1 | #include "config.h" |
---|
2 | |
---|
3 | #include "canonicalform.h" |
---|
4 | #include "cf_factory.h" |
---|
5 | #include "cf_reval.h" |
---|
6 | #include "cf_util.h" |
---|
7 | #include "cf_iter.h" |
---|
8 | #include "gfops.h" |
---|
9 | #include "cf_map_ext.h" |
---|
10 | #include "templates/ftmpl_functions.h" |
---|
11 | |
---|
12 | #ifdef HAVE_NTL |
---|
13 | #include "NTLconvert.h" |
---|
14 | #endif |
---|
15 | |
---|
16 | #ifdef HAVE_FLINT |
---|
17 | #include "FLINTconvert.h" |
---|
18 | #endif |
---|
19 | |
---|
20 | /// Coprimality Check. f and g are assumed to have the same level. If swap is |
---|
21 | /// true, the main variables of f and g are swapped with Variable(1). If the |
---|
22 | /// result is false, d is set to the degree of the gcd of f and g evaluated at a |
---|
23 | /// random point in K^n-1. This gcd is a gcd of univariate polynomials. |
---|
24 | #ifdef HAVE_NTL // mapPrimElem |
---|
25 | bool |
---|
26 | gcd_test_one ( const CanonicalForm & f, const CanonicalForm & g, bool swap, int & d ) |
---|
27 | { |
---|
28 | d= 0; |
---|
29 | int count = 0; |
---|
30 | // assume polys have same level; |
---|
31 | |
---|
32 | Variable v= Variable (1); |
---|
33 | bool algExtension= (hasFirstAlgVar (f, v) || hasFirstAlgVar (g, v)); |
---|
34 | CanonicalForm lcf, lcg; |
---|
35 | if ( swap ) |
---|
36 | { |
---|
37 | lcf = swapvar( LC( f ), Variable(1), f.mvar() ); |
---|
38 | lcg = swapvar( LC( g ), Variable(1), f.mvar() ); |
---|
39 | } |
---|
40 | else |
---|
41 | { |
---|
42 | lcf = LC( f, Variable(1) ); |
---|
43 | lcg = LC( g, Variable(1) ); |
---|
44 | } |
---|
45 | |
---|
46 | CanonicalForm F, G; |
---|
47 | if ( swap ) |
---|
48 | { |
---|
49 | F=swapvar( f, Variable(1), f.mvar() ); |
---|
50 | G=swapvar( g, Variable(1), g.mvar() ); |
---|
51 | } |
---|
52 | else |
---|
53 | { |
---|
54 | F = f; |
---|
55 | G = g; |
---|
56 | } |
---|
57 | |
---|
58 | #define TEST_ONE_MAX 50 |
---|
59 | int p= getCharacteristic(); |
---|
60 | bool passToGF= false; |
---|
61 | int k= 1; |
---|
62 | bool extOfExt= false; |
---|
63 | Variable v3; |
---|
64 | if (p > 0 && p < TEST_ONE_MAX && CFFactory::gettype() != GaloisFieldDomain && !algExtension) |
---|
65 | { |
---|
66 | if (p == 2) |
---|
67 | setCharacteristic (2, 6, 'Z'); |
---|
68 | else if (p == 3) |
---|
69 | setCharacteristic (3, 4, 'Z'); |
---|
70 | else if (p == 5 || p == 7) |
---|
71 | setCharacteristic (p, 3, 'Z'); |
---|
72 | else |
---|
73 | setCharacteristic (p, 2, 'Z'); |
---|
74 | passToGF= true; |
---|
75 | } |
---|
76 | else if (p > 0 && CFFactory::gettype() == GaloisFieldDomain && ipower (p , getGFDegree()) < TEST_ONE_MAX) |
---|
77 | { |
---|
78 | k= getGFDegree(); |
---|
79 | if (ipower (p, 2*k) > TEST_ONE_MAX) |
---|
80 | setCharacteristic (p, 2*k, gf_name); |
---|
81 | else |
---|
82 | setCharacteristic (p, 3*k, gf_name); |
---|
83 | F= GFMapUp (F, k); |
---|
84 | G= GFMapUp (G, k); |
---|
85 | lcf= GFMapUp (lcf, k); |
---|
86 | lcg= GFMapUp (lcg, k); |
---|
87 | } |
---|
88 | else if (p > 0 && p < TEST_ONE_MAX && algExtension) |
---|
89 | { |
---|
90 | #if defined(HAVE_NTL) || defined(HAVE_FLINT) |
---|
91 | int d= degree (getMipo (v)); |
---|
92 | CFList source, dest; |
---|
93 | Variable v2; |
---|
94 | CanonicalForm primElem, imPrimElem; |
---|
95 | #if defned(HAVE_NTL) && !defined(HAVE_FLINT) |
---|
96 | if (fac_NTL_char != p) |
---|
97 | { |
---|
98 | fac_NTL_char= p; |
---|
99 | zz_p::init (p); |
---|
100 | } |
---|
101 | #endif |
---|
102 | if (p == 2 && d < 6) |
---|
103 | { |
---|
104 | bool primFail= false; |
---|
105 | Variable vBuf; |
---|
106 | primElem= primitiveElement (v, vBuf, primFail); |
---|
107 | ASSERT (!primFail, "failure in integer factorizer"); |
---|
108 | if (d < 3) |
---|
109 | { |
---|
110 | #ifdef HAVE_FLINT |
---|
111 | nmod_poly_t Irredpoly; |
---|
112 | nmod_poly_init(Irredpoly,p); |
---|
113 | nmod_poly_randtest_monic_irreducible(Irredpoly, FLINTrandom, 3*d+1); |
---|
114 | CanonicalForm newMipo=convertnmod_poly_t2FacCF(Irredpoly,Variable(1)); |
---|
115 | nmod_poly_clear(Irredpoly); |
---|
116 | #elif defined(HAVE_NTL) |
---|
117 | zz_pX NTLIrredpoly; |
---|
118 | BuildIrred (NTLIrredpoly, d*3); |
---|
119 | CanonicalForm newMipo= convertNTLzzpX2CF (NTLIrredpoly, Variable (1)); |
---|
120 | #endif |
---|
121 | v2= rootOf (newMipo); |
---|
122 | } |
---|
123 | else |
---|
124 | { |
---|
125 | #ifdef HAVE_FLINT |
---|
126 | nmod_poly_t Irredpoly; |
---|
127 | nmod_poly_init(Irredpoly,p); |
---|
128 | nmod_poly_randtest_monic_irreducible(Irredpoly, FLINTrandom, 3*d+1); |
---|
129 | CanonicalForm newMipo=convertnmod_poly_t2FacCF(Irredpoly,Variable(1)); |
---|
130 | nmod_poly_clear(Irredpoly); |
---|
131 | #elif defined(HAVE_NTL) |
---|
132 | zz_pX NTLIrredpoly; |
---|
133 | BuildIrred (NTLIrredpoly, d*2); |
---|
134 | CanonicalForm newMipo= convertNTLzzpX2CF (NTLIrredpoly, Variable (1)); |
---|
135 | #endif |
---|
136 | v2= rootOf (newMipo); |
---|
137 | } |
---|
138 | imPrimElem= mapPrimElem (primElem, v, v2); |
---|
139 | extOfExt= true; |
---|
140 | } |
---|
141 | else if ((p == 3 && d < 4) || ((p == 5 || p == 7) && d < 3)) |
---|
142 | { |
---|
143 | bool primFail= false; |
---|
144 | Variable vBuf; |
---|
145 | primElem= primitiveElement (v, vBuf, primFail); |
---|
146 | ASSERT (!primFail, "failure in integer factorizer"); |
---|
147 | #ifdef HAVE_FLINT |
---|
148 | nmod_poly_t Irredpoly; |
---|
149 | nmod_poly_init(Irredpoly,p); |
---|
150 | nmod_poly_randtest_monic_irreducible(Irredpoly, FLINTrandom, 2*d+1); |
---|
151 | CanonicalForm newMipo=convertnmod_poly_t2FacCF(Irredpoly,Variable(1)); |
---|
152 | nmod_poly_clear(Irredpoly); |
---|
153 | #elif defined(HAVE_NTL) |
---|
154 | zz_pX NTLIrredpoly; |
---|
155 | BuildIrred (NTLIrredpoly, d*2); |
---|
156 | CanonicalForm newMipo= convertNTLzzpX2CF (NTLIrredpoly, Variable (1)); |
---|
157 | #endif |
---|
158 | v2= rootOf (newMipo); |
---|
159 | imPrimElem= mapPrimElem (primElem, v, v2); |
---|
160 | extOfExt= true; |
---|
161 | } |
---|
162 | if (extOfExt) |
---|
163 | { |
---|
164 | v3= v; |
---|
165 | F= mapUp (F, v, v2, primElem, imPrimElem, source, dest); |
---|
166 | G= mapUp (G, v, v2, primElem, imPrimElem, source, dest); |
---|
167 | lcf= mapUp (lcf, v, v2, primElem, imPrimElem, source, dest); |
---|
168 | lcg= mapUp (lcg, v, v2, primElem, imPrimElem, source, dest); |
---|
169 | v= v2; |
---|
170 | } |
---|
171 | #endif |
---|
172 | } |
---|
173 | |
---|
174 | CFRandom * sample; |
---|
175 | if ((!algExtension && p > 0) || p == 0) |
---|
176 | sample = CFRandomFactory::generate(); |
---|
177 | else |
---|
178 | sample = AlgExtRandomF (v).clone(); |
---|
179 | |
---|
180 | REvaluation e( 2, tmax( f.level(), g.level() ), *sample ); |
---|
181 | delete sample; |
---|
182 | |
---|
183 | if (passToGF) |
---|
184 | { |
---|
185 | lcf= lcf.mapinto(); |
---|
186 | lcg= lcg.mapinto(); |
---|
187 | } |
---|
188 | |
---|
189 | CanonicalForm eval1, eval2; |
---|
190 | if (passToGF) |
---|
191 | { |
---|
192 | eval1= e (lcf); |
---|
193 | eval2= e (lcg); |
---|
194 | } |
---|
195 | else |
---|
196 | { |
---|
197 | eval1= e (lcf); |
---|
198 | eval2= e (lcg); |
---|
199 | } |
---|
200 | |
---|
201 | while ( ( eval1.isZero() || eval2.isZero() ) && count < TEST_ONE_MAX ) |
---|
202 | { |
---|
203 | e.nextpoint(); |
---|
204 | count++; |
---|
205 | eval1= e (lcf); |
---|
206 | eval2= e (lcg); |
---|
207 | } |
---|
208 | if ( count >= TEST_ONE_MAX ) |
---|
209 | { |
---|
210 | if (passToGF) |
---|
211 | setCharacteristic (p); |
---|
212 | if (k > 1) |
---|
213 | setCharacteristic (p, k, gf_name); |
---|
214 | if (extOfExt) |
---|
215 | prune1 (v3); |
---|
216 | return false; |
---|
217 | } |
---|
218 | |
---|
219 | |
---|
220 | if (passToGF) |
---|
221 | { |
---|
222 | F= F.mapinto(); |
---|
223 | G= G.mapinto(); |
---|
224 | eval1= e (F); |
---|
225 | eval2= e (G); |
---|
226 | } |
---|
227 | else |
---|
228 | { |
---|
229 | eval1= e (F); |
---|
230 | eval2= e (G); |
---|
231 | } |
---|
232 | |
---|
233 | CanonicalForm c= gcd (eval1, eval2); |
---|
234 | d= c.degree(); |
---|
235 | bool result= d < 1; |
---|
236 | if (d < 0) |
---|
237 | d= 0; |
---|
238 | |
---|
239 | if (passToGF) |
---|
240 | setCharacteristic (p); |
---|
241 | if (k > 1) |
---|
242 | setCharacteristic (p, k, gf_name); |
---|
243 | if (extOfExt) |
---|
244 | prune1 (v3); |
---|
245 | return result; |
---|
246 | } |
---|
247 | #endif |
---|
248 | |
---|
249 | /** |
---|
250 | * same as balance_p ( const CanonicalForm & f, const CanonicalForm & q ) |
---|
251 | * but qh= q/2 is provided, too. |
---|
252 | **/ |
---|
253 | CanonicalForm |
---|
254 | balance_p ( const CanonicalForm & f, const CanonicalForm & q, const CanonicalForm & qh ) |
---|
255 | { |
---|
256 | Variable x = f.mvar(); |
---|
257 | CanonicalForm result = 0; |
---|
258 | CanonicalForm c; |
---|
259 | CFIterator i; |
---|
260 | for ( i = f; i.hasTerms(); i++ ) |
---|
261 | { |
---|
262 | c = i.coeff(); |
---|
263 | if ( c.inCoeffDomain()) |
---|
264 | { |
---|
265 | if ( c > qh ) |
---|
266 | result += power( x, i.exp() ) * (c - q); |
---|
267 | else |
---|
268 | result += power( x, i.exp() ) * c; |
---|
269 | } |
---|
270 | else |
---|
271 | result += power( x, i.exp() ) * balance_p(c,q,qh); |
---|
272 | } |
---|
273 | return result; |
---|
274 | } |
---|
275 | |
---|
276 | /** static CanonicalForm balance_p ( const CanonicalForm & f, const CanonicalForm & q ) |
---|
277 | * |
---|
278 | * balance_p() - map f from positive to symmetric representation |
---|
279 | * mod q. |
---|
280 | * |
---|
281 | * This makes sense for polynomials over Z only. |
---|
282 | * q should be an integer. |
---|
283 | * |
---|
284 | **/ |
---|
285 | CanonicalForm |
---|
286 | balance_p ( const CanonicalForm & f, const CanonicalForm & q ) |
---|
287 | { |
---|
288 | CanonicalForm qh = q / 2; |
---|
289 | return balance_p (f, q, qh); |
---|
290 | } |
---|
291 | |
---|
292 | |
---|
293 | /*static CanonicalForm |
---|
294 | balance ( const CanonicalForm & f, const CanonicalForm & q ) |
---|
295 | { |
---|
296 | Variable x = f.mvar(); |
---|
297 | CanonicalForm result = 0, qh = q / 2; |
---|
298 | CanonicalForm c; |
---|
299 | CFIterator i; |
---|
300 | for ( i = f; i.hasTerms(); i++ ) { |
---|
301 | c = mod( i.coeff(), q ); |
---|
302 | if ( c > qh ) |
---|
303 | result += power( x, i.exp() ) * (c - q); |
---|
304 | else |
---|
305 | result += power( x, i.exp() ) * c; |
---|
306 | } |
---|
307 | return result; |
---|
308 | }*/ |
---|