1 | // -*- c++ -*- |
---|
2 | //***************************************************************************** |
---|
3 | /** @file cfModGcd.cc |
---|
4 | * |
---|
5 | * This file implements the GCD of two polynomials over \f$ F_{p} \f$ , |
---|
6 | * \f$ F_{p}(\alpha ) \f$, GF or Z based on Alg. 7.1. and 7.2. as described in |
---|
7 | * "Algorithms for Computer Algebra" by Geddes, Czapor, Labahn via modular |
---|
8 | * computations. And sparse modular variants as described in Zippel |
---|
9 | * "Effective Polynomial Computation", deKleine, Monagan, Wittkopf |
---|
10 | * "Algorithms for the non-monic case of the sparse modular GCD algorithm" and |
---|
11 | * Javadi "A new solution to the normalization problem" |
---|
12 | * |
---|
13 | * @author Martin Lee |
---|
14 | * @date 22.10.2009 |
---|
15 | * |
---|
16 | * @par Copyright: |
---|
17 | * (c) by The SINGULAR Team, see LICENSE file |
---|
18 | * |
---|
19 | **/ |
---|
20 | //***************************************************************************** |
---|
21 | |
---|
22 | |
---|
23 | #include "config.h" |
---|
24 | |
---|
25 | |
---|
26 | #include "cf_assert.h" |
---|
27 | #include "debug.h" |
---|
28 | #include "timing.h" |
---|
29 | |
---|
30 | #include "canonicalform.h" |
---|
31 | #include "cfGcdUtil.h" |
---|
32 | #include "cf_map.h" |
---|
33 | #include "cf_util.h" |
---|
34 | #include "cf_irred.h" |
---|
35 | #include "templates/ftmpl_functions.h" |
---|
36 | #include "cf_random.h" |
---|
37 | #include "cf_reval.h" |
---|
38 | #include "facHensel.h" |
---|
39 | #include "cf_iter.h" |
---|
40 | #include "cfNewtonPolygon.h" |
---|
41 | #include "cf_algorithm.h" |
---|
42 | #include "cf_primes.h" |
---|
43 | |
---|
44 | // inline helper functions: |
---|
45 | #include "cf_map_ext.h" |
---|
46 | |
---|
47 | #ifdef HAVE_NTL |
---|
48 | #include "NTLconvert.h" |
---|
49 | #endif |
---|
50 | |
---|
51 | #ifdef HAVE_FLINT |
---|
52 | #include "FLINTconvert.h" |
---|
53 | #endif |
---|
54 | |
---|
55 | #include "cfModGcd.h" |
---|
56 | |
---|
57 | TIMING_DEFINE_PRINT(gcd_recursion) |
---|
58 | TIMING_DEFINE_PRINT(newton_interpolation) |
---|
59 | TIMING_DEFINE_PRINT(termination_test) |
---|
60 | TIMING_DEFINE_PRINT(ez_p_compress) |
---|
61 | TIMING_DEFINE_PRINT(ez_p_hensel_lift) |
---|
62 | TIMING_DEFINE_PRINT(ez_p_eval) |
---|
63 | TIMING_DEFINE_PRINT(ez_p_content) |
---|
64 | |
---|
65 | bool |
---|
66 | terminationTest (const CanonicalForm& F, const CanonicalForm& G, |
---|
67 | const CanonicalForm& coF, const CanonicalForm& coG, |
---|
68 | const CanonicalForm& cand) |
---|
69 | { |
---|
70 | CanonicalForm LCCand= abs (LC (cand)); |
---|
71 | if (LCCand*abs (LC (coF)) == abs (LC (F))) |
---|
72 | { |
---|
73 | if (LCCand*abs (LC (coG)) == abs (LC (G))) |
---|
74 | { |
---|
75 | if (abs (cand)*abs (coF) == abs (F)) |
---|
76 | { |
---|
77 | if (abs (cand)*abs (coG) == abs (G)) |
---|
78 | return true; |
---|
79 | } |
---|
80 | return false; |
---|
81 | } |
---|
82 | return false; |
---|
83 | } |
---|
84 | return false; |
---|
85 | } |
---|
86 | |
---|
87 | #if defined(HAVE_NTL)|| defined(HAVE_FLINT) |
---|
88 | |
---|
89 | static const double log2exp= 1.442695041; |
---|
90 | |
---|
91 | /// compressing two polynomials F and G, M is used for compressing, |
---|
92 | /// N to reverse the compression |
---|
93 | int myCompress (const CanonicalForm& F, const CanonicalForm& G, CFMap & M, |
---|
94 | CFMap & N, bool topLevel) |
---|
95 | { |
---|
96 | int n= tmax (F.level(), G.level()); |
---|
97 | int * degsf= NEW_ARRAY(int,n + 1); |
---|
98 | int * degsg= NEW_ARRAY(int,n + 1); |
---|
99 | |
---|
100 | for (int i = n; i >= 0; i--) |
---|
101 | degsf[i]= degsg[i]= 0; |
---|
102 | |
---|
103 | degsf= degrees (F, degsf); |
---|
104 | degsg= degrees (G, degsg); |
---|
105 | |
---|
106 | int both_non_zero= 0; |
---|
107 | int f_zero= 0; |
---|
108 | int g_zero= 0; |
---|
109 | int both_zero= 0; |
---|
110 | |
---|
111 | if (topLevel) |
---|
112 | { |
---|
113 | for (int i= 1; i <= n; i++) |
---|
114 | { |
---|
115 | if (degsf[i] != 0 && degsg[i] != 0) |
---|
116 | { |
---|
117 | both_non_zero++; |
---|
118 | continue; |
---|
119 | } |
---|
120 | if (degsf[i] == 0 && degsg[i] != 0 && i <= G.level()) |
---|
121 | { |
---|
122 | f_zero++; |
---|
123 | continue; |
---|
124 | } |
---|
125 | if (degsg[i] == 0 && degsf[i] && i <= F.level()) |
---|
126 | { |
---|
127 | g_zero++; |
---|
128 | continue; |
---|
129 | } |
---|
130 | } |
---|
131 | |
---|
132 | if (both_non_zero == 0) |
---|
133 | { |
---|
134 | DELETE_ARRAY(degsf); |
---|
135 | DELETE_ARRAY(degsg); |
---|
136 | return 0; |
---|
137 | } |
---|
138 | |
---|
139 | // map Variables which do not occur in both polynomials to higher levels |
---|
140 | int k= 1; |
---|
141 | int l= 1; |
---|
142 | for (int i= 1; i <= n; i++) |
---|
143 | { |
---|
144 | if (degsf[i] != 0 && degsg[i] == 0 && i <= F.level()) |
---|
145 | { |
---|
146 | if (k + both_non_zero != i) |
---|
147 | { |
---|
148 | M.newpair (Variable (i), Variable (k + both_non_zero)); |
---|
149 | N.newpair (Variable (k + both_non_zero), Variable (i)); |
---|
150 | } |
---|
151 | k++; |
---|
152 | } |
---|
153 | if (degsf[i] == 0 && degsg[i] != 0 && i <= G.level()) |
---|
154 | { |
---|
155 | if (l + g_zero + both_non_zero != i) |
---|
156 | { |
---|
157 | M.newpair (Variable (i), Variable (l + g_zero + both_non_zero)); |
---|
158 | N.newpair (Variable (l + g_zero + both_non_zero), Variable (i)); |
---|
159 | } |
---|
160 | l++; |
---|
161 | } |
---|
162 | } |
---|
163 | |
---|
164 | // sort Variables x_{i} in increasing order of |
---|
165 | // min(deg_{x_{i}}(f),deg_{x_{i}}(g)) |
---|
166 | int m= tmax (F.level(), G.level()); |
---|
167 | int min_max_deg; |
---|
168 | k= both_non_zero; |
---|
169 | l= 0; |
---|
170 | int i= 1; |
---|
171 | while (k > 0) |
---|
172 | { |
---|
173 | if (degsf [i] != 0 && degsg [i] != 0) |
---|
174 | min_max_deg= tmax (degsf[i], degsg[i]); |
---|
175 | else |
---|
176 | min_max_deg= 0; |
---|
177 | while (min_max_deg == 0) |
---|
178 | { |
---|
179 | i++; |
---|
180 | if (degsf [i] != 0 && degsg [i] != 0) |
---|
181 | min_max_deg= tmax (degsf[i], degsg[i]); |
---|
182 | else |
---|
183 | min_max_deg= 0; |
---|
184 | } |
---|
185 | for (int j= i + 1; j <= m; j++) |
---|
186 | { |
---|
187 | if (degsf[j] != 0 && degsg [j] != 0 && |
---|
188 | tmax (degsf[j],degsg[j]) <= min_max_deg) |
---|
189 | { |
---|
190 | min_max_deg= tmax (degsf[j], degsg[j]); |
---|
191 | l= j; |
---|
192 | } |
---|
193 | } |
---|
194 | if (l != 0) |
---|
195 | { |
---|
196 | if (l != k) |
---|
197 | { |
---|
198 | M.newpair (Variable (l), Variable(k)); |
---|
199 | N.newpair (Variable (k), Variable(l)); |
---|
200 | degsf[l]= 0; |
---|
201 | degsg[l]= 0; |
---|
202 | l= 0; |
---|
203 | } |
---|
204 | else |
---|
205 | { |
---|
206 | degsf[l]= 0; |
---|
207 | degsg[l]= 0; |
---|
208 | l= 0; |
---|
209 | } |
---|
210 | } |
---|
211 | else if (l == 0) |
---|
212 | { |
---|
213 | if (i != k) |
---|
214 | { |
---|
215 | M.newpair (Variable (i), Variable (k)); |
---|
216 | N.newpair (Variable (k), Variable (i)); |
---|
217 | degsf[i]= 0; |
---|
218 | degsg[i]= 0; |
---|
219 | } |
---|
220 | else |
---|
221 | { |
---|
222 | degsf[i]= 0; |
---|
223 | degsg[i]= 0; |
---|
224 | } |
---|
225 | i++; |
---|
226 | } |
---|
227 | k--; |
---|
228 | } |
---|
229 | } |
---|
230 | else |
---|
231 | { |
---|
232 | //arrange Variables such that no gaps occur |
---|
233 | for (int i= 1; i <= n; i++) |
---|
234 | { |
---|
235 | if (degsf[i] == 0 && degsg[i] == 0) |
---|
236 | { |
---|
237 | both_zero++; |
---|
238 | continue; |
---|
239 | } |
---|
240 | else |
---|
241 | { |
---|
242 | if (both_zero != 0) |
---|
243 | { |
---|
244 | M.newpair (Variable (i), Variable (i - both_zero)); |
---|
245 | N.newpair (Variable (i - both_zero), Variable (i)); |
---|
246 | } |
---|
247 | } |
---|
248 | } |
---|
249 | } |
---|
250 | |
---|
251 | DELETE_ARRAY(degsf); |
---|
252 | DELETE_ARRAY(degsg); |
---|
253 | |
---|
254 | return 1; |
---|
255 | } |
---|
256 | |
---|
257 | static inline CanonicalForm |
---|
258 | uni_content (const CanonicalForm & F); |
---|
259 | |
---|
260 | CanonicalForm |
---|
261 | uni_content (const CanonicalForm& F, const Variable& x) |
---|
262 | { |
---|
263 | if (F.inCoeffDomain()) |
---|
264 | return F.genOne(); |
---|
265 | if (F.level() == x.level() && F.isUnivariate()) |
---|
266 | return F; |
---|
267 | if (F.level() != x.level() && F.isUnivariate()) |
---|
268 | return F.genOne(); |
---|
269 | |
---|
270 | if (x.level() != 1) |
---|
271 | { |
---|
272 | CanonicalForm f= swapvar (F, x, Variable (1)); |
---|
273 | CanonicalForm result= uni_content (f); |
---|
274 | return swapvar (result, x, Variable (1)); |
---|
275 | } |
---|
276 | else |
---|
277 | return uni_content (F); |
---|
278 | } |
---|
279 | |
---|
280 | /// compute the content of F, where F is considered as an element of |
---|
281 | /// \f$ R[x_{1}][x_{2},\ldots ,x_{n}] \f$ |
---|
282 | static inline CanonicalForm |
---|
283 | uni_content (const CanonicalForm & F) |
---|
284 | { |
---|
285 | if (F.inBaseDomain()) |
---|
286 | return F.genOne(); |
---|
287 | if (F.level() == 1 && F.isUnivariate()) |
---|
288 | return F; |
---|
289 | if (F.level() != 1 && F.isUnivariate()) |
---|
290 | return F.genOne(); |
---|
291 | if (degree (F,1) == 0) return F.genOne(); |
---|
292 | |
---|
293 | int l= F.level(); |
---|
294 | if (l == 2) |
---|
295 | return content(F); |
---|
296 | else |
---|
297 | { |
---|
298 | CanonicalForm pol, c = 0; |
---|
299 | CFIterator i = F; |
---|
300 | for (; i.hasTerms(); i++) |
---|
301 | { |
---|
302 | pol= i.coeff(); |
---|
303 | pol= uni_content (pol); |
---|
304 | c= gcd (c, pol); |
---|
305 | if (c.isOne()) |
---|
306 | return c; |
---|
307 | } |
---|
308 | return c; |
---|
309 | } |
---|
310 | } |
---|
311 | |
---|
312 | CanonicalForm |
---|
313 | extractContents (const CanonicalForm& F, const CanonicalForm& G, |
---|
314 | CanonicalForm& contentF, CanonicalForm& contentG, |
---|
315 | CanonicalForm& ppF, CanonicalForm& ppG, const int d) |
---|
316 | { |
---|
317 | CanonicalForm uniContentF, uniContentG, gcdcFcG; |
---|
318 | contentF= 1; |
---|
319 | contentG= 1; |
---|
320 | ppF= F; |
---|
321 | ppG= G; |
---|
322 | CanonicalForm result= 1; |
---|
323 | for (int i= 1; i <= d; i++) |
---|
324 | { |
---|
325 | uniContentF= uni_content (F, Variable (i)); |
---|
326 | uniContentG= uni_content (G, Variable (i)); |
---|
327 | gcdcFcG= gcd (uniContentF, uniContentG); |
---|
328 | contentF *= uniContentF; |
---|
329 | contentG *= uniContentG; |
---|
330 | ppF /= uniContentF; |
---|
331 | ppG /= uniContentG; |
---|
332 | result *= gcdcFcG; |
---|
333 | } |
---|
334 | return result; |
---|
335 | } |
---|
336 | |
---|
337 | /// compute the leading coefficient of F, where F is considered as an element |
---|
338 | /// of \f$ R[x_{1}][x_{2},\ldots ,x_{n}] \f$, order on |
---|
339 | /// \f$ Mon (x_{2},\ldots ,x_{n}) \f$ is dp. |
---|
340 | static inline |
---|
341 | CanonicalForm uni_lcoeff (const CanonicalForm& F) |
---|
342 | { |
---|
343 | if (F.level() > 1) |
---|
344 | { |
---|
345 | Variable x= Variable (2); |
---|
346 | int deg= totaldegree (F, x, F.mvar()); |
---|
347 | for (CFIterator i= F; i.hasTerms(); i++) |
---|
348 | { |
---|
349 | if (i.exp() + totaldegree (i.coeff(), x, i.coeff().mvar()) == deg) |
---|
350 | return uni_lcoeff (i.coeff()); |
---|
351 | } |
---|
352 | } |
---|
353 | return F; |
---|
354 | } |
---|
355 | |
---|
356 | /// Newton interpolation - Incremental algorithm. |
---|
357 | /// Given a list of values alpha_i and a list of polynomials u_i, 1 <= i <= n, |
---|
358 | /// computes the interpolation polynomial assuming that |
---|
359 | /// the polynomials in u are the results of evaluating the variabe x |
---|
360 | /// of the unknown polynomial at the alpha values. |
---|
361 | /// This incremental version receives only the values of alpha_n and u_n and |
---|
362 | /// the previous interpolation polynomial for points 1 <= i <= n-1, and computes |
---|
363 | /// the polynomial interpolating in all the points. |
---|
364 | /// newtonPoly must be equal to (x - alpha_1) * ... * (x - alpha_{n-1}) |
---|
365 | static inline CanonicalForm |
---|
366 | newtonInterp(const CanonicalForm & alpha, const CanonicalForm & u, |
---|
367 | const CanonicalForm & newtonPoly, const CanonicalForm & oldInterPoly, |
---|
368 | const Variable & x) |
---|
369 | { |
---|
370 | CanonicalForm interPoly; |
---|
371 | |
---|
372 | interPoly= oldInterPoly + ((u - oldInterPoly(alpha, x))/newtonPoly(alpha, x)) |
---|
373 | *newtonPoly; |
---|
374 | return interPoly; |
---|
375 | } |
---|
376 | |
---|
377 | /// compute a random element a of \f$ F_{p}(\alpha ) \f$ , |
---|
378 | /// s.t. F(a) \f$ \neq 0 \f$ , F is a univariate polynomial, returns |
---|
379 | /// fail if there are no field elements left which have not been used before |
---|
380 | static inline CanonicalForm |
---|
381 | randomElement (const CanonicalForm & F, const Variable & alpha, CFList & list, |
---|
382 | bool & fail) |
---|
383 | { |
---|
384 | fail= false; |
---|
385 | Variable x= F.mvar(); |
---|
386 | AlgExtRandomF genAlgExt (alpha); |
---|
387 | FFRandom genFF; |
---|
388 | CanonicalForm random, mipo; |
---|
389 | mipo= getMipo (alpha); |
---|
390 | int p= getCharacteristic (); |
---|
391 | int d= degree (mipo); |
---|
392 | double bound= pow ((double) p, (double) d); |
---|
393 | do |
---|
394 | { |
---|
395 | if (list.length() == bound) |
---|
396 | { |
---|
397 | fail= true; |
---|
398 | break; |
---|
399 | } |
---|
400 | if (list.length() < p) |
---|
401 | { |
---|
402 | random= genFF.generate(); |
---|
403 | while (find (list, random)) |
---|
404 | random= genFF.generate(); |
---|
405 | } |
---|
406 | else |
---|
407 | { |
---|
408 | random= genAlgExt.generate(); |
---|
409 | while (find (list, random)) |
---|
410 | random= genAlgExt.generate(); |
---|
411 | } |
---|
412 | if (F (random, x) == 0) |
---|
413 | { |
---|
414 | list.append (random); |
---|
415 | continue; |
---|
416 | } |
---|
417 | } while (find (list, random)); |
---|
418 | return random; |
---|
419 | } |
---|
420 | |
---|
421 | static inline |
---|
422 | Variable chooseExtension (const Variable & alpha) |
---|
423 | { |
---|
424 | int i, m; |
---|
425 | // extension of F_p needed |
---|
426 | if (alpha.level() == 1) |
---|
427 | { |
---|
428 | i= 1; |
---|
429 | m= 2; |
---|
430 | } //extension of F_p(alpha) |
---|
431 | if (alpha.level() != 1) |
---|
432 | { |
---|
433 | i= 4; |
---|
434 | m= degree (getMipo (alpha)); |
---|
435 | } |
---|
436 | #ifdef HAVE_FLINT |
---|
437 | nmod_poly_t Irredpoly; |
---|
438 | nmod_poly_init(Irredpoly,getCharacteristic()); |
---|
439 | nmod_poly_randtest_monic_irreducible(Irredpoly, FLINTrandom, i*m+1); |
---|
440 | CanonicalForm newMipo=convertnmod_poly_t2FacCF(Irredpoly,Variable(1)); |
---|
441 | nmod_poly_clear(Irredpoly); |
---|
442 | #else |
---|
443 | if (fac_NTL_char != getCharacteristic()) |
---|
444 | { |
---|
445 | fac_NTL_char= getCharacteristic(); |
---|
446 | zz_p::init (getCharacteristic()); |
---|
447 | } |
---|
448 | zz_pX NTLIrredpoly; |
---|
449 | BuildIrred (NTLIrredpoly, i*m); |
---|
450 | CanonicalForm newMipo= convertNTLzzpX2CF (NTLIrredpoly, Variable (1)); |
---|
451 | #endif |
---|
452 | return rootOf (newMipo); |
---|
453 | } |
---|
454 | |
---|
455 | #ifdef HAVE_NTL |
---|
456 | CanonicalForm |
---|
457 | modGCDFq (const CanonicalForm& F, const CanonicalForm& G, |
---|
458 | CanonicalForm& coF, CanonicalForm& coG, |
---|
459 | Variable & alpha, CFList& l, bool& topLevel); |
---|
460 | #endif |
---|
461 | |
---|
462 | #ifdef HAVE_NTL // modGCDFq |
---|
463 | CanonicalForm |
---|
464 | modGCDFq (const CanonicalForm& F, const CanonicalForm& G, |
---|
465 | Variable & alpha, CFList& l, bool& topLevel) |
---|
466 | { |
---|
467 | CanonicalForm dummy1, dummy2; |
---|
468 | CanonicalForm result= modGCDFq (F, G, dummy1, dummy2, alpha, l, |
---|
469 | topLevel); |
---|
470 | return result; |
---|
471 | } |
---|
472 | #endif |
---|
473 | |
---|
474 | /// GCD of F and G over \f$ F_{p}(\alpha ) \f$ , |
---|
475 | /// l and topLevel are only used internally, output is monic |
---|
476 | /// based on Alg. 7.2. as described in "Algorithms for |
---|
477 | /// Computer Algebra" by Geddes, Czapor, Labahn |
---|
478 | #ifdef HAVE_NTL // mapPrimElem |
---|
479 | CanonicalForm |
---|
480 | modGCDFq (const CanonicalForm& F, const CanonicalForm& G, |
---|
481 | CanonicalForm& coF, CanonicalForm& coG, |
---|
482 | Variable & alpha, CFList& l, bool& topLevel) |
---|
483 | { |
---|
484 | CanonicalForm A= F; |
---|
485 | CanonicalForm B= G; |
---|
486 | if (F.isZero() && degree(G) > 0) |
---|
487 | { |
---|
488 | coF= 0; |
---|
489 | coG= Lc (G); |
---|
490 | return G/Lc(G); |
---|
491 | } |
---|
492 | else if (G.isZero() && degree (F) > 0) |
---|
493 | { |
---|
494 | coF= Lc (F); |
---|
495 | coG= 0; |
---|
496 | return F/Lc(F); |
---|
497 | } |
---|
498 | else if (F.isZero() && G.isZero()) |
---|
499 | { |
---|
500 | coF= coG= 0; |
---|
501 | return F.genOne(); |
---|
502 | } |
---|
503 | if (F.inBaseDomain() || G.inBaseDomain()) |
---|
504 | { |
---|
505 | coF= F; |
---|
506 | coG= G; |
---|
507 | return F.genOne(); |
---|
508 | } |
---|
509 | if (F.isUnivariate() && fdivides(F, G, coG)) |
---|
510 | { |
---|
511 | coF= Lc (F); |
---|
512 | return F/Lc(F); |
---|
513 | } |
---|
514 | if (G.isUnivariate() && fdivides(G, F, coF)) |
---|
515 | { |
---|
516 | coG= Lc (G); |
---|
517 | return G/Lc(G); |
---|
518 | } |
---|
519 | if (F == G) |
---|
520 | { |
---|
521 | coF= coG= Lc (F); |
---|
522 | return F/Lc(F); |
---|
523 | } |
---|
524 | |
---|
525 | CFMap M,N; |
---|
526 | int best_level= myCompress (A, B, M, N, topLevel); |
---|
527 | |
---|
528 | if (best_level == 0) |
---|
529 | { |
---|
530 | coF= F; |
---|
531 | coG= G; |
---|
532 | return B.genOne(); |
---|
533 | } |
---|
534 | |
---|
535 | A= M(A); |
---|
536 | B= M(B); |
---|
537 | |
---|
538 | Variable x= Variable(1); |
---|
539 | |
---|
540 | //univariate case |
---|
541 | if (A.isUnivariate() && B.isUnivariate()) |
---|
542 | { |
---|
543 | CanonicalForm result= gcd (A, B); |
---|
544 | coF= N (A/result); |
---|
545 | coG= N (B/result); |
---|
546 | return N (result); |
---|
547 | } |
---|
548 | |
---|
549 | CanonicalForm cA, cB; // content of A and B |
---|
550 | CanonicalForm ppA, ppB; // primitive part of A and B |
---|
551 | CanonicalForm gcdcAcB; |
---|
552 | |
---|
553 | cA = uni_content (A); |
---|
554 | cB = uni_content (B); |
---|
555 | gcdcAcB= gcd (cA, cB); |
---|
556 | ppA= A/cA; |
---|
557 | ppB= B/cB; |
---|
558 | |
---|
559 | CanonicalForm lcA, lcB; // leading coefficients of A and B |
---|
560 | CanonicalForm gcdlcAlcB; |
---|
561 | |
---|
562 | lcA= uni_lcoeff (ppA); |
---|
563 | lcB= uni_lcoeff (ppB); |
---|
564 | |
---|
565 | gcdlcAlcB= gcd (lcA, lcB); |
---|
566 | |
---|
567 | int d= totaldegree (ppA, Variable(2), Variable (ppA.level())); |
---|
568 | |
---|
569 | if (d == 0) |
---|
570 | { |
---|
571 | coF= N (ppA*(cA/gcdcAcB)); |
---|
572 | coG= N (ppB*(cB/gcdcAcB)); |
---|
573 | return N(gcdcAcB); |
---|
574 | } |
---|
575 | |
---|
576 | int d0= totaldegree (ppB, Variable(2), Variable (ppB.level())); |
---|
577 | if (d0 < d) |
---|
578 | d= d0; |
---|
579 | if (d == 0) |
---|
580 | { |
---|
581 | coF= N (ppA*(cA/gcdcAcB)); |
---|
582 | coG= N (ppB*(cB/gcdcAcB)); |
---|
583 | return N(gcdcAcB); |
---|
584 | } |
---|
585 | |
---|
586 | CanonicalForm m, random_element, G_m, G_random_element, H, cH, ppH; |
---|
587 | CanonicalForm newtonPoly, coF_random_element, coG_random_element, coF_m, |
---|
588 | coG_m, ppCoF, ppCoG; |
---|
589 | |
---|
590 | newtonPoly= 1; |
---|
591 | m= gcdlcAlcB; |
---|
592 | G_m= 0; |
---|
593 | coF= 0; |
---|
594 | coG= 0; |
---|
595 | H= 0; |
---|
596 | bool fail= false; |
---|
597 | topLevel= false; |
---|
598 | bool inextension= false; |
---|
599 | Variable V_buf= alpha, V_buf4= alpha; |
---|
600 | CanonicalForm prim_elem, im_prim_elem; |
---|
601 | CanonicalForm prim_elem_alpha, im_prim_elem_alpha; |
---|
602 | CFList source, dest; |
---|
603 | int bound1= degree (ppA, 1); |
---|
604 | int bound2= degree (ppB, 1); |
---|
605 | do |
---|
606 | { |
---|
607 | random_element= randomElement (m*lcA*lcB, V_buf, l, fail); |
---|
608 | if (fail) |
---|
609 | { |
---|
610 | source= CFList(); |
---|
611 | dest= CFList(); |
---|
612 | |
---|
613 | Variable V_buf3= V_buf; |
---|
614 | V_buf= chooseExtension (V_buf); |
---|
615 | bool prim_fail= false; |
---|
616 | Variable V_buf2; |
---|
617 | prim_elem= primitiveElement (V_buf4, V_buf2, prim_fail); |
---|
618 | if (V_buf4 == alpha) |
---|
619 | prim_elem_alpha= prim_elem; |
---|
620 | |
---|
621 | if (V_buf3 != V_buf4) |
---|
622 | { |
---|
623 | m= mapDown (m, prim_elem, im_prim_elem, V_buf4, source, dest); |
---|
624 | G_m= mapDown (G_m, prim_elem, im_prim_elem, V_buf4, source, dest); |
---|
625 | coF_m= mapDown (coF_m, prim_elem, im_prim_elem, V_buf4, source, dest); |
---|
626 | coG_m= mapDown (coG_m, prim_elem, im_prim_elem, V_buf4, source, dest); |
---|
627 | newtonPoly= mapDown (newtonPoly, prim_elem, im_prim_elem, V_buf4, |
---|
628 | source, dest); |
---|
629 | ppA= mapDown (ppA, prim_elem, im_prim_elem, V_buf4, source, dest); |
---|
630 | ppB= mapDown (ppB, prim_elem, im_prim_elem, V_buf4, source, dest); |
---|
631 | gcdlcAlcB= mapDown (gcdlcAlcB, prim_elem, im_prim_elem, V_buf4, |
---|
632 | source, dest); |
---|
633 | lcA= mapDown (lcA, prim_elem, im_prim_elem, V_buf4, source, dest); |
---|
634 | lcB= mapDown (lcB, prim_elem, im_prim_elem, V_buf4, source, dest); |
---|
635 | for (CFListIterator i= l; i.hasItem(); i++) |
---|
636 | i.getItem()= mapDown (i.getItem(), prim_elem, im_prim_elem, V_buf4, |
---|
637 | source, dest); |
---|
638 | } |
---|
639 | |
---|
640 | ASSERT (!prim_fail, "failure in integer factorizer"); |
---|
641 | if (prim_fail) |
---|
642 | ; //ERROR |
---|
643 | else |
---|
644 | im_prim_elem= mapPrimElem (prim_elem, V_buf4, V_buf); |
---|
645 | |
---|
646 | if (V_buf4 == alpha) |
---|
647 | im_prim_elem_alpha= im_prim_elem; |
---|
648 | else |
---|
649 | im_prim_elem_alpha= mapUp (im_prim_elem_alpha, V_buf4, V_buf, prim_elem, |
---|
650 | im_prim_elem, source, dest); |
---|
651 | DEBOUTLN (cerr, "getMipo (V_buf4)= " << getMipo (V_buf4)); |
---|
652 | DEBOUTLN (cerr, "getMipo (V_buf2)= " << getMipo (V_buf2)); |
---|
653 | inextension= true; |
---|
654 | for (CFListIterator i= l; i.hasItem(); i++) |
---|
655 | i.getItem()= mapUp (i.getItem(), V_buf4, V_buf, prim_elem, |
---|
656 | im_prim_elem, source, dest); |
---|
657 | m= mapUp (m, V_buf4, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
658 | G_m= mapUp (G_m, V_buf4, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
659 | coF_m= mapUp (coF_m, V_buf4, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
660 | coG_m= mapUp (coG_m, V_buf4, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
661 | newtonPoly= mapUp (newtonPoly, V_buf4, V_buf, prim_elem, im_prim_elem, |
---|
662 | source, dest); |
---|
663 | ppA= mapUp (ppA, V_buf4, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
664 | ppB= mapUp (ppB, V_buf4, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
665 | gcdlcAlcB= mapUp (gcdlcAlcB, V_buf4, V_buf, prim_elem, im_prim_elem, |
---|
666 | source, dest); |
---|
667 | lcA= mapUp (lcA, V_buf4, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
668 | lcB= mapUp (lcB, V_buf4, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
669 | |
---|
670 | fail= false; |
---|
671 | random_element= randomElement (m*lcA*lcB, V_buf, l, fail ); |
---|
672 | DEBOUTLN (cerr, "fail= " << fail); |
---|
673 | CFList list; |
---|
674 | TIMING_START (gcd_recursion); |
---|
675 | G_random_element= |
---|
676 | modGCDFq (ppA (random_element, x), ppB (random_element, x), |
---|
677 | coF_random_element, coG_random_element, V_buf, |
---|
678 | list, topLevel); |
---|
679 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
680 | "time for recursive call: "); |
---|
681 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
682 | V_buf4= V_buf; |
---|
683 | } |
---|
684 | else |
---|
685 | { |
---|
686 | CFList list; |
---|
687 | TIMING_START (gcd_recursion); |
---|
688 | G_random_element= |
---|
689 | modGCDFq (ppA(random_element, x), ppB(random_element, x), |
---|
690 | coF_random_element, coG_random_element, V_buf, |
---|
691 | list, topLevel); |
---|
692 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
693 | "time for recursive call: "); |
---|
694 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
695 | } |
---|
696 | |
---|
697 | if (!G_random_element.inCoeffDomain()) |
---|
698 | d0= totaldegree (G_random_element, Variable(2), |
---|
699 | Variable (G_random_element.level())); |
---|
700 | else |
---|
701 | d0= 0; |
---|
702 | |
---|
703 | if (d0 == 0) |
---|
704 | { |
---|
705 | if (inextension) |
---|
706 | { |
---|
707 | CFList u, v; |
---|
708 | ppA= mapDown (ppA, prim_elem_alpha, im_prim_elem_alpha, alpha, u, v); |
---|
709 | ppB= mapDown (ppB, prim_elem_alpha, im_prim_elem_alpha, alpha, u, v); |
---|
710 | prune1 (alpha); |
---|
711 | } |
---|
712 | coF= N (ppA*(cA/gcdcAcB)); |
---|
713 | coG= N (ppB*(cB/gcdcAcB)); |
---|
714 | return N(gcdcAcB); |
---|
715 | } |
---|
716 | if (d0 > d) |
---|
717 | { |
---|
718 | if (!find (l, random_element)) |
---|
719 | l.append (random_element); |
---|
720 | continue; |
---|
721 | } |
---|
722 | |
---|
723 | G_random_element= |
---|
724 | (gcdlcAlcB(random_element, x)/uni_lcoeff (G_random_element)) |
---|
725 | * G_random_element; |
---|
726 | coF_random_element= (lcA(random_element,x)/uni_lcoeff(coF_random_element)) |
---|
727 | *coF_random_element; |
---|
728 | coG_random_element= (lcB(random_element,x)/uni_lcoeff(coG_random_element)) |
---|
729 | *coG_random_element; |
---|
730 | |
---|
731 | if (!G_random_element.inCoeffDomain()) |
---|
732 | d0= totaldegree (G_random_element, Variable(2), |
---|
733 | Variable (G_random_element.level())); |
---|
734 | else |
---|
735 | d0= 0; |
---|
736 | |
---|
737 | if (d0 < d) |
---|
738 | { |
---|
739 | m= gcdlcAlcB; |
---|
740 | newtonPoly= 1; |
---|
741 | G_m= 0; |
---|
742 | d= d0; |
---|
743 | coF_m= 0; |
---|
744 | coG_m= 0; |
---|
745 | } |
---|
746 | |
---|
747 | TIMING_START (newton_interpolation); |
---|
748 | H= newtonInterp (random_element, G_random_element, newtonPoly, G_m, x); |
---|
749 | coF= newtonInterp (random_element, coF_random_element, newtonPoly, coF_m,x); |
---|
750 | coG= newtonInterp (random_element, coG_random_element, newtonPoly, coG_m,x); |
---|
751 | TIMING_END_AND_PRINT (newton_interpolation, |
---|
752 | "time for newton interpolation: "); |
---|
753 | |
---|
754 | //termination test |
---|
755 | if ((uni_lcoeff (H) == gcdlcAlcB) || (G_m == H)) |
---|
756 | { |
---|
757 | TIMING_START (termination_test); |
---|
758 | if (gcdlcAlcB.isOne()) |
---|
759 | cH= 1; |
---|
760 | else |
---|
761 | cH= uni_content (H); |
---|
762 | ppH= H/cH; |
---|
763 | ppH /= Lc (ppH); |
---|
764 | CanonicalForm lcppH= gcdlcAlcB/cH; |
---|
765 | CanonicalForm ccoF= lcppH/Lc (lcppH); |
---|
766 | CanonicalForm ccoG= lcppH/Lc (lcppH); |
---|
767 | ppCoF= coF/ccoF; |
---|
768 | ppCoG= coG/ccoG; |
---|
769 | if (inextension) |
---|
770 | { |
---|
771 | if (((degree (ppCoF,1)+degree (ppH,1) == bound1) && |
---|
772 | (degree (ppCoG,1)+degree (ppH,1) == bound2) && |
---|
773 | terminationTest (ppA, ppB, ppCoF, ppCoG, ppH)) || |
---|
774 | (fdivides (ppH, ppA, ppCoF) && fdivides (ppH, ppB, ppCoG))) |
---|
775 | { |
---|
776 | CFList u, v; |
---|
777 | DEBOUTLN (cerr, "ppH before mapDown= " << ppH); |
---|
778 | ppH= mapDown (ppH, prim_elem_alpha, im_prim_elem_alpha, alpha, u, v); |
---|
779 | ppCoF= mapDown (ppCoF, prim_elem_alpha, im_prim_elem_alpha, alpha, u, v); |
---|
780 | ppCoG= mapDown (ppCoG, prim_elem_alpha, im_prim_elem_alpha, alpha, u, v); |
---|
781 | DEBOUTLN (cerr, "ppH after mapDown= " << ppH); |
---|
782 | coF= N ((cA/gcdcAcB)*ppCoF); |
---|
783 | coG= N ((cB/gcdcAcB)*ppCoG); |
---|
784 | TIMING_END_AND_PRINT (termination_test, |
---|
785 | "time for successful termination test Fq: "); |
---|
786 | prune1 (alpha); |
---|
787 | return N(gcdcAcB*ppH); |
---|
788 | } |
---|
789 | } |
---|
790 | else if (((degree (ppCoF,1)+degree (ppH,1) == bound1) && |
---|
791 | (degree (ppCoG,1)+degree (ppH,1) == bound2) && |
---|
792 | terminationTest (ppA, ppB, ppCoF, ppCoG, ppH)) || |
---|
793 | (fdivides (ppH, ppA, ppCoF) && fdivides (ppH, ppB, ppCoG))) |
---|
794 | { |
---|
795 | coF= N ((cA/gcdcAcB)*ppCoF); |
---|
796 | coG= N ((cB/gcdcAcB)*ppCoG); |
---|
797 | TIMING_END_AND_PRINT (termination_test, |
---|
798 | "time for successful termination test Fq: "); |
---|
799 | return N(gcdcAcB*ppH); |
---|
800 | } |
---|
801 | TIMING_END_AND_PRINT (termination_test, |
---|
802 | "time for unsuccessful termination test Fq: "); |
---|
803 | } |
---|
804 | |
---|
805 | G_m= H; |
---|
806 | coF_m= coF; |
---|
807 | coG_m= coG; |
---|
808 | newtonPoly= newtonPoly*(x - random_element); |
---|
809 | m= m*(x - random_element); |
---|
810 | if (!find (l, random_element)) |
---|
811 | l.append (random_element); |
---|
812 | } while (1); |
---|
813 | } |
---|
814 | #endif |
---|
815 | |
---|
816 | /// compute a random element a of GF, s.t. F(a) \f$ \neq 0 \f$ , F is a |
---|
817 | /// univariate polynomial, returns fail if there are no field elements left |
---|
818 | /// which have not been used before |
---|
819 | static inline |
---|
820 | CanonicalForm |
---|
821 | GFRandomElement (const CanonicalForm& F, CFList& list, bool& fail) |
---|
822 | { |
---|
823 | fail= false; |
---|
824 | Variable x= F.mvar(); |
---|
825 | GFRandom genGF; |
---|
826 | CanonicalForm random; |
---|
827 | int p= getCharacteristic(); |
---|
828 | int d= getGFDegree(); |
---|
829 | int bound= ipower (p, d); |
---|
830 | do |
---|
831 | { |
---|
832 | if (list.length() == bound) |
---|
833 | { |
---|
834 | fail= true; |
---|
835 | break; |
---|
836 | } |
---|
837 | if (list.length() < 1) |
---|
838 | random= 0; |
---|
839 | else |
---|
840 | { |
---|
841 | random= genGF.generate(); |
---|
842 | while (find (list, random)) |
---|
843 | random= genGF.generate(); |
---|
844 | } |
---|
845 | if (F (random, x) == 0) |
---|
846 | { |
---|
847 | list.append (random); |
---|
848 | continue; |
---|
849 | } |
---|
850 | } while (find (list, random)); |
---|
851 | return random; |
---|
852 | } |
---|
853 | |
---|
854 | CanonicalForm |
---|
855 | modGCDGF (const CanonicalForm& F, const CanonicalForm& G, |
---|
856 | CanonicalForm& coF, CanonicalForm& coG, |
---|
857 | CFList& l, bool& topLevel); |
---|
858 | |
---|
859 | CanonicalForm |
---|
860 | modGCDGF (const CanonicalForm& F, const CanonicalForm& G, CFList& l, |
---|
861 | bool& topLevel) |
---|
862 | { |
---|
863 | CanonicalForm dummy1, dummy2; |
---|
864 | CanonicalForm result= modGCDGF (F, G, dummy1, dummy2, l, topLevel); |
---|
865 | return result; |
---|
866 | } |
---|
867 | |
---|
868 | /// GCD of F and G over GF, based on Alg. 7.2. as described in "Algorithms for |
---|
869 | /// Computer Algebra" by Geddes, Czapor, Labahn |
---|
870 | /// Usually this algorithm will be faster than modGCDFq since GF has |
---|
871 | /// faster field arithmetics, however it might fail if the input is large since |
---|
872 | /// the size of the base field is bounded by 2^16, output is monic |
---|
873 | CanonicalForm |
---|
874 | modGCDGF (const CanonicalForm& F, const CanonicalForm& G, |
---|
875 | CanonicalForm& coF, CanonicalForm& coG, |
---|
876 | CFList& l, bool& topLevel) |
---|
877 | { |
---|
878 | CanonicalForm A= F; |
---|
879 | CanonicalForm B= G; |
---|
880 | if (F.isZero() && degree(G) > 0) |
---|
881 | { |
---|
882 | coF= 0; |
---|
883 | coG= Lc (G); |
---|
884 | return G/Lc(G); |
---|
885 | } |
---|
886 | else if (G.isZero() && degree (F) > 0) |
---|
887 | { |
---|
888 | coF= Lc (F); |
---|
889 | coG= 0; |
---|
890 | return F/Lc(F); |
---|
891 | } |
---|
892 | else if (F.isZero() && G.isZero()) |
---|
893 | { |
---|
894 | coF= coG= 0; |
---|
895 | return F.genOne(); |
---|
896 | } |
---|
897 | if (F.inBaseDomain() || G.inBaseDomain()) |
---|
898 | { |
---|
899 | coF= F; |
---|
900 | coG= G; |
---|
901 | return F.genOne(); |
---|
902 | } |
---|
903 | if (F.isUnivariate() && fdivides(F, G, coG)) |
---|
904 | { |
---|
905 | coF= Lc (F); |
---|
906 | return F/Lc(F); |
---|
907 | } |
---|
908 | if (G.isUnivariate() && fdivides(G, F, coF)) |
---|
909 | { |
---|
910 | coG= Lc (G); |
---|
911 | return G/Lc(G); |
---|
912 | } |
---|
913 | if (F == G) |
---|
914 | { |
---|
915 | coF= coG= Lc (F); |
---|
916 | return F/Lc(F); |
---|
917 | } |
---|
918 | |
---|
919 | CFMap M,N; |
---|
920 | int best_level= myCompress (A, B, M, N, topLevel); |
---|
921 | |
---|
922 | if (best_level == 0) |
---|
923 | { |
---|
924 | coF= F; |
---|
925 | coG= G; |
---|
926 | return B.genOne(); |
---|
927 | } |
---|
928 | |
---|
929 | A= M(A); |
---|
930 | B= M(B); |
---|
931 | |
---|
932 | Variable x= Variable(1); |
---|
933 | |
---|
934 | //univariate case |
---|
935 | if (A.isUnivariate() && B.isUnivariate()) |
---|
936 | { |
---|
937 | CanonicalForm result= gcd (A, B); |
---|
938 | coF= N (A/result); |
---|
939 | coG= N (B/result); |
---|
940 | return N (result); |
---|
941 | } |
---|
942 | |
---|
943 | CanonicalForm cA, cB; // content of A and B |
---|
944 | CanonicalForm ppA, ppB; // primitive part of A and B |
---|
945 | CanonicalForm gcdcAcB; |
---|
946 | |
---|
947 | cA = uni_content (A); |
---|
948 | cB = uni_content (B); |
---|
949 | gcdcAcB= gcd (cA, cB); |
---|
950 | ppA= A/cA; |
---|
951 | ppB= B/cB; |
---|
952 | |
---|
953 | CanonicalForm lcA, lcB; // leading coefficients of A and B |
---|
954 | CanonicalForm gcdlcAlcB; |
---|
955 | |
---|
956 | lcA= uni_lcoeff (ppA); |
---|
957 | lcB= uni_lcoeff (ppB); |
---|
958 | |
---|
959 | gcdlcAlcB= gcd (lcA, lcB); |
---|
960 | |
---|
961 | int d= totaldegree (ppA, Variable(2), Variable (ppA.level())); |
---|
962 | if (d == 0) |
---|
963 | { |
---|
964 | coF= N (ppA*(cA/gcdcAcB)); |
---|
965 | coG= N (ppB*(cB/gcdcAcB)); |
---|
966 | return N(gcdcAcB); |
---|
967 | } |
---|
968 | int d0= totaldegree (ppB, Variable(2), Variable (ppB.level())); |
---|
969 | if (d0 < d) |
---|
970 | d= d0; |
---|
971 | if (d == 0) |
---|
972 | { |
---|
973 | coF= N (ppA*(cA/gcdcAcB)); |
---|
974 | coG= N (ppB*(cB/gcdcAcB)); |
---|
975 | return N(gcdcAcB); |
---|
976 | } |
---|
977 | |
---|
978 | CanonicalForm m, random_element, G_m, G_random_element, H, cH, ppH; |
---|
979 | CanonicalForm newtonPoly, coF_random_element, coG_random_element, coF_m, |
---|
980 | coG_m, ppCoF, ppCoG; |
---|
981 | |
---|
982 | newtonPoly= 1; |
---|
983 | m= gcdlcAlcB; |
---|
984 | G_m= 0; |
---|
985 | coF= 0; |
---|
986 | coG= 0; |
---|
987 | H= 0; |
---|
988 | bool fail= false; |
---|
989 | topLevel= false; |
---|
990 | bool inextension= false; |
---|
991 | int p=-1; |
---|
992 | int k= getGFDegree(); |
---|
993 | int kk; |
---|
994 | int expon; |
---|
995 | char gf_name_buf= gf_name; |
---|
996 | int bound1= degree (ppA, 1); |
---|
997 | int bound2= degree (ppB, 1); |
---|
998 | do |
---|
999 | { |
---|
1000 | random_element= GFRandomElement (m*lcA*lcB, l, fail); |
---|
1001 | if (fail) |
---|
1002 | { |
---|
1003 | p= getCharacteristic(); |
---|
1004 | expon= 2; |
---|
1005 | kk= getGFDegree(); |
---|
1006 | if (ipower (p, kk*expon) < (1 << 16)) |
---|
1007 | setCharacteristic (p, kk*(int)expon, 'b'); |
---|
1008 | else |
---|
1009 | { |
---|
1010 | expon= (int) floor((log ((double)((1<<16) - 1)))/(log((double)p)*kk)); |
---|
1011 | ASSERT (expon >= 2, "not enough points in modGCDGF"); |
---|
1012 | setCharacteristic (p, (int)(kk*expon), 'b'); |
---|
1013 | } |
---|
1014 | inextension= true; |
---|
1015 | fail= false; |
---|
1016 | for (CFListIterator i= l; i.hasItem(); i++) |
---|
1017 | i.getItem()= GFMapUp (i.getItem(), kk); |
---|
1018 | m= GFMapUp (m, kk); |
---|
1019 | G_m= GFMapUp (G_m, kk); |
---|
1020 | newtonPoly= GFMapUp (newtonPoly, kk); |
---|
1021 | coF_m= GFMapUp (coF_m, kk); |
---|
1022 | coG_m= GFMapUp (coG_m, kk); |
---|
1023 | ppA= GFMapUp (ppA, kk); |
---|
1024 | ppB= GFMapUp (ppB, kk); |
---|
1025 | gcdlcAlcB= GFMapUp (gcdlcAlcB, kk); |
---|
1026 | lcA= GFMapUp (lcA, kk); |
---|
1027 | lcB= GFMapUp (lcB, kk); |
---|
1028 | random_element= GFRandomElement (m*lcA*lcB, l, fail); |
---|
1029 | DEBOUTLN (cerr, "fail= " << fail); |
---|
1030 | CFList list; |
---|
1031 | TIMING_START (gcd_recursion); |
---|
1032 | G_random_element= modGCDGF (ppA(random_element, x), ppB(random_element, x), |
---|
1033 | coF_random_element, coG_random_element, |
---|
1034 | list, topLevel); |
---|
1035 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
1036 | "time for recursive call: "); |
---|
1037 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
1038 | } |
---|
1039 | else |
---|
1040 | { |
---|
1041 | CFList list; |
---|
1042 | TIMING_START (gcd_recursion); |
---|
1043 | G_random_element= modGCDGF (ppA(random_element, x), ppB(random_element, x), |
---|
1044 | coF_random_element, coG_random_element, |
---|
1045 | list, topLevel); |
---|
1046 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
1047 | "time for recursive call: "); |
---|
1048 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
1049 | } |
---|
1050 | |
---|
1051 | if (!G_random_element.inCoeffDomain()) |
---|
1052 | d0= totaldegree (G_random_element, Variable(2), |
---|
1053 | Variable (G_random_element.level())); |
---|
1054 | else |
---|
1055 | d0= 0; |
---|
1056 | |
---|
1057 | if (d0 == 0) |
---|
1058 | { |
---|
1059 | if (inextension) |
---|
1060 | { |
---|
1061 | ppA= GFMapDown (ppA, k); |
---|
1062 | ppB= GFMapDown (ppB, k); |
---|
1063 | setCharacteristic (p, k, gf_name_buf); |
---|
1064 | } |
---|
1065 | coF= N (ppA*(cA/gcdcAcB)); |
---|
1066 | coG= N (ppB*(cB/gcdcAcB)); |
---|
1067 | return N(gcdcAcB); |
---|
1068 | } |
---|
1069 | if (d0 > d) |
---|
1070 | { |
---|
1071 | if (!find (l, random_element)) |
---|
1072 | l.append (random_element); |
---|
1073 | continue; |
---|
1074 | } |
---|
1075 | |
---|
1076 | G_random_element= |
---|
1077 | (gcdlcAlcB(random_element, x)/uni_lcoeff(G_random_element)) * |
---|
1078 | G_random_element; |
---|
1079 | |
---|
1080 | coF_random_element= (lcA(random_element,x)/uni_lcoeff(coF_random_element)) |
---|
1081 | *coF_random_element; |
---|
1082 | coG_random_element= (lcB(random_element,x)/uni_lcoeff(coG_random_element)) |
---|
1083 | *coG_random_element; |
---|
1084 | |
---|
1085 | if (!G_random_element.inCoeffDomain()) |
---|
1086 | d0= totaldegree (G_random_element, Variable(2), |
---|
1087 | Variable (G_random_element.level())); |
---|
1088 | else |
---|
1089 | d0= 0; |
---|
1090 | |
---|
1091 | if (d0 < d) |
---|
1092 | { |
---|
1093 | m= gcdlcAlcB; |
---|
1094 | newtonPoly= 1; |
---|
1095 | G_m= 0; |
---|
1096 | d= d0; |
---|
1097 | coF_m= 0; |
---|
1098 | coG_m= 0; |
---|
1099 | } |
---|
1100 | |
---|
1101 | TIMING_START (newton_interpolation); |
---|
1102 | H= newtonInterp (random_element, G_random_element, newtonPoly, G_m, x); |
---|
1103 | coF= newtonInterp (random_element, coF_random_element, newtonPoly, coF_m,x); |
---|
1104 | coG= newtonInterp (random_element, coG_random_element, newtonPoly, coG_m,x); |
---|
1105 | TIMING_END_AND_PRINT (newton_interpolation, |
---|
1106 | "time for newton interpolation: "); |
---|
1107 | |
---|
1108 | //termination test |
---|
1109 | if ((uni_lcoeff (H) == gcdlcAlcB) || (G_m == H)) |
---|
1110 | { |
---|
1111 | TIMING_START (termination_test); |
---|
1112 | if (gcdlcAlcB.isOne()) |
---|
1113 | cH= 1; |
---|
1114 | else |
---|
1115 | cH= uni_content (H); |
---|
1116 | ppH= H/cH; |
---|
1117 | ppH /= Lc (ppH); |
---|
1118 | CanonicalForm lcppH= gcdlcAlcB/cH; |
---|
1119 | CanonicalForm ccoF= lcppH/Lc (lcppH); |
---|
1120 | CanonicalForm ccoG= lcppH/Lc (lcppH); |
---|
1121 | ppCoF= coF/ccoF; |
---|
1122 | ppCoG= coG/ccoG; |
---|
1123 | if (inextension) |
---|
1124 | { |
---|
1125 | if (((degree (ppCoF,1)+degree (ppH,1) == bound1) && |
---|
1126 | (degree (ppCoG,1)+degree (ppH,1) == bound2) && |
---|
1127 | terminationTest (ppA, ppB, ppCoF, ppCoG, ppH)) || |
---|
1128 | (fdivides (ppH, ppA, ppCoF) && fdivides (ppH, ppB, ppCoG))) |
---|
1129 | { |
---|
1130 | DEBOUTLN (cerr, "ppH before mapDown= " << ppH); |
---|
1131 | ppH= GFMapDown (ppH, k); |
---|
1132 | ppCoF= GFMapDown (ppCoF, k); |
---|
1133 | ppCoG= GFMapDown (ppCoG, k); |
---|
1134 | DEBOUTLN (cerr, "ppH after mapDown= " << ppH); |
---|
1135 | coF= N ((cA/gcdcAcB)*ppCoF); |
---|
1136 | coG= N ((cB/gcdcAcB)*ppCoG); |
---|
1137 | setCharacteristic (p, k, gf_name_buf); |
---|
1138 | TIMING_END_AND_PRINT (termination_test, |
---|
1139 | "time for successful termination GF: "); |
---|
1140 | return N(gcdcAcB*ppH); |
---|
1141 | } |
---|
1142 | } |
---|
1143 | else |
---|
1144 | { |
---|
1145 | if (((degree (ppCoF,1)+degree (ppH,1) == bound1) && |
---|
1146 | (degree (ppCoG,1)+degree (ppH,1) == bound2) && |
---|
1147 | terminationTest (ppA, ppB, ppCoF, ppCoG, ppH)) || |
---|
1148 | (fdivides (ppH, ppA, ppCoF) && fdivides (ppH, ppB, ppCoG))) |
---|
1149 | { |
---|
1150 | coF= N ((cA/gcdcAcB)*ppCoF); |
---|
1151 | coG= N ((cB/gcdcAcB)*ppCoG); |
---|
1152 | TIMING_END_AND_PRINT (termination_test, |
---|
1153 | "time for successful termination GF: "); |
---|
1154 | return N(gcdcAcB*ppH); |
---|
1155 | } |
---|
1156 | } |
---|
1157 | TIMING_END_AND_PRINT (termination_test, |
---|
1158 | "time for unsuccessful termination GF: "); |
---|
1159 | } |
---|
1160 | |
---|
1161 | G_m= H; |
---|
1162 | coF_m= coF; |
---|
1163 | coG_m= coG; |
---|
1164 | newtonPoly= newtonPoly*(x - random_element); |
---|
1165 | m= m*(x - random_element); |
---|
1166 | if (!find (l, random_element)) |
---|
1167 | l.append (random_element); |
---|
1168 | } while (1); |
---|
1169 | } |
---|
1170 | |
---|
1171 | static inline |
---|
1172 | CanonicalForm |
---|
1173 | FpRandomElement (const CanonicalForm& F, CFList& list, bool& fail) |
---|
1174 | { |
---|
1175 | fail= false; |
---|
1176 | Variable x= F.mvar(); |
---|
1177 | FFRandom genFF; |
---|
1178 | CanonicalForm random; |
---|
1179 | int p= getCharacteristic(); |
---|
1180 | int bound= p; |
---|
1181 | do |
---|
1182 | { |
---|
1183 | if (list.length() == bound) |
---|
1184 | { |
---|
1185 | fail= true; |
---|
1186 | break; |
---|
1187 | } |
---|
1188 | if (list.length() < 1) |
---|
1189 | random= 0; |
---|
1190 | else |
---|
1191 | { |
---|
1192 | random= genFF.generate(); |
---|
1193 | while (find (list, random)) |
---|
1194 | random= genFF.generate(); |
---|
1195 | } |
---|
1196 | if (F (random, x) == 0) |
---|
1197 | { |
---|
1198 | list.append (random); |
---|
1199 | continue; |
---|
1200 | } |
---|
1201 | } while (find (list, random)); |
---|
1202 | return random; |
---|
1203 | } |
---|
1204 | |
---|
1205 | #ifdef HAVE_NTL |
---|
1206 | CanonicalForm |
---|
1207 | modGCDFp (const CanonicalForm& F, const CanonicalForm& G, |
---|
1208 | CanonicalForm& coF, CanonicalForm& coG, |
---|
1209 | bool& topLevel, CFList& l); |
---|
1210 | #endif |
---|
1211 | |
---|
1212 | #ifdef HAVE_NTL |
---|
1213 | CanonicalForm |
---|
1214 | modGCDFp (const CanonicalForm& F, const CanonicalForm& G, |
---|
1215 | bool& topLevel, CFList& l) |
---|
1216 | { |
---|
1217 | CanonicalForm dummy1, dummy2; |
---|
1218 | CanonicalForm result= modGCDFp (F, G, dummy1, dummy2, topLevel, l); |
---|
1219 | return result; |
---|
1220 | } |
---|
1221 | #endif |
---|
1222 | |
---|
1223 | #ifdef HAVE_NTL // mapPrimElem |
---|
1224 | CanonicalForm |
---|
1225 | modGCDFp (const CanonicalForm& F, const CanonicalForm& G, |
---|
1226 | CanonicalForm& coF, CanonicalForm& coG, |
---|
1227 | bool& topLevel, CFList& l) |
---|
1228 | { |
---|
1229 | CanonicalForm A= F; |
---|
1230 | CanonicalForm B= G; |
---|
1231 | if (F.isZero() && degree(G) > 0) |
---|
1232 | { |
---|
1233 | coF= 0; |
---|
1234 | coG= Lc (G); |
---|
1235 | return G/Lc(G); |
---|
1236 | } |
---|
1237 | else if (G.isZero() && degree (F) > 0) |
---|
1238 | { |
---|
1239 | coF= Lc (F); |
---|
1240 | coG= 0; |
---|
1241 | return F/Lc(F); |
---|
1242 | } |
---|
1243 | else if (F.isZero() && G.isZero()) |
---|
1244 | { |
---|
1245 | coF= coG= 0; |
---|
1246 | return F.genOne(); |
---|
1247 | } |
---|
1248 | if (F.inBaseDomain() || G.inBaseDomain()) |
---|
1249 | { |
---|
1250 | coF= F; |
---|
1251 | coG= G; |
---|
1252 | return F.genOne(); |
---|
1253 | } |
---|
1254 | if (F.isUnivariate() && fdivides(F, G, coG)) |
---|
1255 | { |
---|
1256 | coF= Lc (F); |
---|
1257 | return F/Lc(F); |
---|
1258 | } |
---|
1259 | if (G.isUnivariate() && fdivides(G, F, coF)) |
---|
1260 | { |
---|
1261 | coG= Lc (G); |
---|
1262 | return G/Lc(G); |
---|
1263 | } |
---|
1264 | if (F == G) |
---|
1265 | { |
---|
1266 | coF= coG= Lc (F); |
---|
1267 | return F/Lc(F); |
---|
1268 | } |
---|
1269 | CFMap M,N; |
---|
1270 | int best_level= myCompress (A, B, M, N, topLevel); |
---|
1271 | |
---|
1272 | if (best_level == 0) |
---|
1273 | { |
---|
1274 | coF= F; |
---|
1275 | coG= G; |
---|
1276 | return B.genOne(); |
---|
1277 | } |
---|
1278 | |
---|
1279 | A= M(A); |
---|
1280 | B= M(B); |
---|
1281 | |
---|
1282 | Variable x= Variable (1); |
---|
1283 | |
---|
1284 | //univariate case |
---|
1285 | if (A.isUnivariate() && B.isUnivariate()) |
---|
1286 | { |
---|
1287 | CanonicalForm result= gcd (A, B); |
---|
1288 | coF= N (A/result); |
---|
1289 | coG= N (B/result); |
---|
1290 | return N (result); |
---|
1291 | } |
---|
1292 | |
---|
1293 | CanonicalForm cA, cB; // content of A and B |
---|
1294 | CanonicalForm ppA, ppB; // primitive part of A and B |
---|
1295 | CanonicalForm gcdcAcB; |
---|
1296 | |
---|
1297 | cA = uni_content (A); |
---|
1298 | cB = uni_content (B); |
---|
1299 | gcdcAcB= gcd (cA, cB); |
---|
1300 | ppA= A/cA; |
---|
1301 | ppB= B/cB; |
---|
1302 | |
---|
1303 | CanonicalForm lcA, lcB; // leading coefficients of A and B |
---|
1304 | CanonicalForm gcdlcAlcB; |
---|
1305 | lcA= uni_lcoeff (ppA); |
---|
1306 | lcB= uni_lcoeff (ppB); |
---|
1307 | |
---|
1308 | gcdlcAlcB= gcd (lcA, lcB); |
---|
1309 | |
---|
1310 | int d= totaldegree (ppA, Variable (2), Variable (ppA.level())); |
---|
1311 | int d0; |
---|
1312 | |
---|
1313 | if (d == 0) |
---|
1314 | { |
---|
1315 | coF= N (ppA*(cA/gcdcAcB)); |
---|
1316 | coG= N (ppB*(cB/gcdcAcB)); |
---|
1317 | return N(gcdcAcB); |
---|
1318 | } |
---|
1319 | |
---|
1320 | d0= totaldegree (ppB, Variable (2), Variable (ppB.level())); |
---|
1321 | |
---|
1322 | if (d0 < d) |
---|
1323 | d= d0; |
---|
1324 | |
---|
1325 | if (d == 0) |
---|
1326 | { |
---|
1327 | coF= N (ppA*(cA/gcdcAcB)); |
---|
1328 | coG= N (ppB*(cB/gcdcAcB)); |
---|
1329 | return N(gcdcAcB); |
---|
1330 | } |
---|
1331 | |
---|
1332 | CanonicalForm m, random_element, G_m, G_random_element, H, cH, ppH; |
---|
1333 | CanonicalForm newtonPoly, coF_random_element, coG_random_element, |
---|
1334 | coF_m, coG_m, ppCoF, ppCoG; |
---|
1335 | |
---|
1336 | newtonPoly= 1; |
---|
1337 | m= gcdlcAlcB; |
---|
1338 | H= 0; |
---|
1339 | coF= 0; |
---|
1340 | coG= 0; |
---|
1341 | G_m= 0; |
---|
1342 | Variable alpha, V_buf, cleanUp; |
---|
1343 | bool fail= false; |
---|
1344 | bool inextension= false; |
---|
1345 | topLevel= false; |
---|
1346 | CFList source, dest; |
---|
1347 | int bound1= degree (ppA, 1); |
---|
1348 | int bound2= degree (ppB, 1); |
---|
1349 | do |
---|
1350 | { |
---|
1351 | if (inextension) |
---|
1352 | random_element= randomElement (m*lcA*lcB, V_buf, l, fail); |
---|
1353 | else |
---|
1354 | random_element= FpRandomElement (m*lcA*lcB, l, fail); |
---|
1355 | |
---|
1356 | if (!fail && !inextension) |
---|
1357 | { |
---|
1358 | CFList list; |
---|
1359 | TIMING_START (gcd_recursion); |
---|
1360 | G_random_element= |
---|
1361 | modGCDFp (ppA (random_element,x), ppB (random_element,x), |
---|
1362 | coF_random_element, coG_random_element, topLevel, |
---|
1363 | list); |
---|
1364 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
1365 | "time for recursive call: "); |
---|
1366 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
1367 | } |
---|
1368 | else if (!fail && inextension) |
---|
1369 | { |
---|
1370 | CFList list; |
---|
1371 | TIMING_START (gcd_recursion); |
---|
1372 | G_random_element= |
---|
1373 | modGCDFq (ppA (random_element, x), ppB (random_element, x), |
---|
1374 | coF_random_element, coG_random_element, V_buf, |
---|
1375 | list, topLevel); |
---|
1376 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
1377 | "time for recursive call: "); |
---|
1378 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
1379 | } |
---|
1380 | else if (fail && !inextension) |
---|
1381 | { |
---|
1382 | source= CFList(); |
---|
1383 | dest= CFList(); |
---|
1384 | CFList list; |
---|
1385 | CanonicalForm mipo; |
---|
1386 | int deg= 2; |
---|
1387 | bool initialized= false; |
---|
1388 | do |
---|
1389 | { |
---|
1390 | mipo= randomIrredpoly (deg, x); |
---|
1391 | if (initialized) |
---|
1392 | setMipo (alpha, mipo); |
---|
1393 | else |
---|
1394 | alpha= rootOf (mipo); |
---|
1395 | inextension= true; |
---|
1396 | initialized= true; |
---|
1397 | fail= false; |
---|
1398 | random_element= randomElement (m*lcA*lcB, alpha, l, fail); |
---|
1399 | deg++; |
---|
1400 | } while (fail); |
---|
1401 | list= CFList(); |
---|
1402 | V_buf= alpha; |
---|
1403 | cleanUp= alpha; |
---|
1404 | TIMING_START (gcd_recursion); |
---|
1405 | G_random_element= |
---|
1406 | modGCDFq (ppA (random_element, x), ppB (random_element, x), |
---|
1407 | coF_random_element, coG_random_element, alpha, |
---|
1408 | list, topLevel); |
---|
1409 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
1410 | "time for recursive call: "); |
---|
1411 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
1412 | } |
---|
1413 | else if (fail && inextension) |
---|
1414 | { |
---|
1415 | source= CFList(); |
---|
1416 | dest= CFList(); |
---|
1417 | |
---|
1418 | Variable V_buf3= V_buf; |
---|
1419 | V_buf= chooseExtension (V_buf); |
---|
1420 | bool prim_fail= false; |
---|
1421 | Variable V_buf2; |
---|
1422 | CanonicalForm prim_elem, im_prim_elem; |
---|
1423 | prim_elem= primitiveElement (alpha, V_buf2, prim_fail); |
---|
1424 | |
---|
1425 | if (V_buf3 != alpha) |
---|
1426 | { |
---|
1427 | m= mapDown (m, prim_elem, im_prim_elem, alpha, source, dest); |
---|
1428 | G_m= mapDown (G_m, prim_elem, im_prim_elem, alpha, source, dest); |
---|
1429 | coF_m= mapDown (coF_m, prim_elem, im_prim_elem, alpha, source, dest); |
---|
1430 | coG_m= mapDown (coG_m, prim_elem, im_prim_elem, alpha, source, dest); |
---|
1431 | newtonPoly= mapDown (newtonPoly, prim_elem, im_prim_elem, alpha, |
---|
1432 | source, dest); |
---|
1433 | ppA= mapDown (ppA, prim_elem, im_prim_elem, alpha, source, dest); |
---|
1434 | ppB= mapDown (ppB, prim_elem, im_prim_elem, alpha, source, dest); |
---|
1435 | gcdlcAlcB= mapDown (gcdlcAlcB, prim_elem, im_prim_elem, alpha, source, |
---|
1436 | dest); |
---|
1437 | lcA= mapDown (lcA, prim_elem, im_prim_elem, alpha, source, dest); |
---|
1438 | lcB= mapDown (lcB, prim_elem, im_prim_elem, alpha, source, dest); |
---|
1439 | for (CFListIterator i= l; i.hasItem(); i++) |
---|
1440 | i.getItem()= mapDown (i.getItem(), prim_elem, im_prim_elem, alpha, |
---|
1441 | source, dest); |
---|
1442 | } |
---|
1443 | |
---|
1444 | ASSERT (!prim_fail, "failure in integer factorizer"); |
---|
1445 | if (prim_fail) |
---|
1446 | ; //ERROR |
---|
1447 | else |
---|
1448 | im_prim_elem= mapPrimElem (prim_elem, alpha, V_buf); |
---|
1449 | |
---|
1450 | DEBOUTLN (cerr, "getMipo (alpha)= " << getMipo (alpha)); |
---|
1451 | DEBOUTLN (cerr, "getMipo (alpha)= " << getMipo (V_buf2)); |
---|
1452 | |
---|
1453 | for (CFListIterator i= l; i.hasItem(); i++) |
---|
1454 | i.getItem()= mapUp (i.getItem(), alpha, V_buf, prim_elem, |
---|
1455 | im_prim_elem, source, dest); |
---|
1456 | m= mapUp (m, alpha, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
1457 | G_m= mapUp (G_m, alpha, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
1458 | coF_m= mapUp (coF_m, alpha, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
1459 | coG_m= mapUp (coG_m, alpha, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
1460 | newtonPoly= mapUp (newtonPoly, alpha, V_buf, prim_elem, im_prim_elem, |
---|
1461 | source, dest); |
---|
1462 | ppA= mapUp (ppA, alpha, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
1463 | ppB= mapUp (ppB, alpha, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
1464 | gcdlcAlcB= mapUp (gcdlcAlcB, alpha, V_buf, prim_elem, im_prim_elem, |
---|
1465 | source, dest); |
---|
1466 | lcA= mapUp (lcA, alpha, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
1467 | lcB= mapUp (lcB, alpha, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
1468 | fail= false; |
---|
1469 | random_element= randomElement (m*lcA*lcB, V_buf, l, fail ); |
---|
1470 | DEBOUTLN (cerr, "fail= " << fail); |
---|
1471 | CFList list; |
---|
1472 | TIMING_START (gcd_recursion); |
---|
1473 | G_random_element= |
---|
1474 | modGCDFq (ppA (random_element, x), ppB (random_element, x), |
---|
1475 | coF_random_element, coG_random_element, V_buf, |
---|
1476 | list, topLevel); |
---|
1477 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
1478 | "time for recursive call: "); |
---|
1479 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
1480 | alpha= V_buf; |
---|
1481 | } |
---|
1482 | |
---|
1483 | if (!G_random_element.inCoeffDomain()) |
---|
1484 | d0= totaldegree (G_random_element, Variable(2), |
---|
1485 | Variable (G_random_element.level())); |
---|
1486 | else |
---|
1487 | d0= 0; |
---|
1488 | |
---|
1489 | if (d0 == 0) |
---|
1490 | { |
---|
1491 | if (inextension) |
---|
1492 | prune (cleanUp); |
---|
1493 | coF= N (ppA*(cA/gcdcAcB)); |
---|
1494 | coG= N (ppB*(cB/gcdcAcB)); |
---|
1495 | return N(gcdcAcB); |
---|
1496 | } |
---|
1497 | |
---|
1498 | if (d0 > d) |
---|
1499 | { |
---|
1500 | if (!find (l, random_element)) |
---|
1501 | l.append (random_element); |
---|
1502 | continue; |
---|
1503 | } |
---|
1504 | |
---|
1505 | G_random_element= (gcdlcAlcB(random_element,x)/uni_lcoeff(G_random_element)) |
---|
1506 | *G_random_element; |
---|
1507 | |
---|
1508 | coF_random_element= (lcA(random_element,x)/uni_lcoeff(coF_random_element)) |
---|
1509 | *coF_random_element; |
---|
1510 | coG_random_element= (lcB(random_element,x)/uni_lcoeff(coG_random_element)) |
---|
1511 | *coG_random_element; |
---|
1512 | |
---|
1513 | if (!G_random_element.inCoeffDomain()) |
---|
1514 | d0= totaldegree (G_random_element, Variable(2), |
---|
1515 | Variable (G_random_element.level())); |
---|
1516 | else |
---|
1517 | d0= 0; |
---|
1518 | |
---|
1519 | if (d0 < d) |
---|
1520 | { |
---|
1521 | m= gcdlcAlcB; |
---|
1522 | newtonPoly= 1; |
---|
1523 | G_m= 0; |
---|
1524 | d= d0; |
---|
1525 | coF_m= 0; |
---|
1526 | coG_m= 0; |
---|
1527 | } |
---|
1528 | |
---|
1529 | TIMING_START (newton_interpolation); |
---|
1530 | H= newtonInterp (random_element, G_random_element, newtonPoly, G_m, x); |
---|
1531 | coF= newtonInterp (random_element, coF_random_element, newtonPoly, coF_m,x); |
---|
1532 | coG= newtonInterp (random_element, coG_random_element, newtonPoly, coG_m,x); |
---|
1533 | TIMING_END_AND_PRINT (newton_interpolation, |
---|
1534 | "time for newton_interpolation: "); |
---|
1535 | |
---|
1536 | //termination test |
---|
1537 | if ((uni_lcoeff (H) == gcdlcAlcB) || (G_m == H)) |
---|
1538 | { |
---|
1539 | TIMING_START (termination_test); |
---|
1540 | if (gcdlcAlcB.isOne()) |
---|
1541 | cH= 1; |
---|
1542 | else |
---|
1543 | cH= uni_content (H); |
---|
1544 | ppH= H/cH; |
---|
1545 | ppH /= Lc (ppH); |
---|
1546 | CanonicalForm lcppH= gcdlcAlcB/cH; |
---|
1547 | CanonicalForm ccoF= lcppH/Lc (lcppH); |
---|
1548 | CanonicalForm ccoG= lcppH/Lc (lcppH); |
---|
1549 | ppCoF= coF/ccoF; |
---|
1550 | ppCoG= coG/ccoG; |
---|
1551 | DEBOUTLN (cerr, "ppH= " << ppH); |
---|
1552 | if (((degree (ppCoF,1)+degree (ppH,1) == bound1) && |
---|
1553 | (degree (ppCoG,1)+degree (ppH,1) == bound2) && |
---|
1554 | terminationTest (ppA, ppB, ppCoF, ppCoG, ppH)) || |
---|
1555 | (fdivides (ppH, ppA, ppCoF) && fdivides (ppH, ppB, ppCoG))) |
---|
1556 | { |
---|
1557 | if (inextension) |
---|
1558 | prune (cleanUp); |
---|
1559 | coF= N ((cA/gcdcAcB)*ppCoF); |
---|
1560 | coG= N ((cB/gcdcAcB)*ppCoG); |
---|
1561 | TIMING_END_AND_PRINT (termination_test, |
---|
1562 | "time for successful termination Fp: "); |
---|
1563 | return N(gcdcAcB*ppH); |
---|
1564 | } |
---|
1565 | TIMING_END_AND_PRINT (termination_test, |
---|
1566 | "time for unsuccessful termination Fp: "); |
---|
1567 | } |
---|
1568 | |
---|
1569 | G_m= H; |
---|
1570 | coF_m= coF; |
---|
1571 | coG_m= coG; |
---|
1572 | newtonPoly= newtonPoly*(x - random_element); |
---|
1573 | m= m*(x - random_element); |
---|
1574 | if (!find (l, random_element)) |
---|
1575 | l.append (random_element); |
---|
1576 | } while (1); |
---|
1577 | } |
---|
1578 | #endif |
---|
1579 | |
---|
1580 | CFArray |
---|
1581 | solveVandermonde (const CFArray& M, const CFArray& A) |
---|
1582 | { |
---|
1583 | int r= M.size(); |
---|
1584 | ASSERT (A.size() == r, "vector does not have right size"); |
---|
1585 | |
---|
1586 | if (r == 1) |
---|
1587 | { |
---|
1588 | CFArray result= CFArray (1); |
---|
1589 | result [0]= A [0] / M [0]; |
---|
1590 | return result; |
---|
1591 | } |
---|
1592 | // check solvability |
---|
1593 | bool notDistinct= false; |
---|
1594 | for (int i= 0; i < r - 1; i++) |
---|
1595 | { |
---|
1596 | for (int j= i + 1; j < r; j++) |
---|
1597 | { |
---|
1598 | if (M [i] == M [j]) |
---|
1599 | { |
---|
1600 | notDistinct= true; |
---|
1601 | break; |
---|
1602 | } |
---|
1603 | } |
---|
1604 | } |
---|
1605 | if (notDistinct) |
---|
1606 | return CFArray(); |
---|
1607 | |
---|
1608 | CanonicalForm master= 1; |
---|
1609 | Variable x= Variable (1); |
---|
1610 | for (int i= 0; i < r; i++) |
---|
1611 | master *= x - M [i]; |
---|
1612 | CFList Pj; |
---|
1613 | CanonicalForm tmp; |
---|
1614 | for (int i= 0; i < r; i++) |
---|
1615 | { |
---|
1616 | tmp= master/(x - M [i]); |
---|
1617 | tmp /= tmp (M [i], 1); |
---|
1618 | Pj.append (tmp); |
---|
1619 | } |
---|
1620 | CFArray result= CFArray (r); |
---|
1621 | |
---|
1622 | CFListIterator j= Pj; |
---|
1623 | for (int i= 1; i <= r; i++, j++) |
---|
1624 | { |
---|
1625 | tmp= 0; |
---|
1626 | for (int l= 0; l < A.size(); l++) |
---|
1627 | tmp += A[l]*j.getItem()[l]; |
---|
1628 | result[i - 1]= tmp; |
---|
1629 | } |
---|
1630 | return result; |
---|
1631 | } |
---|
1632 | |
---|
1633 | CFArray |
---|
1634 | solveGeneralVandermonde (const CFArray& M, const CFArray& A) |
---|
1635 | { |
---|
1636 | int r= M.size(); |
---|
1637 | ASSERT (A.size() == r, "vector does not have right size"); |
---|
1638 | if (r == 1) |
---|
1639 | { |
---|
1640 | CFArray result= CFArray (1); |
---|
1641 | result [0]= A[0] / M [0]; |
---|
1642 | return result; |
---|
1643 | } |
---|
1644 | // check solvability |
---|
1645 | bool notDistinct= false; |
---|
1646 | for (int i= 0; i < r - 1; i++) |
---|
1647 | { |
---|
1648 | for (int j= i + 1; j < r; j++) |
---|
1649 | { |
---|
1650 | if (M [i] == M [j]) |
---|
1651 | { |
---|
1652 | notDistinct= true; |
---|
1653 | break; |
---|
1654 | } |
---|
1655 | } |
---|
1656 | } |
---|
1657 | if (notDistinct) |
---|
1658 | return CFArray(); |
---|
1659 | |
---|
1660 | CanonicalForm master= 1; |
---|
1661 | Variable x= Variable (1); |
---|
1662 | for (int i= 0; i < r; i++) |
---|
1663 | master *= x - M [i]; |
---|
1664 | master *= x; |
---|
1665 | CFList Pj; |
---|
1666 | CanonicalForm tmp; |
---|
1667 | for (int i= 0; i < r; i++) |
---|
1668 | { |
---|
1669 | tmp= master/(x - M [i]); |
---|
1670 | tmp /= tmp (M [i], 1); |
---|
1671 | Pj.append (tmp); |
---|
1672 | } |
---|
1673 | |
---|
1674 | CFArray result= CFArray (r); |
---|
1675 | |
---|
1676 | CFListIterator j= Pj; |
---|
1677 | for (int i= 1; i <= r; i++, j++) |
---|
1678 | { |
---|
1679 | tmp= 0; |
---|
1680 | |
---|
1681 | for (int l= 1; l <= A.size(); l++) |
---|
1682 | tmp += A[l - 1]*j.getItem()[l]; |
---|
1683 | result[i - 1]= tmp; |
---|
1684 | } |
---|
1685 | return result; |
---|
1686 | } |
---|
1687 | |
---|
1688 | /// M in row echolon form, rk rank of M |
---|
1689 | CFArray |
---|
1690 | readOffSolution (const CFMatrix& M, const long rk) |
---|
1691 | { |
---|
1692 | CFArray result= CFArray (rk); |
---|
1693 | CanonicalForm tmp1, tmp2, tmp3; |
---|
1694 | for (int i= rk; i >= 1; i--) |
---|
1695 | { |
---|
1696 | tmp3= 0; |
---|
1697 | tmp1= M (i, M.columns()); |
---|
1698 | for (int j= M.columns() - 1; j >= 1; j--) |
---|
1699 | { |
---|
1700 | tmp2= M (i, j); |
---|
1701 | if (j == i) |
---|
1702 | break; |
---|
1703 | else |
---|
1704 | tmp3 += tmp2*result[j - 1]; |
---|
1705 | } |
---|
1706 | result[i - 1]= (tmp1 - tmp3)/tmp2; |
---|
1707 | } |
---|
1708 | return result; |
---|
1709 | } |
---|
1710 | |
---|
1711 | CFArray |
---|
1712 | readOffSolution (const CFMatrix& M, const CFArray& L, const CFArray& partialSol) |
---|
1713 | { |
---|
1714 | CFArray result= CFArray (M.rows()); |
---|
1715 | CanonicalForm tmp1, tmp2, tmp3; |
---|
1716 | int k; |
---|
1717 | for (int i= M.rows(); i >= 1; i--) |
---|
1718 | { |
---|
1719 | tmp3= 0; |
---|
1720 | tmp1= L[i - 1]; |
---|
1721 | k= 0; |
---|
1722 | for (int j= M.columns(); j >= 1; j--, k++) |
---|
1723 | { |
---|
1724 | tmp2= M (i, j); |
---|
1725 | if (j == i) |
---|
1726 | break; |
---|
1727 | else |
---|
1728 | { |
---|
1729 | if (k > partialSol.size() - 1) |
---|
1730 | tmp3 += tmp2*result[j - 1]; |
---|
1731 | else |
---|
1732 | tmp3 += tmp2*partialSol[partialSol.size() - k - 1]; |
---|
1733 | } |
---|
1734 | } |
---|
1735 | result [i - 1]= (tmp1 - tmp3)/tmp2; |
---|
1736 | } |
---|
1737 | return result; |
---|
1738 | } |
---|
1739 | |
---|
1740 | long |
---|
1741 | gaussianElimFp (CFMatrix& M, CFArray& L) |
---|
1742 | { |
---|
1743 | ASSERT (L.size() <= M.rows(), "dimension exceeded"); |
---|
1744 | CFMatrix *N; |
---|
1745 | N= new CFMatrix (M.rows(), M.columns() + 1); |
---|
1746 | |
---|
1747 | for (int i= 1; i <= M.rows(); i++) |
---|
1748 | for (int j= 1; j <= M.columns(); j++) |
---|
1749 | (*N) (i, j)= M (i, j); |
---|
1750 | |
---|
1751 | int j= 1; |
---|
1752 | for (int i= 0; i < L.size(); i++, j++) |
---|
1753 | (*N) (j, M.columns() + 1)= L[i]; |
---|
1754 | #ifdef HAVE_FLINT |
---|
1755 | nmod_mat_t FLINTN; |
---|
1756 | convertFacCFMatrix2nmod_mat_t (FLINTN, *N); |
---|
1757 | long rk= nmod_mat_rref (FLINTN); |
---|
1758 | |
---|
1759 | delete N; |
---|
1760 | N= convertNmod_mat_t2FacCFMatrix (FLINTN); |
---|
1761 | nmod_mat_clear (FLINTN); |
---|
1762 | #else |
---|
1763 | int p= getCharacteristic (); |
---|
1764 | if (fac_NTL_char != p) |
---|
1765 | { |
---|
1766 | fac_NTL_char= p; |
---|
1767 | zz_p::init (p); |
---|
1768 | } |
---|
1769 | mat_zz_p *NTLN= convertFacCFMatrix2NTLmat_zz_p(*N); |
---|
1770 | delete N; |
---|
1771 | long rk= gauss (*NTLN); |
---|
1772 | |
---|
1773 | N= convertNTLmat_zz_p2FacCFMatrix (*NTLN); |
---|
1774 | delete NTLN; |
---|
1775 | #endif |
---|
1776 | |
---|
1777 | L= CFArray (M.rows()); |
---|
1778 | for (int i= 0; i < M.rows(); i++) |
---|
1779 | L[i]= (*N) (i + 1, M.columns() + 1); |
---|
1780 | M= (*N) (1, M.rows(), 1, M.columns()); |
---|
1781 | delete N; |
---|
1782 | return rk; |
---|
1783 | } |
---|
1784 | |
---|
1785 | #ifdef HAVE_NTL //gauss, zz_pE |
---|
1786 | long |
---|
1787 | gaussianElimFq (CFMatrix& M, CFArray& L, const Variable& alpha) |
---|
1788 | { |
---|
1789 | ASSERT (L.size() <= M.rows(), "dimension exceeded"); |
---|
1790 | CFMatrix *N; |
---|
1791 | N= new CFMatrix (M.rows(), M.columns() + 1); |
---|
1792 | |
---|
1793 | for (int i= 1; i <= M.rows(); i++) |
---|
1794 | for (int j= 1; j <= M.columns(); j++) |
---|
1795 | (*N) (i, j)= M (i, j); |
---|
1796 | |
---|
1797 | int j= 1; |
---|
1798 | for (int i= 0; i < L.size(); i++, j++) |
---|
1799 | (*N) (j, M.columns() + 1)= L[i]; |
---|
1800 | int p= getCharacteristic (); |
---|
1801 | if (fac_NTL_char != p) |
---|
1802 | { |
---|
1803 | fac_NTL_char= p; |
---|
1804 | zz_p::init (p); |
---|
1805 | } |
---|
1806 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
1807 | zz_pE::init (NTLMipo); |
---|
1808 | mat_zz_pE *NTLN= convertFacCFMatrix2NTLmat_zz_pE(*N); |
---|
1809 | long rk= gauss (*NTLN); |
---|
1810 | |
---|
1811 | delete N; |
---|
1812 | N= convertNTLmat_zz_pE2FacCFMatrix (*NTLN, alpha); |
---|
1813 | |
---|
1814 | delete NTLN; |
---|
1815 | |
---|
1816 | M= (*N) (1, M.rows(), 1, M.columns()); |
---|
1817 | L= CFArray (M.rows()); |
---|
1818 | for (int i= 0; i < M.rows(); i++) |
---|
1819 | L[i]= (*N) (i + 1, M.columns() + 1); |
---|
1820 | |
---|
1821 | delete N; |
---|
1822 | return rk; |
---|
1823 | } |
---|
1824 | #endif |
---|
1825 | |
---|
1826 | CFArray |
---|
1827 | solveSystemFp (const CFMatrix& M, const CFArray& L) |
---|
1828 | { |
---|
1829 | ASSERT (L.size() <= M.rows(), "dimension exceeded"); |
---|
1830 | CFMatrix *N; |
---|
1831 | N= new CFMatrix (M.rows(), M.columns() + 1); |
---|
1832 | |
---|
1833 | for (int i= 1; i <= M.rows(); i++) |
---|
1834 | for (int j= 1; j <= M.columns(); j++) |
---|
1835 | (*N) (i, j)= M (i, j); |
---|
1836 | |
---|
1837 | int j= 1; |
---|
1838 | for (int i= 0; i < L.size(); i++, j++) |
---|
1839 | (*N) (j, M.columns() + 1)= L[i]; |
---|
1840 | |
---|
1841 | #ifdef HAVE_FLINT |
---|
1842 | nmod_mat_t FLINTN; |
---|
1843 | convertFacCFMatrix2nmod_mat_t (FLINTN, *N); |
---|
1844 | long rk= nmod_mat_rref (FLINTN); |
---|
1845 | #else |
---|
1846 | int p= getCharacteristic (); |
---|
1847 | if (fac_NTL_char != p) |
---|
1848 | { |
---|
1849 | fac_NTL_char= p; |
---|
1850 | zz_p::init (p); |
---|
1851 | } |
---|
1852 | mat_zz_p *NTLN= convertFacCFMatrix2NTLmat_zz_p(*N); |
---|
1853 | long rk= gauss (*NTLN); |
---|
1854 | #endif |
---|
1855 | delete N; |
---|
1856 | if (rk != M.columns()) |
---|
1857 | { |
---|
1858 | #ifdef HAVE_FLINT |
---|
1859 | nmod_mat_clear (FLINTN); |
---|
1860 | #else |
---|
1861 | delete NTLN; |
---|
1862 | #endif |
---|
1863 | return CFArray(); |
---|
1864 | } |
---|
1865 | #ifdef HAVE_FLINT |
---|
1866 | N= convertNmod_mat_t2FacCFMatrix (FLINTN); |
---|
1867 | nmod_mat_clear (FLINTN); |
---|
1868 | #else |
---|
1869 | N= convertNTLmat_zz_p2FacCFMatrix (*NTLN); |
---|
1870 | delete NTLN; |
---|
1871 | #endif |
---|
1872 | CFArray A= readOffSolution (*N, rk); |
---|
1873 | |
---|
1874 | delete N; |
---|
1875 | return A; |
---|
1876 | } |
---|
1877 | |
---|
1878 | #ifdef HAVE_NTL //gauss, zz_pE |
---|
1879 | CFArray |
---|
1880 | solveSystemFq (const CFMatrix& M, const CFArray& L, const Variable& alpha) |
---|
1881 | { |
---|
1882 | ASSERT (L.size() <= M.rows(), "dimension exceeded"); |
---|
1883 | CFMatrix *N; |
---|
1884 | N= new CFMatrix (M.rows(), M.columns() + 1); |
---|
1885 | |
---|
1886 | for (int i= 1; i <= M.rows(); i++) |
---|
1887 | for (int j= 1; j <= M.columns(); j++) |
---|
1888 | (*N) (i, j)= M (i, j); |
---|
1889 | int j= 1; |
---|
1890 | for (int i= 0; i < L.size(); i++, j++) |
---|
1891 | (*N) (j, M.columns() + 1)= L[i]; |
---|
1892 | int p= getCharacteristic (); |
---|
1893 | if (fac_NTL_char != p) |
---|
1894 | { |
---|
1895 | fac_NTL_char= p; |
---|
1896 | zz_p::init (p); |
---|
1897 | } |
---|
1898 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
1899 | zz_pE::init (NTLMipo); |
---|
1900 | mat_zz_pE *NTLN= convertFacCFMatrix2NTLmat_zz_pE(*N); |
---|
1901 | long rk= gauss (*NTLN); |
---|
1902 | |
---|
1903 | delete N; |
---|
1904 | if (rk != M.columns()) |
---|
1905 | { |
---|
1906 | delete NTLN; |
---|
1907 | return CFArray(); |
---|
1908 | } |
---|
1909 | N= convertNTLmat_zz_pE2FacCFMatrix (*NTLN, alpha); |
---|
1910 | |
---|
1911 | delete NTLN; |
---|
1912 | |
---|
1913 | CFArray A= readOffSolution (*N, rk); |
---|
1914 | |
---|
1915 | delete N; |
---|
1916 | return A; |
---|
1917 | } |
---|
1918 | #endif |
---|
1919 | #endif |
---|
1920 | |
---|
1921 | CFArray |
---|
1922 | getMonoms (const CanonicalForm& F) |
---|
1923 | { |
---|
1924 | if (F.inCoeffDomain()) |
---|
1925 | { |
---|
1926 | CFArray result= CFArray (1); |
---|
1927 | result [0]= 1; |
---|
1928 | return result; |
---|
1929 | } |
---|
1930 | if (F.isUnivariate()) |
---|
1931 | { |
---|
1932 | CFArray result= CFArray (size(F)); |
---|
1933 | int j= 0; |
---|
1934 | for (CFIterator i= F; i.hasTerms(); i++, j++) |
---|
1935 | result[j]= power (F.mvar(), i.exp()); |
---|
1936 | return result; |
---|
1937 | } |
---|
1938 | int numMon= size (F); |
---|
1939 | CFArray result= CFArray (numMon); |
---|
1940 | int j= 0; |
---|
1941 | CFArray recResult; |
---|
1942 | Variable x= F.mvar(); |
---|
1943 | CanonicalForm powX; |
---|
1944 | for (CFIterator i= F; i.hasTerms(); i++) |
---|
1945 | { |
---|
1946 | powX= power (x, i.exp()); |
---|
1947 | recResult= getMonoms (i.coeff()); |
---|
1948 | for (int k= 0; k < recResult.size(); k++) |
---|
1949 | result[j+k]= powX*recResult[k]; |
---|
1950 | j += recResult.size(); |
---|
1951 | } |
---|
1952 | return result; |
---|
1953 | } |
---|
1954 | |
---|
1955 | #ifdef HAVE_NTL |
---|
1956 | CFArray |
---|
1957 | evaluateMonom (const CanonicalForm& F, const CFList& evalPoints) |
---|
1958 | { |
---|
1959 | if (F.inCoeffDomain()) |
---|
1960 | { |
---|
1961 | CFArray result= CFArray (1); |
---|
1962 | result [0]= F; |
---|
1963 | return result; |
---|
1964 | } |
---|
1965 | if (F.isUnivariate()) |
---|
1966 | { |
---|
1967 | ASSERT (evalPoints.length() == 1, |
---|
1968 | "expected an eval point with only one component"); |
---|
1969 | CFArray result= CFArray (size(F)); |
---|
1970 | int j= 0; |
---|
1971 | CanonicalForm evalPoint= evalPoints.getLast(); |
---|
1972 | for (CFIterator i= F; i.hasTerms(); i++, j++) |
---|
1973 | result[j]= power (evalPoint, i.exp()); |
---|
1974 | return result; |
---|
1975 | } |
---|
1976 | int numMon= size (F); |
---|
1977 | CFArray result= CFArray (numMon); |
---|
1978 | int j= 0; |
---|
1979 | CanonicalForm evalPoint= evalPoints.getLast(); |
---|
1980 | CFList buf= evalPoints; |
---|
1981 | buf.removeLast(); |
---|
1982 | CFArray recResult; |
---|
1983 | CanonicalForm powEvalPoint; |
---|
1984 | for (CFIterator i= F; i.hasTerms(); i++) |
---|
1985 | { |
---|
1986 | powEvalPoint= power (evalPoint, i.exp()); |
---|
1987 | recResult= evaluateMonom (i.coeff(), buf); |
---|
1988 | for (int k= 0; k < recResult.size(); k++) |
---|
1989 | result[j+k]= powEvalPoint*recResult[k]; |
---|
1990 | j += recResult.size(); |
---|
1991 | } |
---|
1992 | return result; |
---|
1993 | } |
---|
1994 | |
---|
1995 | CFArray |
---|
1996 | evaluate (const CFArray& A, const CFList& evalPoints) |
---|
1997 | { |
---|
1998 | CFArray result= A.size(); |
---|
1999 | CanonicalForm tmp; |
---|
2000 | int k; |
---|
2001 | for (int i= 0; i < A.size(); i++) |
---|
2002 | { |
---|
2003 | tmp= A[i]; |
---|
2004 | k= 1; |
---|
2005 | for (CFListIterator j= evalPoints; j.hasItem(); j++, k++) |
---|
2006 | tmp= tmp (j.getItem(), k); |
---|
2007 | result[i]= tmp; |
---|
2008 | } |
---|
2009 | return result; |
---|
2010 | } |
---|
2011 | |
---|
2012 | CFList |
---|
2013 | evaluationPoints (const CanonicalForm& F, const CanonicalForm& G, |
---|
2014 | CanonicalForm& Feval, CanonicalForm& Geval, |
---|
2015 | const CanonicalForm& LCF, const bool& GF, |
---|
2016 | const Variable& alpha, bool& fail, CFList& list |
---|
2017 | ) |
---|
2018 | { |
---|
2019 | int k= tmax (F.level(), G.level()) - 1; |
---|
2020 | Variable x= Variable (1); |
---|
2021 | CFList result; |
---|
2022 | FFRandom genFF; |
---|
2023 | GFRandom genGF; |
---|
2024 | int p= getCharacteristic (); |
---|
2025 | double bound; |
---|
2026 | if (alpha != Variable (1)) |
---|
2027 | { |
---|
2028 | bound= pow ((double) p, (double) degree (getMipo(alpha))); |
---|
2029 | bound= pow (bound, (double) k); |
---|
2030 | } |
---|
2031 | else if (GF) |
---|
2032 | { |
---|
2033 | bound= pow ((double) p, (double) getGFDegree()); |
---|
2034 | bound= pow ((double) bound, (double) k); |
---|
2035 | } |
---|
2036 | else |
---|
2037 | bound= pow ((double) p, (double) k); |
---|
2038 | |
---|
2039 | CanonicalForm random; |
---|
2040 | int j; |
---|
2041 | bool zeroOneOccured= false; |
---|
2042 | bool allEqual= false; |
---|
2043 | CanonicalForm buf; |
---|
2044 | do |
---|
2045 | { |
---|
2046 | random= 0; |
---|
2047 | // possible overflow if list.length() does not fit into a int |
---|
2048 | if (list.length() >= bound) |
---|
2049 | { |
---|
2050 | fail= true; |
---|
2051 | break; |
---|
2052 | } |
---|
2053 | for (int i= 0; i < k; i++) |
---|
2054 | { |
---|
2055 | if (GF) |
---|
2056 | { |
---|
2057 | result.append (genGF.generate()); |
---|
2058 | random += result.getLast()*power (x, i); |
---|
2059 | } |
---|
2060 | else if (alpha.level() != 1) |
---|
2061 | { |
---|
2062 | AlgExtRandomF genAlgExt (alpha); |
---|
2063 | result.append (genAlgExt.generate()); |
---|
2064 | random += result.getLast()*power (x, i); |
---|
2065 | } |
---|
2066 | else |
---|
2067 | { |
---|
2068 | result.append (genFF.generate()); |
---|
2069 | random += result.getLast()*power (x, i); |
---|
2070 | } |
---|
2071 | if (result.getLast().isOne() || result.getLast().isZero()) |
---|
2072 | zeroOneOccured= true; |
---|
2073 | } |
---|
2074 | if (find (list, random)) |
---|
2075 | { |
---|
2076 | zeroOneOccured= false; |
---|
2077 | allEqual= false; |
---|
2078 | result= CFList(); |
---|
2079 | continue; |
---|
2080 | } |
---|
2081 | if (zeroOneOccured) |
---|
2082 | { |
---|
2083 | list.append (random); |
---|
2084 | zeroOneOccured= false; |
---|
2085 | allEqual= false; |
---|
2086 | result= CFList(); |
---|
2087 | continue; |
---|
2088 | } |
---|
2089 | // no zero at this point |
---|
2090 | if (k > 1) |
---|
2091 | { |
---|
2092 | allEqual= true; |
---|
2093 | CFIterator iter= random; |
---|
2094 | buf= iter.coeff(); |
---|
2095 | iter++; |
---|
2096 | for (; iter.hasTerms(); iter++) |
---|
2097 | if (buf != iter.coeff()) |
---|
2098 | allEqual= false; |
---|
2099 | } |
---|
2100 | if (allEqual) |
---|
2101 | { |
---|
2102 | list.append (random); |
---|
2103 | allEqual= false; |
---|
2104 | zeroOneOccured= false; |
---|
2105 | result= CFList(); |
---|
2106 | continue; |
---|
2107 | } |
---|
2108 | |
---|
2109 | Feval= F; |
---|
2110 | Geval= G; |
---|
2111 | CanonicalForm LCeval= LCF; |
---|
2112 | j= 1; |
---|
2113 | for (CFListIterator i= result; i.hasItem(); i++, j++) |
---|
2114 | { |
---|
2115 | Feval= Feval (i.getItem(), j); |
---|
2116 | Geval= Geval (i.getItem(), j); |
---|
2117 | LCeval= LCeval (i.getItem(), j); |
---|
2118 | } |
---|
2119 | |
---|
2120 | if (LCeval.isZero()) |
---|
2121 | { |
---|
2122 | if (!find (list, random)) |
---|
2123 | list.append (random); |
---|
2124 | zeroOneOccured= false; |
---|
2125 | allEqual= false; |
---|
2126 | result= CFList(); |
---|
2127 | continue; |
---|
2128 | } |
---|
2129 | |
---|
2130 | if (list.length() >= bound) |
---|
2131 | { |
---|
2132 | fail= true; |
---|
2133 | break; |
---|
2134 | } |
---|
2135 | } while (find (list, random)); |
---|
2136 | |
---|
2137 | return result; |
---|
2138 | } |
---|
2139 | |
---|
2140 | /// multiply two lists componentwise |
---|
2141 | void mult (CFList& L1, const CFList& L2) |
---|
2142 | { |
---|
2143 | ASSERT (L1.length() == L2.length(), "lists of the same size expected"); |
---|
2144 | |
---|
2145 | CFListIterator j= L2; |
---|
2146 | for (CFListIterator i= L1; i.hasItem(); i++, j++) |
---|
2147 | i.getItem() *= j.getItem(); |
---|
2148 | } |
---|
2149 | |
---|
2150 | void eval (const CanonicalForm& A, const CanonicalForm& B, CanonicalForm& Aeval, |
---|
2151 | CanonicalForm& Beval, const CFList& L) |
---|
2152 | { |
---|
2153 | Aeval= A; |
---|
2154 | Beval= B; |
---|
2155 | int j= 1; |
---|
2156 | for (CFListIterator i= L; i.hasItem(); i++, j++) |
---|
2157 | { |
---|
2158 | Aeval= Aeval (i.getItem(), j); |
---|
2159 | Beval= Beval (i.getItem(), j); |
---|
2160 | } |
---|
2161 | } |
---|
2162 | |
---|
2163 | CanonicalForm |
---|
2164 | monicSparseInterpol (const CanonicalForm& F, const CanonicalForm& G, |
---|
2165 | const CanonicalForm& skeleton, const Variable& alpha, |
---|
2166 | bool& fail, CFArray*& coeffMonoms, CFArray& Monoms |
---|
2167 | ) |
---|
2168 | { |
---|
2169 | CanonicalForm A= F; |
---|
2170 | CanonicalForm B= G; |
---|
2171 | if (F.isZero() && degree(G) > 0) return G/Lc(G); |
---|
2172 | else if (G.isZero() && degree (F) > 0) return F/Lc(F); |
---|
2173 | else if (F.isZero() && G.isZero()) return F.genOne(); |
---|
2174 | if (F.inBaseDomain() || G.inBaseDomain()) return F.genOne(); |
---|
2175 | if (F.isUnivariate() && fdivides(F, G)) return F/Lc(F); |
---|
2176 | if (G.isUnivariate() && fdivides(G, F)) return G/Lc(G); |
---|
2177 | if (F == G) return F/Lc(F); |
---|
2178 | |
---|
2179 | ASSERT (degree (A, 1) == 0, "expected degree (F, 1) == 0"); |
---|
2180 | ASSERT (degree (B, 1) == 0, "expected degree (G, 1) == 0"); |
---|
2181 | |
---|
2182 | CFMap M,N; |
---|
2183 | int best_level= myCompress (A, B, M, N, false); |
---|
2184 | |
---|
2185 | if (best_level == 0) |
---|
2186 | return B.genOne(); |
---|
2187 | |
---|
2188 | A= M(A); |
---|
2189 | B= M(B); |
---|
2190 | |
---|
2191 | Variable x= Variable (1); |
---|
2192 | |
---|
2193 | //univariate case |
---|
2194 | if (A.isUnivariate() && B.isUnivariate()) |
---|
2195 | return N (gcd (A, B)); |
---|
2196 | |
---|
2197 | CanonicalForm skel= M(skeleton); |
---|
2198 | CanonicalForm cA, cB; // content of A and B |
---|
2199 | CanonicalForm ppA, ppB; // primitive part of A and B |
---|
2200 | CanonicalForm gcdcAcB; |
---|
2201 | cA = uni_content (A); |
---|
2202 | cB = uni_content (B); |
---|
2203 | gcdcAcB= gcd (cA, cB); |
---|
2204 | ppA= A/cA; |
---|
2205 | ppB= B/cB; |
---|
2206 | |
---|
2207 | CanonicalForm lcA, lcB; // leading coefficients of A and B |
---|
2208 | CanonicalForm gcdlcAlcB; |
---|
2209 | lcA= uni_lcoeff (ppA); |
---|
2210 | lcB= uni_lcoeff (ppB); |
---|
2211 | |
---|
2212 | if (fdivides (lcA, lcB)) |
---|
2213 | { |
---|
2214 | if (fdivides (A, B)) |
---|
2215 | return F/Lc(F); |
---|
2216 | } |
---|
2217 | if (fdivides (lcB, lcA)) |
---|
2218 | { |
---|
2219 | if (fdivides (B, A)) |
---|
2220 | return G/Lc(G); |
---|
2221 | } |
---|
2222 | |
---|
2223 | gcdlcAlcB= gcd (lcA, lcB); |
---|
2224 | int skelSize= size (skel, skel.mvar()); |
---|
2225 | |
---|
2226 | int j= 0; |
---|
2227 | int biggestSize= 0; |
---|
2228 | |
---|
2229 | for (CFIterator i= skel; i.hasTerms(); i++, j++) |
---|
2230 | biggestSize= tmax (biggestSize, size (i.coeff())); |
---|
2231 | |
---|
2232 | CanonicalForm g, Aeval, Beval; |
---|
2233 | |
---|
2234 | CFList evalPoints; |
---|
2235 | bool evalFail= false; |
---|
2236 | CFList list; |
---|
2237 | bool GF= false; |
---|
2238 | CanonicalForm LCA= LC (A); |
---|
2239 | CanonicalForm tmp; |
---|
2240 | CFArray gcds= CFArray (biggestSize); |
---|
2241 | CFList * pEvalPoints= new CFList [biggestSize]; |
---|
2242 | Variable V_buf= alpha, V_buf4= alpha; |
---|
2243 | CFList source, dest; |
---|
2244 | CanonicalForm prim_elem, im_prim_elem; |
---|
2245 | CanonicalForm prim_elem_alpha, im_prim_elem_alpha; |
---|
2246 | for (int i= 0; i < biggestSize; i++) |
---|
2247 | { |
---|
2248 | if (i == 0) |
---|
2249 | evalPoints= evaluationPoints (A, B, Aeval, Beval, LCA, GF, V_buf, evalFail, |
---|
2250 | list); |
---|
2251 | else |
---|
2252 | { |
---|
2253 | mult (evalPoints, pEvalPoints [0]); |
---|
2254 | eval (A, B, Aeval, Beval, evalPoints); |
---|
2255 | } |
---|
2256 | |
---|
2257 | if (evalFail) |
---|
2258 | { |
---|
2259 | if (V_buf.level() != 1) |
---|
2260 | { |
---|
2261 | do |
---|
2262 | { |
---|
2263 | Variable V_buf3= V_buf; |
---|
2264 | V_buf= chooseExtension (V_buf); |
---|
2265 | source= CFList(); |
---|
2266 | dest= CFList(); |
---|
2267 | |
---|
2268 | bool prim_fail= false; |
---|
2269 | Variable V_buf2; |
---|
2270 | prim_elem= primitiveElement (V_buf4, V_buf2, prim_fail); |
---|
2271 | if (V_buf4 == alpha && alpha.level() != 1) |
---|
2272 | prim_elem_alpha= prim_elem; |
---|
2273 | |
---|
2274 | ASSERT (!prim_fail, "failure in integer factorizer"); |
---|
2275 | if (prim_fail) |
---|
2276 | ; //ERROR |
---|
2277 | else |
---|
2278 | im_prim_elem= mapPrimElem (prim_elem, V_buf4, V_buf); |
---|
2279 | |
---|
2280 | DEBOUTLN (cerr, "getMipo (alpha)= " << getMipo (V_buf)); |
---|
2281 | DEBOUTLN (cerr, "getMipo (alpha)= " << getMipo (V_buf2)); |
---|
2282 | |
---|
2283 | if (V_buf4 == alpha && alpha.level() != 1) |
---|
2284 | im_prim_elem_alpha= im_prim_elem; |
---|
2285 | else if (alpha.level() != 1) |
---|
2286 | im_prim_elem_alpha= mapUp (im_prim_elem_alpha, V_buf4, V_buf, |
---|
2287 | prim_elem, im_prim_elem, source, dest); |
---|
2288 | |
---|
2289 | for (CFListIterator j= list; j.hasItem(); j++) |
---|
2290 | j.getItem()= mapUp (j.getItem(), V_buf4, V_buf, prim_elem, |
---|
2291 | im_prim_elem, source, dest); |
---|
2292 | for (int k= 0; k < i; k++) |
---|
2293 | { |
---|
2294 | for (CFListIterator j= pEvalPoints[k]; j.hasItem(); j++) |
---|
2295 | j.getItem()= mapUp (j.getItem(), V_buf4, V_buf, prim_elem, |
---|
2296 | im_prim_elem, source, dest); |
---|
2297 | gcds[k]= mapUp (gcds[k], V_buf4, V_buf, prim_elem, im_prim_elem, |
---|
2298 | source, dest); |
---|
2299 | } |
---|
2300 | |
---|
2301 | if (alpha.level() != 1) |
---|
2302 | { |
---|
2303 | A= mapUp (A, V_buf4, V_buf, prim_elem, im_prim_elem, source,dest); |
---|
2304 | B= mapUp (B, V_buf4, V_buf, prim_elem, im_prim_elem, source,dest); |
---|
2305 | } |
---|
2306 | V_buf4= V_buf; |
---|
2307 | evalFail= false; |
---|
2308 | evalPoints= evaluationPoints (A, B, Aeval, Beval, LCA, GF, V_buf, |
---|
2309 | evalFail, list); |
---|
2310 | } while (evalFail); |
---|
2311 | } |
---|
2312 | else |
---|
2313 | { |
---|
2314 | CanonicalForm mipo; |
---|
2315 | int deg= 2; |
---|
2316 | bool initialized= false; |
---|
2317 | do |
---|
2318 | { |
---|
2319 | mipo= randomIrredpoly (deg, x); |
---|
2320 | if (initialized) |
---|
2321 | setMipo (V_buf, mipo); |
---|
2322 | else |
---|
2323 | V_buf= rootOf (mipo); |
---|
2324 | evalFail= false; |
---|
2325 | initialized= true; |
---|
2326 | evalPoints= evaluationPoints (A, B, Aeval, Beval, LCA, GF, V_buf, |
---|
2327 | evalFail, list); |
---|
2328 | deg++; |
---|
2329 | } while (evalFail); |
---|
2330 | V_buf4= V_buf; |
---|
2331 | } |
---|
2332 | } |
---|
2333 | |
---|
2334 | g= gcd (Aeval, Beval); |
---|
2335 | g /= Lc (g); |
---|
2336 | |
---|
2337 | if (degree (g) != degree (skel) || (skelSize != size (g))) |
---|
2338 | { |
---|
2339 | delete[] pEvalPoints; |
---|
2340 | fail= true; |
---|
2341 | if (alpha.level() != 1 && V_buf != alpha) |
---|
2342 | prune1 (alpha); |
---|
2343 | return 0; |
---|
2344 | } |
---|
2345 | CFIterator l= skel; |
---|
2346 | for (CFIterator k= g; k.hasTerms(); k++, l++) |
---|
2347 | { |
---|
2348 | if (k.exp() != l.exp()) |
---|
2349 | { |
---|
2350 | delete[] pEvalPoints; |
---|
2351 | fail= true; |
---|
2352 | if (alpha.level() != 1 && V_buf != alpha) |
---|
2353 | prune1 (alpha); |
---|
2354 | return 0; |
---|
2355 | } |
---|
2356 | } |
---|
2357 | pEvalPoints[i]= evalPoints; |
---|
2358 | gcds[i]= g; |
---|
2359 | |
---|
2360 | tmp= 0; |
---|
2361 | int j= 0; |
---|
2362 | for (CFListIterator k= evalPoints; k.hasItem(); k++, j++) |
---|
2363 | tmp += k.getItem()*power (x, j); |
---|
2364 | list.append (tmp); |
---|
2365 | } |
---|
2366 | |
---|
2367 | if (Monoms.size() == 0) |
---|
2368 | Monoms= getMonoms (skel); |
---|
2369 | |
---|
2370 | coeffMonoms= new CFArray [skelSize]; |
---|
2371 | j= 0; |
---|
2372 | for (CFIterator i= skel; i.hasTerms(); i++, j++) |
---|
2373 | coeffMonoms[j]= getMonoms (i.coeff()); |
---|
2374 | |
---|
2375 | CFArray* pL= new CFArray [skelSize]; |
---|
2376 | CFArray* pM= new CFArray [skelSize]; |
---|
2377 | for (int i= 0; i < biggestSize; i++) |
---|
2378 | { |
---|
2379 | CFIterator l= gcds [i]; |
---|
2380 | evalPoints= pEvalPoints [i]; |
---|
2381 | for (int k= 0; k < skelSize; k++, l++) |
---|
2382 | { |
---|
2383 | if (i == 0) |
---|
2384 | pL[k]= CFArray (biggestSize); |
---|
2385 | pL[k] [i]= l.coeff(); |
---|
2386 | |
---|
2387 | if (i == 0) |
---|
2388 | pM[k]= evaluate (coeffMonoms [k], evalPoints); |
---|
2389 | } |
---|
2390 | } |
---|
2391 | |
---|
2392 | CFArray solution; |
---|
2393 | CanonicalForm result= 0; |
---|
2394 | int ind= 0; |
---|
2395 | CFArray bufArray; |
---|
2396 | CFMatrix Mat; |
---|
2397 | for (int k= 0; k < skelSize; k++) |
---|
2398 | { |
---|
2399 | if (biggestSize != coeffMonoms[k].size()) |
---|
2400 | { |
---|
2401 | bufArray= CFArray (coeffMonoms[k].size()); |
---|
2402 | for (int i= 0; i < coeffMonoms[k].size(); i++) |
---|
2403 | bufArray [i]= pL[k] [i]; |
---|
2404 | solution= solveGeneralVandermonde (pM [k], bufArray); |
---|
2405 | } |
---|
2406 | else |
---|
2407 | solution= solveGeneralVandermonde (pM [k], pL[k]); |
---|
2408 | |
---|
2409 | if (solution.size() == 0) |
---|
2410 | { |
---|
2411 | delete[] pEvalPoints; |
---|
2412 | delete[] pM; |
---|
2413 | delete[] pL; |
---|
2414 | delete[] coeffMonoms; |
---|
2415 | fail= true; |
---|
2416 | if (alpha.level() != 1 && V_buf != alpha) |
---|
2417 | prune1 (alpha); |
---|
2418 | return 0; |
---|
2419 | } |
---|
2420 | for (int l= 0; l < solution.size(); l++) |
---|
2421 | result += solution[l]*Monoms [ind + l]; |
---|
2422 | ind += solution.size(); |
---|
2423 | } |
---|
2424 | |
---|
2425 | delete[] pEvalPoints; |
---|
2426 | delete[] pM; |
---|
2427 | delete[] pL; |
---|
2428 | delete[] coeffMonoms; |
---|
2429 | |
---|
2430 | if (alpha.level() != 1 && V_buf != alpha) |
---|
2431 | { |
---|
2432 | CFList u, v; |
---|
2433 | result= mapDown (result, prim_elem_alpha, im_prim_elem_alpha, alpha, u, v); |
---|
2434 | prune1 (alpha); |
---|
2435 | } |
---|
2436 | |
---|
2437 | result= N(result); |
---|
2438 | if (fdivides (result, F) && fdivides (result, G)) |
---|
2439 | return result; |
---|
2440 | else |
---|
2441 | { |
---|
2442 | fail= true; |
---|
2443 | return 0; |
---|
2444 | } |
---|
2445 | } |
---|
2446 | |
---|
2447 | CanonicalForm |
---|
2448 | nonMonicSparseInterpol (const CanonicalForm& F, const CanonicalForm& G, |
---|
2449 | const CanonicalForm& skeleton, const Variable& alpha, |
---|
2450 | bool& fail, CFArray*& coeffMonoms, CFArray& Monoms |
---|
2451 | ) |
---|
2452 | { |
---|
2453 | CanonicalForm A= F; |
---|
2454 | CanonicalForm B= G; |
---|
2455 | if (F.isZero() && degree(G) > 0) return G/Lc(G); |
---|
2456 | else if (G.isZero() && degree (F) > 0) return F/Lc(F); |
---|
2457 | else if (F.isZero() && G.isZero()) return F.genOne(); |
---|
2458 | if (F.inBaseDomain() || G.inBaseDomain()) return F.genOne(); |
---|
2459 | if (F.isUnivariate() && fdivides(F, G)) return F/Lc(F); |
---|
2460 | if (G.isUnivariate() && fdivides(G, F)) return G/Lc(G); |
---|
2461 | if (F == G) return F/Lc(F); |
---|
2462 | |
---|
2463 | ASSERT (degree (A, 1) == 0, "expected degree (F, 1) == 0"); |
---|
2464 | ASSERT (degree (B, 1) == 0, "expected degree (G, 1) == 0"); |
---|
2465 | |
---|
2466 | CFMap M,N; |
---|
2467 | int best_level= myCompress (A, B, M, N, false); |
---|
2468 | |
---|
2469 | if (best_level == 0) |
---|
2470 | return B.genOne(); |
---|
2471 | |
---|
2472 | A= M(A); |
---|
2473 | B= M(B); |
---|
2474 | |
---|
2475 | Variable x= Variable (1); |
---|
2476 | |
---|
2477 | //univariate case |
---|
2478 | if (A.isUnivariate() && B.isUnivariate()) |
---|
2479 | return N (gcd (A, B)); |
---|
2480 | |
---|
2481 | CanonicalForm skel= M(skeleton); |
---|
2482 | |
---|
2483 | CanonicalForm cA, cB; // content of A and B |
---|
2484 | CanonicalForm ppA, ppB; // primitive part of A and B |
---|
2485 | CanonicalForm gcdcAcB; |
---|
2486 | cA = uni_content (A); |
---|
2487 | cB = uni_content (B); |
---|
2488 | gcdcAcB= gcd (cA, cB); |
---|
2489 | ppA= A/cA; |
---|
2490 | ppB= B/cB; |
---|
2491 | |
---|
2492 | CanonicalForm lcA, lcB; // leading coefficients of A and B |
---|
2493 | CanonicalForm gcdlcAlcB; |
---|
2494 | lcA= uni_lcoeff (ppA); |
---|
2495 | lcB= uni_lcoeff (ppB); |
---|
2496 | |
---|
2497 | if (fdivides (lcA, lcB)) |
---|
2498 | { |
---|
2499 | if (fdivides (A, B)) |
---|
2500 | return F/Lc(F); |
---|
2501 | } |
---|
2502 | if (fdivides (lcB, lcA)) |
---|
2503 | { |
---|
2504 | if (fdivides (B, A)) |
---|
2505 | return G/Lc(G); |
---|
2506 | } |
---|
2507 | |
---|
2508 | gcdlcAlcB= gcd (lcA, lcB); |
---|
2509 | int skelSize= size (skel, skel.mvar()); |
---|
2510 | |
---|
2511 | int j= 0; |
---|
2512 | int biggestSize= 0; |
---|
2513 | int bufSize; |
---|
2514 | int numberUni= 0; |
---|
2515 | for (CFIterator i= skel; i.hasTerms(); i++, j++) |
---|
2516 | { |
---|
2517 | bufSize= size (i.coeff()); |
---|
2518 | biggestSize= tmax (biggestSize, bufSize); |
---|
2519 | numberUni += bufSize; |
---|
2520 | } |
---|
2521 | numberUni--; |
---|
2522 | numberUni= (int) ceil ( (double) numberUni / (skelSize - 1)); |
---|
2523 | biggestSize= tmax (biggestSize , numberUni); |
---|
2524 | |
---|
2525 | numberUni= biggestSize + size (LC(skel)) - 1; |
---|
2526 | int biggestSize2= tmax (numberUni, biggestSize); |
---|
2527 | |
---|
2528 | CanonicalForm g, Aeval, Beval; |
---|
2529 | |
---|
2530 | CFList evalPoints; |
---|
2531 | CFArray coeffEval; |
---|
2532 | bool evalFail= false; |
---|
2533 | CFList list; |
---|
2534 | bool GF= false; |
---|
2535 | CanonicalForm LCA= LC (A); |
---|
2536 | CanonicalForm tmp; |
---|
2537 | CFArray gcds= CFArray (biggestSize); |
---|
2538 | CFList * pEvalPoints= new CFList [biggestSize]; |
---|
2539 | Variable V_buf= alpha, V_buf4= alpha; |
---|
2540 | CFList source, dest; |
---|
2541 | CanonicalForm prim_elem, im_prim_elem; |
---|
2542 | CanonicalForm prim_elem_alpha, im_prim_elem_alpha; |
---|
2543 | for (int i= 0; i < biggestSize; i++) |
---|
2544 | { |
---|
2545 | if (i == 0) |
---|
2546 | { |
---|
2547 | if (getCharacteristic() > 3) |
---|
2548 | evalPoints= evaluationPoints (A, B, Aeval, Beval, LCA, GF, V_buf, |
---|
2549 | evalFail, list); |
---|
2550 | else |
---|
2551 | evalFail= true; |
---|
2552 | |
---|
2553 | if (evalFail) |
---|
2554 | { |
---|
2555 | if (V_buf.level() != 1) |
---|
2556 | { |
---|
2557 | do |
---|
2558 | { |
---|
2559 | Variable V_buf3= V_buf; |
---|
2560 | V_buf= chooseExtension (V_buf); |
---|
2561 | source= CFList(); |
---|
2562 | dest= CFList(); |
---|
2563 | |
---|
2564 | bool prim_fail= false; |
---|
2565 | Variable V_buf2; |
---|
2566 | prim_elem= primitiveElement (V_buf4, V_buf2, prim_fail); |
---|
2567 | if (V_buf4 == alpha && alpha.level() != 1) |
---|
2568 | prim_elem_alpha= prim_elem; |
---|
2569 | |
---|
2570 | ASSERT (!prim_fail, "failure in integer factorizer"); |
---|
2571 | if (prim_fail) |
---|
2572 | ; //ERROR |
---|
2573 | else |
---|
2574 | im_prim_elem= mapPrimElem (prim_elem, V_buf4, V_buf); |
---|
2575 | |
---|
2576 | DEBOUTLN (cerr, "getMipo (V_buf)= " << getMipo (V_buf)); |
---|
2577 | DEBOUTLN (cerr, "getMipo (V_buf2)= " << getMipo (V_buf2)); |
---|
2578 | |
---|
2579 | if (V_buf4 == alpha && alpha.level() != 1) |
---|
2580 | im_prim_elem_alpha= im_prim_elem; |
---|
2581 | else if (alpha.level() != 1) |
---|
2582 | im_prim_elem_alpha= mapUp (im_prim_elem_alpha, V_buf4, V_buf, |
---|
2583 | prim_elem, im_prim_elem, source, dest); |
---|
2584 | |
---|
2585 | for (CFListIterator i= list; i.hasItem(); i++) |
---|
2586 | i.getItem()= mapUp (i.getItem(), V_buf4, V_buf, prim_elem, |
---|
2587 | im_prim_elem, source, dest); |
---|
2588 | if (alpha.level() != 1) |
---|
2589 | { |
---|
2590 | A= mapUp (A, V_buf4, V_buf, prim_elem, im_prim_elem, source,dest); |
---|
2591 | B= mapUp (B, V_buf4, V_buf, prim_elem, im_prim_elem, source,dest); |
---|
2592 | } |
---|
2593 | evalFail= false; |
---|
2594 | V_buf4= V_buf; |
---|
2595 | evalPoints= evaluationPoints (A, B, Aeval, Beval, LCA, GF, V_buf, |
---|
2596 | evalFail, list); |
---|
2597 | } while (evalFail); |
---|
2598 | } |
---|
2599 | else |
---|
2600 | { |
---|
2601 | CanonicalForm mipo; |
---|
2602 | int deg= 2; |
---|
2603 | bool initialized= false; |
---|
2604 | do |
---|
2605 | { |
---|
2606 | mipo= randomIrredpoly (deg, x); |
---|
2607 | if (initialized) |
---|
2608 | setMipo (V_buf, mipo); |
---|
2609 | else |
---|
2610 | V_buf= rootOf (mipo); |
---|
2611 | evalFail= false; |
---|
2612 | initialized= true; |
---|
2613 | evalPoints= evaluationPoints (A, B, Aeval, Beval, LCA, GF, V_buf, |
---|
2614 | evalFail, list); |
---|
2615 | deg++; |
---|
2616 | } while (evalFail); |
---|
2617 | V_buf4= V_buf; |
---|
2618 | } |
---|
2619 | } |
---|
2620 | } |
---|
2621 | else |
---|
2622 | { |
---|
2623 | mult (evalPoints, pEvalPoints[0]); |
---|
2624 | eval (A, B, Aeval, Beval, evalPoints); |
---|
2625 | } |
---|
2626 | |
---|
2627 | g= gcd (Aeval, Beval); |
---|
2628 | g /= Lc (g); |
---|
2629 | |
---|
2630 | if (degree (g) != degree (skel) || (skelSize != size (g))) |
---|
2631 | { |
---|
2632 | delete[] pEvalPoints; |
---|
2633 | fail= true; |
---|
2634 | if (alpha.level() != 1 && V_buf != alpha) |
---|
2635 | prune1 (alpha); |
---|
2636 | return 0; |
---|
2637 | } |
---|
2638 | CFIterator l= skel; |
---|
2639 | for (CFIterator k= g; k.hasTerms(); k++, l++) |
---|
2640 | { |
---|
2641 | if (k.exp() != l.exp()) |
---|
2642 | { |
---|
2643 | delete[] pEvalPoints; |
---|
2644 | fail= true; |
---|
2645 | if (alpha.level() != 1 && V_buf != alpha) |
---|
2646 | prune1 (alpha); |
---|
2647 | return 0; |
---|
2648 | } |
---|
2649 | } |
---|
2650 | pEvalPoints[i]= evalPoints; |
---|
2651 | gcds[i]= g; |
---|
2652 | |
---|
2653 | tmp= 0; |
---|
2654 | int j= 0; |
---|
2655 | for (CFListIterator k= evalPoints; k.hasItem(); k++, j++) |
---|
2656 | tmp += k.getItem()*power (x, j); |
---|
2657 | list.append (tmp); |
---|
2658 | } |
---|
2659 | |
---|
2660 | if (Monoms.size() == 0) |
---|
2661 | Monoms= getMonoms (skel); |
---|
2662 | |
---|
2663 | coeffMonoms= new CFArray [skelSize]; |
---|
2664 | |
---|
2665 | j= 0; |
---|
2666 | for (CFIterator i= skel; i.hasTerms(); i++, j++) |
---|
2667 | coeffMonoms[j]= getMonoms (i.coeff()); |
---|
2668 | |
---|
2669 | int minimalColumnsIndex; |
---|
2670 | if (skelSize > 1) |
---|
2671 | minimalColumnsIndex= 1; |
---|
2672 | else |
---|
2673 | minimalColumnsIndex= 0; |
---|
2674 | int minimalColumns=-1; |
---|
2675 | |
---|
2676 | CFArray* pM= new CFArray [skelSize]; |
---|
2677 | CFMatrix Mat; |
---|
2678 | // find the Matrix with minimal number of columns |
---|
2679 | for (int i= 0; i < skelSize; i++) |
---|
2680 | { |
---|
2681 | pM[i]= CFArray (coeffMonoms[i].size()); |
---|
2682 | if (i == 1) |
---|
2683 | minimalColumns= coeffMonoms[i].size(); |
---|
2684 | if (i > 1) |
---|
2685 | { |
---|
2686 | if (minimalColumns > coeffMonoms[i].size()) |
---|
2687 | { |
---|
2688 | minimalColumns= coeffMonoms[i].size(); |
---|
2689 | minimalColumnsIndex= i; |
---|
2690 | } |
---|
2691 | } |
---|
2692 | } |
---|
2693 | CFMatrix* pMat= new CFMatrix [2]; |
---|
2694 | pMat[0]= CFMatrix (biggestSize, coeffMonoms[0].size()); |
---|
2695 | pMat[1]= CFMatrix (biggestSize, coeffMonoms[minimalColumnsIndex].size()); |
---|
2696 | CFArray* pL= new CFArray [skelSize]; |
---|
2697 | for (int i= 0; i < biggestSize; i++) |
---|
2698 | { |
---|
2699 | CFIterator l= gcds [i]; |
---|
2700 | evalPoints= pEvalPoints [i]; |
---|
2701 | for (int k= 0; k < skelSize; k++, l++) |
---|
2702 | { |
---|
2703 | if (i == 0) |
---|
2704 | pL[k]= CFArray (biggestSize); |
---|
2705 | pL[k] [i]= l.coeff(); |
---|
2706 | |
---|
2707 | if (i == 0 && k != 0 && k != minimalColumnsIndex) |
---|
2708 | pM[k]= evaluate (coeffMonoms[k], evalPoints); |
---|
2709 | else if (i == 0 && (k == 0 || k == minimalColumnsIndex)) |
---|
2710 | coeffEval= evaluate (coeffMonoms[k], evalPoints); |
---|
2711 | if (i > 0 && (k == 0 || k == minimalColumnsIndex)) |
---|
2712 | coeffEval= evaluate (coeffMonoms[k], evalPoints); |
---|
2713 | |
---|
2714 | if (k == 0) |
---|
2715 | { |
---|
2716 | if (pMat[k].rows() >= i + 1) |
---|
2717 | { |
---|
2718 | for (int ind= 1; ind < coeffEval.size() + 1; ind++) |
---|
2719 | pMat[k] (i + 1, ind)= coeffEval[ind - 1]; |
---|
2720 | } |
---|
2721 | } |
---|
2722 | if (k == minimalColumnsIndex) |
---|
2723 | { |
---|
2724 | if (pMat[1].rows() >= i + 1) |
---|
2725 | { |
---|
2726 | for (int ind= 1; ind < coeffEval.size() + 1; ind++) |
---|
2727 | pMat[1] (i + 1, ind)= coeffEval[ind - 1]; |
---|
2728 | } |
---|
2729 | } |
---|
2730 | } |
---|
2731 | } |
---|
2732 | |
---|
2733 | CFArray solution; |
---|
2734 | CanonicalForm result= 0; |
---|
2735 | int ind= 1; |
---|
2736 | int matRows, matColumns; |
---|
2737 | matRows= pMat[1].rows(); |
---|
2738 | matColumns= pMat[0].columns() - 1; |
---|
2739 | matColumns += pMat[1].columns(); |
---|
2740 | |
---|
2741 | Mat= CFMatrix (matRows, matColumns); |
---|
2742 | for (int i= 1; i <= matRows; i++) |
---|
2743 | for (int j= 1; j <= pMat[1].columns(); j++) |
---|
2744 | Mat (i, j)= pMat[1] (i, j); |
---|
2745 | |
---|
2746 | for (int j= pMat[1].columns() + 1; j <= matColumns; |
---|
2747 | j++, ind++) |
---|
2748 | { |
---|
2749 | for (int i= 1; i <= matRows; i++) |
---|
2750 | Mat (i, j)= (-pMat [0] (i, ind + 1))*pL[minimalColumnsIndex] [i - 1]; |
---|
2751 | } |
---|
2752 | |
---|
2753 | CFArray firstColumn= CFArray (pMat[0].rows()); |
---|
2754 | for (int i= 0; i < pMat[0].rows(); i++) |
---|
2755 | firstColumn [i]= pMat[0] (i + 1, 1); |
---|
2756 | |
---|
2757 | CFArray bufArray= pL[minimalColumnsIndex]; |
---|
2758 | |
---|
2759 | for (int i= 0; i < biggestSize; i++) |
---|
2760 | pL[minimalColumnsIndex] [i] *= firstColumn[i]; |
---|
2761 | |
---|
2762 | CFMatrix bufMat= pMat[1]; |
---|
2763 | pMat[1]= Mat; |
---|
2764 | |
---|
2765 | if (V_buf.level() != 1) |
---|
2766 | solution= solveSystemFq (pMat[1], |
---|
2767 | pL[minimalColumnsIndex], V_buf); |
---|
2768 | else |
---|
2769 | solution= solveSystemFp (pMat[1], |
---|
2770 | pL[minimalColumnsIndex]); |
---|
2771 | |
---|
2772 | if (solution.size() == 0) |
---|
2773 | { //Javadi's method failed, try deKleine, Monagan, Wittkopf instead |
---|
2774 | CFMatrix bufMat0= pMat[0]; |
---|
2775 | delete [] pMat; |
---|
2776 | pMat= new CFMatrix [skelSize]; |
---|
2777 | pL[minimalColumnsIndex]= bufArray; |
---|
2778 | CFList* bufpEvalPoints= NULL; |
---|
2779 | CFArray bufGcds; |
---|
2780 | if (biggestSize != biggestSize2) |
---|
2781 | { |
---|
2782 | bufpEvalPoints= pEvalPoints; |
---|
2783 | pEvalPoints= new CFList [biggestSize2]; |
---|
2784 | bufGcds= gcds; |
---|
2785 | gcds= CFArray (biggestSize2); |
---|
2786 | for (int i= 0; i < biggestSize; i++) |
---|
2787 | { |
---|
2788 | pEvalPoints[i]= bufpEvalPoints [i]; |
---|
2789 | gcds[i]= bufGcds[i]; |
---|
2790 | } |
---|
2791 | for (int i= 0; i < biggestSize2 - biggestSize; i++) |
---|
2792 | { |
---|
2793 | mult (evalPoints, pEvalPoints[0]); |
---|
2794 | eval (A, B, Aeval, Beval, evalPoints); |
---|
2795 | g= gcd (Aeval, Beval); |
---|
2796 | g /= Lc (g); |
---|
2797 | if (degree (g) != degree (skel) || (skelSize != size (g))) |
---|
2798 | { |
---|
2799 | delete[] pEvalPoints; |
---|
2800 | delete[] pMat; |
---|
2801 | delete[] pL; |
---|
2802 | delete[] coeffMonoms; |
---|
2803 | delete[] pM; |
---|
2804 | if (bufpEvalPoints != NULL) |
---|
2805 | delete [] bufpEvalPoints; |
---|
2806 | fail= true; |
---|
2807 | if (alpha.level() != 1 && V_buf != alpha) |
---|
2808 | prune1 (alpha); |
---|
2809 | return 0; |
---|
2810 | } |
---|
2811 | CFIterator l= skel; |
---|
2812 | for (CFIterator k= g; k.hasTerms(); k++, l++) |
---|
2813 | { |
---|
2814 | if (k.exp() != l.exp()) |
---|
2815 | { |
---|
2816 | delete[] pEvalPoints; |
---|
2817 | delete[] pMat; |
---|
2818 | delete[] pL; |
---|
2819 | delete[] coeffMonoms; |
---|
2820 | delete[] pM; |
---|
2821 | if (bufpEvalPoints != NULL) |
---|
2822 | delete [] bufpEvalPoints; |
---|
2823 | fail= true; |
---|
2824 | if (alpha.level() != 1 && V_buf != alpha) |
---|
2825 | prune1 (alpha); |
---|
2826 | return 0; |
---|
2827 | } |
---|
2828 | } |
---|
2829 | pEvalPoints[i + biggestSize]= evalPoints; |
---|
2830 | gcds[i + biggestSize]= g; |
---|
2831 | } |
---|
2832 | } |
---|
2833 | for (int i= 0; i < biggestSize; i++) |
---|
2834 | { |
---|
2835 | CFIterator l= gcds [i]; |
---|
2836 | evalPoints= pEvalPoints [i]; |
---|
2837 | for (int k= 1; k < skelSize; k++, l++) |
---|
2838 | { |
---|
2839 | if (i == 0) |
---|
2840 | pMat[k]= CFMatrix (biggestSize2,coeffMonoms[k].size()+biggestSize2-1); |
---|
2841 | if (k == minimalColumnsIndex) |
---|
2842 | continue; |
---|
2843 | coeffEval= evaluate (coeffMonoms[k], evalPoints); |
---|
2844 | if (pMat[k].rows() >= i + 1) |
---|
2845 | { |
---|
2846 | for (int ind= 1; ind < coeffEval.size() + 1; ind++) |
---|
2847 | pMat[k] (i + 1, ind)= coeffEval[ind - 1]; |
---|
2848 | } |
---|
2849 | } |
---|
2850 | } |
---|
2851 | Mat= bufMat0; |
---|
2852 | pMat[0]= CFMatrix (biggestSize2, coeffMonoms[0].size() + biggestSize2 - 1); |
---|
2853 | for (int j= 1; j <= Mat.rows(); j++) |
---|
2854 | for (int k= 1; k <= Mat.columns(); k++) |
---|
2855 | pMat [0] (j,k)= Mat (j,k); |
---|
2856 | Mat= bufMat; |
---|
2857 | for (int j= 1; j <= Mat.rows(); j++) |
---|
2858 | for (int k= 1; k <= Mat.columns(); k++) |
---|
2859 | pMat [minimalColumnsIndex] (j,k)= Mat (j,k); |
---|
2860 | // write old matrix entries into new matrices |
---|
2861 | for (int i= 0; i < skelSize; i++) |
---|
2862 | { |
---|
2863 | bufArray= pL[i]; |
---|
2864 | pL[i]= CFArray (biggestSize2); |
---|
2865 | for (int j= 0; j < bufArray.size(); j++) |
---|
2866 | pL[i] [j]= bufArray [j]; |
---|
2867 | } |
---|
2868 | //write old vector entries into new and add new entries to old matrices |
---|
2869 | for (int i= 0; i < biggestSize2 - biggestSize; i++) |
---|
2870 | { |
---|
2871 | CFIterator l= gcds [i + biggestSize]; |
---|
2872 | evalPoints= pEvalPoints [i + biggestSize]; |
---|
2873 | for (int k= 0; k < skelSize; k++, l++) |
---|
2874 | { |
---|
2875 | pL[k] [i + biggestSize]= l.coeff(); |
---|
2876 | coeffEval= evaluate (coeffMonoms[k], evalPoints); |
---|
2877 | if (pMat[k].rows() >= i + biggestSize + 1) |
---|
2878 | { |
---|
2879 | for (int ind= 1; ind < coeffEval.size() + 1; ind++) |
---|
2880 | pMat[k] (i + biggestSize + 1, ind)= coeffEval[ind - 1]; |
---|
2881 | } |
---|
2882 | } |
---|
2883 | } |
---|
2884 | // begin new |
---|
2885 | for (int i= 0; i < skelSize; i++) |
---|
2886 | { |
---|
2887 | if (pL[i].size() > 1) |
---|
2888 | { |
---|
2889 | for (int j= 2; j <= pMat[i].rows(); j++) |
---|
2890 | pMat[i] (j, coeffMonoms[i].size() + j - 1)= |
---|
2891 | -pL[i] [j - 1]; |
---|
2892 | } |
---|
2893 | } |
---|
2894 | |
---|
2895 | matColumns= biggestSize2 - 1; |
---|
2896 | matRows= 0; |
---|
2897 | for (int i= 0; i < skelSize; i++) |
---|
2898 | { |
---|
2899 | if (V_buf.level() == 1) |
---|
2900 | (void) gaussianElimFp (pMat[i], pL[i]); |
---|
2901 | else |
---|
2902 | (void) gaussianElimFq (pMat[i], pL[i], V_buf); |
---|
2903 | |
---|
2904 | if (pMat[i] (coeffMonoms[i].size(), coeffMonoms[i].size()) == 0) |
---|
2905 | { |
---|
2906 | delete[] pEvalPoints; |
---|
2907 | delete[] pMat; |
---|
2908 | delete[] pL; |
---|
2909 | delete[] coeffMonoms; |
---|
2910 | delete[] pM; |
---|
2911 | if (bufpEvalPoints != NULL) |
---|
2912 | delete [] bufpEvalPoints; |
---|
2913 | fail= true; |
---|
2914 | if (alpha.level() != 1 && V_buf != alpha) |
---|
2915 | prune1 (alpha); |
---|
2916 | return 0; |
---|
2917 | } |
---|
2918 | matRows += pMat[i].rows() - coeffMonoms[i].size(); |
---|
2919 | } |
---|
2920 | |
---|
2921 | CFMatrix bufMat; |
---|
2922 | Mat= CFMatrix (matRows, matColumns); |
---|
2923 | ind= 0; |
---|
2924 | bufArray= CFArray (matRows); |
---|
2925 | CFArray bufArray2; |
---|
2926 | for (int i= 0; i < skelSize; i++) |
---|
2927 | { |
---|
2928 | if (coeffMonoms[i].size() + 1 >= pMat[i].rows() || coeffMonoms[i].size() + 1 >= pMat[i].columns()) |
---|
2929 | { |
---|
2930 | delete[] pEvalPoints; |
---|
2931 | delete[] pMat; |
---|
2932 | delete[] pL; |
---|
2933 | delete[] coeffMonoms; |
---|
2934 | delete[] pM; |
---|
2935 | if (bufpEvalPoints != NULL) |
---|
2936 | delete [] bufpEvalPoints; |
---|
2937 | fail= true; |
---|
2938 | if (alpha.level() != 1 && V_buf != alpha) |
---|
2939 | prune1 (alpha); |
---|
2940 | return 0; |
---|
2941 | } |
---|
2942 | bufMat= pMat[i] (coeffMonoms[i].size() + 1, pMat[i].rows(), |
---|
2943 | coeffMonoms[i].size() + 1, pMat[i].columns()); |
---|
2944 | |
---|
2945 | for (int j= 1; j <= bufMat.rows(); j++) |
---|
2946 | for (int k= 1; k <= bufMat.columns(); k++) |
---|
2947 | Mat (j + ind, k)= bufMat(j, k); |
---|
2948 | bufArray2= coeffMonoms[i].size(); |
---|
2949 | for (int j= 1; j <= pMat[i].rows(); j++) |
---|
2950 | { |
---|
2951 | if (j > coeffMonoms[i].size()) |
---|
2952 | bufArray [j-coeffMonoms[i].size() + ind - 1]= pL[i] [j - 1]; |
---|
2953 | else |
---|
2954 | bufArray2 [j - 1]= pL[i] [j - 1]; |
---|
2955 | } |
---|
2956 | pL[i]= bufArray2; |
---|
2957 | ind += bufMat.rows(); |
---|
2958 | pMat[i]= pMat[i] (1, coeffMonoms[i].size(), 1, pMat[i].columns()); |
---|
2959 | } |
---|
2960 | |
---|
2961 | if (V_buf.level() != 1) |
---|
2962 | solution= solveSystemFq (Mat, bufArray, V_buf); |
---|
2963 | else |
---|
2964 | solution= solveSystemFp (Mat, bufArray); |
---|
2965 | |
---|
2966 | if (solution.size() == 0) |
---|
2967 | { |
---|
2968 | delete[] pEvalPoints; |
---|
2969 | delete[] pMat; |
---|
2970 | delete[] pL; |
---|
2971 | delete[] coeffMonoms; |
---|
2972 | delete[] pM; |
---|
2973 | if (bufpEvalPoints != NULL) |
---|
2974 | delete [] bufpEvalPoints; |
---|
2975 | fail= true; |
---|
2976 | if (alpha.level() != 1 && V_buf != alpha) |
---|
2977 | prune1 (alpha); |
---|
2978 | return 0; |
---|
2979 | } |
---|
2980 | |
---|
2981 | ind= 0; |
---|
2982 | result= 0; |
---|
2983 | CFArray bufSolution; |
---|
2984 | for (int i= 0; i < skelSize; i++) |
---|
2985 | { |
---|
2986 | bufSolution= readOffSolution (pMat[i], pL[i], solution); |
---|
2987 | for (int i= 0; i < bufSolution.size(); i++, ind++) |
---|
2988 | result += Monoms [ind]*bufSolution[i]; |
---|
2989 | } |
---|
2990 | if (alpha.level() != 1 && V_buf != alpha) |
---|
2991 | { |
---|
2992 | CFList u, v; |
---|
2993 | result= mapDown (result,prim_elem_alpha, im_prim_elem_alpha, alpha, u, v); |
---|
2994 | prune1 (alpha); |
---|
2995 | } |
---|
2996 | result= N(result); |
---|
2997 | delete[] pEvalPoints; |
---|
2998 | delete[] pMat; |
---|
2999 | delete[] pL; |
---|
3000 | delete[] coeffMonoms; |
---|
3001 | delete[] pM; |
---|
3002 | |
---|
3003 | if (bufpEvalPoints != NULL) |
---|
3004 | delete [] bufpEvalPoints; |
---|
3005 | if (fdivides (result, F) && fdivides (result, G)) |
---|
3006 | return result; |
---|
3007 | else |
---|
3008 | { |
---|
3009 | fail= true; |
---|
3010 | return 0; |
---|
3011 | } |
---|
3012 | } // end of deKleine, Monagan & Wittkopf |
---|
3013 | |
---|
3014 | result += Monoms[0]; |
---|
3015 | int ind2= 0, ind3= 2; |
---|
3016 | ind= 0; |
---|
3017 | for (int l= 0; l < minimalColumnsIndex; l++) |
---|
3018 | ind += coeffMonoms[l].size(); |
---|
3019 | for (int l= solution.size() - pMat[0].columns() + 1; l < solution.size(); |
---|
3020 | l++, ind2++, ind3++) |
---|
3021 | { |
---|
3022 | result += solution[l]*Monoms [1 + ind2]; |
---|
3023 | for (int i= 0; i < pMat[0].rows(); i++) |
---|
3024 | firstColumn[i] += solution[l]*pMat[0] (i + 1, ind3); |
---|
3025 | } |
---|
3026 | for (int l= 0; l < solution.size() + 1 - pMat[0].columns(); l++) |
---|
3027 | result += solution[l]*Monoms [ind + l]; |
---|
3028 | ind= coeffMonoms[0].size(); |
---|
3029 | for (int k= 1; k < skelSize; k++) |
---|
3030 | { |
---|
3031 | if (k == minimalColumnsIndex) |
---|
3032 | { |
---|
3033 | ind += coeffMonoms[k].size(); |
---|
3034 | continue; |
---|
3035 | } |
---|
3036 | if (k != minimalColumnsIndex) |
---|
3037 | { |
---|
3038 | for (int i= 0; i < biggestSize; i++) |
---|
3039 | pL[k] [i] *= firstColumn [i]; |
---|
3040 | } |
---|
3041 | |
---|
3042 | if (biggestSize != coeffMonoms[k].size() && k != minimalColumnsIndex) |
---|
3043 | { |
---|
3044 | bufArray= CFArray (coeffMonoms[k].size()); |
---|
3045 | for (int i= 0; i < bufArray.size(); i++) |
---|
3046 | bufArray [i]= pL[k] [i]; |
---|
3047 | solution= solveGeneralVandermonde (pM[k], bufArray); |
---|
3048 | } |
---|
3049 | else |
---|
3050 | solution= solveGeneralVandermonde (pM[k], pL[k]); |
---|
3051 | |
---|
3052 | if (solution.size() == 0) |
---|
3053 | { |
---|
3054 | delete[] pEvalPoints; |
---|
3055 | delete[] pMat; |
---|
3056 | delete[] pL; |
---|
3057 | delete[] coeffMonoms; |
---|
3058 | delete[] pM; |
---|
3059 | fail= true; |
---|
3060 | if (alpha.level() != 1 && V_buf != alpha) |
---|
3061 | prune1 (alpha); |
---|
3062 | return 0; |
---|
3063 | } |
---|
3064 | if (k != minimalColumnsIndex) |
---|
3065 | { |
---|
3066 | for (int l= 0; l < solution.size(); l++) |
---|
3067 | result += solution[l]*Monoms [ind + l]; |
---|
3068 | ind += solution.size(); |
---|
3069 | } |
---|
3070 | } |
---|
3071 | |
---|
3072 | delete[] pEvalPoints; |
---|
3073 | delete[] pMat; |
---|
3074 | delete[] pL; |
---|
3075 | delete[] pM; |
---|
3076 | delete[] coeffMonoms; |
---|
3077 | |
---|
3078 | if (alpha.level() != 1 && V_buf != alpha) |
---|
3079 | { |
---|
3080 | CFList u, v; |
---|
3081 | result= mapDown (result, prim_elem, im_prim_elem, alpha, u, v); |
---|
3082 | prune1 (alpha); |
---|
3083 | } |
---|
3084 | result= N(result); |
---|
3085 | |
---|
3086 | if (fdivides (result, F) && fdivides (result, G)) |
---|
3087 | return result; |
---|
3088 | else |
---|
3089 | { |
---|
3090 | fail= true; |
---|
3091 | return 0; |
---|
3092 | } |
---|
3093 | } |
---|
3094 | |
---|
3095 | CanonicalForm sparseGCDFq (const CanonicalForm& F, const CanonicalForm& G, |
---|
3096 | const Variable & alpha, CFList& l, bool& topLevel) |
---|
3097 | { |
---|
3098 | CanonicalForm A= F; |
---|
3099 | CanonicalForm B= G; |
---|
3100 | if (F.isZero() && degree(G) > 0) return G/Lc(G); |
---|
3101 | else if (G.isZero() && degree (F) > 0) return F/Lc(F); |
---|
3102 | else if (F.isZero() && G.isZero()) return F.genOne(); |
---|
3103 | if (F.inBaseDomain() || G.inBaseDomain()) return F.genOne(); |
---|
3104 | if (F.isUnivariate() && fdivides(F, G)) return F/Lc(F); |
---|
3105 | if (G.isUnivariate() && fdivides(G, F)) return G/Lc(G); |
---|
3106 | if (F == G) return F/Lc(F); |
---|
3107 | |
---|
3108 | CFMap M,N; |
---|
3109 | int best_level= myCompress (A, B, M, N, topLevel); |
---|
3110 | |
---|
3111 | if (best_level == 0) return B.genOne(); |
---|
3112 | |
---|
3113 | A= M(A); |
---|
3114 | B= M(B); |
---|
3115 | |
---|
3116 | Variable x= Variable (1); |
---|
3117 | |
---|
3118 | //univariate case |
---|
3119 | if (A.isUnivariate() && B.isUnivariate()) |
---|
3120 | return N (gcd (A, B)); |
---|
3121 | |
---|
3122 | CanonicalForm cA, cB; // content of A and B |
---|
3123 | CanonicalForm ppA, ppB; // primitive part of A and B |
---|
3124 | CanonicalForm gcdcAcB; |
---|
3125 | |
---|
3126 | cA = uni_content (A); |
---|
3127 | cB = uni_content (B); |
---|
3128 | gcdcAcB= gcd (cA, cB); |
---|
3129 | ppA= A/cA; |
---|
3130 | ppB= B/cB; |
---|
3131 | |
---|
3132 | CanonicalForm lcA, lcB; // leading coefficients of A and B |
---|
3133 | CanonicalForm gcdlcAlcB; |
---|
3134 | lcA= uni_lcoeff (ppA); |
---|
3135 | lcB= uni_lcoeff (ppB); |
---|
3136 | |
---|
3137 | if (fdivides (lcA, lcB)) |
---|
3138 | { |
---|
3139 | if (fdivides (A, B)) |
---|
3140 | return F/Lc(F); |
---|
3141 | } |
---|
3142 | if (fdivides (lcB, lcA)) |
---|
3143 | { |
---|
3144 | if (fdivides (B, A)) |
---|
3145 | return G/Lc(G); |
---|
3146 | } |
---|
3147 | |
---|
3148 | gcdlcAlcB= gcd (lcA, lcB); |
---|
3149 | |
---|
3150 | int d= totaldegree (ppA, Variable (2), Variable (ppA.level())); |
---|
3151 | int d0; |
---|
3152 | |
---|
3153 | if (d == 0) |
---|
3154 | return N(gcdcAcB); |
---|
3155 | d0= totaldegree (ppB, Variable (2), Variable (ppB.level())); |
---|
3156 | |
---|
3157 | if (d0 < d) |
---|
3158 | d= d0; |
---|
3159 | |
---|
3160 | if (d == 0) |
---|
3161 | return N(gcdcAcB); |
---|
3162 | |
---|
3163 | CanonicalForm m, random_element, G_m, G_random_element, H, cH, ppH, skeleton; |
---|
3164 | CanonicalForm newtonPoly= 1; |
---|
3165 | m= gcdlcAlcB; |
---|
3166 | G_m= 0; |
---|
3167 | H= 0; |
---|
3168 | bool fail= false; |
---|
3169 | topLevel= false; |
---|
3170 | bool inextension= false; |
---|
3171 | Variable V_buf= alpha, V_buf4= alpha; |
---|
3172 | CanonicalForm prim_elem, im_prim_elem; |
---|
3173 | CanonicalForm prim_elem_alpha, im_prim_elem_alpha; |
---|
3174 | CFList source, dest; |
---|
3175 | do // first do |
---|
3176 | { |
---|
3177 | random_element= randomElement (m, V_buf, l, fail); |
---|
3178 | if (random_element == 0 && !fail) |
---|
3179 | { |
---|
3180 | if (!find (l, random_element)) |
---|
3181 | l.append (random_element); |
---|
3182 | continue; |
---|
3183 | } |
---|
3184 | if (fail) |
---|
3185 | { |
---|
3186 | source= CFList(); |
---|
3187 | dest= CFList(); |
---|
3188 | |
---|
3189 | Variable V_buf3= V_buf; |
---|
3190 | V_buf= chooseExtension (V_buf); |
---|
3191 | bool prim_fail= false; |
---|
3192 | Variable V_buf2; |
---|
3193 | prim_elem= primitiveElement (V_buf4, V_buf2, prim_fail); |
---|
3194 | if (V_buf4 == alpha) |
---|
3195 | prim_elem_alpha= prim_elem; |
---|
3196 | |
---|
3197 | if (V_buf3 != V_buf4) |
---|
3198 | { |
---|
3199 | m= mapDown (m, prim_elem, im_prim_elem, V_buf4, source, dest); |
---|
3200 | G_m= mapDown (m, prim_elem, im_prim_elem, V_buf4, source, dest); |
---|
3201 | newtonPoly= mapDown (newtonPoly, prim_elem, im_prim_elem, V_buf4, |
---|
3202 | source, dest); |
---|
3203 | ppA= mapDown (ppA, prim_elem, im_prim_elem, V_buf4, source, dest); |
---|
3204 | ppB= mapDown (ppB, prim_elem, im_prim_elem, V_buf4, source, dest); |
---|
3205 | gcdlcAlcB= mapDown (gcdlcAlcB, prim_elem, im_prim_elem, V_buf4, source, |
---|
3206 | dest); |
---|
3207 | for (CFListIterator i= l; i.hasItem(); i++) |
---|
3208 | i.getItem()= mapDown (i.getItem(), prim_elem, im_prim_elem, V_buf4, |
---|
3209 | source, dest); |
---|
3210 | } |
---|
3211 | |
---|
3212 | ASSERT (!prim_fail, "failure in integer factorizer"); |
---|
3213 | if (prim_fail) |
---|
3214 | ; //ERROR |
---|
3215 | else |
---|
3216 | im_prim_elem= mapPrimElem (prim_elem, V_buf4, V_buf); |
---|
3217 | |
---|
3218 | if (V_buf4 == alpha) |
---|
3219 | im_prim_elem_alpha= im_prim_elem; |
---|
3220 | else |
---|
3221 | im_prim_elem_alpha= mapUp (im_prim_elem_alpha, V_buf4, V_buf, prim_elem, |
---|
3222 | im_prim_elem, source, dest); |
---|
3223 | |
---|
3224 | DEBOUTLN (cerr, "getMipo (V_buf4)= " << getMipo (V_buf4)); |
---|
3225 | DEBOUTLN (cerr, "getMipo (V_buf2)= " << getMipo (V_buf2)); |
---|
3226 | inextension= true; |
---|
3227 | for (CFListIterator i= l; i.hasItem(); i++) |
---|
3228 | i.getItem()= mapUp (i.getItem(), V_buf4, V_buf, prim_elem, |
---|
3229 | im_prim_elem, source, dest); |
---|
3230 | m= mapUp (m, V_buf4, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
3231 | G_m= mapUp (G_m, V_buf4, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
3232 | newtonPoly= mapUp (newtonPoly, V_buf4, V_buf, prim_elem, im_prim_elem, |
---|
3233 | source, dest); |
---|
3234 | ppA= mapUp (ppA, V_buf4, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
3235 | ppB= mapUp (ppB, V_buf4, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
3236 | gcdlcAlcB= mapUp (gcdlcAlcB, V_buf4, V_buf, prim_elem, im_prim_elem, |
---|
3237 | source, dest); |
---|
3238 | |
---|
3239 | fail= false; |
---|
3240 | random_element= randomElement (m, V_buf, l, fail ); |
---|
3241 | DEBOUTLN (cerr, "fail= " << fail); |
---|
3242 | CFList list; |
---|
3243 | TIMING_START (gcd_recursion); |
---|
3244 | G_random_element= |
---|
3245 | sparseGCDFq (ppA (random_element, x), ppB (random_element, x), V_buf, |
---|
3246 | list, topLevel); |
---|
3247 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
3248 | "time for recursive call: "); |
---|
3249 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
3250 | V_buf4= V_buf; |
---|
3251 | } |
---|
3252 | else |
---|
3253 | { |
---|
3254 | CFList list; |
---|
3255 | TIMING_START (gcd_recursion); |
---|
3256 | G_random_element= |
---|
3257 | sparseGCDFq (ppA(random_element, x), ppB(random_element, x), V_buf, |
---|
3258 | list, topLevel); |
---|
3259 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
3260 | "time for recursive call: "); |
---|
3261 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
3262 | } |
---|
3263 | |
---|
3264 | if (!G_random_element.inCoeffDomain()) |
---|
3265 | d0= totaldegree (G_random_element, Variable(2), |
---|
3266 | Variable (G_random_element.level())); |
---|
3267 | else |
---|
3268 | d0= 0; |
---|
3269 | |
---|
3270 | if (d0 == 0) |
---|
3271 | { |
---|
3272 | if (inextension) |
---|
3273 | prune1 (alpha); |
---|
3274 | return N(gcdcAcB); |
---|
3275 | } |
---|
3276 | if (d0 > d) |
---|
3277 | { |
---|
3278 | if (!find (l, random_element)) |
---|
3279 | l.append (random_element); |
---|
3280 | continue; |
---|
3281 | } |
---|
3282 | |
---|
3283 | G_random_element= |
---|
3284 | (gcdlcAlcB(random_element, x)/uni_lcoeff (G_random_element)) |
---|
3285 | * G_random_element; |
---|
3286 | |
---|
3287 | skeleton= G_random_element; |
---|
3288 | if (!G_random_element.inCoeffDomain()) |
---|
3289 | d0= totaldegree (G_random_element, Variable(2), |
---|
3290 | Variable (G_random_element.level())); |
---|
3291 | else |
---|
3292 | d0= 0; |
---|
3293 | |
---|
3294 | if (d0 < d) |
---|
3295 | { |
---|
3296 | m= gcdlcAlcB; |
---|
3297 | newtonPoly= 1; |
---|
3298 | G_m= 0; |
---|
3299 | d= d0; |
---|
3300 | } |
---|
3301 | |
---|
3302 | H= newtonInterp (random_element, G_random_element, newtonPoly, G_m, x); |
---|
3303 | if (uni_lcoeff (H) == gcdlcAlcB) |
---|
3304 | { |
---|
3305 | cH= uni_content (H); |
---|
3306 | ppH= H/cH; |
---|
3307 | if (inextension) |
---|
3308 | { |
---|
3309 | CFList u, v; |
---|
3310 | //maybe it's better to test if ppH is an element of F(\alpha) before |
---|
3311 | //mapping down |
---|
3312 | if (fdivides (ppH, ppA) && fdivides (ppH, ppB)) |
---|
3313 | { |
---|
3314 | DEBOUTLN (cerr, "ppH before mapDown= " << ppH); |
---|
3315 | ppH= mapDown (ppH, prim_elem_alpha, im_prim_elem_alpha, alpha, u, v); |
---|
3316 | ppH /= Lc(ppH); |
---|
3317 | DEBOUTLN (cerr, "ppH after mapDown= " << ppH); |
---|
3318 | prune1 (alpha); |
---|
3319 | return N(gcdcAcB*ppH); |
---|
3320 | } |
---|
3321 | } |
---|
3322 | else if (fdivides (ppH, ppA) && fdivides (ppH, ppB)) |
---|
3323 | return N(gcdcAcB*ppH); |
---|
3324 | } |
---|
3325 | G_m= H; |
---|
3326 | newtonPoly= newtonPoly*(x - random_element); |
---|
3327 | m= m*(x - random_element); |
---|
3328 | if (!find (l, random_element)) |
---|
3329 | l.append (random_element); |
---|
3330 | |
---|
3331 | if (getCharacteristic () > 3 && size (skeleton) < 100) |
---|
3332 | { |
---|
3333 | CFArray Monoms; |
---|
3334 | CFArray *coeffMonoms; |
---|
3335 | do //second do |
---|
3336 | { |
---|
3337 | random_element= randomElement (m, V_buf, l, fail); |
---|
3338 | if (random_element == 0 && !fail) |
---|
3339 | { |
---|
3340 | if (!find (l, random_element)) |
---|
3341 | l.append (random_element); |
---|
3342 | continue; |
---|
3343 | } |
---|
3344 | if (fail) |
---|
3345 | { |
---|
3346 | source= CFList(); |
---|
3347 | dest= CFList(); |
---|
3348 | |
---|
3349 | Variable V_buf3= V_buf; |
---|
3350 | V_buf= chooseExtension (V_buf); |
---|
3351 | bool prim_fail= false; |
---|
3352 | Variable V_buf2; |
---|
3353 | prim_elem= primitiveElement (V_buf4, V_buf2, prim_fail); |
---|
3354 | if (V_buf4 == alpha) |
---|
3355 | prim_elem_alpha= prim_elem; |
---|
3356 | |
---|
3357 | if (V_buf3 != V_buf4) |
---|
3358 | { |
---|
3359 | m= mapDown (m, prim_elem, im_prim_elem, V_buf4, source, dest); |
---|
3360 | G_m= mapDown (m, prim_elem, im_prim_elem, V_buf4, source, dest); |
---|
3361 | newtonPoly= mapDown (newtonPoly, prim_elem, im_prim_elem, V_buf4, |
---|
3362 | source, dest); |
---|
3363 | ppA= mapDown (ppA, prim_elem, im_prim_elem, V_buf4, source, dest); |
---|
3364 | ppB= mapDown (ppB, prim_elem, im_prim_elem, V_buf4, source, dest); |
---|
3365 | gcdlcAlcB= mapDown (gcdlcAlcB, prim_elem, im_prim_elem, V_buf4, |
---|
3366 | source, dest); |
---|
3367 | for (CFListIterator i= l; i.hasItem(); i++) |
---|
3368 | i.getItem()= mapDown (i.getItem(), prim_elem, im_prim_elem, V_buf4, |
---|
3369 | source, dest); |
---|
3370 | } |
---|
3371 | |
---|
3372 | ASSERT (!prim_fail, "failure in integer factorizer"); |
---|
3373 | if (prim_fail) |
---|
3374 | ; //ERROR |
---|
3375 | else |
---|
3376 | im_prim_elem= mapPrimElem (prim_elem, V_buf4, V_buf); |
---|
3377 | |
---|
3378 | if (V_buf4 == alpha) |
---|
3379 | im_prim_elem_alpha= im_prim_elem; |
---|
3380 | else |
---|
3381 | im_prim_elem_alpha= mapUp (im_prim_elem_alpha, V_buf4, V_buf, |
---|
3382 | prim_elem, im_prim_elem, source, dest); |
---|
3383 | |
---|
3384 | DEBOUTLN (cerr, "getMipo (V_buf4)= " << getMipo (V_buf4)); |
---|
3385 | DEBOUTLN (cerr, "getMipo (V_buf2)= " << getMipo (V_buf2)); |
---|
3386 | inextension= true; |
---|
3387 | for (CFListIterator i= l; i.hasItem(); i++) |
---|
3388 | i.getItem()= mapUp (i.getItem(), V_buf4, V_buf, prim_elem, |
---|
3389 | im_prim_elem, source, dest); |
---|
3390 | m= mapUp (m, V_buf4, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
3391 | G_m= mapUp (G_m, V_buf4, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
3392 | newtonPoly= mapUp (newtonPoly, V_buf4, V_buf, prim_elem, im_prim_elem, |
---|
3393 | source, dest); |
---|
3394 | ppA= mapUp (ppA, V_buf4, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
3395 | ppB= mapUp (ppB, V_buf4, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
3396 | |
---|
3397 | gcdlcAlcB= mapUp (gcdlcAlcB, V_buf4, V_buf, prim_elem, im_prim_elem, |
---|
3398 | source, dest); |
---|
3399 | |
---|
3400 | fail= false; |
---|
3401 | random_element= randomElement (m, V_buf, l, fail); |
---|
3402 | DEBOUTLN (cerr, "fail= " << fail); |
---|
3403 | CFList list; |
---|
3404 | TIMING_START (gcd_recursion); |
---|
3405 | |
---|
3406 | V_buf4= V_buf; |
---|
3407 | |
---|
3408 | //sparseInterpolation |
---|
3409 | bool sparseFail= false; |
---|
3410 | if (LC (skeleton).inCoeffDomain()) |
---|
3411 | G_random_element= |
---|
3412 | monicSparseInterpol (ppA (random_element, x), ppB(random_element,x), |
---|
3413 | skeleton,V_buf, sparseFail, coeffMonoms,Monoms); |
---|
3414 | else |
---|
3415 | G_random_element= |
---|
3416 | nonMonicSparseInterpol (ppA(random_element,x),ppB(random_element,x), |
---|
3417 | skeleton, V_buf, sparseFail, coeffMonoms, |
---|
3418 | Monoms); |
---|
3419 | if (sparseFail) |
---|
3420 | break; |
---|
3421 | |
---|
3422 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
3423 | "time for recursive call: "); |
---|
3424 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
3425 | } |
---|
3426 | else |
---|
3427 | { |
---|
3428 | CFList list; |
---|
3429 | TIMING_START (gcd_recursion); |
---|
3430 | bool sparseFail= false; |
---|
3431 | if (LC (skeleton).inCoeffDomain()) |
---|
3432 | G_random_element= |
---|
3433 | monicSparseInterpol (ppA (random_element, x),ppB(random_element, x), |
---|
3434 | skeleton,V_buf, sparseFail,coeffMonoms, Monoms); |
---|
3435 | else |
---|
3436 | G_random_element= |
---|
3437 | nonMonicSparseInterpol (ppA(random_element,x),ppB(random_element,x), |
---|
3438 | skeleton, V_buf, sparseFail, coeffMonoms, |
---|
3439 | Monoms); |
---|
3440 | if (sparseFail) |
---|
3441 | break; |
---|
3442 | |
---|
3443 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
3444 | "time for recursive call: "); |
---|
3445 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
3446 | } |
---|
3447 | |
---|
3448 | if (!G_random_element.inCoeffDomain()) |
---|
3449 | d0= totaldegree (G_random_element, Variable(2), |
---|
3450 | Variable (G_random_element.level())); |
---|
3451 | else |
---|
3452 | d0= 0; |
---|
3453 | |
---|
3454 | if (d0 == 0) |
---|
3455 | { |
---|
3456 | if (inextension) |
---|
3457 | prune1 (alpha); |
---|
3458 | return N(gcdcAcB); |
---|
3459 | } |
---|
3460 | if (d0 > d) |
---|
3461 | { |
---|
3462 | if (!find (l, random_element)) |
---|
3463 | l.append (random_element); |
---|
3464 | continue; |
---|
3465 | } |
---|
3466 | |
---|
3467 | G_random_element= |
---|
3468 | (gcdlcAlcB(random_element, x)/uni_lcoeff (G_random_element)) |
---|
3469 | * G_random_element; |
---|
3470 | |
---|
3471 | if (!G_random_element.inCoeffDomain()) |
---|
3472 | d0= totaldegree (G_random_element, Variable(2), |
---|
3473 | Variable (G_random_element.level())); |
---|
3474 | else |
---|
3475 | d0= 0; |
---|
3476 | |
---|
3477 | if (d0 < d) |
---|
3478 | { |
---|
3479 | m= gcdlcAlcB; |
---|
3480 | newtonPoly= 1; |
---|
3481 | G_m= 0; |
---|
3482 | d= d0; |
---|
3483 | } |
---|
3484 | |
---|
3485 | TIMING_START (newton_interpolation); |
---|
3486 | H= newtonInterp (random_element, G_random_element, newtonPoly, G_m, x); |
---|
3487 | TIMING_END_AND_PRINT (newton_interpolation, |
---|
3488 | "time for newton interpolation: "); |
---|
3489 | |
---|
3490 | //termination test |
---|
3491 | if (uni_lcoeff (H) == gcdlcAlcB) |
---|
3492 | { |
---|
3493 | cH= uni_content (H); |
---|
3494 | ppH= H/cH; |
---|
3495 | if (inextension) |
---|
3496 | { |
---|
3497 | CFList u, v; |
---|
3498 | //maybe it's better to test if ppH is an element of F(\alpha) before |
---|
3499 | //mapping down |
---|
3500 | if (fdivides (ppH, ppA) && fdivides (ppH, ppB)) |
---|
3501 | { |
---|
3502 | DEBOUTLN (cerr, "ppH before mapDown= " << ppH); |
---|
3503 | ppH= mapDown (ppH, prim_elem_alpha, im_prim_elem_alpha, alpha, u, v); |
---|
3504 | ppH /= Lc(ppH); |
---|
3505 | DEBOUTLN (cerr, "ppH after mapDown= " << ppH); |
---|
3506 | prune1 (alpha); |
---|
3507 | return N(gcdcAcB*ppH); |
---|
3508 | } |
---|
3509 | } |
---|
3510 | else if (fdivides (ppH, ppA) && fdivides (ppH, ppB)) |
---|
3511 | { |
---|
3512 | return N(gcdcAcB*ppH); |
---|
3513 | } |
---|
3514 | } |
---|
3515 | |
---|
3516 | G_m= H; |
---|
3517 | newtonPoly= newtonPoly*(x - random_element); |
---|
3518 | m= m*(x - random_element); |
---|
3519 | if (!find (l, random_element)) |
---|
3520 | l.append (random_element); |
---|
3521 | |
---|
3522 | } while (1); |
---|
3523 | } |
---|
3524 | } while (1); |
---|
3525 | } |
---|
3526 | |
---|
3527 | CanonicalForm sparseGCDFp (const CanonicalForm& F, const CanonicalForm& G, |
---|
3528 | bool& topLevel, CFList& l) |
---|
3529 | { |
---|
3530 | CanonicalForm A= F; |
---|
3531 | CanonicalForm B= G; |
---|
3532 | if (F.isZero() && degree(G) > 0) return G/Lc(G); |
---|
3533 | else if (G.isZero() && degree (F) > 0) return F/Lc(F); |
---|
3534 | else if (F.isZero() && G.isZero()) return F.genOne(); |
---|
3535 | if (F.inBaseDomain() || G.inBaseDomain()) return F.genOne(); |
---|
3536 | if (F.isUnivariate() && fdivides(F, G)) return F/Lc(F); |
---|
3537 | if (G.isUnivariate() && fdivides(G, F)) return G/Lc(G); |
---|
3538 | if (F == G) return F/Lc(F); |
---|
3539 | |
---|
3540 | CFMap M,N; |
---|
3541 | int best_level= myCompress (A, B, M, N, topLevel); |
---|
3542 | |
---|
3543 | if (best_level == 0) return B.genOne(); |
---|
3544 | |
---|
3545 | A= M(A); |
---|
3546 | B= M(B); |
---|
3547 | |
---|
3548 | Variable x= Variable (1); |
---|
3549 | |
---|
3550 | //univariate case |
---|
3551 | if (A.isUnivariate() && B.isUnivariate()) |
---|
3552 | return N (gcd (A, B)); |
---|
3553 | |
---|
3554 | CanonicalForm cA, cB; // content of A and B |
---|
3555 | CanonicalForm ppA, ppB; // primitive part of A and B |
---|
3556 | CanonicalForm gcdcAcB; |
---|
3557 | |
---|
3558 | cA = uni_content (A); |
---|
3559 | cB = uni_content (B); |
---|
3560 | gcdcAcB= gcd (cA, cB); |
---|
3561 | ppA= A/cA; |
---|
3562 | ppB= B/cB; |
---|
3563 | |
---|
3564 | CanonicalForm lcA, lcB; // leading coefficients of A and B |
---|
3565 | CanonicalForm gcdlcAlcB; |
---|
3566 | lcA= uni_lcoeff (ppA); |
---|
3567 | lcB= uni_lcoeff (ppB); |
---|
3568 | |
---|
3569 | if (fdivides (lcA, lcB)) |
---|
3570 | { |
---|
3571 | if (fdivides (A, B)) |
---|
3572 | return F/Lc(F); |
---|
3573 | } |
---|
3574 | if (fdivides (lcB, lcA)) |
---|
3575 | { |
---|
3576 | if (fdivides (B, A)) |
---|
3577 | return G/Lc(G); |
---|
3578 | } |
---|
3579 | |
---|
3580 | gcdlcAlcB= gcd (lcA, lcB); |
---|
3581 | |
---|
3582 | int d= totaldegree (ppA, Variable (2), Variable (ppA.level())); |
---|
3583 | int d0; |
---|
3584 | |
---|
3585 | if (d == 0) |
---|
3586 | return N(gcdcAcB); |
---|
3587 | |
---|
3588 | d0= totaldegree (ppB, Variable (2), Variable (ppB.level())); |
---|
3589 | |
---|
3590 | if (d0 < d) |
---|
3591 | d= d0; |
---|
3592 | |
---|
3593 | if (d == 0) |
---|
3594 | return N(gcdcAcB); |
---|
3595 | |
---|
3596 | CanonicalForm m, random_element, G_m, G_random_element, H, cH, ppH, skeleton; |
---|
3597 | CanonicalForm newtonPoly= 1; |
---|
3598 | m= gcdlcAlcB; |
---|
3599 | G_m= 0; |
---|
3600 | H= 0; |
---|
3601 | bool fail= false; |
---|
3602 | topLevel= false; |
---|
3603 | bool inextension= false; |
---|
3604 | Variable V_buf, alpha, cleanUp; |
---|
3605 | CanonicalForm prim_elem, im_prim_elem; |
---|
3606 | CFList source, dest; |
---|
3607 | do //first do |
---|
3608 | { |
---|
3609 | if (inextension) |
---|
3610 | random_element= randomElement (m, V_buf, l, fail); |
---|
3611 | else |
---|
3612 | random_element= FpRandomElement (m, l, fail); |
---|
3613 | if (random_element == 0 && !fail) |
---|
3614 | { |
---|
3615 | if (!find (l, random_element)) |
---|
3616 | l.append (random_element); |
---|
3617 | continue; |
---|
3618 | } |
---|
3619 | |
---|
3620 | if (!fail && !inextension) |
---|
3621 | { |
---|
3622 | CFList list; |
---|
3623 | TIMING_START (gcd_recursion); |
---|
3624 | G_random_element= |
---|
3625 | sparseGCDFp (ppA (random_element,x), ppB (random_element,x), topLevel, |
---|
3626 | list); |
---|
3627 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
3628 | "time for recursive call: "); |
---|
3629 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
3630 | } |
---|
3631 | else if (!fail && inextension) |
---|
3632 | { |
---|
3633 | CFList list; |
---|
3634 | TIMING_START (gcd_recursion); |
---|
3635 | G_random_element= |
---|
3636 | sparseGCDFq (ppA (random_element, x), ppB (random_element, x), alpha, |
---|
3637 | list, topLevel); |
---|
3638 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
3639 | "time for recursive call: "); |
---|
3640 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
3641 | } |
---|
3642 | else if (fail && !inextension) |
---|
3643 | { |
---|
3644 | source= CFList(); |
---|
3645 | dest= CFList(); |
---|
3646 | CFList list; |
---|
3647 | CanonicalForm mipo; |
---|
3648 | int deg= 2; |
---|
3649 | bool initialized= false; |
---|
3650 | do |
---|
3651 | { |
---|
3652 | mipo= randomIrredpoly (deg, x); |
---|
3653 | if (initialized) |
---|
3654 | setMipo (alpha, mipo); |
---|
3655 | else |
---|
3656 | alpha= rootOf (mipo); |
---|
3657 | inextension= true; |
---|
3658 | fail= false; |
---|
3659 | initialized= true; |
---|
3660 | random_element= randomElement (m, alpha, l, fail); |
---|
3661 | deg++; |
---|
3662 | } while (fail); |
---|
3663 | cleanUp= alpha; |
---|
3664 | V_buf= alpha; |
---|
3665 | list= CFList(); |
---|
3666 | TIMING_START (gcd_recursion); |
---|
3667 | G_random_element= |
---|
3668 | sparseGCDFq (ppA (random_element, x), ppB (random_element, x), alpha, |
---|
3669 | list, topLevel); |
---|
3670 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
3671 | "time for recursive call: "); |
---|
3672 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
3673 | } |
---|
3674 | else if (fail && inextension) |
---|
3675 | { |
---|
3676 | source= CFList(); |
---|
3677 | dest= CFList(); |
---|
3678 | |
---|
3679 | Variable V_buf3= V_buf; |
---|
3680 | V_buf= chooseExtension (V_buf); |
---|
3681 | bool prim_fail= false; |
---|
3682 | Variable V_buf2; |
---|
3683 | CanonicalForm prim_elem, im_prim_elem; |
---|
3684 | prim_elem= primitiveElement (alpha, V_buf2, prim_fail); |
---|
3685 | |
---|
3686 | if (V_buf3 != alpha) |
---|
3687 | { |
---|
3688 | m= mapDown (m, prim_elem, im_prim_elem, alpha, source, dest); |
---|
3689 | G_m= mapDown (m, prim_elem, im_prim_elem, alpha, source, dest); |
---|
3690 | newtonPoly= mapDown (newtonPoly, prim_elem, im_prim_elem, alpha, source, |
---|
3691 | dest); |
---|
3692 | ppA= mapDown (ppA, prim_elem, im_prim_elem, alpha, source, dest); |
---|
3693 | ppB= mapDown (ppB, prim_elem, im_prim_elem, alpha, source, dest); |
---|
3694 | gcdlcAlcB= mapDown (gcdlcAlcB, prim_elem, im_prim_elem, alpha, source, |
---|
3695 | dest); |
---|
3696 | for (CFListIterator i= l; i.hasItem(); i++) |
---|
3697 | i.getItem()= mapDown (i.getItem(), prim_elem, im_prim_elem, alpha, |
---|
3698 | source, dest); |
---|
3699 | } |
---|
3700 | |
---|
3701 | ASSERT (!prim_fail, "failure in integer factorizer"); |
---|
3702 | if (prim_fail) |
---|
3703 | ; //ERROR |
---|
3704 | else |
---|
3705 | im_prim_elem= mapPrimElem (prim_elem, alpha, V_buf); |
---|
3706 | |
---|
3707 | DEBOUTLN (cerr, "getMipo (alpha)= " << getMipo (alpha)); |
---|
3708 | DEBOUTLN (cerr, "getMipo (alpha)= " << getMipo (V_buf2)); |
---|
3709 | |
---|
3710 | for (CFListIterator i= l; i.hasItem(); i++) |
---|
3711 | i.getItem()= mapUp (i.getItem(), alpha, V_buf, prim_elem, |
---|
3712 | im_prim_elem, source, dest); |
---|
3713 | m= mapUp (m, alpha, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
3714 | G_m= mapUp (G_m, alpha, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
3715 | newtonPoly= mapUp (newtonPoly, alpha, V_buf, prim_elem, im_prim_elem, |
---|
3716 | source, dest); |
---|
3717 | ppA= mapUp (ppA, alpha, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
3718 | ppB= mapUp (ppB, alpha, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
3719 | gcdlcAlcB= mapUp (gcdlcAlcB, alpha, V_buf, prim_elem, im_prim_elem, |
---|
3720 | source, dest); |
---|
3721 | fail= false; |
---|
3722 | random_element= randomElement (m, V_buf, l, fail ); |
---|
3723 | DEBOUTLN (cerr, "fail= " << fail); |
---|
3724 | CFList list; |
---|
3725 | TIMING_START (gcd_recursion); |
---|
3726 | G_random_element= |
---|
3727 | sparseGCDFq (ppA (random_element, x), ppB (random_element, x), V_buf, |
---|
3728 | list, topLevel); |
---|
3729 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
3730 | "time for recursive call: "); |
---|
3731 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
3732 | alpha= V_buf; |
---|
3733 | } |
---|
3734 | |
---|
3735 | if (!G_random_element.inCoeffDomain()) |
---|
3736 | d0= totaldegree (G_random_element, Variable(2), |
---|
3737 | Variable (G_random_element.level())); |
---|
3738 | else |
---|
3739 | d0= 0; |
---|
3740 | |
---|
3741 | if (d0 == 0) |
---|
3742 | { |
---|
3743 | if (inextension) |
---|
3744 | prune (cleanUp); |
---|
3745 | return N(gcdcAcB); |
---|
3746 | } |
---|
3747 | if (d0 > d) |
---|
3748 | { |
---|
3749 | if (!find (l, random_element)) |
---|
3750 | l.append (random_element); |
---|
3751 | continue; |
---|
3752 | } |
---|
3753 | |
---|
3754 | G_random_element= |
---|
3755 | (gcdlcAlcB(random_element, x)/uni_lcoeff (G_random_element)) |
---|
3756 | * G_random_element; |
---|
3757 | |
---|
3758 | skeleton= G_random_element; |
---|
3759 | |
---|
3760 | if (!G_random_element.inCoeffDomain()) |
---|
3761 | d0= totaldegree (G_random_element, Variable(2), |
---|
3762 | Variable (G_random_element.level())); |
---|
3763 | else |
---|
3764 | d0= 0; |
---|
3765 | |
---|
3766 | if (d0 < d) |
---|
3767 | { |
---|
3768 | m= gcdlcAlcB; |
---|
3769 | newtonPoly= 1; |
---|
3770 | G_m= 0; |
---|
3771 | d= d0; |
---|
3772 | } |
---|
3773 | |
---|
3774 | H= newtonInterp (random_element, G_random_element, newtonPoly, G_m, x); |
---|
3775 | |
---|
3776 | if (uni_lcoeff (H) == gcdlcAlcB) |
---|
3777 | { |
---|
3778 | cH= uni_content (H); |
---|
3779 | ppH= H/cH; |
---|
3780 | ppH /= Lc (ppH); |
---|
3781 | DEBOUTLN (cerr, "ppH= " << ppH); |
---|
3782 | |
---|
3783 | if (fdivides (ppH, ppA) && fdivides (ppH, ppB)) |
---|
3784 | { |
---|
3785 | if (inextension) |
---|
3786 | prune (cleanUp); |
---|
3787 | return N(gcdcAcB*ppH); |
---|
3788 | } |
---|
3789 | } |
---|
3790 | G_m= H; |
---|
3791 | newtonPoly= newtonPoly*(x - random_element); |
---|
3792 | m= m*(x - random_element); |
---|
3793 | if (!find (l, random_element)) |
---|
3794 | l.append (random_element); |
---|
3795 | |
---|
3796 | if ((getCharacteristic() > 3 && size (skeleton) < 200)) |
---|
3797 | { |
---|
3798 | CFArray Monoms; |
---|
3799 | CFArray* coeffMonoms; |
---|
3800 | |
---|
3801 | do //second do |
---|
3802 | { |
---|
3803 | if (inextension) |
---|
3804 | random_element= randomElement (m, alpha, l, fail); |
---|
3805 | else |
---|
3806 | random_element= FpRandomElement (m, l, fail); |
---|
3807 | if (random_element == 0 && !fail) |
---|
3808 | { |
---|
3809 | if (!find (l, random_element)) |
---|
3810 | l.append (random_element); |
---|
3811 | continue; |
---|
3812 | } |
---|
3813 | |
---|
3814 | bool sparseFail= false; |
---|
3815 | if (!fail && !inextension) |
---|
3816 | { |
---|
3817 | CFList list; |
---|
3818 | TIMING_START (gcd_recursion); |
---|
3819 | if (LC (skeleton).inCoeffDomain()) |
---|
3820 | G_random_element= |
---|
3821 | monicSparseInterpol(ppA(random_element, x), ppB (random_element, x), |
---|
3822 | skeleton, x, sparseFail, coeffMonoms, |
---|
3823 | Monoms); |
---|
3824 | else |
---|
3825 | G_random_element= |
---|
3826 | nonMonicSparseInterpol(ppA(random_element,x), ppB(random_element,x), |
---|
3827 | skeleton, x, sparseFail, |
---|
3828 | coeffMonoms, Monoms); |
---|
3829 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
3830 | "time for recursive call: "); |
---|
3831 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
3832 | } |
---|
3833 | else if (!fail && inextension) |
---|
3834 | { |
---|
3835 | CFList list; |
---|
3836 | TIMING_START (gcd_recursion); |
---|
3837 | if (LC (skeleton).inCoeffDomain()) |
---|
3838 | G_random_element= |
---|
3839 | monicSparseInterpol(ppA (random_element,x), ppB (random_element, x), |
---|
3840 | skeleton, alpha, sparseFail, coeffMonoms, |
---|
3841 | Monoms); |
---|
3842 | else |
---|
3843 | G_random_element= |
---|
3844 | nonMonicSparseInterpol(ppA(random_element,x), ppB(random_element,x), |
---|
3845 | skeleton, alpha, sparseFail, coeffMonoms, |
---|
3846 | Monoms); |
---|
3847 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
3848 | "time for recursive call: "); |
---|
3849 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
3850 | } |
---|
3851 | else if (fail && !inextension) |
---|
3852 | { |
---|
3853 | source= CFList(); |
---|
3854 | dest= CFList(); |
---|
3855 | CFList list; |
---|
3856 | CanonicalForm mipo; |
---|
3857 | int deg= 2; |
---|
3858 | bool initialized= false; |
---|
3859 | do |
---|
3860 | { |
---|
3861 | mipo= randomIrredpoly (deg, x); |
---|
3862 | if (initialized) |
---|
3863 | setMipo (alpha, mipo); |
---|
3864 | else |
---|
3865 | alpha= rootOf (mipo); |
---|
3866 | inextension= true; |
---|
3867 | fail= false; |
---|
3868 | initialized= true; |
---|
3869 | random_element= randomElement (m, alpha, l, fail); |
---|
3870 | deg++; |
---|
3871 | } while (fail); |
---|
3872 | cleanUp= alpha; |
---|
3873 | V_buf= alpha; |
---|
3874 | list= CFList(); |
---|
3875 | TIMING_START (gcd_recursion); |
---|
3876 | if (LC (skeleton).inCoeffDomain()) |
---|
3877 | G_random_element= |
---|
3878 | monicSparseInterpol (ppA (random_element,x), ppB (random_element,x), |
---|
3879 | skeleton, alpha, sparseFail, coeffMonoms, |
---|
3880 | Monoms); |
---|
3881 | else |
---|
3882 | G_random_element= |
---|
3883 | nonMonicSparseInterpol(ppA(random_element,x), ppB(random_element,x), |
---|
3884 | skeleton, alpha, sparseFail, coeffMonoms, |
---|
3885 | Monoms); |
---|
3886 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
3887 | "time for recursive call: "); |
---|
3888 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
3889 | } |
---|
3890 | else if (fail && inextension) |
---|
3891 | { |
---|
3892 | source= CFList(); |
---|
3893 | dest= CFList(); |
---|
3894 | |
---|
3895 | Variable V_buf3= V_buf; |
---|
3896 | V_buf= chooseExtension (V_buf); |
---|
3897 | bool prim_fail= false; |
---|
3898 | Variable V_buf2; |
---|
3899 | CanonicalForm prim_elem, im_prim_elem; |
---|
3900 | prim_elem= primitiveElement (alpha, V_buf2, prim_fail); |
---|
3901 | |
---|
3902 | if (V_buf3 != alpha) |
---|
3903 | { |
---|
3904 | m= mapDown (m, prim_elem, im_prim_elem, alpha, source, dest); |
---|
3905 | G_m= mapDown (m, prim_elem, im_prim_elem, alpha, source, dest); |
---|
3906 | newtonPoly= mapDown (newtonPoly, prim_elem, im_prim_elem, alpha, |
---|
3907 | source, dest); |
---|
3908 | ppA= mapDown (ppA, prim_elem, im_prim_elem, alpha, source, dest); |
---|
3909 | ppB= mapDown (ppB, prim_elem, im_prim_elem, alpha, source, dest); |
---|
3910 | gcdlcAlcB= mapDown (gcdlcAlcB, prim_elem, im_prim_elem, alpha, |
---|
3911 | source, dest); |
---|
3912 | for (CFListIterator i= l; i.hasItem(); i++) |
---|
3913 | i.getItem()= mapDown (i.getItem(), prim_elem, im_prim_elem, alpha, |
---|
3914 | source, dest); |
---|
3915 | } |
---|
3916 | |
---|
3917 | ASSERT (!prim_fail, "failure in integer factorizer"); |
---|
3918 | if (prim_fail) |
---|
3919 | ; //ERROR |
---|
3920 | else |
---|
3921 | im_prim_elem= mapPrimElem (prim_elem, alpha, V_buf); |
---|
3922 | |
---|
3923 | DEBOUTLN (cerr, "getMipo (alpha)= " << getMipo (alpha)); |
---|
3924 | DEBOUTLN (cerr, "getMipo (alpha)= " << getMipo (V_buf2)); |
---|
3925 | |
---|
3926 | for (CFListIterator i= l; i.hasItem(); i++) |
---|
3927 | i.getItem()= mapUp (i.getItem(), alpha, V_buf, prim_elem, |
---|
3928 | im_prim_elem, source, dest); |
---|
3929 | m= mapUp (m, alpha, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
3930 | G_m= mapUp (G_m, alpha, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
3931 | newtonPoly= mapUp (newtonPoly, alpha, V_buf, prim_elem, im_prim_elem, |
---|
3932 | source, dest); |
---|
3933 | ppA= mapUp (ppA, alpha, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
3934 | ppB= mapUp (ppB, alpha, V_buf, prim_elem, im_prim_elem, source, dest); |
---|
3935 | gcdlcAlcB= mapUp (gcdlcAlcB, alpha, V_buf, prim_elem, im_prim_elem, |
---|
3936 | source, dest); |
---|
3937 | fail= false; |
---|
3938 | random_element= randomElement (m, V_buf, l, fail ); |
---|
3939 | DEBOUTLN (cerr, "fail= " << fail); |
---|
3940 | CFList list; |
---|
3941 | TIMING_START (gcd_recursion); |
---|
3942 | if (LC (skeleton).inCoeffDomain()) |
---|
3943 | G_random_element= |
---|
3944 | monicSparseInterpol (ppA (random_element, x), ppB (random_element, x), |
---|
3945 | skeleton, V_buf, sparseFail, coeffMonoms, |
---|
3946 | Monoms); |
---|
3947 | else |
---|
3948 | G_random_element= |
---|
3949 | nonMonicSparseInterpol (ppA(random_element,x), ppB(random_element,x), |
---|
3950 | skeleton, V_buf, sparseFail, |
---|
3951 | coeffMonoms, Monoms); |
---|
3952 | TIMING_END_AND_PRINT (gcd_recursion, |
---|
3953 | "time for recursive call: "); |
---|
3954 | DEBOUTLN (cerr, "G_random_element= " << G_random_element); |
---|
3955 | alpha= V_buf; |
---|
3956 | } |
---|
3957 | |
---|
3958 | if (sparseFail) |
---|
3959 | break; |
---|
3960 | |
---|
3961 | if (!G_random_element.inCoeffDomain()) |
---|
3962 | d0= totaldegree (G_random_element, Variable(2), |
---|
3963 | Variable (G_random_element.level())); |
---|
3964 | else |
---|
3965 | d0= 0; |
---|
3966 | |
---|
3967 | if (d0 == 0) |
---|
3968 | { |
---|
3969 | if (inextension) |
---|
3970 | prune (cleanUp); |
---|
3971 | return N(gcdcAcB); |
---|
3972 | } |
---|
3973 | if (d0 > d) |
---|
3974 | { |
---|
3975 | if (!find (l, random_element)) |
---|
3976 | l.append (random_element); |
---|
3977 | continue; |
---|
3978 | } |
---|
3979 | |
---|
3980 | G_random_element= |
---|
3981 | (gcdlcAlcB(random_element, x)/uni_lcoeff (G_random_element)) |
---|
3982 | * G_random_element; |
---|
3983 | |
---|
3984 | if (!G_random_element.inCoeffDomain()) |
---|
3985 | d0= totaldegree (G_random_element, Variable(2), |
---|
3986 | Variable (G_random_element.level())); |
---|
3987 | else |
---|
3988 | d0= 0; |
---|
3989 | |
---|
3990 | if (d0 < d) |
---|
3991 | { |
---|
3992 | m= gcdlcAlcB; |
---|
3993 | newtonPoly= 1; |
---|
3994 | G_m= 0; |
---|
3995 | d= d0; |
---|
3996 | } |
---|
3997 | |
---|
3998 | TIMING_START (newton_interpolation); |
---|
3999 | H= newtonInterp (random_element, G_random_element, newtonPoly, G_m, x); |
---|
4000 | TIMING_END_AND_PRINT (newton_interpolation, |
---|
4001 | "time for newton interpolation: "); |
---|
4002 | |
---|
4003 | //termination test |
---|
4004 | if (uni_lcoeff (H) == gcdlcAlcB) |
---|
4005 | { |
---|
4006 | cH= uni_content (H); |
---|
4007 | ppH= H/cH; |
---|
4008 | ppH /= Lc (ppH); |
---|
4009 | DEBOUTLN (cerr, "ppH= " << ppH); |
---|
4010 | if (fdivides (ppH, ppA) && fdivides (ppH, ppB)) |
---|
4011 | { |
---|
4012 | if (inextension) |
---|
4013 | prune (cleanUp); |
---|
4014 | return N(gcdcAcB*ppH); |
---|
4015 | } |
---|
4016 | } |
---|
4017 | |
---|
4018 | G_m= H; |
---|
4019 | newtonPoly= newtonPoly*(x - random_element); |
---|
4020 | m= m*(x - random_element); |
---|
4021 | if (!find (l, random_element)) |
---|
4022 | l.append (random_element); |
---|
4023 | |
---|
4024 | } while (1); //end of second do |
---|
4025 | } |
---|
4026 | else |
---|
4027 | { |
---|
4028 | if (inextension) |
---|
4029 | prune (cleanUp); |
---|
4030 | return N(gcdcAcB*modGCDFp (ppA, ppB)); |
---|
4031 | } |
---|
4032 | } while (1); //end of first do |
---|
4033 | } |
---|
4034 | |
---|
4035 | TIMING_DEFINE_PRINT(modZ_termination) |
---|
4036 | TIMING_DEFINE_PRINT(modZ_recursion) |
---|
4037 | |
---|
4038 | /// modular gcd algorithm, see Keith, Czapor, Geddes "Algorithms for Computer |
---|
4039 | /// Algebra", Algorithm 7.1 |
---|
4040 | CanonicalForm modGCDZ ( const CanonicalForm & FF, const CanonicalForm & GG ) |
---|
4041 | { |
---|
4042 | CanonicalForm f, g, cl, q(0), Dp, newD, D, newq, newqh; |
---|
4043 | int p, i, dp_deg, d_deg=-1; |
---|
4044 | |
---|
4045 | CanonicalForm cd ( bCommonDen( FF )); |
---|
4046 | f=cd*FF; |
---|
4047 | Variable x= Variable (1); |
---|
4048 | CanonicalForm cf, cg; |
---|
4049 | cf= icontent (f); |
---|
4050 | f /= cf; |
---|
4051 | //cd = bCommonDen( f ); f *=cd; |
---|
4052 | //f /=vcontent(f,Variable(1)); |
---|
4053 | |
---|
4054 | cd = bCommonDen( GG ); |
---|
4055 | g=cd*GG; |
---|
4056 | cg= icontent (g); |
---|
4057 | g /= cg; |
---|
4058 | //cd = bCommonDen( g ); g *=cd; |
---|
4059 | //g /=vcontent(g,Variable(1)); |
---|
4060 | |
---|
4061 | CanonicalForm Dn, test= 0; |
---|
4062 | CanonicalForm lcf, lcg; |
---|
4063 | lcf= f.lc(); |
---|
4064 | lcg= g.lc(); |
---|
4065 | cl = gcd (f.lc(),g.lc()); |
---|
4066 | CanonicalForm gcdcfcg= gcd (cf, cg); |
---|
4067 | CanonicalForm fp, gp; |
---|
4068 | CanonicalForm b= 1; |
---|
4069 | int minCommonDeg= 0; |
---|
4070 | for (i= tmax (f.level(), g.level()); i > 0; i--) |
---|
4071 | { |
---|
4072 | if (degree (f, i) <= 0 || degree (g, i) <= 0) |
---|
4073 | continue; |
---|
4074 | else |
---|
4075 | { |
---|
4076 | minCommonDeg= tmin (degree (g, i), degree (f, i)); |
---|
4077 | break; |
---|
4078 | } |
---|
4079 | } |
---|
4080 | if (i == 0) |
---|
4081 | return gcdcfcg; |
---|
4082 | for (; i > 0; i--) |
---|
4083 | { |
---|
4084 | if (degree (f, i) <= 0 || degree (g, i) <= 0) |
---|
4085 | continue; |
---|
4086 | else |
---|
4087 | minCommonDeg= tmin (minCommonDeg, tmin (degree (g, i), degree (f, i))); |
---|
4088 | } |
---|
4089 | b= 2*tmin (maxNorm (f), maxNorm (g))*abs (cl)* |
---|
4090 | power (CanonicalForm (2), minCommonDeg); |
---|
4091 | bool equal= false; |
---|
4092 | i = cf_getNumBigPrimes() - 1; |
---|
4093 | |
---|
4094 | CanonicalForm cof, cog, cofp, cogp, newCof, newCog, cofn, cogn, cDn; |
---|
4095 | int maxNumVars= tmax (getNumVars (f), getNumVars (g)); |
---|
4096 | //Off (SW_RATIONAL); |
---|
4097 | while ( true ) |
---|
4098 | { |
---|
4099 | p = cf_getBigPrime( i ); |
---|
4100 | i--; |
---|
4101 | while ( i >= 0 && mod( cl*(lc(f)/cl)*(lc(g)/cl), p ) == 0 ) |
---|
4102 | { |
---|
4103 | p = cf_getBigPrime( i ); |
---|
4104 | i--; |
---|
4105 | } |
---|
4106 | //printf("try p=%d\n",p); |
---|
4107 | setCharacteristic( p ); |
---|
4108 | fp= mapinto (f); |
---|
4109 | gp= mapinto (g); |
---|
4110 | TIMING_START (modZ_recursion) |
---|
4111 | #ifdef HAVE_NTL |
---|
4112 | if (size (fp)/maxNumVars > 500 && size (gp)/maxNumVars > 500) |
---|
4113 | Dp = modGCDFp (fp, gp, cofp, cogp); |
---|
4114 | else |
---|
4115 | { |
---|
4116 | Dp= gcd_poly (fp, gp); |
---|
4117 | cofp= fp/Dp; |
---|
4118 | cogp= gp/Dp; |
---|
4119 | } |
---|
4120 | #else |
---|
4121 | Dp= gcd_poly (fp, gp); |
---|
4122 | cofp= fp/Dp; |
---|
4123 | cogp= gp/Dp; |
---|
4124 | #endif |
---|
4125 | TIMING_END_AND_PRINT (modZ_recursion, |
---|
4126 | "time for gcd mod p in modular gcd: "); |
---|
4127 | Dp /=Dp.lc(); |
---|
4128 | Dp *= mapinto (cl); |
---|
4129 | cofp /= lc (cofp); |
---|
4130 | cofp *= mapinto (lcf); |
---|
4131 | cogp /= lc (cogp); |
---|
4132 | cogp *= mapinto (lcg); |
---|
4133 | setCharacteristic( 0 ); |
---|
4134 | dp_deg=totaldegree(Dp); |
---|
4135 | if ( dp_deg == 0 ) |
---|
4136 | { |
---|
4137 | //printf(" -> 1\n"); |
---|
4138 | return CanonicalForm(gcdcfcg); |
---|
4139 | } |
---|
4140 | if ( q.isZero() ) |
---|
4141 | { |
---|
4142 | D = mapinto( Dp ); |
---|
4143 | cof= mapinto (cofp); |
---|
4144 | cog= mapinto (cogp); |
---|
4145 | d_deg=dp_deg; |
---|
4146 | q = p; |
---|
4147 | Dn= balance_p (D, p); |
---|
4148 | cofn= balance_p (cof, p); |
---|
4149 | cogn= balance_p (cog, p); |
---|
4150 | } |
---|
4151 | else |
---|
4152 | { |
---|
4153 | if ( dp_deg == d_deg ) |
---|
4154 | { |
---|
4155 | chineseRemainder( D, q, mapinto( Dp ), p, newD, newq ); |
---|
4156 | chineseRemainder( cof, q, mapinto (cofp), p, newCof, newq); |
---|
4157 | chineseRemainder( cog, q, mapinto (cogp), p, newCog, newq); |
---|
4158 | cof= newCof; |
---|
4159 | cog= newCog; |
---|
4160 | newqh= newq/2; |
---|
4161 | Dn= balance_p (newD, newq, newqh); |
---|
4162 | cofn= balance_p (newCof, newq, newqh); |
---|
4163 | cogn= balance_p (newCog, newq, newqh); |
---|
4164 | if (test != Dn) //balance_p (newD, newq)) |
---|
4165 | test= balance_p (newD, newq); |
---|
4166 | else |
---|
4167 | equal= true; |
---|
4168 | q = newq; |
---|
4169 | D = newD; |
---|
4170 | } |
---|
4171 | else if ( dp_deg < d_deg ) |
---|
4172 | { |
---|
4173 | //printf(" were all bad, try more\n"); |
---|
4174 | // all previous p's are bad primes |
---|
4175 | q = p; |
---|
4176 | D = mapinto( Dp ); |
---|
4177 | cof= mapinto (cof); |
---|
4178 | cog= mapinto (cog); |
---|
4179 | d_deg=dp_deg; |
---|
4180 | test= 0; |
---|
4181 | equal= false; |
---|
4182 | Dn= balance_p (D, p); |
---|
4183 | cofn= balance_p (cof, p); |
---|
4184 | cogn= balance_p (cog, p); |
---|
4185 | } |
---|
4186 | else |
---|
4187 | { |
---|
4188 | //printf(" was bad, try more\n"); |
---|
4189 | } |
---|
4190 | //else dp_deg > d_deg: bad prime |
---|
4191 | } |
---|
4192 | if ( i >= 0 ) |
---|
4193 | { |
---|
4194 | cDn= icontent (Dn); |
---|
4195 | Dn /= cDn; |
---|
4196 | cofn /= cl/cDn; |
---|
4197 | //cofn /= icontent (cofn); |
---|
4198 | cogn /= cl/cDn; |
---|
4199 | //cogn /= icontent (cogn); |
---|
4200 | TIMING_START (modZ_termination); |
---|
4201 | if ((terminationTest (f,g, cofn, cogn, Dn)) || |
---|
4202 | ((equal || q > b) && fdivides (Dn, f) && fdivides (Dn, g))) |
---|
4203 | { |
---|
4204 | TIMING_END_AND_PRINT (modZ_termination, |
---|
4205 | "time for successful termination in modular gcd: "); |
---|
4206 | //printf(" -> success\n"); |
---|
4207 | return Dn*gcdcfcg; |
---|
4208 | } |
---|
4209 | TIMING_END_AND_PRINT (modZ_termination, |
---|
4210 | "time for unsuccessful termination in modular gcd: "); |
---|
4211 | equal= false; |
---|
4212 | //else: try more primes |
---|
4213 | } |
---|
4214 | else |
---|
4215 | { // try other method |
---|
4216 | //printf("try other gcd\n"); |
---|
4217 | Off(SW_USE_CHINREM_GCD); |
---|
4218 | D=gcd_poly( f, g ); |
---|
4219 | On(SW_USE_CHINREM_GCD); |
---|
4220 | return D*gcdcfcg; |
---|
4221 | } |
---|
4222 | } |
---|
4223 | } |
---|
4224 | |
---|
4225 | |
---|
4226 | #endif |
---|