source: git/factory/cf_chinese.cc @ 9ee586

spielwiese
Last change on this file since 9ee586 was abddbe, checked in by Martin Lee <martinlee84@…>, 10 years ago
chg: added brief descriptions to some files
  • Property mode set to 100644
File size: 6.9 KB
Line 
1/* emacs edit mode for this file is -*- C++ -*- */
2
3/**
4 * @file cf_chinese.cc
5 *
6 * algorithms for chinese remaindering and rational reconstruction
7 *
8 * Used by: cf_gcd.cc, cf_linsys.cc
9 *
10 * Header file: cf_algorithm.h
11 *
12**/
13
14
15#include "config.h"
16
17
18#ifdef HAVE_NTL
19#include "NTLconvert.h"
20#endif
21
22#include "cf_assert.h"
23#include "debug.h"
24
25#include "canonicalform.h"
26#include "cf_iter.h"
27
28
29/** void chineseRemainder ( const CanonicalForm & x1, const CanonicalForm & q1, const CanonicalForm & x2, const CanonicalForm & q2, CanonicalForm & xnew, CanonicalForm & qnew )
30 *
31 * chineseRemainder - integer chinese remaindering.
32 *
33 * Calculate xnew such that xnew=x1 (mod q1) and xnew=x2 (mod q2)
34 * and qnew = q1*q2.  q1 and q2 should be positive integers,
35 * pairwise prime, x1 and x2 should be polynomials with integer
36 * coefficients.  If x1 and x2 are polynomials with positive
37 * coefficients, the result is guaranteed to have positive
38 * coefficients, too.
39 *
40 * Note: This algorithm is optimized for the case q1>>q2.
41 *
42 * This is a standard algorithm.  See, for example,
43 * Geddes/Czapor/Labahn - 'Algorithms for Computer Algebra',
44 * par. 5.6 and 5.8, or the article of M. Lauer - 'Computing by
45 * Homomorphic Images' in B. Buchberger - 'Computer Algebra -
46 * Symbolic and Algebraic Computation'.
47 *
48 * Note: Be sure you are calculating in Z, and not in Q!
49 *
50**/
51void
52chineseRemainder ( const CanonicalForm & x1, const CanonicalForm & q1, const CanonicalForm & x2, const CanonicalForm & q2, CanonicalForm & xnew, CanonicalForm & qnew )
53{
54    DEBINCLEVEL( cerr, "chineseRemainder" );
55
56    DEBOUTLN( cerr, "log(q1) = " << q1.ilog2() );
57    DEBOUTLN( cerr, "log(q2) = " << q2.ilog2() );
58
59    // We calculate xnew as follows:
60    //     xnew = v1 + v2 * q1
61    // where
62    //     v1 = x1 (mod q1)
63    //     v2 = (x2-v1)/q1 (mod q2)  (*)
64    //
65    // We do one extra test to check whether x2-v1 vanishes (mod
66    // q2) in (*) since it is not costly and may save us
67    // from calculating the inverse of q1 (mod q2).
68    //
69    // u: v1 (mod q2)
70    // d: x2-v1 (mod q2)
71    // s: 1/q1 (mod q2)
72    //
73    CanonicalForm v2, v1;
74    CanonicalForm u, d, s, dummy;
75
76    v1 = mod( x1, q1 );
77    u = mod( v1, q2 );
78    d = mod( x2-u, q2 );
79    if ( d.isZero() )
80    {
81        xnew = v1;
82        qnew = q1 * q2;
83        DEBDECLEVEL( cerr, "chineseRemainder" );
84        return;
85    }
86    (void)bextgcd( q1, q2, s, dummy );
87    v2 = mod( d*s, q2 );
88    xnew = v1 + v2*q1;
89
90    // After all, calculate new modulus.  It is important that
91    // this is done at the very end of the algorithm, since q1
92    // and qnew may refer to the same object (same is true for x1
93    // and xnew).
94    qnew = q1 * q2;
95
96    DEBDECLEVEL( cerr, "chineseRemainder" );
97}
98//}}}
99
100/** void chineseRemainder ( const CFArray & x, const CFArray & q, CanonicalForm & xnew, CanonicalForm & qnew )
101 *
102 * chineseRemainder - integer chinese remaindering.
103 *
104 * Calculate xnew such that xnew=x[i] (mod q[i]) and qnew is the
105 * product of all q[i].  q[i] should be positive integers,
106 * pairwise prime.  x[i] should be polynomials with integer
107 * coefficients.  If all coefficients of all x[i] are positive
108 * integers, the result is guaranteed to have positive
109 * coefficients, too.
110 *
111 * This is a standard algorithm, too, except for the fact that we
112 * use a divide-and-conquer method instead of a linear approach
113 * to calculate the remainder.
114 *
115 * Note: Be sure you are calculating in Z, and not in Q!
116 *
117**/
118void
119chineseRemainder ( const CFArray & x, const CFArray & q, CanonicalForm & xnew, CanonicalForm & qnew )
120{
121    DEBINCLEVEL( cerr, "chineseRemainder( ... CFArray ... )" );
122
123    ASSERT( x.min() == q.min() && x.size() == q.size(), "incompatible arrays" );
124    CFArray X(x), Q(q);
125    int i, j, n = x.size(), start = x.min();
126
127    DEBOUTLN( cerr, "array size = " << n );
128
129    while ( n != 1 )
130    {
131        i = j = start;
132        while ( i < start + n - 1 )
133        {
134            // This is a little bit dangerous: X[i] and X[j] (and
135            // Q[i] and Q[j]) may refer to the same object.  But
136            // xnew and qnew in the above function are modified
137            // at the very end of the function, so we do not
138            // modify x1 and q1, resp., by accident.
139            chineseRemainder( X[i], Q[i], X[i+1], Q[i+1], X[j], Q[j] );
140            i += 2;
141            j++;
142        }
143
144        if ( n & 1 )
145        {
146            X[j] = X[i];
147            Q[j] = Q[i];
148        }
149        // Maybe we would get some memory back at this point if
150        // we would set X[j+1, ..., n] and Q[j+1, ..., n] to zero
151        // at this point?
152
153        n = ( n + 1) / 2;
154    }
155    xnew = X[start];
156    qnew = Q[q.min()];
157
158    DEBDECLEVEL( cerr, "chineseRemainder( ... CFArray ... )" );
159}
160
161#ifndef HAVE_NTL
162CanonicalForm Farey_n (CanonicalForm N, const CanonicalForm P)
163//"USAGE:  Farey_n (N,P); P, N number;
164//RETURN:  a rational number a/b such that a/b=N mod P
165//         and |a|,|b|<(P/2)^{1/2}
166{
167   //assume(P>0);
168   // assume !isOn(SW_RATIONAL): mod is a no-op otherwise
169   if (N<0) N +=P;
170   CanonicalForm A,B,C,D,E;
171   E=P;
172   B=1;
173   while (!N.isZero())
174   {
175        if (2*N*N<P)
176        {
177           On(SW_RATIONAL);
178           N /=B;
179           Off(SW_RATIONAL);
180           return(N);
181        }
182        D=mod(E , N);
183        C=A-(E-mod(E , N))/N*B;
184        E=N;
185        N=D;
186        A=B;
187        B=C;
188   }
189   return(0);
190}
191#endif
192
193/**
194 * Farey rational reconstruction. If NTL is available it uses the fast algorithm
195 * from NTL, i.e. Encarnacion, Collins.
196**/
197CanonicalForm Farey ( const CanonicalForm & f, const CanonicalForm & q )
198{
199    int is_rat=isOn(SW_RATIONAL);
200    Off(SW_RATIONAL);
201    Variable x = f.mvar();
202    CanonicalForm result = 0;
203    CanonicalForm c;
204    CFIterator i;
205#ifdef HAVE_NTL
206    ZZ NTLq= convertFacCF2NTLZZ (q);
207    ZZ bound;
208    SqrRoot (bound, NTLq/2);
209#endif
210    for ( i = f; i.hasTerms(); i++ )
211    {
212        c = i.coeff();
213        if ( c.inCoeffDomain())
214        {
215#ifdef HAVE_NTL
216          if (c.inZ())
217          {
218            ZZ NTLc= convertFacCF2NTLZZ (c);
219            bool lessZero= (sign (NTLc) == -1);
220            if (lessZero)
221              NTL::negate (NTLc, NTLc);
222            ZZ NTLnum, NTLden;
223            if (ReconstructRational (NTLnum, NTLden, NTLc, NTLq, bound, bound))
224            {
225              if (lessZero)
226                NTL::negate (NTLnum, NTLnum);
227              CanonicalForm num= convertNTLZZX2CF (to_ZZX (NTLnum), Variable (1));
228              CanonicalForm den= convertNTLZZX2CF (to_ZZX (NTLden), Variable (1));
229              On (SW_RATIONAL);
230              result += power (x, i.exp())*(num/den);
231              Off (SW_RATIONAL);
232            }
233          }
234          else
235            result += power( x, i.exp() ) * Farey(c,q);
236#else
237          if (c.inZ())
238            result += power( x, i.exp() ) * Farey_n(c,q);
239          else
240            result += power( x, i.exp() ) * Farey(c,q);
241#endif
242        }
243        else
244          result += power( x, i.exp() ) * Farey(c,q);
245    }
246    if (is_rat) On(SW_RATIONAL);
247    return result;
248}
249
Note: See TracBrowser for help on using the repository browser.