
845 | else if ( what ) |
---|
846 | value = imm_mod( value, cf.value ); |
---|
847 | else { |
---|
848 | InternalCF * dummy = cf.value->copyObject(); |
---|
849 | value = dummy->modulocoeff( value, true ); |
---|
850 | } |
---|
851 | } |
---|
852 | else if ( is_imm( cf.value ) ) |
---|
853 | value = value->modulocoeff( cf.value, false ); |
---|
854 | else if ( value->level() == cf.value->level() ) { |
---|
855 | if ( value->levelcoeff() == cf.value->levelcoeff() ) |
---|
856 | value = value->modulosame( cf.value ); |
---|
857 | else if ( value->levelcoeff() > cf.value->levelcoeff() ) |
---|
858 | value = value->modulocoeff( cf.value, false ); |
---|
859 | else { |
---|
860 | InternalCF * dummy = cf.value->copyObject(); |
---|
861 | dummy = dummy->modulocoeff( value, true ); |
---|
862 | if ( value->deleteObject() ) delete value; |
---|
863 | value = dummy; |
---|
864 | } |
---|
865 | } |
---|
866 | else if ( level() > cf.level() ) |
---|
867 | value = value->modulocoeff( cf.value, false ); |
---|
868 | else { |
---|
869 | InternalCF * dummy = cf.value->copyObject(); |
---|
870 | dummy = dummy->modulocoeff( value, true ); |
---|
871 | if ( value->deleteObject() ) delete value; |
---|
872 | value = dummy; |
---|
873 | } |
---|
874 | return *this; |
---|
875 | } |
---|
876 | |
---|
877 | CanonicalForm & |
---|
878 | CanonicalForm::mod ( const CanonicalForm & cf ) |
---|
879 | { |
---|
880 | int what = is_imm( value ); |
---|
881 | if ( what ) { |
---|
882 | ASSERT ( ! is_imm( cf.value ) || (what==is_imm( cf.value )), "illegal base coefficients" ); |
---|
883 | if ( (what = is_imm( cf.value )) == FFMARK ) |
---|
884 | value = imm_mod_p( value, cf.value ); |
---|
885 | else if ( what == GFMARK ) |
---|
886 | value = imm_mod_gf( value, cf.value ); |
---|
887 | else if ( what ) |
---|
888 | value = imm_mod( value, cf.value ); |
---|
889 | else { |
---|
890 | InternalCF * dummy = cf.value->copyObject(); |
---|
891 | value = dummy->modcoeff( value, true ); |
---|
892 | } |
---|
893 | } |
---|
894 | else if ( is_imm( cf.value ) ) |
---|
895 | value = value->modcoeff( cf.value, false ); |
---|
896 | else if ( value->level() == cf.value->level() ) { |
---|
897 | if ( value->levelcoeff() == cf.value->levelcoeff() ) |
---|
898 | value = value->modsame( cf.value ); |
---|
899 | else if ( value->levelcoeff() > cf.value->levelcoeff() ) |
---|
900 | value = value->modcoeff( cf.value, false ); |
---|
901 | else { |
---|
902 | InternalCF * dummy = cf.value->copyObject(); |
---|
903 | dummy = dummy->modcoeff( value, true ); |
---|
904 | if ( value->deleteObject() ) delete value; |
---|
905 | value = dummy; |
---|
906 | } |
---|
907 | } |
---|
908 | else if ( level() > cf.level() ) |
---|
909 | value = value->modcoeff( cf.value, false ); |
---|
910 | else { |
---|
911 | InternalCF * dummy = cf.value->copyObject(); |
---|
912 | dummy = dummy->modcoeff( value, true ); |
---|
913 | if ( value->deleteObject() ) delete value; |
---|
914 | value = dummy; |
---|
915 | } |
---|
916 | return *this; |
---|
917 | } |
---|
918 | |
---|
919 | void |
---|
920 | divrem ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & q, CanonicalForm & r ) |
---|
921 | { |
---|
922 | InternalCF * qq = 0, * rr = 0; |
---|
923 | int what = is_imm( f.value ); |
---|
924 | if ( what ) |
---|
925 | if ( is_imm( g.value ) ) { |
---|
926 | if ( what == FFMARK ) |
---|
927 | imm_divrem_p( f.value, g.value, qq, rr ); |
---|
928 | else if ( what == GFMARK ) |
---|
929 | imm_divrem_gf( f.value, g.value, qq, rr ); |
---|
930 | else |
---|
931 | imm_divrem( f.value, g.value, qq, rr ); |
---|
932 | } |
---|
933 | else |
---|
934 | g.value->divremcoeff( f.value, qq, rr, true ); |
---|
935 | else if ( (what=is_imm( g.value )) ) |
---|
936 | f.value->divremcoeff( g.value, qq, rr, false ); |
---|
937 | else if ( f.value->level() == g.value->level() ) |
---|
938 | if ( f.value->levelcoeff() == g.value->levelcoeff() ) |
---|
939 | f.value->divremsame( g.value, qq, rr ); |
---|
940 | else if ( f.value->levelcoeff() > g.value->levelcoeff() ) |
---|
941 | f.value->divremcoeff( g.value, qq, rr, false ); |
---|
942 | else |
---|
943 | g.value->divremcoeff( f.value, qq, rr, true ); |
---|
944 | else if ( f.value->level() > g.value->level() ) |
---|
945 | f.value->divremcoeff( g.value, qq, rr, false ); |
---|
946 | else |
---|
947 | g.value->divremcoeff( f.value, qq, rr, true ); |
---|
948 | ASSERT( qq != 0 && rr != 0, "error in divrem" ); |
---|
949 | q = CanonicalForm( qq ); |
---|
950 | r = CanonicalForm( rr ); |
---|
951 | } |
---|
952 | |
---|
953 | bool |
---|
954 | divremt ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & q, CanonicalForm & r ) |
---|
955 | { |
---|
956 | InternalCF * qq = 0, * rr = 0; |
---|
957 | int what = is_imm( f.value ); |
---|
958 | bool result = true; |
---|
959 | if ( what ) |
---|
960 | if ( is_imm( g.value ) ) { |
---|
961 | if ( what == FFMARK ) |
---|
962 | imm_divrem_p( f.value, g.value, qq, rr ); |
---|
963 | else if ( what == GFMARK ) |
---|
964 | imm_divrem_gf( f.value, g.value, qq, rr ); |
---|
965 | else |
---|
966 | imm_divrem( f.value, g.value, qq, rr ); |
---|
967 | } |
---|
968 | else |
---|
969 | result = g.value->divremcoefft( f.value, qq, rr, true ); |
---|
970 | else if ( (what=is_imm( g.value )) ) |
---|
971 | result = f.value->divremcoefft( g.value, qq, rr, false ); |
---|
972 | else if ( f.value->level() == g.value->level() ) |
---|
973 | if ( f.value->levelcoeff() == g.value->levelcoeff() ) |
---|
974 | result = f.value->divremsamet( g.value, qq, rr ); |
---|
975 | else if ( f.value->levelcoeff() > g.value->levelcoeff() ) |
---|
976 | result = f.value->divremcoefft( g.value, qq, rr, false ); |
---|
977 | else |
---|
978 | result = g.value->divremcoefft( f.value, qq, rr, true ); |
---|
979 | else if ( f.value->level() > g.value->level() ) |
---|
980 | result = f.value->divremcoefft( g.value, qq, rr, false ); |
---|
981 | else |
---|
982 | result = g.value->divremcoefft( f.value, qq, rr, true ); |
---|
983 | if ( result ) { |
---|
984 | ASSERT( qq != 0 && rr != 0, "error in divrem" ); |
---|
985 | q = CanonicalForm( qq ); |
---|
986 | r = CanonicalForm( rr ); |
---|
987 | } |
---|
988 | else { |
---|
989 | q = 0; r = 0; |
---|
990 | } |
---|
991 | return result; |
---|
992 | } |
---|
993 | |
---|
994 | //same as divremt but handles zero divisors in case we are in Z_p[x]/(f) where f is not irreducible |
---|
995 | bool |
---|
996 | tryDivremt ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & q, CanonicalForm & r, const CanonicalForm& M, bool& fail ) |
---|
997 | { |
---|
998 | ASSERT (getCharacteristic() > 0, "expected positive characteristic"); |
---|
999 | ASSERT (!getReduce (M.mvar()), "do not reduce modulo M"); |
---|
1000 | fail= false; |
---|
1001 | InternalCF * qq = 0, * rr = 0; |
---|
1002 | int what = is_imm( f.value ); |
---|
1003 | bool result = true; |
---|
1004 | if ( what ) |
---|
1005 | if ( is_imm( g.value ) ) { |
---|
1006 | if ( what == FFMARK ) |
---|
1007 | imm_divrem_p( f.value, g.value, qq, rr ); |
---|
1008 | else if ( what == GFMARK ) |
---|
1009 | imm_divrem_gf( f.value, g.value, qq, rr ); |
---|
1010 | } |
---|
1011 | else |
---|
1012 | result = g.value->tryDivremcoefft( f.value, qq, rr, true, M, fail ); |
---|
1013 | else if ( (what=is_imm( g.value )) ) |
---|
1014 | result = f.value->tryDivremcoefft( g.value, qq, rr, false, M, fail ); |
---|
1015 | else if ( f.value->level() == g.value->level() ) |
---|
1016 | if ( f.value->levelcoeff() == g.value->levelcoeff() ) |
---|
1017 | result = f.value->tryDivremsamet( g.value, qq, rr, M, fail ); |
---|
1018 | else if ( f.value->levelcoeff() > g.value->levelcoeff() ) |
---|
1019 | result = f.value->tryDivremcoefft( g.value, qq, rr, false, M, fail ); |
---|
1020 | else |
---|
1021 | result = g.value->tryDivremcoefft( f.value, qq, rr, true, M, fail ); |
---|
1022 | else if ( f.value->level() > g.value->level() ) |
---|
1023 | result = f.value->tryDivremcoefft( g.value, qq, rr, false, M, fail ); |
---|
1024 | else |
---|
1025 | result = g.value->tryDivremcoefft( f.value, qq, rr, true, M, fail ); |
---|
1026 | if (fail) |
---|
1027 | { |
---|
1028 | q= 0; |
---|
1029 | r= 0; |
---|
1030 | return false; |
---|
1031 | } |
---|
1032 | if ( result ) { |
---|
1033 | ASSERT( qq != 0 && rr != 0, "error in divrem" ); |
---|
1034 | q = CanonicalForm( qq ); |
---|
1035 | r = CanonicalForm( rr ); |
---|
1036 | q= reduce (q, M); |
---|
1037 | r= reduce (r, M); |
---|
1038 | } |
---|
1039 | else { |
---|
1040 | q = 0; r = 0; |
---|
1041 | } |
---|
1042 | return result; |
---|
1043 | } |
---|
1044 | |
---|
1045 | //}}} |
---|
1046 | |
---|
1047 | //{{{ CanonicalForm CanonicalForm::operator () ( f ), operator () ( f, v ) const |
---|
1048 | //{{{ docu |
---|
1049 | // |
---|
1050 | // operator ()() - evaluation operator. |
---|
1051 | // |
---|
1052 | // Both operators return CO if CO is in a base domain. |
---|
1053 | // |
---|
1054 | // operator () ( f ) returns CO with f inserted for the main |
---|
1055 | // variable. Elements in an algebraic extension are considered |
---|
1056 | // polynomials. |
---|
1057 | // |
---|
1058 | // operator () ( f, v ) returns CO with f inserted for v. |
---|
1059 | // Elements in an algebraic extension are considered polynomials |
---|
1060 | // and v may be an algebraic variable. |
---|
1061 | // |
---|
1062 | //}}} |
---|
1063 | CanonicalForm |
---|
1064 | CanonicalForm::operator () ( const CanonicalForm & f ) const |
---|
1065 | { |
---|
1066 | if ( is_imm( value ) || value->inBaseDomain() ) |
---|
1067 | return *this; |
---|
1068 | else { |
---|
1069 | #if 0 |
---|
1070 | CFIterator i = *this; |
---|
1071 | int lastExp = i.exp(); |
---|
1072 | CanonicalForm result = i.coeff(); |
---|
1073 | i++; |
---|
1074 | while ( i.hasTerms() ) { |
---|
1075 | if ( (lastExp - i.exp()) == 1 ) |
---|
1076 | result *= f; |
---|
1077 | else |
---|
1078 | result *= power( f, lastExp - i.exp() ); |
---|
1079 | result += i.coeff(); |
---|
1080 | lastExp = i.exp(); |
---|
1081 | i++; |
---|
1082 | } |
---|
1083 | if ( lastExp != 0 ) |
---|
1084 | result *= power( f, lastExp ); |
---|
1085 | #else |
---|
1086 | CFIterator i = *this; |
---|
1087 | int lastExp = i.exp(); |
---|
1088 | CanonicalForm result = i.coeff(); |
---|
1089 | i++; |
---|
1090 | while ( i.hasTerms() ) |
---|
1091 | { |
---|
1092 | int i_exp=i.exp(); |
---|
1093 | if ( (lastExp - i_exp /* i.exp()*/) == 1 ) |
---|
1094 | result *= f; |
---|
1095 | else |
---|
1096 | result *= power( f, lastExp - i_exp /*i.exp()*/ ); |
---|
1097 | result += i.coeff(); |
---|
1098 | lastExp = i_exp /*i.exp()*/; |
---|
1099 | i++; |
---|
1100 | } |
---|
1101 | if ( lastExp != 0 ) |
---|
1102 | result *= power( f, lastExp ); |
---|
1103 | #endif |
---|
1104 | return result; |
---|
1105 | } |
---|
1106 | } |
---|
1107 | |
---|
1108 | CanonicalForm |
---|
1109 | CanonicalForm::operator () ( const CanonicalForm & f, const Variable & v ) const |
---|
1110 | { |
---|
1111 | if ( is_imm( value ) || value->inBaseDomain() ) |
---|
1112 | return *this; |
---|
1113 | |
---|
1114 | Variable x = value->variable(); |
---|
1115 | if ( v > x ) |
---|
1116 | return *this; |
---|
1117 | else if ( v == x ) |
---|
1118 | return (*this)( f ); |
---|
1119 | else { |
---|
1120 | // v is less than main variable of f |
---|
1121 | CanonicalForm result = 0; |
---|
1122 | for ( CFIterator i = *this; i.hasTerms(); i++ ) |
---|
1123 | result += i.coeff()( f, v ) * power( x, i.exp() ); |
---|
1124 | return result; |
---|
1125 | } |
---|
1126 | } |
---|
1127 | //}}} |
---|
1128 | |
---|
1129 | //{{{ CanonicalForm CanonicalForm::operator [] ( int i ) const |
---|
1130 | //{{{ docu |
---|
1131 | // |
---|
1132 | // operator []() - return i'th coefficient from CO. |
---|
1133 | // |
---|
1134 | // Returns CO if CO is in a base domain and i equals zero. |
---|
1135 | // Returns zero (from the current domain) if CO is in a base |
---|
1136 | // domain and i is larger than zero. Otherwise, returns the |
---|
1137 | // coefficient to x^i in CO (if x denotes the main variable of |
---|
1138 | // CO) or zero if CO does not contain x^i. Elements in an |
---|
1139 | // algebraic extension are considered polynomials. i should be |
---|
1140 | // larger or equal zero. |
---|
1141 | // |
---|
1142 | // Note: Never use a loop like |
---|
1143 | // |
---|
1144 | // for ( int i = degree( f ); i >= 0; i-- ) |
---|
1145 | // foo( i, f[ i ] ); |
---|
1146 | // |
---|
1147 | // which is much slower than |
---|
1148 | // |
---|
1149 | // for ( int i = degree( f ), CFIterator I = f; I.hasTerms(); I++ ) { |
---|
1150 | // // fill gap with zeroes |
---|
1151 | // for ( ; i > I.exp(); i-- ) |
---|
1152 | // foo( i, 0 ); |
---|
1153 | // // at this point, i == I.exp() |
---|
1154 | // foo( i, i.coeff() ); |
---|
1155 | // i--; |
---|
1156 | // } |
---|
1157 | // // work through trailing zeroes |
---|
1158 | // for ( ; i >= 0; i-- ) |
---|
1159 | // foo( i, 0 ); |
---|
1160 | // |
---|
1161 | //}}} |
---|
1162 | CanonicalForm |
---|
1163 | CanonicalForm::operator [] ( int i ) const |
---|
1164 | { |
---|
1165 | ASSERT( i >= 0, "index to operator [] less than zero" ); |
---|
1166 | if ( is_imm( value ) ) |
---|
1167 | if ( i == 0 ) |
---|
1168 | return *this; |
---|
1169 | else |
---|
1170 | return CanonicalForm( 0 ); |
---|
1171 | else |
---|
1172 | return value->coeff( i ); |
---|
1173 | } |
---|
1174 | //}}} |
---|
1175 | |
---|
1176 | //{{{ CanonicalForm CanonicalForm::deriv (), deriv ( x ) |
---|
1177 | //{{{ docu |
---|
1178 | // |
---|
1179 | // deriv() - return the formal derivation of CO. |
---|
1180 | // |
---|
1181 | // deriv() derives CO with respect to its main variable. Returns |
---|
1182 | // zero from the current domain if f is in a coefficient domain. |
---|
1183 | // |
---|
1184 | // deriv( x ) derives CO with respect to x. x should be a |
---|
1185 | // polynomial variable. Returns zero from the current domain if |
---|
1186 | // f is in a coefficient domain. |
---|
1187 | // |
---|
1188 | // See also: ::deriv() |
---|
1189 | // |
---|
1190 | //}}} |
---|
1191 | CanonicalForm |
---|
1192 | CanonicalForm::deriv () const |
---|
1193 | { |
---|
1194 | if ( is_imm( value ) || value->inCoeffDomain() ) |
---|
1195 | return CanonicalForm( 0 ); |
---|
1196 | else { |
---|
1197 | CanonicalForm result = 0; |
---|
1198 | Variable x = value->variable(); |
---|
1199 | for ( CFIterator i = *this; i.hasTerms(); i++ ) |
---|
1200 | if ( i.exp() > 0 ) |
---|
1201 | result += power( x, i.exp()-1 ) * i.coeff() * i.exp(); |
---|
1202 | return result; |
---|
1203 | } |
---|
1204 | } |
---|
1205 | |
---|
1206 | CanonicalForm |
---|
1207 | CanonicalForm::deriv ( const Variable & x ) const |
---|
1208 | { |
---|
1209 | ASSERT( x.level() > 0, "cannot derive with respect to algebraic variables" ); |
---|
1210 | if ( is_imm( value ) || value->inCoeffDomain() ) |
---|
1211 | return CanonicalForm( 0 ); |
---|
1212 | |
---|
1213 | Variable y = value->variable(); |
---|
1214 | if ( x > y ) |
---|
1215 | return CanonicalForm( 0 ); |
---|
1216 | else if ( x == y ) |
---|
1217 | return deriv(); |
---|
1218 | else { |
---|
1219 | CanonicalForm result = 0; |
---|
1220 | for ( CFIterator i = *this; i.hasTerms(); i++ ) |
---|
1221 | result += i.coeff().deriv( x ) * power( y, i.exp() ); |
---|
1222 | return result; |
---|
1223 | } |
---|
1224 | } |
---|
1225 | //}}} |
---|
1226 | |
---|
1227 | //{{{ int CanonicalForm::sign () const |
---|
1228 | //{{{ docu |
---|
1229 | // |
---|
1230 | // sign() - return sign of CO. |
---|
1231 | // |
---|
1232 | // If CO is an integer or a rational number, the sign is defined |
---|
1233 | // as usual. If CO is an element of a prime power domain or of |
---|
1234 | // FF(p) and SW_SYMMETRIC_FF is on, the sign of CO is the sign of |
---|
1235 | // the symmetric representation of CO. If CO is in GF(q) or in |
---|
1236 | // FF(p) and SW_SYMMETRIC_FF is off, the sign of CO is zero iff |
---|
1237 | // CO is zero, otherwise the sign is one. |
---|
1238 | // |
---|
1239 | // If CO is a polynomial or in an extension of one of the base |
---|
1240 | // domains, the sign of CO is the sign of its leading |
---|
1241 | // coefficient. |
---|
1242 | // |
---|
1243 | // See also: InternalCF::sign(), InternalInteger::sign(), |
---|
1244 | // InternalPrimePower::sign(), InternalRational::sign(), |
---|
1245 | // InternalPoly::sign(), imm_sign(), gf_sign() |
---|
1246 | // |
---|
1247 | //}}} |
---|
1248 | int |
---|
1249 | CanonicalForm::sign () const |
---|
1250 | { |
---|
1251 | if ( is_imm( value ) ) |
---|
1252 | return imm_sign( value ); |
---|
1253 | else |
---|
1254 | return value->sign(); |
---|
1255 | } |
---|
1256 | //}}} |
---|
1257 | |
---|
1258 | //{{{ CanonicalForm CanonicalForm::sqrt () const |
---|
1259 | //{{{ docu |
---|
1260 | // |
---|
1261 | // sqrt() - calculate integer square root. |
---|
1262 | // |
---|
1263 | // CO has to be an integer greater or equal zero. Returns the |
---|
1264 | // largest integer less or equal sqrt(CO). |
---|
1265 | // |
---|
1266 | // In the immediate case, we use the newton method to find the |
---|
1267 | // root. The algorithm is from H. Cohen - 'A Course in |
---|
1268 | // Computational Algebraic Number Theory', ch. 1.7.1. |
---|
1269 | // |
---|
1270 | // See also: InternalCF::sqrt(), InternalInteger::sqrt(), ::sqrt() |
---|
1271 | // |
---|
1272 | //}}} |
---|
1273 | CanonicalForm |
---|
1274 | CanonicalForm::sqrt () const |
---|
1275 | { |
---|
1276 | if ( is_imm( value ) ) { |
---|
1277 | ASSERT( is_imm( value ) == INTMARK, "sqrt() not implemented" ); |
---|
1278 | long n = imm2int( value ); |
---|
1279 | ASSERT( n >= 0, "arg to sqrt() less than zero" ); |
---|
1280 | if ( n == 0 || n == 1 ) |
---|
1281 | return CanonicalForm( n ); |
---|
1282 | else { |
---|
1283 | long x, y = n; |
---|
1284 | do { |
---|
1285 | x = y; |
---|
1286 | // the intermediate result may not fit into an |
---|
1287 | // integer, but the result does |
---|
1288 | y = (unsigned long)(x + n/x)/2; |
---|
1289 | } while ( y < x ); |
---|
1290 | return CanonicalForm( x ); |
---|
1291 | } |
---|
1292 | } |
---|
1293 | else |
---|
1294 | return CanonicalForm( value->sqrt() ); |
---|
1295 | } |
---|
1296 | //}}} |
---|
1297 | |
---|
1298 | //{{{ int CanonicalForm::ilog2 () const |
---|
1299 | //{{{ docu |
---|
1300 | // |
---|
1301 | // ilog2() - integer logarithm to base 2. |
---|
1302 | // |
---|
1303 | // Returns the largest integer less or equal logarithm of CO to |
---|
1304 | // base 2. CO should be a positive integer. |
---|
1305 | // |
---|
1306 | // See also: InternalCF::ilog2(), InternalInteger::ilog2(), ::ilog2() |
---|
1307 | // |
---|
1308 | //}}} |
---|
1309 | int |
---|
1310 | CanonicalForm::ilog2 () const |
---|
1311 | { |
---|
1312 | if ( is_imm( value ) ) |
---|
1313 | { |
---|
1314 | ASSERT( is_imm( value ) == INTMARK, "ilog2() not implemented" ); |
---|
1315 | long a = imm2int( value ); |
---|
1316 | ASSERT( a > 0, "arg to ilog2() less or equal zero" ); |
---|
1317 | int n = -1; |
---|
1318 | while ( a > 0 ) |
---|
1319 | { |
---|
1320 | n++; |
---|
1321 | a /=2; |
---|
1322 | } |
---|
1323 | return n; |
---|
1324 | } |
---|
1325 | else |
---|
1326 | return value->ilog2(); |
---|
1327 | } |
---|
1328 | //}}} |
---|
1329 | |
---|
1330 | //{{{ bool operator ==, operator != ( const CanonicalForm & lhs, const CanonicalForm & rhs ) |
---|
1331 | //{{{ docu |
---|
1332 | // |
---|
1333 | // operator ==(), operator !=() - compare canonical forms on |
---|
1334 | // (in)equality. |
---|
1335 | // |
---|
1336 | // operator ==() returns true iff lhs equals rhs. |
---|
1337 | // operator !=() returns true iff lhs does not equal rhs. |
---|
1338 | // |
---|
1339 | // This is the point in factory where we essentially use that |
---|
1340 | // CanonicalForms in fact are canonical. There must not be two |
---|
1341 | // different representations of the same mathematical object, |
---|
1342 | // otherwise, such (in)equality will not be recognized by these |
---|
1343 | // operators. In other word, we rely on the fact that structural |
---|
1344 | // different factory objects in any case represent different |
---|
1345 | // mathematical objects. |
---|
1346 | // |
---|
1347 | // So we use the following procedure to test on equality (and |
---|
1348 | // analogously on inequality). First, we check whether lhs.value |
---|
1349 | // equals rhs.value. If so we are ready and return true. |
---|
1350 | // Second, if one of the operands is immediate, but the other one |
---|
1351 | // not, we return false. Third, if the operand's levels differ |
---|
1352 | // we return false. Fourth, if the operand's levelcoeffs differ |
---|
1353 | // we return false. At last, we call the corresponding internal |
---|
1354 | // method to compare both operands. |
---|
1355 | // |
---|
1356 | // Both operands should have coefficients from the same base domain. |
---|
1357 | // |
---|
1358 | // Note: To compare with the zero or the unit of the current domain, |
---|
1359 | // you better use the methods `CanonicalForm::isZero()' or |
---|
1360 | // `CanonicalForm::isOne()', resp., than something like `f == 0', |
---|
1361 | // since the latter is quite a lot slower. |
---|
1362 | // |
---|
1363 | // See also: InternalCF::comparesame(), |
---|
1364 | // InternalInteger::comparesame(), InternalRational::comparesame(), |
---|
1365 | // InternalPrimePower::comparesame(), InternalPoly::comparesame() |
---|
1366 | // |
---|
1367 | //}}} |
---|
1368 | bool |
---|
1369 | operator == ( const CanonicalForm & lhs, const CanonicalForm & rhs ) |
---|
1370 | { |
---|
1371 | if ( lhs.value == rhs.value ) |
---|
1372 | return true; |
---|
1373 | else if ( is_imm( rhs.value ) || is_imm( lhs.value ) ) { |
---|
1374 | ASSERT( ! is_imm( rhs.value ) || |
---|
1375 | ! is_imm( lhs.value ) || |
---|
1376 | is_imm( rhs.value ) == is_imm( lhs.value ), |
---|
1377 | "incompatible operands" ); |
---|
1378 | return false; |
---|
1379 | } |
---|
1380 | else if ( lhs.value->level() != rhs.value->level() ) |
---|
1381 | return false; |
---|
1382 | else if ( lhs.value->levelcoeff() != rhs.value->levelcoeff() ) |
---|
1383 | return false; |
---|
1384 | else |
---|
1385 | return rhs.value->comparesame( lhs.value ) == 0; |
---|
1386 | } |
---|
1387 | |
---|
1388 | bool |
---|
1389 | operator != ( const CanonicalForm & lhs, const CanonicalForm & rhs ) |
---|
1390 | { |
---|
1391 | if ( lhs.value == rhs.value ) |
---|
1392 | return false; |
---|
1393 | else if ( is_imm( rhs.value ) || is_imm( lhs.value ) ) { |
---|
1394 | ASSERT( ! is_imm( rhs.value ) || |
---|
1395 | ! is_imm( lhs.value ) || |
---|
1396 | is_imm( rhs.value ) == is_imm( lhs.value ), |
---|
1397 | "incompatible operands" ); |
---|
1398 | return true; |
---|
1399 | } |
---|
1400 | else if ( lhs.value->level() != rhs.value->level() ) |
---|
1401 | return true; |
---|
1402 | else if ( lhs.value->levelcoeff() != rhs.value->levelcoeff() ) |
---|
1403 | return true; |
---|
1404 | else return rhs.value->comparesame( lhs.value ) != 0; |
---|
1405 | } |
---|
1406 | //}}} |
---|
1407 | |
---|
1408 | //{{{ bool operator >, operator < ( const CanonicalForm & lhs, const CanonicalForm & rhs ) |
---|
1409 | //{{{ docu |
---|
1410 | // |
---|
1411 | // operator >(), operator <() - compare canonical forms. on size or |
---|
1412 | // level. |
---|
1413 | // |
---|
1414 | // The most common and most useful application of these operators |
---|
1415 | // is to compare two integers or rationals, of course. However, |
---|
1416 | // these operators are defined on all other base domains and on |
---|
1417 | // polynomials, too. From a mathematical point of view this may |
---|
1418 | // seem meaningless, since there is no ordering on finite fields |
---|
1419 | // or on polynomials respecting the algebraic structure. |
---|
1420 | // Nevertheless, from a programmer's point of view it may be |
---|
1421 | // sensible to order these objects, e.g. to sort them. |
---|
1422 | // |
---|
1423 | // Therefore, the ordering defined by these operators in any case |
---|
1424 | // is a total ordering which fulfills the law of trichotomy. |
---|
1425 | // |
---|
1426 | // It is clear how this is done in the case of the integers and |
---|
1427 | // the rationals. For finite fields, all you can say is that |
---|
1428 | // zero is the minimal element w.r.t. the ordering, the other |
---|
1429 | // elements are ordered in an arbitrary (but total!) way. For |
---|
1430 | // polynomials, you have an ordering derived from the |
---|
1431 | // lexicographical ordering of monomials. E.g. if lm(f) < lm(g) |
---|
1432 | // w.r.t. lexicographic ordering, then f < g. For more details, |
---|
1433 | // refer to the documentation of `InternalPoly::operator <()'. |
---|
1434 | // |
---|
1435 | // Both operands should have coefficients from the same base domain. |
---|
1436 | // |
---|
1437 | // The scheme how both operators are implemented is allmost the |
---|
1438 | // same as for the assignment operators (check for immediates, |
---|
1439 | // then check levels, then check levelcoeffs, then call the |
---|
1440 | // appropriate internal comparesame()/comparecoeff() method). |
---|
1441 | // For more information, confer to the overview for the |
---|
1442 | // arithmetic operators. |
---|
1443 | // |
---|
1444 | // See also: InternalCF::comparesame(), |
---|
1445 | // InternalInteger::comparesame(), InternalRational::comparesame(), |
---|
1446 | // InternalPrimePower::comparesame(), InternalPoly::comparesame(), |
---|
1447 | // InternalCF::comparecoeff(), InternalInteger::comparecoeff(), |
---|
1448 | // InternalRational::comparecoeff(), |
---|
1449 | // InternalPrimePower::comparecoeff(), InternalPoly::comparecoeff(), |
---|
1450 | // imm_cmp(), imm_cmp_p(), imm_cmp_gf() |
---|
1451 | // |
---|
1452 | //}}} |
---|
1453 | bool |
---|
1454 | operator > ( const CanonicalForm & lhs, const CanonicalForm & rhs ) |
---|
1455 | { |
---|
1456 | int what = is_imm( rhs.value ); |
---|
1457 | if ( is_imm( lhs.value ) ) { |
---|
1458 | ASSERT( ! what || (what == is_imm( lhs.value )), "incompatible operands" ); |
---|
1459 | if ( what == 0 ) |
---|
1460 | return rhs.value->comparecoeff( lhs.value ) < 0; |
---|
1461 | else if ( what == INTMARK ) |
---|
1462 | return imm_cmp( lhs.value, rhs.value ) > 0; |
---|
1463 | else if ( what == FFMARK ) |
---|
1464 | return imm_cmp_p( lhs.value, rhs.value ) > 0; |
---|
1465 | else |
---|
1466 | return imm_cmp_gf( lhs.value, rhs.value ) > 0; |
---|
1467 | } |
---|
1468 | else if ( what ) |
---|
1469 | return lhs.value->comparecoeff( rhs.value ) > 0; |
---|
1470 | else if ( lhs.value->level() == rhs.value->level() ) |
---|
1471 | if ( lhs.value->levelcoeff() == rhs.value->levelcoeff() ) |
---|
1472 | return lhs.value->comparesame( rhs.value ) > 0; |
---|
1473 | else if ( lhs.value->levelcoeff() > rhs.value->levelcoeff() ) |
---|
1474 | return lhs.value->comparecoeff( rhs.value ) > 0; |
---|
1475 | else |
---|
1476 | return rhs.value->comparecoeff( lhs.value ) < 0; |
---|
1477 | else |
---|
1478 | return lhs.value->level() > rhs.value->level(); |
---|
1479 | } |
---|
1480 | |
---|
1481 | bool |
---|
1482 | operator < ( const CanonicalForm & lhs, const CanonicalForm & rhs ) |
---|
1483 | { |
---|
1484 | int what = is_imm( rhs.value ); |
---|
1485 | if ( is_imm( lhs.value ) ) { |
---|
1486 | ASSERT( ! what || (what == is_imm( lhs.value )), "incompatible operands" ); |
---|
1487 | if ( what == 0 ) |
---|
1488 | return rhs.value->comparecoeff( lhs.value ) > 0; |
---|
1489 | else if ( what == INTMARK ) |
---|
1490 | return imm_cmp( lhs.value, rhs.value ) < 0; |
---|
1491 | else if ( what == FFMARK ) |
---|
1492 | return imm_cmp_p( lhs.value, rhs.value ) < 0; |
---|
1493 | else |
---|
1494 | return imm_cmp_gf( lhs.value, rhs.value ) < 0; |
---|
1495 | } |
---|
1496 | else if ( what ) |
---|
1497 | return lhs.value->comparecoeff( rhs.value ) < 0; |
---|
1498 | else if ( lhs.value->level() == rhs.value->level() ) |
---|
1499 | if ( lhs.value->levelcoeff() == rhs.value->levelcoeff() ) |
---|
1500 | return lhs.value->comparesame( rhs.value ) < 0; |
---|
1501 | else if ( lhs.value->levelcoeff() > rhs.value->levelcoeff() ) |
---|
1502 | return lhs.value->comparecoeff( rhs.value ) < 0; |
---|
1503 | else |
---|
1504 | return rhs.value->comparecoeff( lhs.value ) > 0; |
---|
1505 | else |
---|
1506 | return lhs.value->level() < rhs.value->level(); |
---|
1507 | } |
---|
1508 | //}}} |
---|
1509 | |
---|
1510 | //{{{ CanonicalForm bgcd ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
1511 | //{{{ docu |
---|
1512 | // |
---|
1513 | // bgcd() - return base coefficient gcd. |
---|
1514 | // |
---|
1515 | // If both f and g are integers and `SW_RATIONAL' is off the |
---|
1516 | // positive greatest common divisor of f and g is returned. |
---|
1517 | // Otherwise, if `SW_RATIONAL' is on or one of f and g is not an |
---|
1518 | // integer, the greatest common divisor is trivial: either zero |
---|
1519 | // if f and g equal zero or one (both from the current domain). |
---|
1520 | // |
---|
1521 | // f and g should come from one base domain which should be not |
---|
1522 | // the prime power domain. |
---|
1523 | // |
---|
1524 | // Implementation: |
---|
1525 | // |
---|
1526 | // CanonicalForm::bgcd() handles the immediate case with a |
---|
1527 | // standard euclidean algorithm. For the non-immediate cases |
---|
1528 | // `InternalCF::bgcdsame()' or `InternalCF::bgcdcoeff()', resp. are |
---|
1529 | // called following the usual level/levelcoeff approach. |
---|
1530 | // |
---|
1531 | // InternalCF::bgcdsame() and |
---|
1532 | // InternalCF::bgcdcoeff() throw an assertion ("not implemented") |
---|
1533 | // |
---|
1534 | // InternalInteger::bgcdsame() is a wrapper around `mpz_gcd()' |
---|
1535 | // which takes some care about immediate results and the sign |
---|
1536 | // of the result |
---|
1537 | // InternalInteger::bgcdcoeff() is a wrapper around |
---|
1538 | // `mpz_gcd_ui()' which takes some care about the sign |
---|
1539 | // of the result |
---|
1540 | // |
---|
1541 | // InternalRational::bgcdsame() and |
---|
1542 | // InternalRational::bgcdcoeff() always return one |
---|
1543 | // |
---|
1544 | //}}} |
---|
1545 | CanonicalForm |
---|
1546 | bgcd ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
1547 | { |
---|
1548 | // check immediate cases |
---|
1549 | int what = is_imm( g.value ); |
---|
1550 | if ( is_imm( f.value ) ) |
---|
1551 | { |
---|
1552 | ASSERT( ! what || (what == is_imm( f.value )), "incompatible operands" ); |
---|
1553 | if ( what == 0 ) |
---|
1554 | return g.value->bgcdcoeff( f.value ); |
---|
1555 | else if ( what == INTMARK && ! cf_glob_switches.isOn( SW_RATIONAL ) ) |
---|
1556 | { |
---|
1557 | // calculate gcd using standard integer |
---|
1558 | // arithmetic |
---|
1559 | long fInt = imm2int( f.value ); |
---|
1560 | long gInt = imm2int( g.value ); |
---|
1561 | |
---|
1562 | if ( fInt < 0 ) fInt = -fInt; |
---|
1563 | if ( gInt < 0 ) gInt = -gInt; |
---|
1564 | // swap fInt and gInt |
---|
1565 | if ( gInt > fInt ) |
---|
1566 | { |
---|
1567 | long swap = gInt; |
---|
1568 | gInt = fInt; |
---|
1569 | fInt = swap; |
---|
1570 | } |
---|
1571 | |
---|
1572 | // now, 0 <= gInt <= fInt. Start the loop. |
---|
1573 | while ( gInt ) |
---|
1574 | { |
---|
1575 | // calculate (fInt, gInt) = (gInt, fInt%gInt) |
---|
1576 | long r = fInt % gInt; |
---|
1577 | fInt = gInt; |
---|
1578 | gInt = r; |
---|
1579 | } |
---|
1580 | |
---|
1581 | return CanonicalForm( fInt ); |
---|
1582 | } |
---|
1583 | else |
---|
1584 | // we do not go for maximal speed for these stupid |
---|
1585 | // special cases |
---|
1586 | return CanonicalForm( f.isZero() && g.isZero() ? 0 : 1 ); |
---|
1587 | } |
---|
1588 | else if ( what ) |
---|
1589 | return f.value->bgcdcoeff( g.value ); |
---|
1590 | |
---|
1591 | int fLevel = f.value->level(); |
---|
1592 | int gLevel = g.value->level(); |
---|
1593 | |
---|
1594 | // check levels |
---|
1595 | if ( fLevel == gLevel ) |
---|
1596 | { |
---|
1597 | fLevel = f.value->levelcoeff(); |
---|
1598 | gLevel = g.value->levelcoeff(); |
---|
1599 | |
---|
1600 | // check levelcoeffs |
---|
1601 | if ( fLevel == gLevel ) |
---|
1602 | return f.value->bgcdsame( g.value ); |
---|
1603 | else if ( fLevel < gLevel ) |
---|
1604 | return g.value->bgcdcoeff( f.value ); |
---|
1605 | else |
---|
1606 | return f.value->bgcdcoeff( g.value ); |
---|
1607 | } |
---|
1608 | else if ( fLevel < gLevel ) |
---|
1609 | return g.value->bgcdcoeff( f.value ); |
---|
1610 | else |
---|
1611 | return f.value->bgcdcoeff( g.value ); |
---|
1612 | } |
---|
1613 | //}}} |
---|
1614 | |
---|
1615 | //{{{ CanonicalForm bextgcd ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & a, CanonicalForm & b ) |
---|
1616 | //{{{ docu |
---|
1617 | // |
---|
1618 | // bextgcd() - return base coefficient extended gcd. |
---|
1619 | // |
---|
1620 | //}}} |
---|
1621 | CanonicalForm |
---|
1622 | bextgcd ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & a, CanonicalForm & b ) |
---|
1623 | { |
---|
1624 | // check immediate cases |
---|
1625 | int what = is_imm( g.value ); |
---|
1626 | if ( is_imm( f.value ) ) { |
---|
1627 | ASSERT( ! what || (what == is_imm( f.value )), "incompatible operands" ); |
---|
1628 | if ( what == 0 ) |
---|
1629 | return g.value->bextgcdcoeff( f.value, b, a ); |
---|
1630 | else if ( what == INTMARK && ! cf_glob_switches.isOn( SW_RATIONAL ) ) { |
---|
1631 | // calculate extended gcd using standard integer |
---|
1632 | // arithmetic |
---|
1633 | long fInt = imm2int( f.value ); |
---|
1634 | long gInt = imm2int( g.value ); |
---|
1635 | |
---|
1636 | // to avoid any system dpendencies with `%', we work |
---|
1637 | // with positive numbers only. To a pity, we have to |
---|
1638 | // redo all the checks when assigning to a and b. |
---|
1639 | if ( fInt < 0 ) fInt = -fInt; |
---|
1640 | if ( gInt < 0 ) gInt = -gInt; |
---|
1641 | // swap fInt and gInt |
---|
1642 | if ( gInt > fInt ) { |
---|
1643 | long swap = gInt; |
---|
1644 | gInt = fInt; |
---|
1645 | fInt = swap; |
---|
1646 | } |
---|
1647 | |
---|
1648 | long u = 1; long v = 0; |
---|
1649 | long uNext = 0; long vNext = 1; |
---|
1650 | |
---|
1651 | // at any step, we have: |
---|
1652 | // fInt_0 * u + gInt_0 * v = fInt |
---|
1653 | // fInt_0 * uNext + gInt_0 * vNext = gInt |
---|
1654 | // where fInt_0 and gInt_0 denote the values of fint |
---|
1655 | // and gInt, resp., at the beginning |
---|
1656 | while ( gInt ) { |
---|
1657 | long r = fInt % gInt; |
---|
1658 | long q = fInt / gInt; |
---|
1659 | long uSwap = u - q * uNext; |
---|
1660 | long vSwap = v - q * vNext; |
---|
1661 | |
---|
1662 | // update variables |
---|
1663 | fInt = gInt; |
---|
1664 | gInt = r; |
---|
1665 | u = uNext; v = vNext; |
---|
1666 | uNext = uSwap; vNext = vSwap; |
---|
1667 | } |
---|
1668 | |
---|
1669 | // now, assign to a and b |
---|
1670 | long fTest = imm2int( f.value ); |
---|
1671 | long gTest = imm2int( g.value ); |
---|
1672 | if ( gTest > fTest ) { |
---|
1673 | a = v; b = u; |
---|
1674 | } else { |
---|
1675 | a = u; b = v; |
---|
1676 | } |
---|
1677 | if ( fTest < 0 ) a = -a; |
---|
1678 | if ( gTest < 0 ) b = -b; |
---|
1679 | return CanonicalForm( fInt ); |
---|
1680 | } else |
---|
1681 | // stupid special cases |
---|
1682 | if ( ! f.isZero() ) { |
---|
1683 | a = 1/f; b = 0; return CanonicalForm( 1 ); |
---|
1684 | } else if ( ! g.isZero() ) { |
---|
1685 | a = 0; b = 1/g; return CanonicalForm( 1 ); |
---|
1686 | } else { |
---|
1687 | a = 0; b = 0; return CanonicalForm( 0 ); |
---|
1688 | } |
---|
1689 | } |
---|
1690 | else if ( what ) |
---|
1691 | return f.value->bextgcdcoeff( g.value, a, b ); |
---|
1692 | |
---|
1693 | int fLevel = f.value->level(); |
---|
1694 | int gLevel = g.value->level(); |
---|
1695 | |
---|
1696 | // check levels |
---|
1697 | if ( fLevel == gLevel ) { |
---|
1698 | fLevel = f.value->levelcoeff(); |
---|
1699 | gLevel = g.value->levelcoeff(); |
---|
1700 | |
---|
1701 | // check levelcoeffs |
---|
1702 | if ( fLevel == gLevel ) |
---|
1703 | return f.value->bextgcdsame( g.value, a, b ); |
---|
1704 | else if ( fLevel < gLevel ) |
---|
1705 | return g.value->bextgcdcoeff( f.value, b, a ); |
---|
1706 | else |
---|
1707 | return f.value->bextgcdcoeff( g.value, a, b ); |
---|
1708 | } |
---|
1709 | else if ( fLevel < gLevel ) |
---|
1710 | return g.value->bextgcdcoeff( f.value, b, a ); |
---|
1711 | else |
---|
1712 | return f.value->bextgcdcoeff( g.value, a, b ); |
---|
1713 | } |
---|
1714 | //}}} |
---|
1715 | |
---|
1716 | CanonicalForm |
---|
1717 | blcm ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
1718 | { |
---|
1719 | if ( f.isZero() || g.isZero() ) |
---|
1720 | return CanonicalForm( 0 ); |
---|
1721 | /* |
---|
1722 | else if (f.isOne()) |
---|
1723 | return g; |
---|
1724 | else if (g.isOne()) |
---|
1725 | return f; |
---|
1726 | */ |
---|
1727 | else |
---|
1728 | return (f / bgcd( f, g )) * g; |
---|
1729 | } |
---|
1730 | |
---|
1731 | //{{{ input/output |
---|
1732 | #ifndef NOSTREAMIO |
---|
1733 | void |
---|
1734 | CanonicalForm::print( OSTREAM & os, char * str ) const |
---|
1735 | { |
---|
1736 | if ( is_imm( value ) ) |
---|
1737 | imm_print( os, value, str ); |
---|
1738 | else |
---|
1739 | value->print( os, str ); |
---|
1740 | } |
---|
1741 | |
---|
1742 | void |
---|
1743 | CanonicalForm::print( OSTREAM & os ) const |
---|
1744 | { |
---|
1745 | if ( is_imm( value ) ) |
---|
1746 | imm_print( os, value, "" ); |
---|
1747 | else |
---|
1748 | value->print( os, "" ); |
---|
1749 | } |
---|
1750 | |
---|
1751 | OSTREAM& |
---|
1752 | operator << ( OSTREAM & os, const CanonicalForm & cf ) |
---|
1753 | { |
---|
1754 | cf.print( os, "" ); |
---|
1755 | return os; |
---|
1756 | } |
---|
1757 | |
---|
1758 | ISTREAM& |
---|
1759 | operator >> ( ISTREAM & is, CanonicalForm & cf ) |
---|
1760 | { |
---|
1761 | cf = readCF( is ); |
---|
1762 | return is; |
---|
1763 | } |
---|
1764 | #endif /* NOSTREAMIO */ |
---|
1765 | //}}} |
---|
1766 | |
---|
1767 | //{{{ genOne(), genZero() |
---|
1768 | CanonicalForm |
---|
1769 | CanonicalForm::genZero() const |
---|
1770 | { |
---|
1771 | int what = is_imm( value ); |
---|
1772 | if ( what == FFMARK ) |
---|
1773 | return CanonicalForm( CFFactory::basic( FiniteFieldDomain, 0L ) ); |
---|
1774 | else if ( what == GFMARK ) |
---|
1775 | return CanonicalForm( CFFactory::basic( GaloisFieldDomain, 0L ) ); |
---|
1776 | else if ( what ) |
---|
1777 | return CanonicalForm( CFFactory::basic( IntegerDomain, 0L ) ); |
---|
1778 | else |
---|
1779 | return CanonicalForm( value->genZero() ); |
---|
1780 | } |
---|
1781 | |
---|
1782 | CanonicalForm |
---|
1783 | CanonicalForm::genOne() const |
---|
1784 | { |
---|
1785 | int what = is_imm( value ); |
---|
1786 | if ( what == FFMARK ) |
---|
1787 | return CanonicalForm( CFFactory::basic( FiniteFieldDomain, 1L ) ); |
---|
1788 | else if ( what == GFMARK ) |
---|
1789 | return CanonicalForm( CFFactory::basic( GaloisFieldDomain, 1L ) ); |
---|
1790 | else if ( what ) |
---|
1791 | return CanonicalForm( CFFactory::basic( IntegerDomain, 1L ) ); |
---|
1792 | else |
---|
1793 | return CanonicalForm( value->genOne() ); |
---|
1794 | } |
---|
1795 | //}}} |
---|
1796 | |
---|
1797 | //{{{ exponentiation |
---|
1798 | CanonicalForm |
---|
1799 | power ( const CanonicalForm & f, int n ) |
---|
1800 | { |
---|
1801 | ASSERT( n >= 0, "illegal exponent" ); |
---|
1802 | if ( f.isZero() ) |
---|
1803 | return 0; |
---|
1804 | else if ( f.isOne() ) |
---|
1805 | return f; |
---|
1806 | else if ( f == -1 ) |
---|
1807 | { |
---|
1808 | if ( n % 2 == 0 ) |
---|
1809 | return 1; |
---|
1810 | else |
---|
1811 | return -1; |
---|
1812 | } |
---|
1813 | else if ( n == 0 ) |
---|
1814 | return 1; |
---|
1815 | |
---|
1816 | //else if (f.inGF()) |
---|
1817 | //{ |
---|
1818 | //} |
---|
1819 | else |
---|
1820 | { |
---|
1821 | CanonicalForm g,h; |
---|
1822 | h=f; |
---|
1823 | while(n%2==0) |
---|
1824 | { |
---|
1825 | h*=h; |
---|
1826 | n/=2; |
---|
1827 | } |
---|
1828 | g=h; |
---|
1829 | while(1) |
---|
1830 | { |
---|
1831 | n/=2; |
---|
1832 | if(n==0) |
---|
1833 | return g; |
---|
1834 | h*=h; |
---|
1835 | if(n%2!=0) g*=h; |
---|
1836 | } |
---|
1837 | } |
---|
1838 | } |
---|
1839 | |
---|
1840 | CanonicalForm |
---|
1841 | power ( const Variable & v, int n ) |
---|
1842 | { |
---|
1843 | //ASSERT( n >= 0, "illegal exponent" ); |
---|
1844 | if ( n == 0 ) |
---|
1845 | return 1; |
---|
1846 | else if ( n == 1 ) |
---|
1847 | return v; |
---|
1848 | else if (( v.level() < 0 ) && (hasMipo(v))) |
---|
1849 | { |
---|
1850 | CanonicalForm result( v, n-1 ); |
---|
1851 | return result * v; |
---|
1852 | } |
---|
1853 | else |
---|
1854 | return CanonicalForm( v, n ); |
---|
1855 | } |
---|
1856 | //}}} |
---|
1857 | |
---|
1858 | //{{{ switches |
---|
1859 | void |
---|
1860 | On( int sw ) |
---|
1861 | { |
---|
1862 | cf_glob_switches.On( sw ); |
---|
1863 | } |
---|
1864 | |
---|
1865 | void |
---|
1866 | Off( int sw ) |
---|
1867 | { |
---|
1868 | cf_glob_switches.Off( sw ); |
---|
1869 | } |
---|
1870 | |
---|
1871 | bool |
---|
1872 | isOn( int sw ) |
---|
1873 | { |
---|
1874 | return cf_glob_switches.isOn( sw ); |
---|
1875 | } |
---|
1876 | //}}} |
---|