1 | /* emacs edit mode for this file is -*- C++ -*- */ |
---|
2 | |
---|
3 | /** |
---|
4 | * @file cf_gcd.cc |
---|
5 | * |
---|
6 | * gcd/content/lcm of polynomials |
---|
7 | * |
---|
8 | * To compute the GCD different variants are chosen automatically |
---|
9 | **/ |
---|
10 | |
---|
11 | #include "config.h" |
---|
12 | |
---|
13 | |
---|
14 | #include "timing.h" |
---|
15 | #include "cf_assert.h" |
---|
16 | #include "debug.h" |
---|
17 | |
---|
18 | #include "cf_defs.h" |
---|
19 | #include "canonicalform.h" |
---|
20 | #include "cf_iter.h" |
---|
21 | #include "cf_reval.h" |
---|
22 | #include "cf_primes.h" |
---|
23 | #include "cf_algorithm.h" |
---|
24 | #include "cfEzgcd.h" |
---|
25 | #include "cfGcdAlgExt.h" |
---|
26 | #include "cfSubResGcd.h" |
---|
27 | #include "cfModGcd.h" |
---|
28 | #include "FLINTconvert.h" |
---|
29 | #include "facAlgFuncUtil.h" |
---|
30 | |
---|
31 | #ifdef HAVE_NTL |
---|
32 | #include <NTL/ZZX.h> |
---|
33 | #include "NTLconvert.h" |
---|
34 | bool isPurePoly(const CanonicalForm & ); |
---|
35 | #endif |
---|
36 | |
---|
37 | void out_cf(const char *s1,const CanonicalForm &f,const char *s2); |
---|
38 | |
---|
39 | /** static CanonicalForm icontent ( const CanonicalForm & f, const CanonicalForm & c ) |
---|
40 | * |
---|
41 | * icontent() - return gcd of c and all coefficients of f which |
---|
42 | * are in a coefficient domain. |
---|
43 | * |
---|
44 | * @sa icontent(). |
---|
45 | * |
---|
46 | **/ |
---|
47 | static CanonicalForm |
---|
48 | icontent ( const CanonicalForm & f, const CanonicalForm & c ) |
---|
49 | { |
---|
50 | if ( f.inBaseDomain() ) |
---|
51 | { |
---|
52 | if (c.isZero()) return abs(f); |
---|
53 | return bgcd( f, c ); |
---|
54 | } |
---|
55 | //else if ( f.inCoeffDomain() ) |
---|
56 | // return gcd(f,c); |
---|
57 | else |
---|
58 | { |
---|
59 | CanonicalForm g = c; |
---|
60 | for ( CFIterator i = f; i.hasTerms() && ! g.isOne(); i++ ) |
---|
61 | g = icontent( i.coeff(), g ); |
---|
62 | return g; |
---|
63 | } |
---|
64 | } |
---|
65 | |
---|
66 | /** CanonicalForm icontent ( const CanonicalForm & f ) |
---|
67 | * |
---|
68 | * icontent() - return gcd over all coefficients of f which are |
---|
69 | * in a coefficient domain. |
---|
70 | * |
---|
71 | **/ |
---|
72 | CanonicalForm |
---|
73 | icontent ( const CanonicalForm & f ) |
---|
74 | { |
---|
75 | return icontent( f, 0 ); |
---|
76 | } |
---|
77 | |
---|
78 | /** CanonicalForm gcd_poly ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
79 | * |
---|
80 | * gcd_poly() - calculate polynomial gcd. |
---|
81 | * |
---|
82 | * This is the dispatcher for polynomial gcd calculation. |
---|
83 | * Different gcd variants get called depending the input, characteristic, and |
---|
84 | * on switches (cf_defs.h) |
---|
85 | * |
---|
86 | * With the current settings from Singular (i.e. SW_USE_EZGCD= on, |
---|
87 | * SW_USE_EZGCD_P= on, SW_USE_CHINREM_GCD= on, the EZ GCD variants are the |
---|
88 | * default algorithms for multivariate polynomial GCD computations) |
---|
89 | * |
---|
90 | * @sa gcd(), cf_defs.h |
---|
91 | * |
---|
92 | **/ |
---|
93 | CanonicalForm gcd_poly ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
94 | { |
---|
95 | CanonicalForm fc, gc; |
---|
96 | bool fc_isUnivariate=f.isUnivariate(); |
---|
97 | bool gc_isUnivariate=g.isUnivariate(); |
---|
98 | bool fc_and_gc_Univariate=fc_isUnivariate && gc_isUnivariate; |
---|
99 | fc = f; |
---|
100 | gc = g; |
---|
101 | if ( getCharacteristic() != 0 ) |
---|
102 | { |
---|
103 | #if defined(HAVE_FLINT) && ( __FLINT_RELEASE >= 20503) |
---|
104 | if ( isOn( SW_USE_FL_GCD_P) |
---|
105 | && (CFFactory::gettype() != GaloisFieldDomain) |
---|
106 | && (getCharacteristic()>10) |
---|
107 | &&(!hasAlgVar(fc)) && (!hasAlgVar(gc))) |
---|
108 | { |
---|
109 | return gcdFlintMP_Zp(fc,gc); |
---|
110 | } |
---|
111 | #endif |
---|
112 | #ifdef HAVE_NTL |
---|
113 | if ((!fc_and_gc_Univariate) && (isOn( SW_USE_EZGCD_P ))) |
---|
114 | { |
---|
115 | fc= EZGCD_P (fc, gc); |
---|
116 | } |
---|
117 | #endif |
---|
118 | #ifdef HAVE_NTL |
---|
119 | else if (isOn(SW_USE_FF_MOD_GCD) && !fc_and_gc_Univariate) |
---|
120 | { |
---|
121 | Variable a; |
---|
122 | if (hasFirstAlgVar (fc, a) || hasFirstAlgVar (gc, a)) |
---|
123 | fc=modGCDFq (fc, gc, a); |
---|
124 | else if (CFFactory::gettype() == GaloisFieldDomain) |
---|
125 | fc=modGCDGF (fc, gc); |
---|
126 | else |
---|
127 | fc=modGCDFp (fc, gc); |
---|
128 | } |
---|
129 | else |
---|
130 | #endif |
---|
131 | fc = subResGCD_p( fc, gc ); |
---|
132 | } |
---|
133 | else if (!fc_and_gc_Univariate) /* && char==0*/ |
---|
134 | { |
---|
135 | #if defined(HAVE_FLINT) && ( __FLINT_RELEASE >= 20503) |
---|
136 | if (( isOn( SW_USE_FL_GCD_0) ) |
---|
137 | &&(!hasAlgVar(fc)) && (!hasAlgVar(gc))) |
---|
138 | { |
---|
139 | return gcdFlintMP_QQ(fc,gc); |
---|
140 | } |
---|
141 | else |
---|
142 | #endif |
---|
143 | #ifdef HAVE_NTL |
---|
144 | if ( isOn( SW_USE_EZGCD ) ) |
---|
145 | fc= ezgcd (fc, gc); |
---|
146 | #endif |
---|
147 | #ifdef HAVE_NTL |
---|
148 | else if (isOn(SW_USE_CHINREM_GCD)) |
---|
149 | fc = modGCDZ( fc, gc); |
---|
150 | else |
---|
151 | #endif |
---|
152 | { |
---|
153 | fc = subResGCD_0( fc, gc ); |
---|
154 | } |
---|
155 | } |
---|
156 | else |
---|
157 | { |
---|
158 | fc = subResGCD_0( fc, gc ); |
---|
159 | } |
---|
160 | if ((getCharacteristic()>0)&&(!hasAlgVar(fc))) fc/=fc.lc(); |
---|
161 | return fc; |
---|
162 | } |
---|
163 | |
---|
164 | /** static CanonicalForm cf_content ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
165 | * |
---|
166 | * cf_content() - return gcd(g, content(f)). |
---|
167 | * |
---|
168 | * content(f) is calculated with respect to f's main variable. |
---|
169 | * |
---|
170 | * @sa gcd(), content(), content( CF, Variable ). |
---|
171 | * |
---|
172 | **/ |
---|
173 | static CanonicalForm |
---|
174 | cf_content ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
175 | { |
---|
176 | if ( f.inPolyDomain() || ( f.inExtension() && ! getReduce( f.mvar() ) ) ) |
---|
177 | { |
---|
178 | CFIterator i = f; |
---|
179 | CanonicalForm result = g; |
---|
180 | while ( i.hasTerms() && ! result.isOne() ) |
---|
181 | { |
---|
182 | result = gcd( i.coeff(), result ); |
---|
183 | i++; |
---|
184 | } |
---|
185 | return result; |
---|
186 | } |
---|
187 | else |
---|
188 | return abs( f ); |
---|
189 | } |
---|
190 | |
---|
191 | /** CanonicalForm content ( const CanonicalForm & f ) |
---|
192 | * |
---|
193 | * content() - return content(f) with respect to main variable. |
---|
194 | * |
---|
195 | * Normalizes result. |
---|
196 | * |
---|
197 | **/ |
---|
198 | CanonicalForm |
---|
199 | content ( const CanonicalForm & f ) |
---|
200 | { |
---|
201 | if ( f.inPolyDomain() || ( f.inExtension() && ! getReduce( f.mvar() ) ) ) |
---|
202 | { |
---|
203 | CFIterator i = f; |
---|
204 | CanonicalForm result = abs( i.coeff() ); |
---|
205 | i++; |
---|
206 | while ( i.hasTerms() && ! result.isOne() ) |
---|
207 | { |
---|
208 | result = gcd( i.coeff(), result ); |
---|
209 | i++; |
---|
210 | } |
---|
211 | return result; |
---|
212 | } |
---|
213 | else |
---|
214 | return abs( f ); |
---|
215 | } |
---|
216 | |
---|
217 | /** CanonicalForm content ( const CanonicalForm & f, const Variable & x ) |
---|
218 | * |
---|
219 | * content() - return content(f) with respect to x. |
---|
220 | * |
---|
221 | * x should be a polynomial variable. |
---|
222 | * |
---|
223 | **/ |
---|
224 | CanonicalForm |
---|
225 | content ( const CanonicalForm & f, const Variable & x ) |
---|
226 | { |
---|
227 | if (f.inBaseDomain()) return f; |
---|
228 | ASSERT( x.level() > 0, "cannot calculate content with respect to algebraic variable" ); |
---|
229 | Variable y = f.mvar(); |
---|
230 | |
---|
231 | if ( y == x ) |
---|
232 | return cf_content( f, 0 ); |
---|
233 | else if ( y < x ) |
---|
234 | return f; |
---|
235 | else |
---|
236 | return swapvar( content( swapvar( f, y, x ), y ), y, x ); |
---|
237 | } |
---|
238 | |
---|
239 | /** CanonicalForm vcontent ( const CanonicalForm & f, const Variable & x ) |
---|
240 | * |
---|
241 | * vcontent() - return content of f with repect to variables >= x. |
---|
242 | * |
---|
243 | * The content is recursively calculated over all coefficients in |
---|
244 | * f having level less than x. x should be a polynomial |
---|
245 | * variable. |
---|
246 | * |
---|
247 | **/ |
---|
248 | CanonicalForm |
---|
249 | vcontent ( const CanonicalForm & f, const Variable & x ) |
---|
250 | { |
---|
251 | ASSERT( x.level() > 0, "cannot calculate vcontent with respect to algebraic variable" ); |
---|
252 | |
---|
253 | if ( f.mvar() <= x ) |
---|
254 | return content( f, x ); |
---|
255 | else { |
---|
256 | CFIterator i; |
---|
257 | CanonicalForm d = 0; |
---|
258 | for ( i = f; i.hasTerms() && ! d.isOne(); i++ ) |
---|
259 | d = gcd( d, vcontent( i.coeff(), x ) ); |
---|
260 | return d; |
---|
261 | } |
---|
262 | } |
---|
263 | |
---|
264 | /** CanonicalForm pp ( const CanonicalForm & f ) |
---|
265 | * |
---|
266 | * pp() - return primitive part of f. |
---|
267 | * |
---|
268 | * Returns zero if f equals zero, otherwise f / content(f). |
---|
269 | * |
---|
270 | **/ |
---|
271 | CanonicalForm |
---|
272 | pp ( const CanonicalForm & f ) |
---|
273 | { |
---|
274 | if ( f.isZero() ) |
---|
275 | return f; |
---|
276 | else |
---|
277 | return f / content( f ); |
---|
278 | } |
---|
279 | |
---|
280 | CanonicalForm |
---|
281 | gcd ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
282 | { |
---|
283 | bool b = f.isZero(); |
---|
284 | if ( b || g.isZero() ) |
---|
285 | { |
---|
286 | if ( b ) |
---|
287 | return abs( g ); |
---|
288 | else |
---|
289 | return abs( f ); |
---|
290 | } |
---|
291 | if ( f.inPolyDomain() || g.inPolyDomain() ) |
---|
292 | { |
---|
293 | if ( f.mvar() != g.mvar() ) |
---|
294 | { |
---|
295 | if ( f.mvar() > g.mvar() ) |
---|
296 | return cf_content( f, g ); |
---|
297 | else |
---|
298 | return cf_content( g, f ); |
---|
299 | } |
---|
300 | if (isOn(SW_USE_QGCD)) |
---|
301 | { |
---|
302 | Variable m; |
---|
303 | if ( |
---|
304 | (getCharacteristic() == 0) && |
---|
305 | (hasFirstAlgVar(f,m) || hasFirstAlgVar(g,m)) |
---|
306 | ) |
---|
307 | { |
---|
308 | bool on_rational = isOn(SW_RATIONAL); |
---|
309 | CanonicalForm r=QGCD(f,g); |
---|
310 | On(SW_RATIONAL); |
---|
311 | CanonicalForm cdF = bCommonDen( r ); |
---|
312 | if (!on_rational) Off(SW_RATIONAL); |
---|
313 | return cdF*r; |
---|
314 | } |
---|
315 | } |
---|
316 | |
---|
317 | if ( f.inExtension() && getReduce( f.mvar() ) ) |
---|
318 | return CanonicalForm(1); |
---|
319 | else |
---|
320 | { |
---|
321 | if ( fdivides( f, g ) ) |
---|
322 | return abs( f ); |
---|
323 | else if ( fdivides( g, f ) ) |
---|
324 | return abs( g ); |
---|
325 | if ( !( getCharacteristic() == 0 && isOn( SW_RATIONAL ) ) ) |
---|
326 | { |
---|
327 | CanonicalForm d; |
---|
328 | d = gcd_poly( f, g ); |
---|
329 | return abs( d ); |
---|
330 | } |
---|
331 | else |
---|
332 | { |
---|
333 | CanonicalForm cdF = bCommonDen( f ); |
---|
334 | CanonicalForm cdG = bCommonDen( g ); |
---|
335 | CanonicalForm F = f * cdF, G = g * cdG; |
---|
336 | Off( SW_RATIONAL ); |
---|
337 | CanonicalForm l = gcd_poly( F, G ); |
---|
338 | On( SW_RATIONAL ); |
---|
339 | return abs( l ); |
---|
340 | } |
---|
341 | } |
---|
342 | } |
---|
343 | if ( f.inBaseDomain() && g.inBaseDomain() ) |
---|
344 | return bgcd( f, g ); |
---|
345 | else |
---|
346 | return 1; |
---|
347 | } |
---|
348 | |
---|
349 | /** CanonicalForm lcm ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
350 | * |
---|
351 | * lcm() - return least common multiple of f and g. |
---|
352 | * |
---|
353 | * The lcm is calculated using the formula lcm(f, g) = f * g / gcd(f, g). |
---|
354 | * |
---|
355 | * Returns zero if one of f or g equals zero. |
---|
356 | * |
---|
357 | **/ |
---|
358 | CanonicalForm |
---|
359 | lcm ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
360 | { |
---|
361 | if ( f.isZero() || g.isZero() ) |
---|
362 | return 0; |
---|
363 | else |
---|
364 | return ( f / gcd( f, g ) ) * g; |
---|
365 | } |
---|
366 | |
---|