1 | /* emacs edit mode for this file is -*- C++ -*- */ |
---|
2 | |
---|
3 | //{{{ docu |
---|
4 | // |
---|
5 | // cf_algorithm.cc - simple mathematical algorithms. |
---|
6 | // |
---|
7 | // Hierarchy: mathematical algorithms on canonical forms |
---|
8 | // |
---|
9 | // Developers note: |
---|
10 | // ---------------- |
---|
11 | // A "mathematical" algorithm is an algorithm which calculates |
---|
12 | // some mathematical function in contrast to a "structural" |
---|
13 | // algorithm which gives structural information on polynomials. |
---|
14 | // |
---|
15 | // Compare these functions to the functions in `cf_ops.cc', which |
---|
16 | // are structural algorithms. |
---|
17 | // |
---|
18 | //}}} |
---|
19 | |
---|
20 | #ifdef HAVE_CONFIG_H |
---|
21 | #include "config.h" |
---|
22 | #endif /* HAVE_CONFIG_H */ |
---|
23 | |
---|
24 | #include "cf_assert.h" |
---|
25 | |
---|
26 | #include "cf_factory.h" |
---|
27 | #include "cf_defs.h" |
---|
28 | #include "canonicalform.h" |
---|
29 | #include "cf_algorithm.h" |
---|
30 | #include "variable.h" |
---|
31 | #include "cf_iter.h" |
---|
32 | #include "templates/ftmpl_functions.h" |
---|
33 | #include "algext.h" |
---|
34 | |
---|
35 | void out_cf(const char *s1,const CanonicalForm &f,const char *s2); |
---|
36 | |
---|
37 | //{{{ CanonicalForm psr ( const CanonicalForm & f, const CanonicalForm & g, const Variable & x ) |
---|
38 | //{{{ docu |
---|
39 | // |
---|
40 | // psr() - return pseudo remainder of `f' and `g' with respect |
---|
41 | // to `x'. |
---|
42 | // |
---|
43 | // `g' must not equal zero. |
---|
44 | // |
---|
45 | // For f and g in R[x], R an arbitrary ring, g != 0, there is a |
---|
46 | // representation |
---|
47 | // |
---|
48 | // LC(g)^s*f = g*q + r |
---|
49 | // |
---|
50 | // with r = 0 or deg(r) < deg(g) and s = 0 if f = 0 or |
---|
51 | // s = max( 0, deg(f)-deg(g)+1 ) otherwise. |
---|
52 | // r = psr(f, g) and q = psq(f, g) are called "pseudo remainder" |
---|
53 | // and "pseudo quotient", resp. They are uniquely determined if |
---|
54 | // LC(g) is not a zero divisor in R. |
---|
55 | // |
---|
56 | // See H.-J. Reiffen/G. Scheja/U. Vetter - "Algebra", 2nd ed., |
---|
57 | // par. 15, for a reference. |
---|
58 | // |
---|
59 | // Type info: |
---|
60 | // ---------- |
---|
61 | // f, g: Current |
---|
62 | // x: Polynomial |
---|
63 | // |
---|
64 | // Polynomials over prime power domains are admissible if |
---|
65 | // lc(LC(`g',`x')) is not a zero divisor. This is a slightly |
---|
66 | // stronger precondition than mathematically necessary since |
---|
67 | // pseudo remainder and quotient are well-defined if LC(`g',`x') |
---|
68 | // is not a zero divisor. |
---|
69 | // |
---|
70 | // For example, psr(y^2, (13*x+1)*y) is well-defined in |
---|
71 | // (Z/13^2[x])[y] since (13*x+1) is not a zero divisor. But |
---|
72 | // calculating it with Factory would fail since 13 is a zero |
---|
73 | // divisor in Z/13^2. |
---|
74 | // |
---|
75 | // Due to this inconsistency with mathematical notion, we decided |
---|
76 | // not to declare type `CurrentPP' for `f' and `g'. |
---|
77 | // |
---|
78 | // Developers note: |
---|
79 | // ---------------- |
---|
80 | // This is not an optimal implementation. Better would have been |
---|
81 | // an implementation in `InternalPoly' avoiding the |
---|
82 | // exponentiation of the leading coefficient of `g'. In contrast |
---|
83 | // to `psq()' and `psqr()' it definitely seems worth to implement |
---|
84 | // the pseudo remainder on the internal level. Should be done |
---|
85 | // soon. |
---|
86 | // |
---|
87 | //}}} |
---|
88 | CanonicalForm |
---|
89 | #if 0 |
---|
90 | psr ( const CanonicalForm & f, const CanonicalForm & g, const Variable & x ) |
---|
91 | { |
---|
92 | |
---|
93 | ASSERT( x.level() > 0, "type error: polynomial variable expected" ); |
---|
94 | ASSERT( ! g.isZero(), "math error: division by zero" ); |
---|
95 | |
---|
96 | // swap variables such that x's level is larger or equal |
---|
97 | // than both f's and g's levels. |
---|
98 | Variable X = tmax( tmax( f.mvar(), g.mvar() ), x ); |
---|
99 | CanonicalForm F = swapvar( f, x, X ); |
---|
100 | CanonicalForm G = swapvar( g, x, X ); |
---|
101 | |
---|
102 | // now, we have to calculate the pseudo remainder of F and G |
---|
103 | // w.r.t. X |
---|
104 | int fDegree = degree( F, X ); |
---|
105 | int gDegree = degree( G, X ); |
---|
106 | if ( (fDegree < 0) || (fDegree < gDegree) ) |
---|
107 | return f; |
---|
108 | else |
---|
109 | { |
---|
110 | CanonicalForm xresult = (power( LC( G, X ), fDegree-gDegree+1 ) * F) ; |
---|
111 | CanonicalForm result = xresult -(xresult/G)*G; |
---|
112 | return swapvar( result, x, X ); |
---|
113 | } |
---|
114 | } |
---|
115 | #else |
---|
116 | psr ( const CanonicalForm &rr, const CanonicalForm &vv, const Variable & x ) |
---|
117 | { |
---|
118 | CanonicalForm r=rr, v=vv, l, test, lu, lv, t, retvalue; |
---|
119 | int dr, dv, d,n=0; |
---|
120 | |
---|
121 | |
---|
122 | dr = degree( r, x ); |
---|
123 | if (dr>0) |
---|
124 | { |
---|
125 | dv = degree( v, x ); |
---|
126 | if (dv <= dr) {l=LC(v,x); v = v -l*power(x,dv);} |
---|
127 | else { l = 1; } |
---|
128 | d= dr-dv+1; |
---|
129 | //out_cf("psr(",rr," "); |
---|
130 | //out_cf("",vv," "); |
---|
131 | //printf(" var=%d\n",x.level()); |
---|
132 | while ( ( dv <= dr ) && ( !r.isZero()) ) |
---|
133 | { |
---|
134 | test = power(x,dr-dv)*v*LC(r,x); |
---|
135 | if ( dr == 0 ) { r= CanonicalForm(0); } |
---|
136 | else { r= r - LC(r,x)*power(x,dr); } |
---|
137 | r= l*r -test; |
---|
138 | dr= degree(r,x); |
---|
139 | n+=1; |
---|
140 | } |
---|
141 | r= power(l, d-n)*r; |
---|
142 | } |
---|
143 | return r; |
---|
144 | } |
---|
145 | #endif |
---|
146 | //}}} |
---|
147 | |
---|
148 | //{{{ CanonicalForm psq ( const CanonicalForm & f, const CanonicalForm & g, const Variable & x ) |
---|
149 | //{{{ docu |
---|
150 | // |
---|
151 | // psq() - return pseudo quotient of `f' and `g' with respect |
---|
152 | // to `x'. |
---|
153 | // |
---|
154 | // `g' must not equal zero. |
---|
155 | // |
---|
156 | // See `psr()' for more detailed information. |
---|
157 | // |
---|
158 | // Type info: |
---|
159 | // ---------- |
---|
160 | // f, g: Current |
---|
161 | // x: Polynomial |
---|
162 | // |
---|
163 | // Developers note: |
---|
164 | // ---------------- |
---|
165 | // This is not an optimal implementation. Better would have been |
---|
166 | // an implementation in `InternalPoly' avoiding the |
---|
167 | // exponentiation of the leading coefficient of `g'. It seemed |
---|
168 | // not worth to do so. |
---|
169 | // |
---|
170 | //}}} |
---|
171 | CanonicalForm |
---|
172 | psq ( const CanonicalForm & f, const CanonicalForm & g, const Variable & x ) |
---|
173 | { |
---|
174 | ASSERT( x.level() > 0, "type error: polynomial variable expected" ); |
---|
175 | ASSERT( ! g.isZero(), "math error: division by zero" ); |
---|
176 | |
---|
177 | // swap variables such that x's level is larger or equal |
---|
178 | // than both f's and g's levels. |
---|
179 | Variable X = tmax( tmax( f.mvar(), g.mvar() ), x ); |
---|
180 | CanonicalForm F = swapvar( f, x, X ); |
---|
181 | CanonicalForm G = swapvar( g, x, X ); |
---|
182 | |
---|
183 | // now, we have to calculate the pseudo remainder of F and G |
---|
184 | // w.r.t. X |
---|
185 | int fDegree = degree( F, X ); |
---|
186 | int gDegree = degree( G, X ); |
---|
187 | if ( fDegree < 0 || fDegree < gDegree ) |
---|
188 | return 0; |
---|
189 | else { |
---|
190 | CanonicalForm result = (power( LC( G, X ), fDegree-gDegree+1 ) * F) / G; |
---|
191 | return swapvar( result, x, X ); |
---|
192 | } |
---|
193 | } |
---|
194 | //}}} |
---|
195 | |
---|
196 | //{{{ void psqr ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & q, CanonicalForm & r, const Variable & x ) |
---|
197 | //{{{ docu |
---|
198 | // |
---|
199 | // psqr() - calculate pseudo quotient and remainder of `f' and |
---|
200 | // `g' with respect to `x'. |
---|
201 | // |
---|
202 | // Returns the pseudo quotient of `f' and `g' in `q', the pseudo |
---|
203 | // remainder in `r'. `g' must not equal zero. |
---|
204 | // |
---|
205 | // See `psr()' for more detailed information. |
---|
206 | // |
---|
207 | // Type info: |
---|
208 | // ---------- |
---|
209 | // f, g: Current |
---|
210 | // q, r: Anything |
---|
211 | // x: Polynomial |
---|
212 | // |
---|
213 | // Developers note: |
---|
214 | // ---------------- |
---|
215 | // This is not an optimal implementation. Better would have been |
---|
216 | // an implementation in `InternalPoly' avoiding the |
---|
217 | // exponentiation of the leading coefficient of `g'. It seemed |
---|
218 | // not worth to do so. |
---|
219 | // |
---|
220 | //}}} |
---|
221 | void |
---|
222 | psqr ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & q, CanonicalForm & r, const Variable& x ) |
---|
223 | { |
---|
224 | ASSERT( x.level() > 0, "type error: polynomial variable expected" ); |
---|
225 | ASSERT( ! g.isZero(), "math error: division by zero" ); |
---|
226 | |
---|
227 | // swap variables such that x's level is larger or equal |
---|
228 | // than both f's and g's levels. |
---|
229 | Variable X = tmax( tmax( f.mvar(), g.mvar() ), x ); |
---|
230 | CanonicalForm F = swapvar( f, x, X ); |
---|
231 | CanonicalForm G = swapvar( g, x, X ); |
---|
232 | |
---|
233 | // now, we have to calculate the pseudo remainder of F and G |
---|
234 | // w.r.t. X |
---|
235 | int fDegree = degree( F, X ); |
---|
236 | int gDegree = degree( G, X ); |
---|
237 | if ( fDegree < 0 || fDegree < gDegree ) { |
---|
238 | q = 0; r = f; |
---|
239 | } else { |
---|
240 | divrem( power( LC( G, X ), fDegree-gDegree+1 ) * F, G, q, r ); |
---|
241 | q = swapvar( q, x, X ); |
---|
242 | r = swapvar( r, x, X ); |
---|
243 | } |
---|
244 | } |
---|
245 | //}}} |
---|
246 | |
---|
247 | //{{{ static CanonicalForm internalBCommonDen ( const CanonicalForm & f ) |
---|
248 | //{{{ docu |
---|
249 | // |
---|
250 | // internalBCommonDen() - recursively calculate multivariate |
---|
251 | // common denominator of coefficients of `f'. |
---|
252 | // |
---|
253 | // Used by: bCommonDen() |
---|
254 | // |
---|
255 | // Type info: |
---|
256 | // ---------- |
---|
257 | // f: Poly( Q ) |
---|
258 | // Switches: isOff( SW_RATIONAL ) |
---|
259 | // |
---|
260 | //}}} |
---|
261 | static CanonicalForm |
---|
262 | internalBCommonDen ( const CanonicalForm & f ) |
---|
263 | { |
---|
264 | if ( f.inBaseDomain() ) |
---|
265 | return f.den(); |
---|
266 | else { |
---|
267 | CanonicalForm result = 1; |
---|
268 | for ( CFIterator i = f; i.hasTerms(); i++ ) |
---|
269 | result = blcm( result, internalBCommonDen( i.coeff() ) ); |
---|
270 | return result; |
---|
271 | } |
---|
272 | } |
---|
273 | //}}} |
---|
274 | |
---|
275 | //{{{ CanonicalForm bCommonDen ( const CanonicalForm & f ) |
---|
276 | //{{{ docu |
---|
277 | // |
---|
278 | // bCommonDen() - calculate multivariate common denominator of |
---|
279 | // coefficients of `f'. |
---|
280 | // |
---|
281 | // The common denominator is calculated with respect to all |
---|
282 | // coefficients of `f' which are in a base domain. In other |
---|
283 | // words, common_den( `f' ) * `f' is guaranteed to have integer |
---|
284 | // coefficients only. The common denominator of zero is one. |
---|
285 | // |
---|
286 | // Returns something non-trivial iff the current domain is Q. |
---|
287 | // |
---|
288 | // Type info: |
---|
289 | // ---------- |
---|
290 | // f: CurrentPP |
---|
291 | // |
---|
292 | //}}} |
---|
293 | CanonicalForm |
---|
294 | bCommonDen ( const CanonicalForm & f ) |
---|
295 | { |
---|
296 | if ( getCharacteristic() == 0 && isOn( SW_RATIONAL ) ) { |
---|
297 | // otherwise `bgcd()' returns one |
---|
298 | Off( SW_RATIONAL ); |
---|
299 | CanonicalForm result = internalBCommonDen( f ); |
---|
300 | On( SW_RATIONAL ); |
---|
301 | return result; |
---|
302 | } else |
---|
303 | return CanonicalForm( 1 ); |
---|
304 | } |
---|
305 | //}}} |
---|
306 | |
---|
307 | //{{{ bool fdivides ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
308 | //{{{ docu |
---|
309 | // |
---|
310 | // fdivides() - check whether `f' divides `g'. |
---|
311 | // |
---|
312 | // Returns true iff `f' divides `g'. Uses some extra heuristic |
---|
313 | // to avoid polynomial division. Without the heuristic, the test |
---|
314 | // essentialy looks like `divremt(g, f, q, r) && r.isZero()'. |
---|
315 | // |
---|
316 | // Type info: |
---|
317 | // ---------- |
---|
318 | // f, g: Current |
---|
319 | // |
---|
320 | // Elements from prime power domains (or polynomials over such |
---|
321 | // domains) are admissible if `f' (or lc(`f'), resp.) is not a |
---|
322 | // zero divisor. This is a slightly stronger precondition than |
---|
323 | // mathematically necessary since divisibility is a well-defined |
---|
324 | // notion in arbitrary rings. Hence, we decided not to declare |
---|
325 | // the weaker type `CurrentPP'. |
---|
326 | // |
---|
327 | // Developers note: |
---|
328 | // ---------------- |
---|
329 | // One may consider the the test `fdivides( f.LC(), g.LC() )' in |
---|
330 | // the main `if'-test superfluous since `divremt()' in the |
---|
331 | // `if'-body repeats the test. However, `divremt()' does not use |
---|
332 | // any heuristic to do so. |
---|
333 | // |
---|
334 | // It seems not reasonable to call `fdivides()' from `divremt()' |
---|
335 | // to check divisibility of leading coefficients. `fdivides()' is |
---|
336 | // on a relatively high level compared to `divremt()'. |
---|
337 | // |
---|
338 | //}}} |
---|
339 | bool |
---|
340 | fdivides ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
341 | { |
---|
342 | // trivial cases |
---|
343 | if ( g.isZero() ) |
---|
344 | return true; |
---|
345 | else if ( f.isZero() ) |
---|
346 | return false; |
---|
347 | |
---|
348 | if ( (f.inCoeffDomain() || g.inCoeffDomain()) |
---|
349 | && ((getCharacteristic() == 0 && isOn( SW_RATIONAL )) |
---|
350 | || (getCharacteristic() > 0) )) |
---|
351 | { |
---|
352 | // if we are in a field all elements not equal to zero are units |
---|
353 | if ( f.inCoeffDomain() ) |
---|
354 | return true; |
---|
355 | else |
---|
356 | // g.inCoeffDomain() |
---|
357 | return false; |
---|
358 | } |
---|
359 | |
---|
360 | // we may assume now that both levels either equal LEVELBASE |
---|
361 | // or are greater zero |
---|
362 | int fLevel = f.level(); |
---|
363 | int gLevel = g.level(); |
---|
364 | if ( (gLevel > 0) && (fLevel == gLevel) ) |
---|
365 | // f and g are polynomials in the same main variable |
---|
366 | if ( degree( f ) <= degree( g ) |
---|
367 | && fdivides( f.tailcoeff(), g.tailcoeff() ) |
---|
368 | && fdivides( f.LC(), g.LC() ) ) |
---|
369 | { |
---|
370 | CanonicalForm q, r; |
---|
371 | return divremt( g, f, q, r ) && r.isZero(); |
---|
372 | } |
---|
373 | else |
---|
374 | return false; |
---|
375 | else if ( gLevel < fLevel ) |
---|
376 | // g is a coefficient w.r.t. f |
---|
377 | return false; |
---|
378 | else |
---|
379 | { |
---|
380 | // either f is a coefficient w.r.t. polynomial g or both |
---|
381 | // f and g are from a base domain (should be Z or Z/p^n, |
---|
382 | // then) |
---|
383 | CanonicalForm q, r; |
---|
384 | return divremt( g, f, q, r ) && r.isZero(); |
---|
385 | } |
---|
386 | } |
---|
387 | //}}} |
---|
388 | |
---|
389 | /// same as fdivides if true returns quotient quot of g by f otherwise quot == 0 |
---|
390 | bool |
---|
391 | fdivides ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm& quot ) |
---|
392 | { |
---|
393 | quot= 0; |
---|
394 | // trivial cases |
---|
395 | if ( g.isZero() ) |
---|
396 | return true; |
---|
397 | else if ( f.isZero() ) |
---|
398 | return false; |
---|
399 | |
---|
400 | if ( (f.inCoeffDomain() || g.inCoeffDomain()) |
---|
401 | && ((getCharacteristic() == 0 && isOn( SW_RATIONAL )) |
---|
402 | || (getCharacteristic() > 0) )) |
---|
403 | { |
---|
404 | // if we are in a field all elements not equal to zero are units |
---|
405 | if ( f.inCoeffDomain() ) |
---|
406 | { |
---|
407 | quot= g/f; |
---|
408 | return true; |
---|
409 | } |
---|
410 | else |
---|
411 | // g.inCoeffDomain() |
---|
412 | return false; |
---|
413 | } |
---|
414 | |
---|
415 | // we may assume now that both levels either equal LEVELBASE |
---|
416 | // or are greater zero |
---|
417 | int fLevel = f.level(); |
---|
418 | int gLevel = g.level(); |
---|
419 | if ( (gLevel > 0) && (fLevel == gLevel) ) |
---|
420 | // f and g are polynomials in the same main variable |
---|
421 | if ( degree( f ) <= degree( g ) |
---|
422 | && fdivides( f.tailcoeff(), g.tailcoeff() ) |
---|
423 | && fdivides( f.LC(), g.LC() ) ) |
---|
424 | { |
---|
425 | CanonicalForm q, r; |
---|
426 | if (divremt( g, f, q, r ) && r.isZero()) |
---|
427 | { |
---|
428 | quot= q; |
---|
429 | return true; |
---|
430 | } |
---|
431 | else |
---|
432 | return false; |
---|
433 | } |
---|
434 | else |
---|
435 | return false; |
---|
436 | else if ( gLevel < fLevel ) |
---|
437 | // g is a coefficient w.r.t. f |
---|
438 | return false; |
---|
439 | else |
---|
440 | { |
---|
441 | // either f is a coefficient w.r.t. polynomial g or both |
---|
442 | // f and g are from a base domain (should be Z or Z/p^n, |
---|
443 | // then) |
---|
444 | CanonicalForm q, r; |
---|
445 | if (divremt( g, f, q, r ) && r.isZero()) |
---|
446 | { |
---|
447 | quot= q; |
---|
448 | return true; |
---|
449 | } |
---|
450 | else |
---|
451 | return false; |
---|
452 | } |
---|
453 | } |
---|
454 | |
---|
455 | /// same as fdivides but handles zero divisors in Z_p[t]/(f)[x1,...,xn] for reducible f |
---|
456 | bool |
---|
457 | tryFdivides ( const CanonicalForm & f, const CanonicalForm & g, const CanonicalForm& M, bool& fail ) |
---|
458 | { |
---|
459 | fail= false; |
---|
460 | // trivial cases |
---|
461 | if ( g.isZero() ) |
---|
462 | return true; |
---|
463 | else if ( f.isZero() ) |
---|
464 | return false; |
---|
465 | |
---|
466 | if (f.inCoeffDomain() || g.inCoeffDomain()) |
---|
467 | { |
---|
468 | // if we are in a field all elements not equal to zero are units |
---|
469 | if ( f.inCoeffDomain() ) |
---|
470 | { |
---|
471 | CanonicalForm inv; |
---|
472 | tryInvert (f, M, inv, fail); |
---|
473 | return !fail; |
---|
474 | } |
---|
475 | else |
---|
476 | { |
---|
477 | return false; |
---|
478 | } |
---|
479 | } |
---|
480 | |
---|
481 | // we may assume now that both levels either equal LEVELBASE |
---|
482 | // or are greater zero |
---|
483 | int fLevel = f.level(); |
---|
484 | int gLevel = g.level(); |
---|
485 | if ( (gLevel > 0) && (fLevel == gLevel) ) |
---|
486 | { |
---|
487 | if (degree( f ) > degree( g )) |
---|
488 | return false; |
---|
489 | bool dividestail= tryFdivides (f.tailcoeff(), g.tailcoeff(), M, fail); |
---|
490 | |
---|
491 | if (fail || !dividestail) |
---|
492 | return false; |
---|
493 | bool dividesLC= tryFdivides (f.LC(),g.LC(), M, fail); |
---|
494 | if (fail || !dividesLC) |
---|
495 | return false; |
---|
496 | CanonicalForm q,r; |
---|
497 | bool divides= tryDivremt (g, f, q, r, M, fail); |
---|
498 | if (fail || !divides) |
---|
499 | return false; |
---|
500 | return r.isZero(); |
---|
501 | } |
---|
502 | else if ( gLevel < fLevel ) |
---|
503 | { |
---|
504 | // g is a coefficient w.r.t. f |
---|
505 | return false; |
---|
506 | } |
---|
507 | else |
---|
508 | { |
---|
509 | // either f is a coefficient w.r.t. polynomial g or both |
---|
510 | // f and g are from a base domain (should be Z or Z/p^n, |
---|
511 | // then) |
---|
512 | CanonicalForm q, r; |
---|
513 | bool divides= tryDivremt (g, f, q, r, M, fail); |
---|
514 | if (fail || !divides) |
---|
515 | return false; |
---|
516 | return r.isZero(); |
---|
517 | } |
---|
518 | } |
---|
519 | |
---|
520 | //{{{ CanonicalForm maxNorm ( const CanonicalForm & f ) |
---|
521 | //{{{ docu |
---|
522 | // |
---|
523 | // maxNorm() - return maximum norm of `f'. |
---|
524 | // |
---|
525 | // That is, the base coefficient of `f' with the largest absolute |
---|
526 | // value. |
---|
527 | // |
---|
528 | // Valid for arbitrary polynomials over arbitrary domains, but |
---|
529 | // most useful for multivariate polynomials over Z. |
---|
530 | // |
---|
531 | // Type info: |
---|
532 | // ---------- |
---|
533 | // f: CurrentPP |
---|
534 | // |
---|
535 | //}}} |
---|
536 | CanonicalForm |
---|
537 | maxNorm ( const CanonicalForm & f ) |
---|
538 | { |
---|
539 | if ( f.inBaseDomain() ) |
---|
540 | return abs( f ); |
---|
541 | else { |
---|
542 | CanonicalForm result = 0; |
---|
543 | for ( CFIterator i = f; i.hasTerms(); i++ ) { |
---|
544 | CanonicalForm coeffMaxNorm = maxNorm( i.coeff() ); |
---|
545 | if ( coeffMaxNorm > result ) |
---|
546 | result = coeffMaxNorm; |
---|
547 | } |
---|
548 | return result; |
---|
549 | } |
---|
550 | } |
---|
551 | //}}} |
---|
552 | |
---|
553 | //{{{ CanonicalForm euclideanNorm ( const CanonicalForm & f ) |
---|
554 | //{{{ docu |
---|
555 | // |
---|
556 | // euclideanNorm() - return Euclidean norm of `f'. |
---|
557 | // |
---|
558 | // Returns the largest integer smaller or equal norm(`f') = |
---|
559 | // sqrt(sum( `f'[i]^2 )). |
---|
560 | // |
---|
561 | // Type info: |
---|
562 | // ---------- |
---|
563 | // f: UVPoly( Z ) |
---|
564 | // |
---|
565 | //}}} |
---|
566 | CanonicalForm |
---|
567 | euclideanNorm ( const CanonicalForm & f ) |
---|
568 | { |
---|
569 | ASSERT( (f.inBaseDomain() || f.isUnivariate()) && f.LC().inZ(), |
---|
570 | "type error: univariate poly over Z expected" ); |
---|
571 | |
---|
572 | CanonicalForm result = 0; |
---|
573 | for ( CFIterator i = f; i.hasTerms(); i++ ) { |
---|
574 | CanonicalForm coeff = i.coeff(); |
---|
575 | result += coeff*coeff; |
---|
576 | } |
---|
577 | return sqrt( result ); |
---|
578 | } |
---|
579 | //}}} |
---|