1 | /*****************************************************************************\ |
---|
2 | * Computer Algebra System SINGULAR |
---|
3 | \*****************************************************************************/ |
---|
4 | /** @file cfEzgcd.cc |
---|
5 | * |
---|
6 | * This file implements the GCD of two multivariate polynomials over Q or F_q |
---|
7 | * using EZ-GCD as described in "Algorithms for Computer Algebra" by Geddes, |
---|
8 | * Czapor, Labahnn |
---|
9 | * |
---|
10 | * @author Martin Lee |
---|
11 | * |
---|
12 | **/ |
---|
13 | /*****************************************************************************/ |
---|
14 | |
---|
15 | |
---|
16 | #include "config.h" |
---|
17 | |
---|
18 | #include "timing.h" |
---|
19 | #include "cf_assert.h" |
---|
20 | #include "debug.h" |
---|
21 | |
---|
22 | #include "cf_defs.h" |
---|
23 | #include "canonicalform.h" |
---|
24 | #include "cfEzgcd.h" |
---|
25 | #include "cfModGcd.h" |
---|
26 | #include "cf_util.h" |
---|
27 | #include "cf_map_ext.h" |
---|
28 | #include "cf_algorithm.h" |
---|
29 | #include "cf_reval.h" |
---|
30 | #include "cf_random.h" |
---|
31 | #include "cf_primes.h" |
---|
32 | #include "templates/ftmpl_functions.h" |
---|
33 | #include "cf_map.h" |
---|
34 | #include "facHensel.h" |
---|
35 | |
---|
36 | #ifdef HAVE_NTL |
---|
37 | #include "NTLconvert.h" |
---|
38 | |
---|
39 | static const double log2exp= 1.442695041; |
---|
40 | |
---|
41 | TIMING_DEFINE_PRINT(ez_eval) |
---|
42 | TIMING_DEFINE_PRINT(ez_compress) |
---|
43 | TIMING_DEFINE_PRINT(ez_hensel_lift) |
---|
44 | TIMING_DEFINE_PRINT(ez_content) |
---|
45 | TIMING_DEFINE_PRINT(ez_termination) |
---|
46 | |
---|
47 | static |
---|
48 | int compress4EZGCD (const CanonicalForm& F, const CanonicalForm& G, CFMap & M, |
---|
49 | CFMap & N, int& both_non_zero) |
---|
50 | { |
---|
51 | int n= tmax (F.level(), G.level()); |
---|
52 | int * degsf= NEW_ARRAY(int,n + 1); |
---|
53 | int * degsg= NEW_ARRAY(int,n + 1); |
---|
54 | |
---|
55 | for (int i = 0; i <= n; i++) |
---|
56 | degsf[i]= degsg[i]= 0; |
---|
57 | |
---|
58 | degsf= degrees (F, degsf); |
---|
59 | degsg= degrees (G, degsg); |
---|
60 | |
---|
61 | both_non_zero= 0; |
---|
62 | int f_zero= 0; |
---|
63 | int g_zero= 0; |
---|
64 | |
---|
65 | for (int i= 1; i <= n; i++) |
---|
66 | { |
---|
67 | if (degsf[i] != 0 && degsg[i] != 0) |
---|
68 | { |
---|
69 | both_non_zero++; |
---|
70 | continue; |
---|
71 | } |
---|
72 | if (degsf[i] == 0 && degsg[i] != 0 && i <= G.level()) |
---|
73 | { |
---|
74 | f_zero++; |
---|
75 | continue; |
---|
76 | } |
---|
77 | if (degsg[i] == 0 && degsf[i] && i <= F.level()) |
---|
78 | { |
---|
79 | g_zero++; |
---|
80 | continue; |
---|
81 | } |
---|
82 | } |
---|
83 | |
---|
84 | if (both_non_zero == 0) |
---|
85 | { |
---|
86 | DELETE_ARRAY(degsf); |
---|
87 | DELETE_ARRAY(degsg); |
---|
88 | return 0; |
---|
89 | } |
---|
90 | |
---|
91 | // map Variables which do not occur in both polynomials to higher levels |
---|
92 | int k= 1; |
---|
93 | int l= 1; |
---|
94 | int Flevel=F.level(); |
---|
95 | int Glevel=G.level(); |
---|
96 | for (int i= 1; i <= n; i++) |
---|
97 | { |
---|
98 | if (degsf[i] != 0 && degsg[i] == 0 && i <= Flevel) |
---|
99 | { |
---|
100 | if (k + both_non_zero != i) |
---|
101 | { |
---|
102 | M.newpair (Variable (i), Variable (k + both_non_zero)); |
---|
103 | N.newpair (Variable (k + both_non_zero), Variable (i)); |
---|
104 | } |
---|
105 | k++; |
---|
106 | } |
---|
107 | if (degsf[i] == 0 && degsg[i] != 0 && i <= Glevel) |
---|
108 | { |
---|
109 | if (l + g_zero + both_non_zero != i) |
---|
110 | { |
---|
111 | M.newpair (Variable (i), Variable (l + g_zero + both_non_zero)); |
---|
112 | N.newpair (Variable (l + g_zero + both_non_zero), Variable (i)); |
---|
113 | } |
---|
114 | l++; |
---|
115 | } |
---|
116 | } |
---|
117 | |
---|
118 | // sort Variables x_{i} in decreasing order of |
---|
119 | // min(deg_{x_{i}}(f),deg_{x_{i}}(g)) |
---|
120 | //int m= tmin (F.level(), G.level()); |
---|
121 | int m= tmin (Flevel, Glevel); |
---|
122 | int max_min_deg; |
---|
123 | k= both_non_zero; |
---|
124 | l= 0; |
---|
125 | int i= 1; |
---|
126 | while (k > 0) |
---|
127 | { |
---|
128 | max_min_deg= tmin (degsf[i], degsg[i]); |
---|
129 | while (max_min_deg == 0) |
---|
130 | { |
---|
131 | i++; |
---|
132 | max_min_deg= tmin (degsf[i], degsg[i]); |
---|
133 | } |
---|
134 | for (int j= i + 1; j <= m; j++) |
---|
135 | { |
---|
136 | if ((tmin (degsf[j],degsg[j]) < max_min_deg) && |
---|
137 | (tmin (degsf[j], degsg[j]) != 0)) |
---|
138 | { |
---|
139 | max_min_deg= tmin (degsf[j], degsg[j]); |
---|
140 | l= j; |
---|
141 | } |
---|
142 | } |
---|
143 | |
---|
144 | if (l != 0) |
---|
145 | { |
---|
146 | if (l != k) |
---|
147 | { |
---|
148 | M.newpair (Variable (l), Variable(k)); |
---|
149 | N.newpair (Variable (k), Variable(l)); |
---|
150 | degsf[l]= 0; |
---|
151 | degsg[l]= 0; |
---|
152 | l= 0; |
---|
153 | } |
---|
154 | else |
---|
155 | { |
---|
156 | degsf[l]= 0; |
---|
157 | degsg[l]= 0; |
---|
158 | l= 0; |
---|
159 | } |
---|
160 | } |
---|
161 | else if (l == 0) |
---|
162 | { |
---|
163 | if (i != k) |
---|
164 | { |
---|
165 | M.newpair (Variable (i), Variable (k)); |
---|
166 | N.newpair (Variable (k), Variable (i)); |
---|
167 | degsf[i]= 0; |
---|
168 | degsg[i]= 0; |
---|
169 | } |
---|
170 | else |
---|
171 | { |
---|
172 | degsf[i]= 0; |
---|
173 | degsg[i]= 0; |
---|
174 | } |
---|
175 | i++; |
---|
176 | } |
---|
177 | k--; |
---|
178 | } |
---|
179 | |
---|
180 | DELETE_ARRAY(degsf); |
---|
181 | DELETE_ARRAY(degsg); |
---|
182 | |
---|
183 | return both_non_zero; |
---|
184 | } |
---|
185 | |
---|
186 | static inline |
---|
187 | CanonicalForm myShift2Zero (const CanonicalForm& F, CFList& Feval, |
---|
188 | const CFList& evaluation) |
---|
189 | { |
---|
190 | CanonicalForm A= F; |
---|
191 | int k= 2; |
---|
192 | for (CFListIterator i= evaluation; i.hasItem(); i++, k++) |
---|
193 | A= A (Variable (k) + i.getItem(), k); |
---|
194 | |
---|
195 | CanonicalForm buf= A; |
---|
196 | Feval= CFList(); |
---|
197 | Feval.append (buf); |
---|
198 | for (k= evaluation.length() + 1; k > 2; k--) |
---|
199 | { |
---|
200 | buf= mod (buf, Variable (k)); |
---|
201 | Feval.insert (buf); |
---|
202 | } |
---|
203 | return A; |
---|
204 | } |
---|
205 | |
---|
206 | static inline |
---|
207 | CanonicalForm myReverseShift (const CanonicalForm& F, const CFList& evaluation) |
---|
208 | { |
---|
209 | int l= evaluation.length() + 1; |
---|
210 | CanonicalForm result= F; |
---|
211 | CFListIterator j= evaluation; |
---|
212 | int Flevel=F.level(); |
---|
213 | for (int i= 2; i < l + 1; i++, j++) |
---|
214 | { |
---|
215 | if (Flevel < i) |
---|
216 | continue; |
---|
217 | result= result (Variable (i) - j.getItem(), i); |
---|
218 | } |
---|
219 | return result; |
---|
220 | } |
---|
221 | |
---|
222 | static inline |
---|
223 | Evaluation optimize4Lift (const CanonicalForm& F, CFMap & M, |
---|
224 | CFMap & N, const Evaluation& A) |
---|
225 | { |
---|
226 | int n= F.level(); |
---|
227 | int * degsf= NEW_ARRAY(int,n + 1); |
---|
228 | |
---|
229 | for (int i = n; i >= 0; i--) |
---|
230 | degsf[i]= 0; |
---|
231 | |
---|
232 | degsf= degrees (F, degsf); |
---|
233 | |
---|
234 | Evaluation result= Evaluation (A.min(), A.max()); |
---|
235 | ASSERT (A.min() == 2, "expected A.min() == 2"); |
---|
236 | int max_deg; |
---|
237 | int k= n; |
---|
238 | int l= 1; |
---|
239 | int i= 2; |
---|
240 | int pos= 2; |
---|
241 | while (k > 1) |
---|
242 | { |
---|
243 | max_deg= degsf [i]; // i is always 2 here, n>=2 |
---|
244 | while ((i<n) &&(max_deg == 0)) |
---|
245 | { |
---|
246 | i++; |
---|
247 | max_deg= degsf [i]; |
---|
248 | } |
---|
249 | l= i; |
---|
250 | for (int j= i + 1; j <= n; j++) |
---|
251 | { |
---|
252 | if (degsf[j] > max_deg) |
---|
253 | { |
---|
254 | max_deg= degsf[j]; |
---|
255 | l= j; |
---|
256 | } |
---|
257 | } |
---|
258 | |
---|
259 | if (l <= n) |
---|
260 | { |
---|
261 | if (l != pos) |
---|
262 | { |
---|
263 | result.setValue (pos, A [l]); |
---|
264 | M.newpair (Variable (l), Variable (pos)); |
---|
265 | N.newpair (Variable (pos), Variable (l)); |
---|
266 | degsf[l]= 0; |
---|
267 | l= 2; |
---|
268 | if (k == 2 && n == 3) |
---|
269 | { |
---|
270 | result.setValue (l, A [pos]); |
---|
271 | M.newpair (Variable (pos), Variable (l)); |
---|
272 | N.newpair (Variable (l), Variable (pos)); |
---|
273 | degsf[pos]= 0; |
---|
274 | } |
---|
275 | } |
---|
276 | else |
---|
277 | { |
---|
278 | result.setValue (l, A [l]); |
---|
279 | degsf [l]= 0; |
---|
280 | } |
---|
281 | } |
---|
282 | pos++; |
---|
283 | k--; |
---|
284 | l= 2; |
---|
285 | } |
---|
286 | |
---|
287 | DELETE_ARRAY(degsf); |
---|
288 | |
---|
289 | return result; |
---|
290 | } |
---|
291 | |
---|
292 | static inline |
---|
293 | int Hensel (const CanonicalForm & UU, CFArray & G, const Evaluation & AA, |
---|
294 | const CFArray& LeadCoeffs ) |
---|
295 | { |
---|
296 | CFList factors; |
---|
297 | factors.append (G[1]); |
---|
298 | factors.append (G[2]); |
---|
299 | |
---|
300 | CFMap NN, MM; |
---|
301 | Evaluation A= optimize4Lift (UU, MM, NN, AA); |
---|
302 | |
---|
303 | CanonicalForm U= MM (UU); |
---|
304 | CFArray LCs= CFArray (1,2); |
---|
305 | LCs [1]= MM (LeadCoeffs [1]); |
---|
306 | LCs [2]= MM (LeadCoeffs [2]); |
---|
307 | |
---|
308 | CFList evaluation; |
---|
309 | long termEstimate= size (U); |
---|
310 | for (int i= A.min(); i <= A.max(); i++) |
---|
311 | { |
---|
312 | if (!A[i].isZero() && |
---|
313 | ((getCharacteristic() > degree (U,i)) || getCharacteristic() == 0)) |
---|
314 | { |
---|
315 | termEstimate *= degree (U,i)*2; |
---|
316 | termEstimate /= 3; |
---|
317 | } |
---|
318 | evaluation.append (A [i]); |
---|
319 | } |
---|
320 | if (termEstimate/getNumVars(U) > 500) |
---|
321 | return -1; |
---|
322 | CFList UEval; |
---|
323 | CanonicalForm shiftedU= myShift2Zero (U, UEval, evaluation); |
---|
324 | |
---|
325 | if (size (shiftedU)/getNumVars (U) > 500) |
---|
326 | return -1; |
---|
327 | |
---|
328 | CFArray shiftedLCs= CFArray (2); |
---|
329 | CFList shiftedLCsEval1, shiftedLCsEval2; |
---|
330 | shiftedLCs[0]= myShift2Zero (LCs[1], shiftedLCsEval1, evaluation); |
---|
331 | shiftedLCs[1]= myShift2Zero (LCs[2], shiftedLCsEval2, evaluation); |
---|
332 | factors.insert (1); |
---|
333 | int liftBound= degree (UEval.getLast(), 2) + 1; |
---|
334 | CFArray Pi; |
---|
335 | CFMatrix M= CFMatrix (liftBound, factors.length() - 1); |
---|
336 | CFList diophant; |
---|
337 | CFArray lcs= CFArray (2); |
---|
338 | lcs [0]= shiftedLCsEval1.getFirst(); |
---|
339 | lcs [1]= shiftedLCsEval2.getFirst(); |
---|
340 | nonMonicHenselLift12 (UEval.getFirst(), factors, liftBound, Pi, diophant, M, |
---|
341 | lcs, false); |
---|
342 | |
---|
343 | for (CFListIterator i= factors; i.hasItem(); i++) |
---|
344 | { |
---|
345 | if (!fdivides (i.getItem(), UEval.getFirst())) |
---|
346 | return 0; |
---|
347 | } |
---|
348 | |
---|
349 | int * liftBounds; |
---|
350 | bool noOneToOne= false; |
---|
351 | if (U.level() > 2) |
---|
352 | { |
---|
353 | liftBounds= NEW_ARRAY(int,U.level() - 1); /* index: 0.. U.level()-2 */ |
---|
354 | liftBounds[0]= liftBound; |
---|
355 | for (int i= 1; i < U.level() - 1; i++) |
---|
356 | liftBounds[i]= degree (shiftedU, Variable (i + 2)) + 1; |
---|
357 | factors= nonMonicHenselLift2 (UEval, factors, liftBounds, U.level() - 1, |
---|
358 | false, shiftedLCsEval1, shiftedLCsEval2, Pi, |
---|
359 | diophant, noOneToOne); |
---|
360 | DELETE_ARRAY(liftBounds); |
---|
361 | if (noOneToOne) |
---|
362 | return 0; |
---|
363 | } |
---|
364 | G[1]= factors.getFirst(); |
---|
365 | G[2]= factors.getLast(); |
---|
366 | G[1]= myReverseShift (G[1], evaluation); |
---|
367 | G[2]= myReverseShift (G[2], evaluation); |
---|
368 | G[1]= NN (G[1]); |
---|
369 | G[2]= NN (G[2]); |
---|
370 | return 1; |
---|
371 | } |
---|
372 | |
---|
373 | static |
---|
374 | bool findeval (const CanonicalForm & F, const CanonicalForm & G, |
---|
375 | CanonicalForm & Fb, CanonicalForm & Gb, CanonicalForm & Db, |
---|
376 | REvaluation & b, int delta, int degF, int degG, int maxeval, |
---|
377 | int & count, int& k, int bound, int& l) |
---|
378 | { |
---|
379 | if( count == 0 && delta != 0) |
---|
380 | { |
---|
381 | if( count++ > maxeval ) |
---|
382 | return false; |
---|
383 | } |
---|
384 | if (count > 0) |
---|
385 | { |
---|
386 | b.nextpoint(k); |
---|
387 | if (k == 0) |
---|
388 | k++; |
---|
389 | l++; |
---|
390 | if (l > bound) |
---|
391 | { |
---|
392 | l= 1; |
---|
393 | k++; |
---|
394 | if (k > tmax (F.level(), G.level()) - 1) |
---|
395 | return false; |
---|
396 | b.nextpoint (k); |
---|
397 | } |
---|
398 | if (count++ > maxeval) |
---|
399 | return false; |
---|
400 | } |
---|
401 | while( true ) |
---|
402 | { |
---|
403 | Fb = b( F ); |
---|
404 | if( degree( Fb, 1 ) == degF ) |
---|
405 | { |
---|
406 | Gb = b( G ); |
---|
407 | if( degree( Gb, 1 ) == degG ) |
---|
408 | { |
---|
409 | Db = gcd( Fb, Gb ); |
---|
410 | if( delta > 0 ) |
---|
411 | { |
---|
412 | if( degree( Db, 1 ) <= delta ) |
---|
413 | return true; |
---|
414 | } |
---|
415 | else |
---|
416 | { |
---|
417 | k++; |
---|
418 | return true; |
---|
419 | } |
---|
420 | } |
---|
421 | } |
---|
422 | if (k == 0) |
---|
423 | k++; |
---|
424 | b.nextpoint(k); |
---|
425 | l++; |
---|
426 | if (l > bound) |
---|
427 | { |
---|
428 | l= 1; |
---|
429 | k++; |
---|
430 | if (k > tmax (F.level(), G.level()) - 1) |
---|
431 | return false; |
---|
432 | b.nextpoint (k); |
---|
433 | } |
---|
434 | if( count++ > maxeval ) |
---|
435 | return false; |
---|
436 | } |
---|
437 | } |
---|
438 | static void gcd_mon_rec(CanonicalForm G, CanonicalForm &cf,int *exp,int pl) |
---|
439 | { // prevoius level: pl |
---|
440 | if (G.inCoeffDomain()) |
---|
441 | { |
---|
442 | for(int i=pl-1;i>0;i--) exp[i]=0; |
---|
443 | cf=gcd(cf,G); |
---|
444 | return; |
---|
445 | } |
---|
446 | int l=G.level(); |
---|
447 | for(int i=pl-1;i>l;i--) exp[i]=0; |
---|
448 | for(CFIterator i=G; i.hasTerms(); i++) |
---|
449 | { |
---|
450 | if (i.exp()<exp[l]) exp[l]=i.exp(); |
---|
451 | gcd_mon_rec(i.coeff(),cf,exp,l); |
---|
452 | } |
---|
453 | } |
---|
454 | |
---|
455 | static CanonicalForm gcd_mon(CanonicalForm F, CanonicalForm G) |
---|
456 | { |
---|
457 | // assume: size(F)==1 |
---|
458 | CanonicalForm cf=F; |
---|
459 | int ll=tmax(F.level(),G.level()); |
---|
460 | int *exp=NEW_ARRAY(int,ll+1); |
---|
461 | for(int i=ll;i>=0;i--) exp[i]=0; |
---|
462 | CanonicalForm c=F; |
---|
463 | while(!c.inCoeffDomain()) |
---|
464 | { |
---|
465 | exp[c.level()]=c.degree(); |
---|
466 | c=c.LC(); |
---|
467 | cf=c; |
---|
468 | } |
---|
469 | gcd_mon_rec(G,cf,exp,G.level()+1); |
---|
470 | CanonicalForm res=cf; |
---|
471 | for(int i=0;i<=ll;i++) |
---|
472 | { |
---|
473 | if (exp[i]>0) res*=power(Variable(i),exp[i]); |
---|
474 | } |
---|
475 | DELETE_ARRAY(exp); |
---|
476 | return res; |
---|
477 | } |
---|
478 | |
---|
479 | /// real implementation of EZGCD over Z |
---|
480 | static CanonicalForm |
---|
481 | ezgcd ( const CanonicalForm & FF, const CanonicalForm & GG, REvaluation & b, |
---|
482 | bool internal ) |
---|
483 | { |
---|
484 | bool isRat= isOn (SW_RATIONAL); |
---|
485 | |
---|
486 | int maxNumVars= tmax (getNumVars (FF), getNumVars (GG)); |
---|
487 | int sizeF= size (FF); |
---|
488 | int sizeG= size (GG); |
---|
489 | |
---|
490 | |
---|
491 | if (sizeF==1) |
---|
492 | { |
---|
493 | return gcd_mon( FF, GG ); |
---|
494 | } |
---|
495 | else if (sizeG==1) |
---|
496 | { |
---|
497 | return gcd_mon( GG, FF ); |
---|
498 | } |
---|
499 | if (!isRat) |
---|
500 | On (SW_RATIONAL); |
---|
501 | if (sizeF/maxNumVars > 500 && sizeG/maxNumVars > 500) |
---|
502 | { |
---|
503 | Off(SW_USE_EZGCD); |
---|
504 | CanonicalForm result=gcd( FF, GG ); |
---|
505 | On(SW_USE_EZGCD); |
---|
506 | if (!isRat) |
---|
507 | Off (SW_RATIONAL); |
---|
508 | result /= icontent (result); |
---|
509 | DEBDECLEVEL( cerr, "ezgcd" ); |
---|
510 | return result; |
---|
511 | } |
---|
512 | |
---|
513 | |
---|
514 | CanonicalForm F, G, f, g, d, Fb, Gb, Db, Fbt, Gbt, Dbt, B0, B, D0, lcF, lcG, |
---|
515 | lcD, cand, contcand, result; |
---|
516 | CFArray DD( 1, 2 ), lcDD( 1, 2 ); |
---|
517 | int degF, degG, delta, t, count, maxeval; |
---|
518 | REvaluation bt; |
---|
519 | int gcdfound = 0; |
---|
520 | Variable x = Variable(1); |
---|
521 | count= 0; |
---|
522 | maxeval= 200; |
---|
523 | int o, l; |
---|
524 | o= 0; |
---|
525 | l= 1; |
---|
526 | |
---|
527 | if (!isRat) |
---|
528 | On (SW_RATIONAL); |
---|
529 | F= FF*bCommonDen (FF); |
---|
530 | G= GG*bCommonDen (GG); |
---|
531 | if (!isRat) |
---|
532 | Off (SW_RATIONAL); |
---|
533 | |
---|
534 | TIMING_START (ez_compress) |
---|
535 | CFMap M,N; |
---|
536 | int smallestDegLev; |
---|
537 | int best_level= compress4EZGCD (F, G, M, N, smallestDegLev); |
---|
538 | |
---|
539 | if (best_level == 0) |
---|
540 | { |
---|
541 | DEBDECLEVEL( cerr, "ezgcd" ); |
---|
542 | return G.genOne(); |
---|
543 | } |
---|
544 | |
---|
545 | F= M (F); |
---|
546 | G= M (G); |
---|
547 | TIMING_END_AND_PRINT (ez_compress, "time for compression in EZ: ") |
---|
548 | |
---|
549 | DEBINCLEVEL( cerr, "ezgcd" ); |
---|
550 | DEBOUTLN( cerr, "FF = " << FF ); |
---|
551 | DEBOUTLN( cerr, "GG = " << GG ); |
---|
552 | TIMING_START (ez_content) |
---|
553 | f = content( F, x ); g = content( G, x ); d = gcd( f, g ); |
---|
554 | DEBOUTLN( cerr, "f = " << f ); |
---|
555 | DEBOUTLN( cerr, "g = " << g ); |
---|
556 | F /= f; G /= g; |
---|
557 | TIMING_END_AND_PRINT (ez_content, "time to extract content in EZ: ") |
---|
558 | if ( F.isUnivariate() ) |
---|
559 | { |
---|
560 | if ( G.isUnivariate() ) |
---|
561 | { |
---|
562 | DEBDECLEVEL( cerr, "ezgcd" ); |
---|
563 | if(F.mvar()==G.mvar()) |
---|
564 | d*=gcd(F,G); |
---|
565 | else |
---|
566 | return N (d); |
---|
567 | return N (d); |
---|
568 | } |
---|
569 | else |
---|
570 | { |
---|
571 | g= content (G,G.mvar()); |
---|
572 | return N(d*gcd(F,g)); |
---|
573 | } |
---|
574 | } |
---|
575 | if ( G.isUnivariate()) |
---|
576 | { |
---|
577 | f= content (F,F.mvar()); |
---|
578 | return N(d*gcd(G,f)); |
---|
579 | } |
---|
580 | |
---|
581 | maxNumVars= tmax (getNumVars (F), getNumVars (G)); |
---|
582 | sizeF= size (F); |
---|
583 | sizeG= size (G); |
---|
584 | |
---|
585 | if (!isRat) |
---|
586 | On (SW_RATIONAL); |
---|
587 | if (sizeF/maxNumVars > 500 && sizeG/maxNumVars > 500) |
---|
588 | { |
---|
589 | Off(SW_USE_EZGCD); |
---|
590 | result=gcd( F, G ); |
---|
591 | On(SW_USE_EZGCD); |
---|
592 | if (!isRat) |
---|
593 | Off (SW_RATIONAL); |
---|
594 | result /= icontent (result); |
---|
595 | DEBDECLEVEL( cerr, "ezgcd" ); |
---|
596 | return N (d*result); |
---|
597 | } |
---|
598 | |
---|
599 | int dummy= 0; |
---|
600 | if ( gcd_test_one( F, G, false, dummy ) ) |
---|
601 | { |
---|
602 | DEBDECLEVEL( cerr, "ezgcd" ); |
---|
603 | if (!isRat) |
---|
604 | Off (SW_RATIONAL); |
---|
605 | return N (d); |
---|
606 | } |
---|
607 | lcF = LC( F, x ); lcG = LC( G, x ); |
---|
608 | lcD = gcd( lcF, lcG ); |
---|
609 | delta = 0; |
---|
610 | degF = degree( F, x ); degG = degree( G, x ); |
---|
611 | t = tmax( F.level(), G.level() ); |
---|
612 | if ( ! internal ) |
---|
613 | b = REvaluation( 2, t, IntRandom( 25 ) ); |
---|
614 | while ( ! gcdfound ) |
---|
615 | { |
---|
616 | /// ---> A2 |
---|
617 | DEBOUTLN( cerr, "search for evaluation, delta = " << delta ); |
---|
618 | DEBOUTLN( cerr, "F = " << F ); |
---|
619 | DEBOUTLN( cerr, "G = " << G ); |
---|
620 | TIMING_START (ez_eval) |
---|
621 | if (!findeval( F, G, Fb, Gb, Db, b, delta, degF, degG, maxeval, count, |
---|
622 | o, 25, l)) |
---|
623 | { |
---|
624 | Off(SW_USE_EZGCD); |
---|
625 | result=gcd( F, G ); |
---|
626 | On(SW_USE_EZGCD); |
---|
627 | if (!isRat) |
---|
628 | Off (SW_RATIONAL); |
---|
629 | DEBDECLEVEL( cerr, "ezgcd" ); |
---|
630 | result /= icontent (result); |
---|
631 | return N (d*result); |
---|
632 | } |
---|
633 | TIMING_END_AND_PRINT (ez_eval, "time to find eval point in EZ1: ") |
---|
634 | DEBOUTLN( cerr, "found evaluation b = " << b ); |
---|
635 | DEBOUTLN( cerr, "F(b) = " << Fb ); |
---|
636 | DEBOUTLN( cerr, "G(b) = " << Gb ); |
---|
637 | DEBOUTLN( cerr, "D(b) = " << Db ); |
---|
638 | delta = degree( Db ); |
---|
639 | /// ---> A3 |
---|
640 | if (delta == degF) |
---|
641 | { |
---|
642 | if (degF <= degG && fdivides (F, G)) |
---|
643 | { |
---|
644 | DEBDECLEVEL( cerr, "ezgcd" ); |
---|
645 | if (!isRat) |
---|
646 | Off (SW_RATIONAL); |
---|
647 | return N (d*F); |
---|
648 | } |
---|
649 | else |
---|
650 | delta--; |
---|
651 | } |
---|
652 | else if (delta == degG) |
---|
653 | { |
---|
654 | if (degG <= degF && fdivides( G, F )) |
---|
655 | { |
---|
656 | DEBDECLEVEL( cerr, "ezgcd" ); |
---|
657 | if (!isRat) |
---|
658 | Off (SW_RATIONAL); |
---|
659 | return N (d*G); |
---|
660 | } |
---|
661 | else |
---|
662 | delta--; |
---|
663 | } |
---|
664 | if ( delta == 0 ) |
---|
665 | { |
---|
666 | DEBDECLEVEL( cerr, "ezgcd" ); |
---|
667 | if (!isRat) |
---|
668 | Off (SW_RATIONAL); |
---|
669 | return N (d); |
---|
670 | } |
---|
671 | /// ---> A4 |
---|
672 | //deltaold = delta; |
---|
673 | while ( 1 ) |
---|
674 | { |
---|
675 | bt = b; |
---|
676 | TIMING_START (ez_eval) |
---|
677 | if (!findeval( F, G, Fbt, Gbt, Dbt, bt, delta, degF, degG, maxeval, count, |
---|
678 | o, 25,l )) |
---|
679 | { |
---|
680 | Off(SW_USE_EZGCD); |
---|
681 | result=gcd( F, G ); |
---|
682 | On(SW_USE_EZGCD); |
---|
683 | if (!isRat) |
---|
684 | Off (SW_RATIONAL); |
---|
685 | DEBDECLEVEL( cerr, "ezgcd" ); |
---|
686 | result /= icontent (result); |
---|
687 | return N (d*result); |
---|
688 | } |
---|
689 | TIMING_END_AND_PRINT (ez_eval, "time to find eval point in EZ2: ") |
---|
690 | int dd=degree( Dbt ); |
---|
691 | if ( dd /*degree( Dbt )*/ == 0 ) |
---|
692 | { |
---|
693 | DEBDECLEVEL( cerr, "ezgcd" ); |
---|
694 | if (!isRat) |
---|
695 | Off (SW_RATIONAL); |
---|
696 | return N (d); |
---|
697 | } |
---|
698 | if ( dd /*degree( Dbt )*/ == delta ) |
---|
699 | break; |
---|
700 | else if ( dd /*degree( Dbt )*/ < delta ) |
---|
701 | { |
---|
702 | delta = dd /*degree( Dbt )*/; |
---|
703 | b = bt; |
---|
704 | Db = Dbt; Fb = Fbt; Gb = Gbt; |
---|
705 | } |
---|
706 | DEBOUTLN( cerr, "now after A4, delta = " << delta ); |
---|
707 | /// ---> A5 |
---|
708 | if (delta == degF) |
---|
709 | { |
---|
710 | if (degF <= degG && fdivides (F, G)) |
---|
711 | { |
---|
712 | DEBDECLEVEL( cerr, "ezgcd" ); |
---|
713 | if (!isRat) |
---|
714 | Off (SW_RATIONAL); |
---|
715 | return N (d*F); |
---|
716 | } |
---|
717 | else |
---|
718 | delta--; |
---|
719 | } |
---|
720 | else if (delta == degG) |
---|
721 | { |
---|
722 | if (degG <= degF && fdivides( G, F )) |
---|
723 | { |
---|
724 | DEBDECLEVEL( cerr, "ezgcd" ); |
---|
725 | if (!isRat) |
---|
726 | Off (SW_RATIONAL); |
---|
727 | return N (d*G); |
---|
728 | } |
---|
729 | else |
---|
730 | delta--; |
---|
731 | } |
---|
732 | if ( delta == 0 ) |
---|
733 | { |
---|
734 | DEBDECLEVEL( cerr, "ezgcd" ); |
---|
735 | if (!isRat) |
---|
736 | Off (SW_RATIONAL); |
---|
737 | return N (d); |
---|
738 | } |
---|
739 | } |
---|
740 | if ( delta != degF && delta != degG ) |
---|
741 | { |
---|
742 | /// ---> A6 |
---|
743 | bool B_is_F; |
---|
744 | CanonicalForm xxx1, xxx2; |
---|
745 | CanonicalForm buf; |
---|
746 | DD[1] = Fb / Db; |
---|
747 | buf= Gb/Db; |
---|
748 | xxx1 = gcd( DD[1], Db ); |
---|
749 | xxx2 = gcd( buf, Db ); |
---|
750 | if (((xxx1.inCoeffDomain() && xxx2.inCoeffDomain()) && |
---|
751 | (size (F) <= size (G))) |
---|
752 | || (xxx1.inCoeffDomain() && !xxx2.inCoeffDomain())) |
---|
753 | { |
---|
754 | B = F; |
---|
755 | DD[2] = Db; |
---|
756 | lcDD[1] = lcF; |
---|
757 | lcDD[2] = lcD; |
---|
758 | B_is_F = true; |
---|
759 | } |
---|
760 | else if (((xxx1.inCoeffDomain() && xxx2.inCoeffDomain()) && |
---|
761 | (size (G) < size (F))) |
---|
762 | || (!xxx1.inCoeffDomain() && xxx2.inCoeffDomain())) |
---|
763 | { |
---|
764 | DD[1] = buf; |
---|
765 | B = G; |
---|
766 | DD[2] = Db; |
---|
767 | lcDD[1] = lcG; |
---|
768 | lcDD[2] = lcD; |
---|
769 | B_is_F = false; |
---|
770 | } |
---|
771 | else |
---|
772 | { |
---|
773 | //special case |
---|
774 | Off(SW_USE_EZGCD); |
---|
775 | result=gcd( F, G ); |
---|
776 | On(SW_USE_EZGCD); |
---|
777 | if (!isRat) |
---|
778 | Off (SW_RATIONAL); |
---|
779 | DEBDECLEVEL( cerr, "ezgcd" ); |
---|
780 | result /= icontent (result); |
---|
781 | return N (d*result); |
---|
782 | } |
---|
783 | /// ---> A7 |
---|
784 | DD[2] = DD[2] * ( b( lcDD[2] ) / lc( DD[2] ) ); |
---|
785 | DD[1] = DD[1] * ( b( lcDD[1] ) / lc( DD[1] ) ); |
---|
786 | DEBOUTLN( cerr, "(hensel) B = " << B ); |
---|
787 | DEBOUTLN( cerr, "(hensel) lcB = " << LC( B, Variable(1) ) ); |
---|
788 | DEBOUTLN( cerr, "(hensel) b(B) = " << b(B) ); |
---|
789 | DEBOUTLN( cerr, "(hensel) DD = " << DD ); |
---|
790 | DEBOUTLN( cerr, "(hensel) lcDD = " << lcDD ); |
---|
791 | TIMING_START (ez_hensel_lift) |
---|
792 | gcdfound= Hensel (B*lcD, DD, b, lcDD); |
---|
793 | TIMING_END_AND_PRINT (ez_hensel_lift, "time to hensel lift in EZ: ") |
---|
794 | DEBOUTLN( cerr, "(hensel finished) DD = " << DD ); |
---|
795 | |
---|
796 | if (gcdfound == -1) |
---|
797 | { |
---|
798 | Off (SW_USE_EZGCD); |
---|
799 | result= gcd (F,G); |
---|
800 | On (SW_USE_EZGCD); |
---|
801 | if (!isRat) |
---|
802 | Off (SW_RATIONAL); |
---|
803 | DEBDECLEVEL( cerr, "ezgcd" ); |
---|
804 | result /= icontent (result); |
---|
805 | return N (d*result); |
---|
806 | } |
---|
807 | |
---|
808 | if (gcdfound) |
---|
809 | { |
---|
810 | TIMING_START (ez_termination) |
---|
811 | contcand= content (DD[2], Variable (1)); |
---|
812 | cand = DD[2] / contcand; |
---|
813 | if (B_is_F) |
---|
814 | gcdfound = fdivides( cand, G ) && cand*(DD[1]/(lcD/contcand)) == F; |
---|
815 | else |
---|
816 | gcdfound = fdivides( cand, F ) && cand*(DD[1]/(lcD/contcand)) == G; |
---|
817 | TIMING_END_AND_PRINT (ez_termination, |
---|
818 | "time for termination test in EZ: ") |
---|
819 | } |
---|
820 | /// ---> A8 (gcdfound) |
---|
821 | } |
---|
822 | delta--; |
---|
823 | } |
---|
824 | /// ---> A9 |
---|
825 | DEBDECLEVEL( cerr, "ezgcd" ); |
---|
826 | cand *= bCommonDen (cand); |
---|
827 | if (!isRat) |
---|
828 | Off (SW_RATIONAL); |
---|
829 | cand /= icontent (cand); |
---|
830 | return N (d*cand); |
---|
831 | } |
---|
832 | #endif |
---|
833 | |
---|
834 | /// Extended Zassenhaus GCD over Z. |
---|
835 | /// In case things become too dense we switch to a modular algorithm. |
---|
836 | CanonicalForm |
---|
837 | ezgcd ( const CanonicalForm & FF, const CanonicalForm & GG ) |
---|
838 | { |
---|
839 | #ifdef HAVE_NTL |
---|
840 | REvaluation b; |
---|
841 | return ezgcd( FF, GG, b, false ); |
---|
842 | #else |
---|
843 | Off (SW_USE_EZGCD); |
---|
844 | return gcd (FF, GG); |
---|
845 | On (SW_USE_EZGCD); |
---|
846 | #endif |
---|
847 | } |
---|
848 | |
---|
849 | #ifdef HAVE_NTL |
---|
850 | // parameters for heuristic |
---|
851 | static int maxNumEval= 200; |
---|
852 | static int sizePerVars1= 500; //try dense gcd if size/#variables is bigger |
---|
853 | |
---|
854 | /// Extended Zassenhaus GCD for finite fields. |
---|
855 | /// In case things become too dense we switch to a modular algorithm. |
---|
856 | CanonicalForm EZGCD_P( const CanonicalForm & FF, const CanonicalForm & GG ) |
---|
857 | { |
---|
858 | if (FF.isZero() && degree(GG) > 0) return GG/Lc(GG); |
---|
859 | else if (GG.isZero() && degree (FF) > 0) return FF/Lc(FF); |
---|
860 | else if (FF.isZero() && GG.isZero()) return FF.genOne(); |
---|
861 | if (FF.inBaseDomain() || GG.inBaseDomain()) return FF.genOne(); |
---|
862 | if (FF.isUnivariate() && fdivides(FF, GG)) return FF/Lc(FF); |
---|
863 | if (GG.isUnivariate() && fdivides(GG, FF)) return GG/Lc(GG); |
---|
864 | if (FF == GG) return FF/Lc(FF); |
---|
865 | |
---|
866 | int maxNumVars= tmax (getNumVars (FF), getNumVars (GG)); |
---|
867 | Variable a, oldA; |
---|
868 | int sizeF= size (FF); |
---|
869 | int sizeG= size (GG); |
---|
870 | |
---|
871 | if (sizeF==1) |
---|
872 | { |
---|
873 | return gcd_mon( FF, GG ); |
---|
874 | } |
---|
875 | else if (sizeG==1) |
---|
876 | { |
---|
877 | return gcd_mon( GG, FF ); |
---|
878 | } |
---|
879 | |
---|
880 | if (sizeF/maxNumVars > sizePerVars1 && sizeG/maxNumVars > sizePerVars1) |
---|
881 | { |
---|
882 | if (hasFirstAlgVar (FF, a) || hasFirstAlgVar (GG, a)) |
---|
883 | return modGCDFq (FF, GG, a); |
---|
884 | else if (CFFactory::gettype() == GaloisFieldDomain) |
---|
885 | return modGCDGF (FF, GG); |
---|
886 | else |
---|
887 | return modGCDFp (FF, GG); |
---|
888 | } |
---|
889 | |
---|
890 | CanonicalForm F, G, f, g, d, Fb, Gb, Db, Fbt, Gbt, Dbt, B0, B, D0, lcF, lcG, |
---|
891 | lcD; |
---|
892 | CFArray DD( 1, 2 ), lcDD( 1, 2 ); |
---|
893 | int degF, degG, delta, count; |
---|
894 | int maxeval; |
---|
895 | maxeval= tmin((getCharacteristic()/ |
---|
896 | (int)(ilog2(getCharacteristic())*log2exp))*2, maxNumEval); |
---|
897 | count= 0; // number of eval. used |
---|
898 | REvaluation b, bt; |
---|
899 | int gcdfound = 0; |
---|
900 | Variable x = Variable(1); |
---|
901 | |
---|
902 | F= FF; |
---|
903 | G= GG; |
---|
904 | |
---|
905 | CFMap M,N; |
---|
906 | int smallestDegLev; |
---|
907 | TIMING_DEFINE(ez_p_compress); |
---|
908 | TIMING_START (ez_p_compress); |
---|
909 | int best_level= compress4EZGCD (F, G, M, N, smallestDegLev); |
---|
910 | |
---|
911 | if (best_level == 0) return G.genOne(); |
---|
912 | |
---|
913 | F= M (F); |
---|
914 | G= M (G); |
---|
915 | TIMING_END_AND_PRINT (ez_p_compress, "time for compression in EZ_P: ") |
---|
916 | |
---|
917 | TIMING_DEFINE (ez_p_content) |
---|
918 | TIMING_START (ez_p_content) |
---|
919 | f = content( F, x ); g = content( G, x ); |
---|
920 | d = gcd( f, g ); |
---|
921 | F /= f; G /= g; |
---|
922 | TIMING_END_AND_PRINT (ez_p_content, "time to extract content in EZ_P: ") |
---|
923 | |
---|
924 | if( F.isUnivariate() && G.isUnivariate() ) |
---|
925 | { |
---|
926 | if( F.mvar() == G.mvar() ) |
---|
927 | d *= gcd( F, G ); |
---|
928 | else |
---|
929 | return N (d); |
---|
930 | return N (d); |
---|
931 | } |
---|
932 | if ( F.isUnivariate()) |
---|
933 | { |
---|
934 | g= content (G,G.mvar()); |
---|
935 | return N(d*gcd(F,g)); |
---|
936 | } |
---|
937 | if ( G.isUnivariate()) |
---|
938 | { |
---|
939 | f= content (F,F.mvar()); |
---|
940 | return N(d*gcd(G,f)); |
---|
941 | } |
---|
942 | |
---|
943 | maxNumVars= tmax (getNumVars (F), getNumVars (G)); |
---|
944 | sizeF= size (F); |
---|
945 | sizeG= size (G); |
---|
946 | |
---|
947 | if (sizeF/maxNumVars > sizePerVars1 && sizeG/maxNumVars > sizePerVars1) |
---|
948 | { |
---|
949 | if (hasFirstAlgVar (F, a) || hasFirstAlgVar (G, a)) |
---|
950 | return N (d*modGCDFq (F, G, a)); |
---|
951 | else if (CFFactory::gettype() == GaloisFieldDomain) |
---|
952 | return N (d*modGCDGF (F, G)); |
---|
953 | else |
---|
954 | return N (d*modGCDFp (F, G)); |
---|
955 | } |
---|
956 | |
---|
957 | int dummy= 0; |
---|
958 | if( gcd_test_one( F, G, false, dummy ) ) |
---|
959 | { |
---|
960 | return N (d); |
---|
961 | } |
---|
962 | |
---|
963 | bool passToGF= false; |
---|
964 | bool extOfExt= false; |
---|
965 | int p= getCharacteristic(); |
---|
966 | bool algExtension= (hasFirstAlgVar(F,a) || hasFirstAlgVar(G,a)); |
---|
967 | int k= 1; |
---|
968 | CanonicalForm primElem, imPrimElem; |
---|
969 | CFList source, dest; |
---|
970 | if (p < 50 && CFFactory::gettype() != GaloisFieldDomain && !algExtension) |
---|
971 | { |
---|
972 | if (p == 2) |
---|
973 | setCharacteristic (2, 12, 'Z'); |
---|
974 | else if (p == 3) |
---|
975 | setCharacteristic (3, 4, 'Z'); |
---|
976 | else if (p == 5 || p == 7) |
---|
977 | setCharacteristic (p, 3, 'Z'); |
---|
978 | else |
---|
979 | setCharacteristic (p, 2, 'Z'); |
---|
980 | passToGF= true; |
---|
981 | F= F.mapinto(); |
---|
982 | G= G.mapinto(); |
---|
983 | maxeval= 2*ipower (p, getGFDegree()); |
---|
984 | } |
---|
985 | else if (CFFactory::gettype() == GaloisFieldDomain && |
---|
986 | ipower (p , getGFDegree()) < 50) |
---|
987 | { |
---|
988 | k= getGFDegree(); |
---|
989 | if (ipower (p, 2*k) > 50) |
---|
990 | setCharacteristic (p, 2*k, gf_name); |
---|
991 | else |
---|
992 | setCharacteristic (p, 3*k, gf_name); |
---|
993 | F= GFMapUp (F, k); |
---|
994 | G= GFMapUp (G, k); |
---|
995 | maxeval= tmin (2*ipower (p, getGFDegree()), maxNumEval); |
---|
996 | } |
---|
997 | else if (p < 50 && algExtension && CFFactory::gettype() != GaloisFieldDomain) |
---|
998 | { |
---|
999 | int d= degree (getMipo (a)); |
---|
1000 | oldA= a; |
---|
1001 | Variable v2; |
---|
1002 | if (p == 2 && d < 6) |
---|
1003 | { |
---|
1004 | if (fac_NTL_char != p) |
---|
1005 | { |
---|
1006 | fac_NTL_char= p; |
---|
1007 | zz_p::init (p); |
---|
1008 | } |
---|
1009 | bool primFail= false; |
---|
1010 | Variable vBuf; |
---|
1011 | primElem= primitiveElement (a, vBuf, primFail); |
---|
1012 | ASSERT (!primFail, "failure in integer factorizer"); |
---|
1013 | if (d < 3) |
---|
1014 | { |
---|
1015 | zz_pX NTLIrredpoly; |
---|
1016 | BuildIrred (NTLIrredpoly, d*3); |
---|
1017 | CanonicalForm newMipo= convertNTLzzpX2CF (NTLIrredpoly, Variable (1)); |
---|
1018 | v2= rootOf (newMipo); |
---|
1019 | } |
---|
1020 | else |
---|
1021 | { |
---|
1022 | zz_pX NTLIrredpoly; |
---|
1023 | BuildIrred (NTLIrredpoly, d*2); |
---|
1024 | CanonicalForm newMipo= convertNTLzzpX2CF (NTLIrredpoly, Variable (1)); |
---|
1025 | v2= rootOf (newMipo); |
---|
1026 | } |
---|
1027 | imPrimElem= mapPrimElem (primElem, a, v2); |
---|
1028 | extOfExt= true; |
---|
1029 | } |
---|
1030 | else if ((p == 3 && d < 4) || ((p == 5 || p == 7) && d < 3)) |
---|
1031 | { |
---|
1032 | if (fac_NTL_char != p) |
---|
1033 | { |
---|
1034 | fac_NTL_char= p; |
---|
1035 | zz_p::init (p); |
---|
1036 | } |
---|
1037 | bool primFail= false; |
---|
1038 | Variable vBuf; |
---|
1039 | primElem= primitiveElement (a, vBuf, primFail); |
---|
1040 | ASSERT (!primFail, "failure in integer factorizer"); |
---|
1041 | zz_pX NTLIrredpoly; |
---|
1042 | BuildIrred (NTLIrredpoly, d*2); |
---|
1043 | CanonicalForm newMipo= convertNTLzzpX2CF (NTLIrredpoly, Variable (1)); |
---|
1044 | v2= rootOf (newMipo); |
---|
1045 | imPrimElem= mapPrimElem (primElem, a, v2); |
---|
1046 | extOfExt= true; |
---|
1047 | } |
---|
1048 | if (extOfExt) |
---|
1049 | { |
---|
1050 | maxeval= tmin (2*ipower (p, degree (getMipo (v2))), maxNumEval); |
---|
1051 | F= mapUp (F, a, v2, primElem, imPrimElem, source, dest); |
---|
1052 | G= mapUp (G, a, v2, primElem, imPrimElem, source, dest); |
---|
1053 | a= v2; |
---|
1054 | } |
---|
1055 | } |
---|
1056 | |
---|
1057 | lcF = LC( F, x ); lcG = LC( G, x ); |
---|
1058 | lcD = gcd( lcF, lcG ); |
---|
1059 | |
---|
1060 | delta = 0; |
---|
1061 | degF = degree( F, x ); degG = degree( G, x ); |
---|
1062 | |
---|
1063 | if (algExtension) |
---|
1064 | b = REvaluation( 2, tmax(F.level(), G.level()), AlgExtRandomF( a ) ); |
---|
1065 | else |
---|
1066 | { // both not in extension given by algebraic variable |
---|
1067 | if (CFFactory::gettype() != GaloisFieldDomain) |
---|
1068 | b = REvaluation( 2, tmax(F.level(), G.level()), FFRandom() ); |
---|
1069 | else |
---|
1070 | b = REvaluation( 2, tmax(F.level(), G.level()), GFRandom() ); |
---|
1071 | } |
---|
1072 | |
---|
1073 | CanonicalForm cand, contcand; |
---|
1074 | CanonicalForm result; |
---|
1075 | int o, t; |
---|
1076 | o= 0; |
---|
1077 | t= 1; |
---|
1078 | int goodPointCount= 0; |
---|
1079 | TIMING_DEFINE(ez_p_eval); |
---|
1080 | while( !gcdfound ) |
---|
1081 | { |
---|
1082 | TIMING_START (ez_p_eval); |
---|
1083 | if( !findeval( F, G, Fb, Gb, Db, b, delta, degF, degG, maxeval, count, o, |
---|
1084 | maxeval/maxNumVars, t )) |
---|
1085 | { // too many eval. used --> try another method |
---|
1086 | Off (SW_USE_EZGCD_P); |
---|
1087 | result= gcd (F,G); |
---|
1088 | On (SW_USE_EZGCD_P); |
---|
1089 | if (passToGF) |
---|
1090 | { |
---|
1091 | CanonicalForm mipo= gf_mipo; |
---|
1092 | setCharacteristic (p); |
---|
1093 | Variable alpha= rootOf (mipo.mapinto()); |
---|
1094 | result= GF2FalphaRep (result, alpha); |
---|
1095 | prune (alpha); |
---|
1096 | } |
---|
1097 | if (k > 1) |
---|
1098 | { |
---|
1099 | result= GFMapDown (result, k); |
---|
1100 | setCharacteristic (p, k, gf_name); |
---|
1101 | } |
---|
1102 | if (extOfExt) |
---|
1103 | { |
---|
1104 | result= mapDown (result, primElem, imPrimElem, oldA, dest, source); |
---|
1105 | prune1 (oldA); |
---|
1106 | } |
---|
1107 | return N (d*result); |
---|
1108 | } |
---|
1109 | TIMING_END_AND_PRINT (ez_p_eval, "time for eval point search in EZ_P1: "); |
---|
1110 | delta = degree( Db ); |
---|
1111 | if (delta == degF) |
---|
1112 | { |
---|
1113 | if (degF <= degG && fdivides (F, G)) |
---|
1114 | { |
---|
1115 | if (passToGF) |
---|
1116 | { |
---|
1117 | CanonicalForm mipo= gf_mipo; |
---|
1118 | setCharacteristic (p); |
---|
1119 | Variable alpha= rootOf (mipo.mapinto()); |
---|
1120 | F= GF2FalphaRep (F, alpha); |
---|
1121 | prune (alpha); |
---|
1122 | } |
---|
1123 | if (k > 1) |
---|
1124 | { |
---|
1125 | F= GFMapDown (F, k); |
---|
1126 | setCharacteristic (p, k, gf_name); |
---|
1127 | } |
---|
1128 | if (extOfExt) |
---|
1129 | { |
---|
1130 | F= mapDown (F, primElem, imPrimElem, oldA, dest, source); |
---|
1131 | prune1 (oldA); |
---|
1132 | } |
---|
1133 | return N (d*F); |
---|
1134 | } |
---|
1135 | else |
---|
1136 | delta--; |
---|
1137 | } |
---|
1138 | else if (delta == degG) |
---|
1139 | { |
---|
1140 | if (degG <= degF && fdivides (G, F)) |
---|
1141 | { |
---|
1142 | if (passToGF) |
---|
1143 | { |
---|
1144 | CanonicalForm mipo= gf_mipo; |
---|
1145 | setCharacteristic (p); |
---|
1146 | Variable alpha= rootOf (mipo.mapinto()); |
---|
1147 | G= GF2FalphaRep (G, alpha); |
---|
1148 | prune (alpha); |
---|
1149 | } |
---|
1150 | if (k > 1) |
---|
1151 | { |
---|
1152 | G= GFMapDown (G, k); |
---|
1153 | setCharacteristic (p, k, gf_name); |
---|
1154 | } |
---|
1155 | if (extOfExt) |
---|
1156 | { |
---|
1157 | G= mapDown (G, primElem, imPrimElem, oldA, dest, source); |
---|
1158 | prune1 (oldA); |
---|
1159 | } |
---|
1160 | return N (d*G); |
---|
1161 | } |
---|
1162 | else |
---|
1163 | delta--; |
---|
1164 | } |
---|
1165 | if( delta == 0 ) |
---|
1166 | { |
---|
1167 | if (passToGF) |
---|
1168 | setCharacteristic (p); |
---|
1169 | if (k > 1) |
---|
1170 | setCharacteristic (p, k, gf_name); |
---|
1171 | return N (d); |
---|
1172 | } |
---|
1173 | while( true ) |
---|
1174 | { |
---|
1175 | bt = b; |
---|
1176 | TIMING_START (ez_p_eval); |
---|
1177 | if( !findeval(F,G,Fbt,Gbt,Dbt, bt, delta, degF, degG, maxeval, count, o, |
---|
1178 | maxeval/maxNumVars, t )) |
---|
1179 | { // too many eval. used --> try another method |
---|
1180 | Off (SW_USE_EZGCD_P); |
---|
1181 | result= gcd (F,G); |
---|
1182 | On (SW_USE_EZGCD_P); |
---|
1183 | if (passToGF) |
---|
1184 | { |
---|
1185 | CanonicalForm mipo= gf_mipo; |
---|
1186 | setCharacteristic (p); |
---|
1187 | Variable alpha= rootOf (mipo.mapinto()); |
---|
1188 | result= GF2FalphaRep (result, alpha); |
---|
1189 | prune (alpha); |
---|
1190 | } |
---|
1191 | if (k > 1) |
---|
1192 | { |
---|
1193 | result= GFMapDown (result, k); |
---|
1194 | setCharacteristic (p, k, gf_name); |
---|
1195 | } |
---|
1196 | if (extOfExt) |
---|
1197 | { |
---|
1198 | result= mapDown (result, primElem, imPrimElem, oldA, dest, source); |
---|
1199 | prune1 (oldA); |
---|
1200 | } |
---|
1201 | return N (d*result); |
---|
1202 | } |
---|
1203 | TIMING_END_AND_PRINT (ez_p_eval, "time for eval point search in EZ_P2: "); |
---|
1204 | int dd = degree( Dbt ); |
---|
1205 | if( dd == 0 ) |
---|
1206 | { |
---|
1207 | if (passToGF) |
---|
1208 | setCharacteristic (p); |
---|
1209 | if (k > 1) |
---|
1210 | setCharacteristic (p, k, gf_name); |
---|
1211 | return N (d); |
---|
1212 | } |
---|
1213 | if( dd == delta ) |
---|
1214 | { |
---|
1215 | goodPointCount++; |
---|
1216 | if (goodPointCount == 5) |
---|
1217 | break; |
---|
1218 | } |
---|
1219 | if( dd < delta ) |
---|
1220 | { |
---|
1221 | goodPointCount= 0; |
---|
1222 | delta = dd; |
---|
1223 | b = bt; |
---|
1224 | Db = Dbt; Fb = Fbt; Gb = Gbt; |
---|
1225 | } |
---|
1226 | if (delta == degF) |
---|
1227 | { |
---|
1228 | if (degF <= degG && fdivides (F, G)) |
---|
1229 | { |
---|
1230 | if (passToGF) |
---|
1231 | { |
---|
1232 | CanonicalForm mipo= gf_mipo; |
---|
1233 | setCharacteristic (p); |
---|
1234 | Variable alpha= rootOf (mipo.mapinto()); |
---|
1235 | F= GF2FalphaRep (F, alpha); |
---|
1236 | prune (alpha); |
---|
1237 | } |
---|
1238 | if (k > 1) |
---|
1239 | { |
---|
1240 | F= GFMapDown (F, k); |
---|
1241 | setCharacteristic (p, k, gf_name); |
---|
1242 | } |
---|
1243 | if (extOfExt) |
---|
1244 | { |
---|
1245 | F= mapDown (F, primElem, imPrimElem, oldA, dest, source); |
---|
1246 | prune1 (oldA); |
---|
1247 | } |
---|
1248 | return N (d*F); |
---|
1249 | } |
---|
1250 | else |
---|
1251 | delta--; |
---|
1252 | } |
---|
1253 | else if (delta == degG) |
---|
1254 | { |
---|
1255 | if (degG <= degF && fdivides (G, F)) |
---|
1256 | { |
---|
1257 | if (passToGF) |
---|
1258 | { |
---|
1259 | CanonicalForm mipo= gf_mipo; |
---|
1260 | setCharacteristic (p); |
---|
1261 | Variable alpha= rootOf (mipo.mapinto()); |
---|
1262 | G= GF2FalphaRep (G, alpha); |
---|
1263 | prune (alpha); |
---|
1264 | } |
---|
1265 | if (k > 1) |
---|
1266 | { |
---|
1267 | G= GFMapDown (G, k); |
---|
1268 | setCharacteristic (p, k, gf_name); |
---|
1269 | } |
---|
1270 | if (extOfExt) |
---|
1271 | { |
---|
1272 | G= mapDown (G, primElem, imPrimElem, oldA, dest, source); |
---|
1273 | prune1 (oldA); |
---|
1274 | } |
---|
1275 | return N (d*G); |
---|
1276 | } |
---|
1277 | else |
---|
1278 | delta--; |
---|
1279 | } |
---|
1280 | if( delta == 0 ) |
---|
1281 | { |
---|
1282 | if (passToGF) |
---|
1283 | setCharacteristic (p); |
---|
1284 | if (k > 1) |
---|
1285 | setCharacteristic (p, k, gf_name); |
---|
1286 | return N (d); |
---|
1287 | } |
---|
1288 | } |
---|
1289 | if( delta != degF && delta != degG ) |
---|
1290 | { |
---|
1291 | bool B_is_F; |
---|
1292 | CanonicalForm xxx1, xxx2; |
---|
1293 | CanonicalForm buf; |
---|
1294 | DD[1] = Fb / Db; |
---|
1295 | buf= Gb/Db; |
---|
1296 | xxx1 = gcd( DD[1], Db ); |
---|
1297 | xxx2 = gcd( buf, Db ); |
---|
1298 | if (((xxx1.inCoeffDomain() && xxx2.inCoeffDomain()) && |
---|
1299 | (size (F) <= size (G))) |
---|
1300 | || (xxx1.inCoeffDomain() && !xxx2.inCoeffDomain())) |
---|
1301 | { |
---|
1302 | B = F; |
---|
1303 | DD[2] = Db; |
---|
1304 | lcDD[1] = lcF; |
---|
1305 | lcDD[2] = lcD; |
---|
1306 | B_is_F = true; |
---|
1307 | } |
---|
1308 | else if (((xxx1.inCoeffDomain() && xxx2.inCoeffDomain()) && |
---|
1309 | (size (G) < size (F))) |
---|
1310 | || (!xxx1.inCoeffDomain() && xxx2.inCoeffDomain())) |
---|
1311 | { |
---|
1312 | DD[1] = buf; |
---|
1313 | B = G; |
---|
1314 | DD[2] = Db; |
---|
1315 | lcDD[1] = lcG; |
---|
1316 | lcDD[2] = lcD; |
---|
1317 | B_is_F = false; |
---|
1318 | } |
---|
1319 | else // special case handling |
---|
1320 | { |
---|
1321 | Off (SW_USE_EZGCD_P); |
---|
1322 | result= gcd (F,G); |
---|
1323 | On (SW_USE_EZGCD_P); |
---|
1324 | if (passToGF) |
---|
1325 | { |
---|
1326 | CanonicalForm mipo= gf_mipo; |
---|
1327 | setCharacteristic (p); |
---|
1328 | Variable alpha= rootOf (mipo.mapinto()); |
---|
1329 | result= GF2FalphaRep (result, alpha); |
---|
1330 | prune (alpha); |
---|
1331 | } |
---|
1332 | if (k > 1) |
---|
1333 | { |
---|
1334 | result= GFMapDown (result, k); |
---|
1335 | setCharacteristic (p, k, gf_name); |
---|
1336 | } |
---|
1337 | if (extOfExt) |
---|
1338 | { |
---|
1339 | result= mapDown (result, primElem, imPrimElem, oldA, dest, source); |
---|
1340 | prune1 (oldA); |
---|
1341 | } |
---|
1342 | return N (d*result); |
---|
1343 | } |
---|
1344 | DD[2] = DD[2] * ( b( lcDD[2] ) / lc( DD[2] ) ); |
---|
1345 | DD[1] = DD[1] * ( b( lcDD[1] ) / lc( DD[1] ) ); |
---|
1346 | |
---|
1347 | if (size (B*lcDD[2])/maxNumVars > sizePerVars1) |
---|
1348 | { |
---|
1349 | if (algExtension) |
---|
1350 | { |
---|
1351 | result= modGCDFq (F, G, a); |
---|
1352 | if (extOfExt) |
---|
1353 | { |
---|
1354 | result= mapDown (result, primElem, imPrimElem, oldA, dest, source); |
---|
1355 | prune1 (oldA); |
---|
1356 | } |
---|
1357 | return N (d*result); |
---|
1358 | } |
---|
1359 | if (CFFactory::gettype() == GaloisFieldDomain) |
---|
1360 | { |
---|
1361 | result= modGCDGF (F, G); |
---|
1362 | if (passToGF) |
---|
1363 | { |
---|
1364 | CanonicalForm mipo= gf_mipo; |
---|
1365 | setCharacteristic (p); |
---|
1366 | Variable alpha= rootOf (mipo.mapinto()); |
---|
1367 | result= GF2FalphaRep (result, alpha); |
---|
1368 | prune (alpha); |
---|
1369 | } |
---|
1370 | if (k > 1) |
---|
1371 | { |
---|
1372 | result= GFMapDown (result, k); |
---|
1373 | setCharacteristic (p, k, gf_name); |
---|
1374 | } |
---|
1375 | return N (d*result); |
---|
1376 | } |
---|
1377 | else |
---|
1378 | return N (d*modGCDFp (F,G)); |
---|
1379 | } |
---|
1380 | |
---|
1381 | TIMING_DEFINE(ez_p_hensel_lift); |
---|
1382 | TIMING_START (ez_p_hensel_lift); |
---|
1383 | gcdfound= Hensel (B*lcD, DD, b, lcDD); |
---|
1384 | TIMING_END_AND_PRINT (ez_p_hensel_lift, "time for Hensel lift in EZ_P: "); |
---|
1385 | |
---|
1386 | if (gcdfound == -1) //things became dense |
---|
1387 | { |
---|
1388 | if (algExtension) |
---|
1389 | { |
---|
1390 | result= modGCDFq (F, G, a); |
---|
1391 | if (extOfExt) |
---|
1392 | { |
---|
1393 | result= mapDown (result, primElem, imPrimElem, oldA, dest, source); |
---|
1394 | prune1 (oldA); |
---|
1395 | } |
---|
1396 | return N (d*result); |
---|
1397 | } |
---|
1398 | if (CFFactory::gettype() == GaloisFieldDomain) |
---|
1399 | { |
---|
1400 | result= modGCDGF (F, G); |
---|
1401 | if (passToGF) |
---|
1402 | { |
---|
1403 | CanonicalForm mipo= gf_mipo; |
---|
1404 | setCharacteristic (p); |
---|
1405 | Variable alpha= rootOf (mipo.mapinto()); |
---|
1406 | result= GF2FalphaRep (result, alpha); |
---|
1407 | prune (alpha); |
---|
1408 | } |
---|
1409 | if (k > 1) |
---|
1410 | { |
---|
1411 | result= GFMapDown (result, k); |
---|
1412 | setCharacteristic (p, k, gf_name); |
---|
1413 | } |
---|
1414 | return N (d*result); |
---|
1415 | } |
---|
1416 | else |
---|
1417 | { |
---|
1418 | if (p >= cf_getBigPrime(0)) |
---|
1419 | return N (d*sparseGCDFp (F,G)); |
---|
1420 | else |
---|
1421 | return N (d*modGCDFp (F,G)); |
---|
1422 | } |
---|
1423 | } |
---|
1424 | |
---|
1425 | if (gcdfound == 1) |
---|
1426 | { |
---|
1427 | TIMING_DEFINE(termination_test); |
---|
1428 | TIMING_START (termination_test); |
---|
1429 | contcand= content (DD[2], Variable (1)); |
---|
1430 | cand = DD[2] / contcand; |
---|
1431 | if (B_is_F) |
---|
1432 | gcdfound = fdivides( cand, G ) && cand*(DD[1]/(lcD/contcand)) == F; |
---|
1433 | else |
---|
1434 | gcdfound = fdivides( cand, F ) && cand*(DD[1]/(lcD/contcand)) == G; |
---|
1435 | TIMING_END_AND_PRINT (termination_test, |
---|
1436 | "time for termination test EZ_P: "); |
---|
1437 | |
---|
1438 | if (passToGF && gcdfound) |
---|
1439 | { |
---|
1440 | CanonicalForm mipo= gf_mipo; |
---|
1441 | setCharacteristic (p); |
---|
1442 | Variable alpha= rootOf (mipo.mapinto()); |
---|
1443 | cand= GF2FalphaRep (cand, alpha); |
---|
1444 | prune (alpha); |
---|
1445 | } |
---|
1446 | if (k > 1 && gcdfound) |
---|
1447 | { |
---|
1448 | cand= GFMapDown (cand, k); |
---|
1449 | setCharacteristic (p, k, gf_name); |
---|
1450 | } |
---|
1451 | if (extOfExt && gcdfound) |
---|
1452 | { |
---|
1453 | cand= mapDown (cand, primElem, imPrimElem, oldA, dest, source); |
---|
1454 | prune1 (oldA); |
---|
1455 | } |
---|
1456 | } |
---|
1457 | } |
---|
1458 | delta--; |
---|
1459 | goodPointCount= 0; |
---|
1460 | } |
---|
1461 | return N (d*cand); |
---|
1462 | } |
---|
1463 | #endif |
---|
1464 | |
---|