1 | /*****************************************************************************\ |
---|
2 | * Computer Algebra System SINGULAR |
---|
3 | \*****************************************************************************/ |
---|
4 | /** @file cfModResultant.cc |
---|
5 | * |
---|
6 | * modular resultant algorithm |
---|
7 | * |
---|
8 | * @author Martin Lee |
---|
9 | * |
---|
10 | **/ |
---|
11 | /*****************************************************************************/ |
---|
12 | |
---|
13 | |
---|
14 | #include "config.h" |
---|
15 | |
---|
16 | |
---|
17 | #include "cf_assert.h" |
---|
18 | #include "timing.h" |
---|
19 | |
---|
20 | #include "cfModResultant.h" |
---|
21 | #include "cf_primes.h" |
---|
22 | #include "templates/ftmpl_functions.h" |
---|
23 | #include "cf_map.h" |
---|
24 | #include "cf_algorithm.h" |
---|
25 | #include "cf_iter.h" |
---|
26 | #include "cf_irred.h" |
---|
27 | #include "cf_generator.h" |
---|
28 | #include "cf_random.h" |
---|
29 | #include "cf_map_ext.h" |
---|
30 | #include "facFqBivarUtil.h" |
---|
31 | |
---|
32 | #ifdef HAVE_NTL |
---|
33 | #include "NTLconvert.h" |
---|
34 | #endif |
---|
35 | |
---|
36 | #ifdef HAVE_FLINT |
---|
37 | #include "FLINTconvert.h" |
---|
38 | #endif |
---|
39 | |
---|
40 | #if defined(HAVE_NTL) || defined(HAVE_FLINT) |
---|
41 | TIMING_DEFINE_PRINT(fac_resultant_p) |
---|
42 | |
---|
43 | //TODO arrange by bound= deg (F,xlevel)*deg (G,i)+deg (G,xlevel)*deg (F, i) |
---|
44 | static inline |
---|
45 | void myCompress (const CanonicalForm& F, const CanonicalForm& G, CFMap & M, |
---|
46 | CFMap & N, const Variable& x) |
---|
47 | { |
---|
48 | int n= tmax (F.level(), G.level()); |
---|
49 | int * degsf= NEW_ARRAY(int,n + 1); |
---|
50 | int * degsg= NEW_ARRAY(int,n + 1); |
---|
51 | |
---|
52 | for (int i = 0; i <= n; i++) |
---|
53 | degsf[i]= degsg[i]= 0; |
---|
54 | |
---|
55 | degsf= degrees (F, degsf); |
---|
56 | degsg= degrees (G, degsg); |
---|
57 | |
---|
58 | int both_non_zero= 0; |
---|
59 | int f_zero= 0; |
---|
60 | int g_zero= 0; |
---|
61 | int both_zero= 0; |
---|
62 | int degsfx, degsgx; |
---|
63 | int Flevel=F.level(); |
---|
64 | int Glevel=G.level(); |
---|
65 | |
---|
66 | if (x.level() != 1) |
---|
67 | { |
---|
68 | int xlevel= x.level(); |
---|
69 | |
---|
70 | for (int i= 1; i <= n; i++) |
---|
71 | { |
---|
72 | if (degsf[i] != 0 && degsg[i] != 0) |
---|
73 | { |
---|
74 | both_non_zero++; |
---|
75 | continue; |
---|
76 | } |
---|
77 | if (degsf[i] == 0 && degsg[i] != 0 && i <= Glevel) |
---|
78 | { |
---|
79 | f_zero++; |
---|
80 | continue; |
---|
81 | } |
---|
82 | if (degsg[i] == 0 && degsf[i] && i <= Flevel) |
---|
83 | { |
---|
84 | g_zero++; |
---|
85 | continue; |
---|
86 | } |
---|
87 | } |
---|
88 | |
---|
89 | M.newpair (Variable (xlevel), Variable (1)); |
---|
90 | N.newpair (Variable (1), Variable (xlevel)); |
---|
91 | degsfx= degsf [xlevel]; |
---|
92 | degsgx= degsg [xlevel]; |
---|
93 | degsf [xlevel]= 0; |
---|
94 | degsg [xlevel]= 0; |
---|
95 | if ((getNumVars (F) == 2 && getNumVars (G) == 1) || |
---|
96 | (getNumVars (G) == 2 && getNumVars (F) == 1) || |
---|
97 | (getNumVars (F) == 2 && getNumVars (F) == getNumVars (G) |
---|
98 | && getVars (F) == getVars (G))) |
---|
99 | { |
---|
100 | int pos= 2; |
---|
101 | for (int i= 1; i <= n; i++) |
---|
102 | { |
---|
103 | if (i != xlevel) |
---|
104 | { |
---|
105 | if (i != pos && (degsf[i] != 0 || degsg [i] != 0)) |
---|
106 | { |
---|
107 | M.newpair (Variable (i), Variable (pos)); |
---|
108 | N.newpair (Variable (pos), Variable (i)); |
---|
109 | pos++; |
---|
110 | } |
---|
111 | } |
---|
112 | } |
---|
113 | DELETE_ARRAY(degsf); |
---|
114 | DELETE_ARRAY(degsg); |
---|
115 | return; |
---|
116 | } |
---|
117 | |
---|
118 | if (both_non_zero == 0) |
---|
119 | { |
---|
120 | DELETE_ARRAY(degsf); |
---|
121 | DELETE_ARRAY(degsg); |
---|
122 | return; |
---|
123 | } |
---|
124 | |
---|
125 | // map Variables which do not occur in both polynomials to higher levels |
---|
126 | int k= 1; |
---|
127 | int l= 1; |
---|
128 | for (int i= 1; i <= n; i++) |
---|
129 | { |
---|
130 | if (i == xlevel) |
---|
131 | continue; |
---|
132 | if (degsf[i] != 0 && degsg[i] == 0 && i <= Flevel) |
---|
133 | { |
---|
134 | if (k + both_non_zero != i) |
---|
135 | { |
---|
136 | M.newpair (Variable (i), Variable (k + both_non_zero)); |
---|
137 | N.newpair (Variable (k + both_non_zero), Variable (i)); |
---|
138 | } |
---|
139 | k++; |
---|
140 | } |
---|
141 | if (degsf[i] == 0 && degsg[i] != 0 && i <= Glevel) |
---|
142 | { |
---|
143 | if (l + g_zero + both_non_zero != i) |
---|
144 | { |
---|
145 | M.newpair (Variable (i), Variable (l + g_zero + both_non_zero)); |
---|
146 | N.newpair (Variable (l + g_zero + both_non_zero), Variable (i)); |
---|
147 | } |
---|
148 | l++; |
---|
149 | } |
---|
150 | } |
---|
151 | |
---|
152 | int m= n; |
---|
153 | int min_max_deg; |
---|
154 | k= both_non_zero; |
---|
155 | l= 0; |
---|
156 | int i= 1; |
---|
157 | while (k > 0) |
---|
158 | { |
---|
159 | if (degsf [i] != 0 && degsg [i] != 0) |
---|
160 | min_max_deg= degsgx*degsf[i] + degsfx*degsg[i]; |
---|
161 | else |
---|
162 | min_max_deg= 0; |
---|
163 | while (min_max_deg == 0 && i < m) |
---|
164 | { |
---|
165 | i++; |
---|
166 | if (degsf [i] != 0 && degsg [i] != 0) |
---|
167 | min_max_deg= degsgx*degsf[i] + degsfx*degsg[i]; |
---|
168 | else |
---|
169 | min_max_deg= 0; |
---|
170 | } |
---|
171 | for (int j= i + 1; j <= m; j++) |
---|
172 | { |
---|
173 | if (degsgx*degsf[j] + degsfx*degsg[j] <= min_max_deg && |
---|
174 | degsf[j] != 0 && degsg [j] != 0) |
---|
175 | { |
---|
176 | min_max_deg= degsgx*degsf[j] + degsfx*degsg[j]; |
---|
177 | l= j; |
---|
178 | } |
---|
179 | } |
---|
180 | if (l != 0) |
---|
181 | { |
---|
182 | if (l != k && l != xlevel && k != 1) |
---|
183 | { |
---|
184 | M.newpair (Variable (l), Variable(k)); |
---|
185 | N.newpair (Variable (k), Variable(l)); |
---|
186 | degsf[l]= 0; |
---|
187 | degsg[l]= 0; |
---|
188 | l= 0; |
---|
189 | } |
---|
190 | else if (l < m + 1) |
---|
191 | { |
---|
192 | degsf[l]= 0; |
---|
193 | degsg[l]= 0; |
---|
194 | l= 0; |
---|
195 | } |
---|
196 | } |
---|
197 | else if (l == 0) |
---|
198 | { |
---|
199 | if (i != k && i != xlevel && k != 1) |
---|
200 | { |
---|
201 | M.newpair (Variable (i), Variable (k)); |
---|
202 | N.newpair (Variable (k), Variable (i)); |
---|
203 | degsf[i]= 0; |
---|
204 | degsg[i]= 0; |
---|
205 | } |
---|
206 | else if (i < m + 1) |
---|
207 | { |
---|
208 | degsf[i]= 0; |
---|
209 | degsg[i]= 0; |
---|
210 | } |
---|
211 | i++; |
---|
212 | } |
---|
213 | k--; |
---|
214 | } |
---|
215 | } |
---|
216 | else |
---|
217 | { |
---|
218 | //arrange Variables such that no gaps occur |
---|
219 | for (int i= 1; i <= n; i++) |
---|
220 | { |
---|
221 | if (degsf[i] == 0 && degsg[i] == 0) |
---|
222 | { |
---|
223 | both_zero++; |
---|
224 | continue; |
---|
225 | } |
---|
226 | else |
---|
227 | { |
---|
228 | if (both_zero != 0 && i != 1) |
---|
229 | { |
---|
230 | M.newpair (Variable (i), Variable (i - both_zero)); |
---|
231 | N.newpair (Variable (i - both_zero), Variable (i)); |
---|
232 | } |
---|
233 | } |
---|
234 | } |
---|
235 | } |
---|
236 | |
---|
237 | DELETE_ARRAY(degsf); |
---|
238 | DELETE_ARRAY(degsg); |
---|
239 | } |
---|
240 | |
---|
241 | static inline |
---|
242 | CanonicalForm oneNorm (const CanonicalForm& F) |
---|
243 | { |
---|
244 | if (F.inZ()) |
---|
245 | return abs (F); |
---|
246 | |
---|
247 | CanonicalForm result= 0; |
---|
248 | for (CFIterator i= F; i.hasTerms(); i++) |
---|
249 | result += oneNorm (i.coeff()); |
---|
250 | return result; |
---|
251 | } |
---|
252 | |
---|
253 | // if F and G are both non constant, make sure their level is equal |
---|
254 | static inline |
---|
255 | CanonicalForm uniResultant (const CanonicalForm& F, const CanonicalForm& G) |
---|
256 | { |
---|
257 | ASSERT (getCharacteristic() > 0, "characteristic > 0 expected"); |
---|
258 | if (F.inCoeffDomain() && G.inCoeffDomain()) |
---|
259 | return 1; |
---|
260 | if (F.isZero() || G.isZero()) |
---|
261 | return 0; |
---|
262 | Variable alpha; |
---|
263 | |
---|
264 | #ifdef HAVE_FLINT |
---|
265 | if (!hasFirstAlgVar (F, alpha) && !hasFirstAlgVar (G,alpha)) |
---|
266 | { |
---|
267 | nmod_poly_t FLINTF, FLINTG; |
---|
268 | convertFacCF2nmod_poly_t (FLINTF, F); |
---|
269 | convertFacCF2nmod_poly_t (FLINTG, G); |
---|
270 | mp_limb_t FLINTresult= nmod_poly_resultant (FLINTF, FLINTG); |
---|
271 | nmod_poly_clear (FLINTF); |
---|
272 | nmod_poly_clear (FLINTG); |
---|
273 | return CanonicalForm ((long) FLINTresult); |
---|
274 | } |
---|
275 | return resultant (F, G, F.mvar()); |
---|
276 | #elif defined(HAVE_NTL) |
---|
277 | if (!hasFirstAlgVar (F, alpha) && !hasFirstAlgVar (G,alpha)) |
---|
278 | { |
---|
279 | if (fac_NTL_char != getCharacteristic()) |
---|
280 | { |
---|
281 | fac_NTL_char= getCharacteristic(); |
---|
282 | zz_p::init (getCharacteristic()); |
---|
283 | } |
---|
284 | zz_pX NTLF= convertFacCF2NTLzzpX (F); |
---|
285 | zz_pX NTLG= convertFacCF2NTLzzpX (G); |
---|
286 | |
---|
287 | zz_p NTLResult= resultant (NTLF, NTLG); |
---|
288 | |
---|
289 | return CanonicalForm (to_long (rep (NTLResult))); |
---|
290 | } |
---|
291 | //at this point F or G has an algebraic var. |
---|
292 | if (fac_NTL_char != getCharacteristic()) |
---|
293 | { |
---|
294 | fac_NTL_char= getCharacteristic(); |
---|
295 | zz_p::init (getCharacteristic()); |
---|
296 | } |
---|
297 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
298 | zz_pE::init (NTLMipo); |
---|
299 | zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); |
---|
300 | zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); |
---|
301 | zz_pE NTLResult= resultant (NTLF, NTLG); |
---|
302 | |
---|
303 | return convertNTLzzpE2CF (NTLResult, alpha); |
---|
304 | #else |
---|
305 | return resultant (F, G, F.mvar()); |
---|
306 | #endif |
---|
307 | } |
---|
308 | |
---|
309 | static inline |
---|
310 | void evalPoint (const CanonicalForm& F, const CanonicalForm& G, |
---|
311 | CanonicalForm& FEval, CanonicalForm& GEval, |
---|
312 | CFGenerator& evalPoint) |
---|
313 | { |
---|
314 | int degF, degG; |
---|
315 | Variable x= Variable (1); |
---|
316 | degF= degree (F, x); |
---|
317 | degG= degree (G, x); |
---|
318 | do |
---|
319 | { |
---|
320 | if (!evalPoint.hasItems()) |
---|
321 | break; |
---|
322 | FEval= F (evalPoint.item(), 2); |
---|
323 | GEval= G (evalPoint.item(), 2); |
---|
324 | if (degree (FEval, 1) < degF || degree (GEval, 1) < degG) |
---|
325 | { |
---|
326 | evalPoint.next(); |
---|
327 | continue; |
---|
328 | } |
---|
329 | else |
---|
330 | return; |
---|
331 | } |
---|
332 | while (evalPoint.hasItems()); |
---|
333 | } |
---|
334 | |
---|
335 | static inline CanonicalForm |
---|
336 | newtonInterp (const CanonicalForm & alpha, const CanonicalForm & u, |
---|
337 | const CanonicalForm & newtonPoly, const CanonicalForm & oldInterPoly, |
---|
338 | const Variable & x) |
---|
339 | { |
---|
340 | CanonicalForm interPoly; |
---|
341 | |
---|
342 | interPoly= oldInterPoly+((u - oldInterPoly (alpha, x))/newtonPoly (alpha, x)) |
---|
343 | *newtonPoly; |
---|
344 | return interPoly; |
---|
345 | } |
---|
346 | |
---|
347 | #ifdef HAVE_NTL // mapPrimElem |
---|
348 | CanonicalForm |
---|
349 | resultantFp (const CanonicalForm& A, const CanonicalForm& B, const Variable& x, |
---|
350 | bool prob) |
---|
351 | { |
---|
352 | ASSERT (getCharacteristic() > 0, "characteristic > 0 expected"); |
---|
353 | |
---|
354 | if (A.isZero() || B.isZero()) |
---|
355 | return 0; |
---|
356 | |
---|
357 | int degAx= degree (A, x); |
---|
358 | int degBx= degree (B, x); |
---|
359 | if (A.level() < x.level()) |
---|
360 | return power (A, degBx); |
---|
361 | if (B.level() < x.level()) |
---|
362 | return power (B, degAx); |
---|
363 | |
---|
364 | if (degAx == 0) |
---|
365 | return power (A, degBx); |
---|
366 | else if (degBx == 0) |
---|
367 | return power (B, degAx); |
---|
368 | |
---|
369 | if (A.isUnivariate() && B.isUnivariate() && A.level() == B.level()) |
---|
370 | return uniResultant (A, B); |
---|
371 | |
---|
372 | CanonicalForm F= A; |
---|
373 | CanonicalForm G= B; |
---|
374 | |
---|
375 | CFMap M, N; |
---|
376 | myCompress (F, G, M, N, x); |
---|
377 | |
---|
378 | F= M (F); |
---|
379 | G= M (G); |
---|
380 | |
---|
381 | Variable y= Variable (2); |
---|
382 | |
---|
383 | CanonicalForm GEval, FEval, recResult, H; |
---|
384 | CanonicalForm newtonPoly= 1; |
---|
385 | CanonicalForm modResult= 0; |
---|
386 | |
---|
387 | Variable z= Variable (1); |
---|
388 | int bound= degAx*degree (G, 2) + degree (F, 2)*degBx; |
---|
389 | |
---|
390 | int p= getCharacteristic(); |
---|
391 | CanonicalForm minpoly; |
---|
392 | Variable alpha= Variable (tmax (F.level(), G.level()) + 1); |
---|
393 | bool algExt= hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha); |
---|
394 | CFGenerator * gen; |
---|
395 | bool extOfExt= false; |
---|
396 | Variable v= alpha; |
---|
397 | CanonicalForm primElemAlpha, imPrimElemAlpha; |
---|
398 | CFList source,dest; |
---|
399 | if (!algExt && (p < (1 << 28))) |
---|
400 | { |
---|
401 | // pass to an extension of size at least 2^29 |
---|
402 | // for very very large input that is maybe too small though |
---|
403 | int deg= ceil (29.0*((double) log (2)/log (p)))+1; |
---|
404 | minpoly= randomIrredpoly (deg, z); |
---|
405 | alpha= rootOf (minpoly); |
---|
406 | AlgExtGenerator AlgExtGen (alpha); |
---|
407 | gen= AlgExtGen.clone(); |
---|
408 | for (int i= 0; i < p; i++) // skip values from the prime field |
---|
409 | (*gen).next(); |
---|
410 | } |
---|
411 | else if (!algExt) |
---|
412 | { |
---|
413 | FFGenerator FFGen; |
---|
414 | gen= FFGen.clone(); |
---|
415 | } |
---|
416 | else |
---|
417 | { |
---|
418 | int deg= ceil (29.0*((double) log (2)/log (p))); |
---|
419 | if (degree (getMipo (alpha)) < deg) |
---|
420 | { |
---|
421 | mpz_t field_size; |
---|
422 | mpz_init (field_size); |
---|
423 | mpz_ui_pow_ui (field_size, p, |
---|
424 | deg + degree (getMipo (alpha)) - deg%degree (getMipo (alpha))); |
---|
425 | |
---|
426 | // field_size needs to fit in an int because of mapUp, mapDown, length of lists etc. |
---|
427 | if (mpz_fits_sint_p (field_size)) |
---|
428 | { |
---|
429 | minpoly= randomIrredpoly (deg + degree (getMipo (alpha)) |
---|
430 | - deg%degree (getMipo (alpha)), z); |
---|
431 | v= rootOf (minpoly); |
---|
432 | Variable V_buf2; |
---|
433 | bool primFail= false; |
---|
434 | extOfExt= true; |
---|
435 | primElemAlpha= primitiveElement (alpha, V_buf2, primFail); |
---|
436 | ASSERT (!primFail, "failure in integer factorizer"); |
---|
437 | if (primFail) |
---|
438 | ; //ERROR |
---|
439 | else |
---|
440 | imPrimElemAlpha= mapPrimElem (primElemAlpha, alpha, v); |
---|
441 | F= mapUp (F, alpha, v, primElemAlpha, imPrimElemAlpha, source, dest); |
---|
442 | G= mapUp (G, alpha, v, primElemAlpha, imPrimElemAlpha, source, dest); |
---|
443 | } |
---|
444 | else |
---|
445 | { |
---|
446 | deg= deg - deg % degree (getMipo (alpha)); |
---|
447 | mpz_ui_pow_ui (field_size, p, deg); |
---|
448 | while (deg / degree (getMipo (alpha)) >= 2 && !mpz_fits_sint_p (field_size)) |
---|
449 | { |
---|
450 | deg -= degree (getMipo (alpha)); |
---|
451 | mpz_ui_pow_ui (field_size, p, deg); |
---|
452 | } |
---|
453 | if (deg != degree (getMipo (alpha))) |
---|
454 | { |
---|
455 | minpoly= randomIrredpoly (deg, z); |
---|
456 | v= rootOf (minpoly); |
---|
457 | Variable V_buf2; |
---|
458 | bool primFail= false; |
---|
459 | extOfExt= true; |
---|
460 | primElemAlpha= primitiveElement (alpha, V_buf2, primFail); |
---|
461 | ASSERT (!primFail, "failure in integer factorizer"); |
---|
462 | if (primFail) |
---|
463 | ; //ERROR |
---|
464 | else |
---|
465 | imPrimElemAlpha= mapPrimElem (primElemAlpha, alpha, v); |
---|
466 | F= mapUp (F, alpha, v, primElemAlpha, imPrimElemAlpha, source, dest); |
---|
467 | G= mapUp (G, alpha, v, primElemAlpha, imPrimElemAlpha, source, dest); |
---|
468 | } |
---|
469 | } |
---|
470 | mpz_clear (field_size); |
---|
471 | } |
---|
472 | AlgExtGenerator AlgExtGen (v); |
---|
473 | gen= AlgExtGen.clone(); |
---|
474 | for (int i= 0; i < p; i++) |
---|
475 | (*gen).next(); |
---|
476 | } |
---|
477 | int count= 0; |
---|
478 | int equalCount= 0; |
---|
479 | CanonicalForm point; |
---|
480 | do |
---|
481 | { |
---|
482 | evalPoint (F, G, FEval, GEval, *gen); |
---|
483 | |
---|
484 | recResult= resultantFp (FEval, GEval, z, prob); |
---|
485 | |
---|
486 | H= newtonInterp ((*gen).item(), recResult, newtonPoly, modResult, y); |
---|
487 | |
---|
488 | if (H == modResult) |
---|
489 | equalCount++; |
---|
490 | else |
---|
491 | equalCount= 0; |
---|
492 | |
---|
493 | count++; |
---|
494 | if (count > bound || (prob && equalCount == 2 && !H.inCoeffDomain())) |
---|
495 | { |
---|
496 | if (!algExt && degree (H, alpha) <= 0) |
---|
497 | break; |
---|
498 | else if (algExt) |
---|
499 | { |
---|
500 | if (extOfExt && !isInExtension (H, imPrimElemAlpha, 1, primElemAlpha, |
---|
501 | dest, source)) |
---|
502 | { |
---|
503 | H= mapDown (H, primElemAlpha, imPrimElemAlpha, alpha, dest, source); |
---|
504 | prune (v); |
---|
505 | break; |
---|
506 | } |
---|
507 | else if (!extOfExt) |
---|
508 | break; |
---|
509 | } |
---|
510 | } |
---|
511 | |
---|
512 | modResult= H; |
---|
513 | newtonPoly *= (y - (*gen).item()); |
---|
514 | if ((*gen).hasItems()) |
---|
515 | (*gen).next(); |
---|
516 | else |
---|
517 | STICKYASSERT (0, "out of evaluation points"); |
---|
518 | } while (1); |
---|
519 | |
---|
520 | delete gen; |
---|
521 | |
---|
522 | return N (H); |
---|
523 | } |
---|
524 | #endif |
---|
525 | |
---|
526 | static inline |
---|
527 | CanonicalForm |
---|
528 | balanceUni ( const CanonicalForm & f, const CanonicalForm & q ) |
---|
529 | { |
---|
530 | Variable x = f.mvar(); |
---|
531 | CanonicalForm result = 0, qh = q / 2; |
---|
532 | CanonicalForm c; |
---|
533 | CFIterator i; |
---|
534 | for ( i = f; i.hasTerms(); i++ ) { |
---|
535 | c = mod( i.coeff(), q ); |
---|
536 | if ( c > qh ) |
---|
537 | result += power( x, i.exp() ) * (c - q); |
---|
538 | else |
---|
539 | result += power( x, i.exp() ) * c; |
---|
540 | } |
---|
541 | return result; |
---|
542 | } |
---|
543 | |
---|
544 | static inline |
---|
545 | CanonicalForm |
---|
546 | symmetricRemainder (const CanonicalForm& f, const CanonicalForm& q) |
---|
547 | { |
---|
548 | CanonicalForm result= 0; |
---|
549 | if (f.isUnivariate() || f.inCoeffDomain()) |
---|
550 | return balanceUni (f, q); |
---|
551 | else |
---|
552 | { |
---|
553 | Variable x= f.mvar(); |
---|
554 | for (CFIterator i= f; i.hasTerms(); i++) |
---|
555 | result += power (x, i.exp())*symmetricRemainder (i.coeff(), q); |
---|
556 | } |
---|
557 | return result; |
---|
558 | } |
---|
559 | #ifdef HAVE_NTL // mapPrimitiveElem |
---|
560 | CanonicalForm |
---|
561 | resultantZ (const CanonicalForm& A, const CanonicalForm& B, const Variable& x, |
---|
562 | bool prob) |
---|
563 | { |
---|
564 | ASSERT (getCharacteristic() == 0, "characteristic > 0 expected"); |
---|
565 | #ifndef NOASSERT |
---|
566 | bool isRat= isOn (SW_RATIONAL); |
---|
567 | On (SW_RATIONAL); |
---|
568 | ASSERT (bCommonDen (A).isOne(), "input A is rational"); |
---|
569 | ASSERT (bCommonDen (B).isOne(), "input B is rational"); |
---|
570 | if (!isRat) |
---|
571 | Off (SW_RATIONAL); |
---|
572 | #endif |
---|
573 | |
---|
574 | int degAx= degree (A, x); |
---|
575 | int degBx= degree (B, x); |
---|
576 | if (A.level() < x.level()) |
---|
577 | return power (A, degBx); |
---|
578 | if (B.level() < x.level()) |
---|
579 | return power (B, degAx); |
---|
580 | |
---|
581 | if (degAx == 0) |
---|
582 | return power (A, degBx); |
---|
583 | else if (degBx == 0) |
---|
584 | return power (B, degAx); |
---|
585 | |
---|
586 | CanonicalForm F= A; |
---|
587 | CanonicalForm G= B; |
---|
588 | |
---|
589 | Variable X= x; |
---|
590 | if (F.level() != x.level() || G.level() != x.level()) |
---|
591 | { |
---|
592 | if (F.level() > G.level()) |
---|
593 | X= F.mvar(); |
---|
594 | else |
---|
595 | X= G.mvar(); |
---|
596 | F= swapvar (F, X, x); |
---|
597 | G= swapvar (G, X, x); |
---|
598 | } |
---|
599 | |
---|
600 | // now X is the main variable |
---|
601 | |
---|
602 | CanonicalForm d= 0; |
---|
603 | CanonicalForm dd= 0; |
---|
604 | CanonicalForm buf; |
---|
605 | for (CFIterator i= F; i.hasTerms(); i++) |
---|
606 | { |
---|
607 | buf= oneNorm (i.coeff()); |
---|
608 | d= (buf > d) ? buf : d; |
---|
609 | } |
---|
610 | CanonicalForm e= 0, ee= 0; |
---|
611 | for (CFIterator i= G; i.hasTerms(); i++) |
---|
612 | { |
---|
613 | buf= oneNorm (i.coeff()); |
---|
614 | e= (buf > e) ? buf : e; |
---|
615 | } |
---|
616 | d= power (d, degBx); |
---|
617 | e= power (e, degAx); |
---|
618 | CanonicalForm bound= 1; |
---|
619 | for (int i= degBx + degAx; i > 1; i--) |
---|
620 | bound *= i; |
---|
621 | bound *= d*e; |
---|
622 | bound *= 2; |
---|
623 | |
---|
624 | bool onRational= isOn (SW_RATIONAL); |
---|
625 | if (onRational) |
---|
626 | Off (SW_RATIONAL); |
---|
627 | int i = cf_getNumBigPrimes() - 1; |
---|
628 | int p; |
---|
629 | CanonicalForm l= lc (F)*lc(G); |
---|
630 | CanonicalForm resultModP, q (0), newResult, newQ; |
---|
631 | CanonicalForm result; |
---|
632 | int equalCount= 0; |
---|
633 | CanonicalForm test, newTest; |
---|
634 | int count= 0; |
---|
635 | do |
---|
636 | { |
---|
637 | p = cf_getBigPrime( i ); |
---|
638 | i--; |
---|
639 | while ( i >= 0 && mod( l, p ) == 0) |
---|
640 | { |
---|
641 | p = cf_getBigPrime( i ); |
---|
642 | i--; |
---|
643 | } |
---|
644 | |
---|
645 | if (i <= 0) |
---|
646 | return resultant (A, B, x); |
---|
647 | |
---|
648 | setCharacteristic (p); |
---|
649 | |
---|
650 | TIMING_START (fac_resultant_p); |
---|
651 | resultModP= resultantFp (mapinto (F), mapinto (G), X, prob); |
---|
652 | TIMING_END_AND_PRINT (fac_resultant_p, "time to compute resultant mod p: "); |
---|
653 | |
---|
654 | setCharacteristic (0); |
---|
655 | |
---|
656 | count++; |
---|
657 | if ( q.isZero() ) |
---|
658 | { |
---|
659 | result= mapinto(resultModP); |
---|
660 | q= p; |
---|
661 | } |
---|
662 | else |
---|
663 | { |
---|
664 | chineseRemainder( result, q, mapinto (resultModP), p, newResult, newQ ); |
---|
665 | q= newQ; |
---|
666 | result= newResult; |
---|
667 | test= symmetricRemainder (result,q); |
---|
668 | if (test != newTest) |
---|
669 | { |
---|
670 | newTest= test; |
---|
671 | equalCount= 0; |
---|
672 | } |
---|
673 | else |
---|
674 | equalCount++; |
---|
675 | if (newQ > bound || (prob && equalCount == 2)) |
---|
676 | { |
---|
677 | result= test; |
---|
678 | break; |
---|
679 | } |
---|
680 | } |
---|
681 | } while (1); |
---|
682 | |
---|
683 | if (onRational) |
---|
684 | On (SW_RATIONAL); |
---|
685 | return swapvar (result, X, x); |
---|
686 | } |
---|
687 | #endif |
---|
688 | #endif |
---|
689 | |
---|