1 | /* emacs edit mode for this file is -*- C++ -*- */ |
---|
2 | |
---|
3 | #ifdef HAVE_CONFIG_H |
---|
4 | #include "config.h" |
---|
5 | #endif /* HAVE_CONFIG_H */ |
---|
6 | |
---|
7 | #include "timing.h" |
---|
8 | #include "cf_assert.h" |
---|
9 | #include "debug.h" |
---|
10 | |
---|
11 | #include "cf_defs.h" |
---|
12 | #include "canonicalform.h" |
---|
13 | #include "cf_iter.h" |
---|
14 | #include "cf_reval.h" |
---|
15 | #include "cf_primes.h" |
---|
16 | #include "cf_algorithm.h" |
---|
17 | #include "cf_factory.h" |
---|
18 | #include "fac_util.h" |
---|
19 | #include "templates/ftmpl_functions.h" |
---|
20 | #include "algext.h" |
---|
21 | #include "cf_gcd_smallp.h" |
---|
22 | #include "cf_map_ext.h" |
---|
23 | #include "cf_util.h" |
---|
24 | #include "gfops.h" |
---|
25 | |
---|
26 | #ifdef HAVE_NTL |
---|
27 | #include <NTL/ZZX.h> |
---|
28 | #include "NTLconvert.h" |
---|
29 | bool isPurePoly(const CanonicalForm & ); |
---|
30 | #ifndef HAVE_FLINT |
---|
31 | static CanonicalForm gcd_univar_ntl0( const CanonicalForm &, const CanonicalForm & ); |
---|
32 | static CanonicalForm gcd_univar_ntlp( const CanonicalForm &, const CanonicalForm & ); |
---|
33 | #endif |
---|
34 | #endif |
---|
35 | |
---|
36 | #ifdef HAVE_FLINT |
---|
37 | #include "FLINTconvert.h" |
---|
38 | static CanonicalForm gcd_univar_flint0 (const CanonicalForm &, const CanonicalForm &); |
---|
39 | static CanonicalForm gcd_univar_flintp (const CanonicalForm &, const CanonicalForm &); |
---|
40 | #endif |
---|
41 | |
---|
42 | static CanonicalForm cf_content ( const CanonicalForm &, const CanonicalForm & ); |
---|
43 | |
---|
44 | void out_cf(const char *s1,const CanonicalForm &f,const char *s2); |
---|
45 | |
---|
46 | CanonicalForm chinrem_gcd(const CanonicalForm & FF,const CanonicalForm & GG); |
---|
47 | |
---|
48 | bool |
---|
49 | gcd_test_one ( const CanonicalForm & f, const CanonicalForm & g, bool swap, int & d ) |
---|
50 | { |
---|
51 | d= 0; |
---|
52 | int count = 0; |
---|
53 | // assume polys have same level; |
---|
54 | |
---|
55 | Variable v= Variable (1); |
---|
56 | bool algExtension= (hasFirstAlgVar (f, v) || hasFirstAlgVar (g, v)); |
---|
57 | CanonicalForm lcf, lcg; |
---|
58 | if ( swap ) |
---|
59 | { |
---|
60 | lcf = swapvar( LC( f ), Variable(1), f.mvar() ); |
---|
61 | lcg = swapvar( LC( g ), Variable(1), f.mvar() ); |
---|
62 | } |
---|
63 | else |
---|
64 | { |
---|
65 | lcf = LC( f, Variable(1) ); |
---|
66 | lcg = LC( g, Variable(1) ); |
---|
67 | } |
---|
68 | |
---|
69 | CanonicalForm F, G; |
---|
70 | if ( swap ) |
---|
71 | { |
---|
72 | F=swapvar( f, Variable(1), f.mvar() ); |
---|
73 | G=swapvar( g, Variable(1), g.mvar() ); |
---|
74 | } |
---|
75 | else |
---|
76 | { |
---|
77 | F = f; |
---|
78 | G = g; |
---|
79 | } |
---|
80 | |
---|
81 | #define TEST_ONE_MAX 50 |
---|
82 | int p= getCharacteristic(); |
---|
83 | bool passToGF= false; |
---|
84 | int k= 1; |
---|
85 | if (p > 0 && p < TEST_ONE_MAX && CFFactory::gettype() != GaloisFieldDomain && !algExtension) |
---|
86 | { |
---|
87 | if (p == 2) |
---|
88 | setCharacteristic (2, 6, 'Z'); |
---|
89 | else if (p == 3) |
---|
90 | setCharacteristic (3, 4, 'Z'); |
---|
91 | else if (p == 5 || p == 7) |
---|
92 | setCharacteristic (p, 3, 'Z'); |
---|
93 | else |
---|
94 | setCharacteristic (p, 2, 'Z'); |
---|
95 | passToGF= true; |
---|
96 | } |
---|
97 | else if (p > 0 && CFFactory::gettype() == GaloisFieldDomain && ipower (p , getGFDegree()) < TEST_ONE_MAX) |
---|
98 | { |
---|
99 | k= getGFDegree(); |
---|
100 | if (ipower (p, 2*k) > TEST_ONE_MAX) |
---|
101 | setCharacteristic (p, 2*k, gf_name); |
---|
102 | else |
---|
103 | setCharacteristic (p, 3*k, gf_name); |
---|
104 | F= GFMapUp (F, k); |
---|
105 | G= GFMapUp (G, k); |
---|
106 | lcf= GFMapUp (lcf, k); |
---|
107 | lcg= GFMapUp (lcg, k); |
---|
108 | } |
---|
109 | else if (p > 0 && p < TEST_ONE_MAX && algExtension) |
---|
110 | { |
---|
111 | bool extOfExt= false; |
---|
112 | #ifdef HAVE_NTL |
---|
113 | int d= degree (getMipo (v)); |
---|
114 | CFList source, dest; |
---|
115 | Variable v2; |
---|
116 | CanonicalForm primElem, imPrimElem; |
---|
117 | if (p == 2 && d < 6) |
---|
118 | { |
---|
119 | if (fac_NTL_char != 2) |
---|
120 | { |
---|
121 | fac_NTL_char= 2; |
---|
122 | zz_p::init (p); |
---|
123 | } |
---|
124 | bool primFail= false; |
---|
125 | Variable vBuf; |
---|
126 | primElem= primitiveElement (v, vBuf, primFail); |
---|
127 | ASSERT (!primFail, "failure in integer factorizer"); |
---|
128 | if (d < 3) |
---|
129 | { |
---|
130 | zz_pX NTLIrredpoly; |
---|
131 | BuildIrred (NTLIrredpoly, d*3); |
---|
132 | CanonicalForm newMipo= convertNTLzzpX2CF (NTLIrredpoly, Variable (1)); |
---|
133 | v2= rootOf (newMipo); |
---|
134 | } |
---|
135 | else |
---|
136 | { |
---|
137 | zz_pX NTLIrredpoly; |
---|
138 | BuildIrred (NTLIrredpoly, d*2); |
---|
139 | CanonicalForm newMipo= convertNTLzzpX2CF (NTLIrredpoly, Variable (1)); |
---|
140 | v2= rootOf (newMipo); |
---|
141 | } |
---|
142 | imPrimElem= mapPrimElem (primElem, v, v2); |
---|
143 | extOfExt= true; |
---|
144 | } |
---|
145 | else if ((p == 3 && d < 4) || ((p == 5 || p == 7) && d < 3)) |
---|
146 | { |
---|
147 | if (fac_NTL_char != p) |
---|
148 | { |
---|
149 | fac_NTL_char= p; |
---|
150 | zz_p::init (p); |
---|
151 | } |
---|
152 | bool primFail= false; |
---|
153 | Variable vBuf; |
---|
154 | primElem= primitiveElement (v, vBuf, primFail); |
---|
155 | ASSERT (!primFail, "failure in integer factorizer"); |
---|
156 | zz_pX NTLIrredpoly; |
---|
157 | BuildIrred (NTLIrredpoly, d*2); |
---|
158 | CanonicalForm newMipo= convertNTLzzpX2CF (NTLIrredpoly, Variable (1)); |
---|
159 | v2= rootOf (newMipo); |
---|
160 | imPrimElem= mapPrimElem (primElem, v, v2); |
---|
161 | extOfExt= true; |
---|
162 | } |
---|
163 | if (extOfExt) |
---|
164 | { |
---|
165 | F= mapUp (F, v, v2, primElem, imPrimElem, source, dest); |
---|
166 | G= mapUp (G, v, v2, primElem, imPrimElem, source, dest); |
---|
167 | lcf= mapUp (lcf, v, v2, primElem, imPrimElem, source, dest); |
---|
168 | lcg= mapUp (lcg, v, v2, primElem, imPrimElem, source, dest); |
---|
169 | v= v2; |
---|
170 | } |
---|
171 | #endif |
---|
172 | } |
---|
173 | |
---|
174 | CFRandom * sample; |
---|
175 | if ((!algExtension && p > 0) || p == 0) |
---|
176 | sample = CFRandomFactory::generate(); |
---|
177 | else |
---|
178 | sample = AlgExtRandomF (v).clone(); |
---|
179 | |
---|
180 | REvaluation e( 2, tmax( f.level(), g.level() ), *sample ); |
---|
181 | delete sample; |
---|
182 | |
---|
183 | if (passToGF) |
---|
184 | { |
---|
185 | lcf= lcf.mapinto(); |
---|
186 | lcg= lcg.mapinto(); |
---|
187 | } |
---|
188 | |
---|
189 | CanonicalForm eval1, eval2; |
---|
190 | if (passToGF) |
---|
191 | { |
---|
192 | eval1= e (lcf); |
---|
193 | eval2= e (lcg); |
---|
194 | } |
---|
195 | else |
---|
196 | { |
---|
197 | eval1= e (lcf); |
---|
198 | eval2= e (lcg); |
---|
199 | } |
---|
200 | |
---|
201 | while ( ( eval1.isZero() || eval2.isZero() ) && count < TEST_ONE_MAX ) |
---|
202 | { |
---|
203 | e.nextpoint(); |
---|
204 | count++; |
---|
205 | eval1= e (lcf); |
---|
206 | eval2= e (lcg); |
---|
207 | } |
---|
208 | if ( count >= TEST_ONE_MAX ) |
---|
209 | { |
---|
210 | if (passToGF) |
---|
211 | setCharacteristic (p); |
---|
212 | if (k > 1) |
---|
213 | setCharacteristic (p, k, gf_name); |
---|
214 | return false; |
---|
215 | } |
---|
216 | |
---|
217 | |
---|
218 | if (passToGF) |
---|
219 | { |
---|
220 | F= F.mapinto(); |
---|
221 | G= G.mapinto(); |
---|
222 | eval1= e (F); |
---|
223 | eval2= e (G); |
---|
224 | } |
---|
225 | else |
---|
226 | { |
---|
227 | eval1= e (F); |
---|
228 | eval2= e (G); |
---|
229 | } |
---|
230 | |
---|
231 | CanonicalForm c= gcd (eval1, eval2); |
---|
232 | d= c.degree(); |
---|
233 | bool result= d < 1; |
---|
234 | if (d < 0) |
---|
235 | d= 0; |
---|
236 | |
---|
237 | if (passToGF) |
---|
238 | setCharacteristic (p); |
---|
239 | if (k > 1) |
---|
240 | setCharacteristic (p, k, gf_name); |
---|
241 | return result; |
---|
242 | } |
---|
243 | |
---|
244 | //{{{ static CanonicalForm icontent ( const CanonicalForm & f, const CanonicalForm & c ) |
---|
245 | //{{{ docu |
---|
246 | // |
---|
247 | // icontent() - return gcd of c and all coefficients of f which |
---|
248 | // are in a coefficient domain. |
---|
249 | // |
---|
250 | // Used by icontent(). |
---|
251 | // |
---|
252 | //}}} |
---|
253 | static CanonicalForm |
---|
254 | icontent ( const CanonicalForm & f, const CanonicalForm & c ) |
---|
255 | { |
---|
256 | if ( f.inBaseDomain() ) |
---|
257 | { |
---|
258 | if (c.isZero()) return abs(f); |
---|
259 | return bgcd( f, c ); |
---|
260 | } |
---|
261 | //else if ( f.inCoeffDomain() ) |
---|
262 | // return gcd(f,c); |
---|
263 | else |
---|
264 | { |
---|
265 | CanonicalForm g = c; |
---|
266 | for ( CFIterator i = f; i.hasTerms() && ! g.isOne(); i++ ) |
---|
267 | g = icontent( i.coeff(), g ); |
---|
268 | return g; |
---|
269 | } |
---|
270 | } |
---|
271 | //}}} |
---|
272 | |
---|
273 | //{{{ CanonicalForm icontent ( const CanonicalForm & f ) |
---|
274 | //{{{ docu |
---|
275 | // |
---|
276 | // icontent() - return gcd over all coefficients of f which are |
---|
277 | // in a coefficient domain. |
---|
278 | // |
---|
279 | //}}} |
---|
280 | CanonicalForm |
---|
281 | icontent ( const CanonicalForm & f ) |
---|
282 | { |
---|
283 | return icontent( f, 0 ); |
---|
284 | } |
---|
285 | //}}} |
---|
286 | |
---|
287 | //{{{ CanonicalForm extgcd ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & a, CanonicalForm & b ) |
---|
288 | //{{{ docu |
---|
289 | // |
---|
290 | // extgcd() - returns polynomial extended gcd of f and g. |
---|
291 | // |
---|
292 | // Returns gcd(f, g) and a and b sucht that f*a+g*b=gcd(f, g). |
---|
293 | // The gcd is calculated using an extended euclidean polynomial |
---|
294 | // remainder sequence, so f and g should be polynomials over an |
---|
295 | // euclidean domain. Normalizes result. |
---|
296 | // |
---|
297 | // Note: be sure that f and g have the same level! |
---|
298 | // |
---|
299 | //}}} |
---|
300 | CanonicalForm |
---|
301 | extgcd ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & a, CanonicalForm & b ) |
---|
302 | { |
---|
303 | if (f.isZero()) |
---|
304 | { |
---|
305 | a= 0; |
---|
306 | b= 1; |
---|
307 | return g; |
---|
308 | } |
---|
309 | else if (g.isZero()) |
---|
310 | { |
---|
311 | a= 1; |
---|
312 | b= 0; |
---|
313 | return f; |
---|
314 | } |
---|
315 | #ifdef HAVE_NTL |
---|
316 | #ifdef HAVE_FLINT |
---|
317 | if (( getCharacteristic() > 0 ) && (CFFactory::gettype() != GaloisFieldDomain) |
---|
318 | && (f.level()==g.level()) && isPurePoly(f) && isPurePoly(g)) |
---|
319 | { |
---|
320 | nmod_poly_t F1, G1, A, B, R; |
---|
321 | convertFacCF2nmod_poly_t (F1, f); |
---|
322 | convertFacCF2nmod_poly_t (G1, g); |
---|
323 | nmod_poly_init (R, getCharacteristic()); |
---|
324 | nmod_poly_init (A, getCharacteristic()); |
---|
325 | nmod_poly_init (B, getCharacteristic()); |
---|
326 | nmod_poly_xgcd (R, A, B, F1, G1); |
---|
327 | a= convertnmod_poly_t2FacCF (A, f.mvar()); |
---|
328 | b= convertnmod_poly_t2FacCF (B, f.mvar()); |
---|
329 | CanonicalForm r= convertnmod_poly_t2FacCF (R, f.mvar()); |
---|
330 | nmod_poly_clear (F1); |
---|
331 | nmod_poly_clear (G1); |
---|
332 | nmod_poly_clear (A); |
---|
333 | nmod_poly_clear (B); |
---|
334 | nmod_poly_clear (R); |
---|
335 | return r; |
---|
336 | } |
---|
337 | #else |
---|
338 | if (isOn(SW_USE_NTL_GCD_P) && ( getCharacteristic() > 0 ) && (CFFactory::gettype() != GaloisFieldDomain) |
---|
339 | && (f.level()==g.level()) && isPurePoly(f) && isPurePoly(g)) |
---|
340 | { |
---|
341 | if (fac_NTL_char!=getCharacteristic()) |
---|
342 | { |
---|
343 | fac_NTL_char=getCharacteristic(); |
---|
344 | zz_p::init(getCharacteristic()); |
---|
345 | } |
---|
346 | zz_pX F1=convertFacCF2NTLzzpX(f); |
---|
347 | zz_pX G1=convertFacCF2NTLzzpX(g); |
---|
348 | zz_pX R; |
---|
349 | zz_pX A,B; |
---|
350 | XGCD(R,A,B,F1,G1); |
---|
351 | a=convertNTLzzpX2CF(A,f.mvar()); |
---|
352 | b=convertNTLzzpX2CF(B,f.mvar()); |
---|
353 | return convertNTLzzpX2CF(R,f.mvar()); |
---|
354 | } |
---|
355 | #endif |
---|
356 | #ifdef HAVE_FLINT |
---|
357 | if (( getCharacteristic() ==0) && (f.level()==g.level()) |
---|
358 | && isPurePoly(f) && isPurePoly(g)) |
---|
359 | { |
---|
360 | fmpq_poly_t F1, G1; |
---|
361 | convertFacCF2Fmpq_poly_t (F1, f); |
---|
362 | convertFacCF2Fmpq_poly_t (G1, g); |
---|
363 | fmpq_poly_t R, A, B; |
---|
364 | fmpq_poly_init (R); |
---|
365 | fmpq_poly_init (A); |
---|
366 | fmpq_poly_init (B); |
---|
367 | fmpq_poly_xgcd (R, A, B, F1, G1); |
---|
368 | a= convertFmpq_poly_t2FacCF (A, f.mvar()); |
---|
369 | b= convertFmpq_poly_t2FacCF (B, f.mvar()); |
---|
370 | CanonicalForm r= convertFmpq_poly_t2FacCF (R, f.mvar()); |
---|
371 | fmpq_poly_clear (F1); |
---|
372 | fmpq_poly_clear (G1); |
---|
373 | fmpq_poly_clear (A); |
---|
374 | fmpq_poly_clear (B); |
---|
375 | fmpq_poly_clear (R); |
---|
376 | return r; |
---|
377 | } |
---|
378 | #else |
---|
379 | if (isOn(SW_USE_NTL_GCD_0) && ( getCharacteristic() ==0) |
---|
380 | && (f.level()==g.level()) && isPurePoly(f) && isPurePoly(g)) |
---|
381 | { |
---|
382 | CanonicalForm fc=bCommonDen(f); |
---|
383 | CanonicalForm gc=bCommonDen(g); |
---|
384 | ZZX F1=convertFacCF2NTLZZX(f*fc); |
---|
385 | ZZX G1=convertFacCF2NTLZZX(g*gc); |
---|
386 | ZZX R=GCD(F1,G1); |
---|
387 | CanonicalForm r=convertNTLZZX2CF(R,f.mvar()); |
---|
388 | ZZ RR; |
---|
389 | ZZX A,B; |
---|
390 | if (r.inCoeffDomain()) |
---|
391 | { |
---|
392 | XGCD(RR,A,B,F1,G1,1); |
---|
393 | CanonicalForm rr=convertZZ2CF(RR); |
---|
394 | if(!rr.isZero()) |
---|
395 | { |
---|
396 | a=convertNTLZZX2CF(A,f.mvar())*fc/rr; |
---|
397 | b=convertNTLZZX2CF(B,f.mvar())*gc/rr; |
---|
398 | return CanonicalForm(1); |
---|
399 | } |
---|
400 | else |
---|
401 | { |
---|
402 | Off(SW_USE_NTL_GCD_0); |
---|
403 | r=extgcd(f,g,a,b); |
---|
404 | if (isOn(SW_RATIONAL)) |
---|
405 | { |
---|
406 | a/=r.lc(); |
---|
407 | b/=r.lc(); |
---|
408 | r/=r.lc(); |
---|
409 | } |
---|
410 | On(SW_USE_NTL_GCD_0); |
---|
411 | } |
---|
412 | } |
---|
413 | else |
---|
414 | { |
---|
415 | XGCD(RR,A,B,F1,G1,1); |
---|
416 | CanonicalForm rr=convertZZ2CF(RR); |
---|
417 | if (!rr.isZero()) |
---|
418 | { |
---|
419 | a=convertNTLZZX2CF(A,f.mvar())*fc; |
---|
420 | b=convertNTLZZX2CF(B,f.mvar())*gc; |
---|
421 | } |
---|
422 | else |
---|
423 | { |
---|
424 | Off(SW_USE_NTL_GCD_0); |
---|
425 | r=extgcd(f,g,a,b); |
---|
426 | if (isOn(SW_RATIONAL)) |
---|
427 | { |
---|
428 | a/=r.lc(); |
---|
429 | b/=r.lc(); |
---|
430 | r/=r.lc(); |
---|
431 | } |
---|
432 | On(SW_USE_NTL_GCD_0); |
---|
433 | } |
---|
434 | return r; |
---|
435 | } |
---|
436 | } |
---|
437 | #endif |
---|
438 | #endif |
---|
439 | // may contain bug in the co-factors, see track 107 |
---|
440 | CanonicalForm contf = content( f ); |
---|
441 | CanonicalForm contg = content( g ); |
---|
442 | |
---|
443 | CanonicalForm p0 = f / contf, p1 = g / contg; |
---|
444 | CanonicalForm f0 = 1, f1 = 0, g0 = 0, g1 = 1, q, r; |
---|
445 | |
---|
446 | while ( ! p1.isZero() ) |
---|
447 | { |
---|
448 | divrem( p0, p1, q, r ); |
---|
449 | p0 = p1; p1 = r; |
---|
450 | r = g0 - g1 * q; |
---|
451 | g0 = g1; g1 = r; |
---|
452 | r = f0 - f1 * q; |
---|
453 | f0 = f1; f1 = r; |
---|
454 | } |
---|
455 | CanonicalForm contp0 = content( p0 ); |
---|
456 | a = f0 / ( contf * contp0 ); |
---|
457 | b = g0 / ( contg * contp0 ); |
---|
458 | p0 /= contp0; |
---|
459 | if ( p0.sign() < 0 ) |
---|
460 | { |
---|
461 | p0 = -p0; |
---|
462 | a = -a; |
---|
463 | b = -b; |
---|
464 | } |
---|
465 | return p0; |
---|
466 | } |
---|
467 | //}}} |
---|
468 | |
---|
469 | //{{{ static CanonicalForm balance_p ( const CanonicalForm & f, const CanonicalForm & q ) |
---|
470 | //{{{ docu |
---|
471 | // |
---|
472 | // balance_p() - map f from positive to symmetric representation |
---|
473 | // mod q. |
---|
474 | // |
---|
475 | // This makes sense for univariate polynomials over Z only. |
---|
476 | // q should be an integer. |
---|
477 | // |
---|
478 | // Used by gcd_poly_univar0(). |
---|
479 | // |
---|
480 | //}}} |
---|
481 | |
---|
482 | static CanonicalForm |
---|
483 | balance_p ( const CanonicalForm & f, const CanonicalForm & q, const CanonicalForm & qh ) |
---|
484 | { |
---|
485 | Variable x = f.mvar(); |
---|
486 | CanonicalForm result = 0; |
---|
487 | CanonicalForm c; |
---|
488 | CFIterator i; |
---|
489 | for ( i = f; i.hasTerms(); i++ ) |
---|
490 | { |
---|
491 | c = i.coeff(); |
---|
492 | if ( c.inCoeffDomain()) |
---|
493 | { |
---|
494 | if ( c > qh ) |
---|
495 | result += power( x, i.exp() ) * (c - q); |
---|
496 | else |
---|
497 | result += power( x, i.exp() ) * c; |
---|
498 | } |
---|
499 | else |
---|
500 | result += power( x, i.exp() ) * balance_p(c,q,qh); |
---|
501 | } |
---|
502 | return result; |
---|
503 | } |
---|
504 | |
---|
505 | static CanonicalForm |
---|
506 | balance_p ( const CanonicalForm & f, const CanonicalForm & q ) |
---|
507 | { |
---|
508 | CanonicalForm qh = q / 2; |
---|
509 | return balance_p (f, q, qh); |
---|
510 | } |
---|
511 | |
---|
512 | /*static CanonicalForm |
---|
513 | balance ( const CanonicalForm & f, const CanonicalForm & q ) |
---|
514 | { |
---|
515 | Variable x = f.mvar(); |
---|
516 | CanonicalForm result = 0, qh = q / 2; |
---|
517 | CanonicalForm c; |
---|
518 | CFIterator i; |
---|
519 | for ( i = f; i.hasTerms(); i++ ) { |
---|
520 | c = mod( i.coeff(), q ); |
---|
521 | if ( c > qh ) |
---|
522 | result += power( x, i.exp() ) * (c - q); |
---|
523 | else |
---|
524 | result += power( x, i.exp() ) * c; |
---|
525 | } |
---|
526 | return result; |
---|
527 | }*/ |
---|
528 | //}}} |
---|
529 | |
---|
530 | #ifndef HAVE_NTL |
---|
531 | static CanonicalForm gcd_poly_univar0( const CanonicalForm & F, const CanonicalForm & G, bool primitive ) |
---|
532 | { |
---|
533 | CanonicalForm f, g, c, cg, cl, BB, B, M, q, Dp, newD, D, newq; |
---|
534 | int p, i; |
---|
535 | |
---|
536 | if ( primitive ) |
---|
537 | { |
---|
538 | f = F; |
---|
539 | g = G; |
---|
540 | c = 1; |
---|
541 | } |
---|
542 | else |
---|
543 | { |
---|
544 | CanonicalForm cF = content( F ), cG = content( G ); |
---|
545 | f = F / cF; |
---|
546 | g = G / cG; |
---|
547 | c = bgcd( cF, cG ); |
---|
548 | } |
---|
549 | cg = gcd( f.lc(), g.lc() ); |
---|
550 | cl = ( f.lc() / cg ) * g.lc(); |
---|
551 | // B = 2 * cg * tmin( |
---|
552 | // maxnorm(f)*power(CanonicalForm(2),f.degree())*isqrt(f.degree()+1), |
---|
553 | // maxnorm(g)*power(CanonicalForm(2),g.degree())*isqrt(g.degree()+1) |
---|
554 | // )+1; |
---|
555 | M = tmin( maxNorm(f), maxNorm(g) ); |
---|
556 | BB = power(CanonicalForm(2),tmin(f.degree(),g.degree()))*M; |
---|
557 | q = 0; |
---|
558 | i = cf_getNumSmallPrimes() - 1; |
---|
559 | while ( true ) |
---|
560 | { |
---|
561 | B = BB; |
---|
562 | while ( i >= 0 && q < B ) |
---|
563 | { |
---|
564 | p = cf_getSmallPrime( i ); |
---|
565 | i--; |
---|
566 | while ( i >= 0 && mod( cl, p ) == 0 ) |
---|
567 | { |
---|
568 | p = cf_getSmallPrime( i ); |
---|
569 | i--; |
---|
570 | } |
---|
571 | setCharacteristic( p ); |
---|
572 | Dp = gcd( mapinto( f ), mapinto( g ) ); |
---|
573 | Dp = ( Dp / Dp.lc() ) * mapinto( cg ); |
---|
574 | setCharacteristic( 0 ); |
---|
575 | if ( Dp.degree() == 0 ) |
---|
576 | return c; |
---|
577 | if ( q.isZero() ) |
---|
578 | { |
---|
579 | D = mapinto( Dp ); |
---|
580 | q = p; |
---|
581 | B = power(CanonicalForm(2),D.degree())*M+1; |
---|
582 | } |
---|
583 | else |
---|
584 | { |
---|
585 | if ( Dp.degree() == D.degree() ) |
---|
586 | { |
---|
587 | chineseRemainder( D, q, mapinto( Dp ), p, newD, newq ); |
---|
588 | q = newq; |
---|
589 | D = newD; |
---|
590 | } |
---|
591 | else if ( Dp.degree() < D.degree() ) |
---|
592 | { |
---|
593 | // all previous p's are bad primes |
---|
594 | q = p; |
---|
595 | D = mapinto( Dp ); |
---|
596 | B = power(CanonicalForm(2),D.degree())*M+1; |
---|
597 | } |
---|
598 | // else p is a bad prime |
---|
599 | } |
---|
600 | } |
---|
601 | if ( i >= 0 ) |
---|
602 | { |
---|
603 | // now balance D mod q |
---|
604 | D = pp( balance_p( D, q ) ); |
---|
605 | if ( fdivides( D, f ) && fdivides( D, g ) ) |
---|
606 | return D * c; |
---|
607 | else |
---|
608 | q = 0; |
---|
609 | } |
---|
610 | else |
---|
611 | return gcd_poly( F, G ); |
---|
612 | DEBOUTLN( cerr, "another try ..." ); |
---|
613 | } |
---|
614 | } |
---|
615 | #endif |
---|
616 | |
---|
617 | static CanonicalForm |
---|
618 | gcd_poly_p( const CanonicalForm & f, const CanonicalForm & g ) |
---|
619 | { |
---|
620 | if (f.inCoeffDomain() || g.inCoeffDomain()) //zero case should be caught by gcd |
---|
621 | return 1; |
---|
622 | CanonicalForm pi, pi1; |
---|
623 | CanonicalForm C, Ci, Ci1, Hi, bi, pi2; |
---|
624 | bool bpure, ezgcdon= isOn (SW_USE_EZGCD_P); |
---|
625 | int delta = degree( f ) - degree( g ); |
---|
626 | |
---|
627 | if ( delta >= 0 ) |
---|
628 | { |
---|
629 | pi = f; pi1 = g; |
---|
630 | } |
---|
631 | else |
---|
632 | { |
---|
633 | pi = g; pi1 = f; delta = -delta; |
---|
634 | } |
---|
635 | if (pi.isUnivariate()) |
---|
636 | Ci= 1; |
---|
637 | else |
---|
638 | { |
---|
639 | if (!ezgcdon) |
---|
640 | On (SW_USE_EZGCD_P); |
---|
641 | Ci = content( pi ); |
---|
642 | if (!ezgcdon) |
---|
643 | Off (SW_USE_EZGCD_P); |
---|
644 | pi = pi / Ci; |
---|
645 | } |
---|
646 | if (pi1.isUnivariate()) |
---|
647 | Ci1= 1; |
---|
648 | else |
---|
649 | { |
---|
650 | if (!ezgcdon) |
---|
651 | On (SW_USE_EZGCD_P); |
---|
652 | Ci1 = content( pi1 ); |
---|
653 | if (!ezgcdon) |
---|
654 | Off (SW_USE_EZGCD_P); |
---|
655 | pi1 = pi1 / Ci1; |
---|
656 | } |
---|
657 | C = gcd( Ci, Ci1 ); |
---|
658 | int d= 0; |
---|
659 | if ( !( pi.isUnivariate() && pi1.isUnivariate() ) ) |
---|
660 | { |
---|
661 | if ( gcd_test_one( pi1, pi, true, d ) ) |
---|
662 | { |
---|
663 | C=abs(C); |
---|
664 | //out_cf("GCD:",C,"\n"); |
---|
665 | return C; |
---|
666 | } |
---|
667 | bpure = false; |
---|
668 | } |
---|
669 | else |
---|
670 | { |
---|
671 | bpure = isPurePoly(pi) && isPurePoly(pi1); |
---|
672 | #ifdef HAVE_FLINT |
---|
673 | if (bpure && (CFFactory::gettype() != GaloisFieldDomain)) |
---|
674 | return gcd_univar_flintp(pi,pi1)*C; |
---|
675 | #else |
---|
676 | #ifdef HAVE_NTL |
---|
677 | if ( isOn(SW_USE_NTL_GCD_P) && bpure && (CFFactory::gettype() != GaloisFieldDomain)) |
---|
678 | return gcd_univar_ntlp(pi, pi1 ) * C; |
---|
679 | #endif |
---|
680 | #endif |
---|
681 | } |
---|
682 | Variable v = f.mvar(); |
---|
683 | Hi = power( LC( pi1, v ), delta ); |
---|
684 | int maxNumVars= tmax (getNumVars (pi), getNumVars (pi1)); |
---|
685 | |
---|
686 | if (!(pi.isUnivariate() && pi1.isUnivariate())) |
---|
687 | { |
---|
688 | if (size (Hi)*size (pi)/(maxNumVars*3) > 500) //maybe this needs more tuning |
---|
689 | { |
---|
690 | On (SW_USE_FF_MOD_GCD); |
---|
691 | C *= gcd (pi, pi1); |
---|
692 | Off (SW_USE_FF_MOD_GCD); |
---|
693 | return C; |
---|
694 | } |
---|
695 | } |
---|
696 | |
---|
697 | if ( (delta+1) % 2 ) |
---|
698 | bi = 1; |
---|
699 | else |
---|
700 | bi = -1; |
---|
701 | CanonicalForm oldPi= pi, oldPi1= pi1, powHi; |
---|
702 | while ( degree( pi1, v ) > 0 ) |
---|
703 | { |
---|
704 | if (!(pi.isUnivariate() && pi1.isUnivariate())) |
---|
705 | { |
---|
706 | if (size (pi)/maxNumVars > 500 || size (pi1)/maxNumVars > 500) |
---|
707 | { |
---|
708 | On (SW_USE_FF_MOD_GCD); |
---|
709 | C *= gcd (oldPi, oldPi1); |
---|
710 | Off (SW_USE_FF_MOD_GCD); |
---|
711 | return C; |
---|
712 | } |
---|
713 | } |
---|
714 | pi2 = psr( pi, pi1, v ); |
---|
715 | pi2 = pi2 / bi; |
---|
716 | pi = pi1; pi1 = pi2; |
---|
717 | maxNumVars= tmax (getNumVars (pi), getNumVars (pi1)); |
---|
718 | if (!pi1.isUnivariate() && (size (pi1)/maxNumVars > 500)) |
---|
719 | { |
---|
720 | On (SW_USE_FF_MOD_GCD); |
---|
721 | C *= gcd (oldPi, oldPi1); |
---|
722 | Off (SW_USE_FF_MOD_GCD); |
---|
723 | return C; |
---|
724 | } |
---|
725 | if ( degree( pi1, v ) > 0 ) |
---|
726 | { |
---|
727 | delta = degree( pi, v ) - degree( pi1, v ); |
---|
728 | powHi= power (Hi, delta-1); |
---|
729 | if ( (delta+1) % 2 ) |
---|
730 | bi = LC( pi, v ) * powHi*Hi; |
---|
731 | else |
---|
732 | bi = -LC( pi, v ) * powHi*Hi; |
---|
733 | Hi = power( LC( pi1, v ), delta ) / powHi; |
---|
734 | if (!(pi.isUnivariate() && pi1.isUnivariate())) |
---|
735 | { |
---|
736 | if (size (Hi)*size (pi)/(maxNumVars*3) > 1500) //maybe this needs more tuning |
---|
737 | { |
---|
738 | On (SW_USE_FF_MOD_GCD); |
---|
739 | C *= gcd (oldPi, oldPi1); |
---|
740 | Off (SW_USE_FF_MOD_GCD); |
---|
741 | return C; |
---|
742 | } |
---|
743 | } |
---|
744 | } |
---|
745 | } |
---|
746 | if ( degree( pi1, v ) == 0 ) |
---|
747 | { |
---|
748 | C=abs(C); |
---|
749 | //out_cf("GCD:",C,"\n"); |
---|
750 | return C; |
---|
751 | } |
---|
752 | if (!pi.isUnivariate()) |
---|
753 | { |
---|
754 | if (!ezgcdon) |
---|
755 | On (SW_USE_EZGCD_P); |
---|
756 | Ci= gcd (LC (oldPi,v), LC (oldPi1,v)); |
---|
757 | pi /= LC (pi,v)/Ci; |
---|
758 | Ci= content (pi); |
---|
759 | pi /= Ci; |
---|
760 | if (!ezgcdon) |
---|
761 | Off (SW_USE_EZGCD_P); |
---|
762 | } |
---|
763 | if ( bpure ) |
---|
764 | pi /= pi.lc(); |
---|
765 | C=abs(C*pi); |
---|
766 | //out_cf("GCD:",C,"\n"); |
---|
767 | return C; |
---|
768 | } |
---|
769 | |
---|
770 | static CanonicalForm |
---|
771 | gcd_poly_0( const CanonicalForm & f, const CanonicalForm & g ) |
---|
772 | { |
---|
773 | CanonicalForm pi, pi1; |
---|
774 | CanonicalForm C, Ci, Ci1, Hi, bi, pi2; |
---|
775 | int delta = degree( f ) - degree( g ); |
---|
776 | |
---|
777 | if ( delta >= 0 ) |
---|
778 | { |
---|
779 | pi = f; pi1 = g; |
---|
780 | } |
---|
781 | else |
---|
782 | { |
---|
783 | pi = g; pi1 = f; delta = -delta; |
---|
784 | } |
---|
785 | Ci = content( pi ); Ci1 = content( pi1 ); |
---|
786 | pi1 = pi1 / Ci1; pi = pi / Ci; |
---|
787 | C = gcd( Ci, Ci1 ); |
---|
788 | int d= 0; |
---|
789 | if ( pi.isUnivariate() && pi1.isUnivariate() ) |
---|
790 | { |
---|
791 | #ifdef HAVE_FLINT |
---|
792 | if (isPurePoly(pi) && isPurePoly(pi1) ) |
---|
793 | return gcd_univar_flint0(pi, pi1 ) * C; |
---|
794 | #else |
---|
795 | #ifdef HAVE_NTL |
---|
796 | if ( isOn(SW_USE_NTL_GCD_0) && isPurePoly(pi) && isPurePoly(pi1) ) |
---|
797 | return gcd_univar_ntl0(pi, pi1 ) * C; |
---|
798 | #endif |
---|
799 | #endif |
---|
800 | #ifndef HAVE_NTL |
---|
801 | return gcd_poly_univar0( pi, pi1, true ) * C; |
---|
802 | #endif |
---|
803 | } |
---|
804 | else if ( gcd_test_one( pi1, pi, true, d ) ) |
---|
805 | return C; |
---|
806 | Variable v = f.mvar(); |
---|
807 | Hi = power( LC( pi1, v ), delta ); |
---|
808 | if ( (delta+1) % 2 ) |
---|
809 | bi = 1; |
---|
810 | else |
---|
811 | bi = -1; |
---|
812 | while ( degree( pi1, v ) > 0 ) |
---|
813 | { |
---|
814 | pi2 = psr( pi, pi1, v ); |
---|
815 | pi2 = pi2 / bi; |
---|
816 | pi = pi1; pi1 = pi2; |
---|
817 | if ( degree( pi1, v ) > 0 ) |
---|
818 | { |
---|
819 | delta = degree( pi, v ) - degree( pi1, v ); |
---|
820 | if ( (delta+1) % 2 ) |
---|
821 | bi = LC( pi, v ) * power( Hi, delta ); |
---|
822 | else |
---|
823 | bi = -LC( pi, v ) * power( Hi, delta ); |
---|
824 | Hi = power( LC( pi1, v ), delta ) / power( Hi, delta-1 ); |
---|
825 | } |
---|
826 | } |
---|
827 | if ( degree( pi1, v ) == 0 ) |
---|
828 | return C; |
---|
829 | else |
---|
830 | return C * pp( pi ); |
---|
831 | } |
---|
832 | |
---|
833 | //{{{ CanonicalForm gcd_poly ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
834 | //{{{ docu |
---|
835 | // |
---|
836 | // gcd_poly() - calculate polynomial gcd. |
---|
837 | // |
---|
838 | // This is the dispatcher for polynomial gcd calculation. We call either |
---|
839 | // ezgcd(), sparsemod() or gcd_poly1() in dependecy on the current |
---|
840 | // characteristic and settings of SW_USE_EZGCD. |
---|
841 | // |
---|
842 | // Used by gcd() and gcd_poly_univar0(). |
---|
843 | // |
---|
844 | //}}} |
---|
845 | #if 0 |
---|
846 | int si_factor_reminder=1; |
---|
847 | #endif |
---|
848 | CanonicalForm gcd_poly ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
849 | { |
---|
850 | CanonicalForm fc, gc, d1; |
---|
851 | bool fc_isUnivariate=f.isUnivariate(); |
---|
852 | bool gc_isUnivariate=g.isUnivariate(); |
---|
853 | bool fc_and_gc_Univariate=fc_isUnivariate && gc_isUnivariate; |
---|
854 | fc = f; |
---|
855 | gc = g; |
---|
856 | if ( getCharacteristic() != 0 ) |
---|
857 | { |
---|
858 | #ifdef HAVE_NTL |
---|
859 | if ((!fc_and_gc_Univariate) && (isOn( SW_USE_EZGCD_P ))) |
---|
860 | { |
---|
861 | fc= EZGCD_P (fc, gc); |
---|
862 | } |
---|
863 | else if (isOn(SW_USE_FF_MOD_GCD) && !fc_and_gc_Univariate) |
---|
864 | { |
---|
865 | Variable a; |
---|
866 | if (hasFirstAlgVar (fc, a) || hasFirstAlgVar (gc, a)) |
---|
867 | fc=GCD_Fp_extension (fc, gc, a); |
---|
868 | else if (CFFactory::gettype() == GaloisFieldDomain) |
---|
869 | fc=GCD_GF (fc, gc); |
---|
870 | else |
---|
871 | fc=GCD_small_p (fc, gc); |
---|
872 | } |
---|
873 | else |
---|
874 | #endif |
---|
875 | fc = gcd_poly_p( fc, gc ); |
---|
876 | } |
---|
877 | else if (!fc_and_gc_Univariate) |
---|
878 | { |
---|
879 | if ( isOn( SW_USE_EZGCD ) ) |
---|
880 | fc= ezgcd (fc, gc); |
---|
881 | else if (isOn(SW_USE_CHINREM_GCD)) |
---|
882 | fc = chinrem_gcd( fc, gc); |
---|
883 | else |
---|
884 | { |
---|
885 | fc = gcd_poly_0( fc, gc ); |
---|
886 | } |
---|
887 | } |
---|
888 | else |
---|
889 | { |
---|
890 | fc = gcd_poly_0( fc, gc ); |
---|
891 | } |
---|
892 | if ( d1.degree() > 0 ) |
---|
893 | fc *= d1; |
---|
894 | return fc; |
---|
895 | } |
---|
896 | //}}} |
---|
897 | |
---|
898 | //{{{ static CanonicalForm cf_content ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
899 | //{{{ docu |
---|
900 | // |
---|
901 | // cf_content() - return gcd(g, content(f)). |
---|
902 | // |
---|
903 | // content(f) is calculated with respect to f's main variable. |
---|
904 | // |
---|
905 | // Used by gcd(), content(), content( CF, Variable ). |
---|
906 | // |
---|
907 | //}}} |
---|
908 | static CanonicalForm |
---|
909 | cf_content ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
910 | { |
---|
911 | if ( f.inPolyDomain() || ( f.inExtension() && ! getReduce( f.mvar() ) ) ) |
---|
912 | { |
---|
913 | CFIterator i = f; |
---|
914 | CanonicalForm result = g; |
---|
915 | while ( i.hasTerms() && ! result.isOne() ) |
---|
916 | { |
---|
917 | result = gcd( i.coeff(), result ); |
---|
918 | i++; |
---|
919 | } |
---|
920 | return result; |
---|
921 | } |
---|
922 | else |
---|
923 | return abs( f ); |
---|
924 | } |
---|
925 | //}}} |
---|
926 | |
---|
927 | //{{{ CanonicalForm content ( const CanonicalForm & f ) |
---|
928 | //{{{ docu |
---|
929 | // |
---|
930 | // content() - return content(f) with respect to main variable. |
---|
931 | // |
---|
932 | // Normalizes result. |
---|
933 | // |
---|
934 | //}}} |
---|
935 | CanonicalForm |
---|
936 | content ( const CanonicalForm & f ) |
---|
937 | { |
---|
938 | if ( f.inPolyDomain() || ( f.inExtension() && ! getReduce( f.mvar() ) ) ) |
---|
939 | { |
---|
940 | CFIterator i = f; |
---|
941 | CanonicalForm result = abs( i.coeff() ); |
---|
942 | i++; |
---|
943 | while ( i.hasTerms() && ! result.isOne() ) |
---|
944 | { |
---|
945 | result = gcd( i.coeff(), result ); |
---|
946 | i++; |
---|
947 | } |
---|
948 | return result; |
---|
949 | } |
---|
950 | else |
---|
951 | return abs( f ); |
---|
952 | } |
---|
953 | //}}} |
---|
954 | |
---|
955 | //{{{ CanonicalForm content ( const CanonicalForm & f, const Variable & x ) |
---|
956 | //{{{ docu |
---|
957 | // |
---|
958 | // content() - return content(f) with respect to x. |
---|
959 | // |
---|
960 | // x should be a polynomial variable. |
---|
961 | // |
---|
962 | //}}} |
---|
963 | CanonicalForm |
---|
964 | content ( const CanonicalForm & f, const Variable & x ) |
---|
965 | { |
---|
966 | ASSERT( x.level() > 0, "cannot calculate content with respect to algebraic variable" ); |
---|
967 | Variable y = f.mvar(); |
---|
968 | |
---|
969 | if ( y == x ) |
---|
970 | return cf_content( f, 0 ); |
---|
971 | else if ( y < x ) |
---|
972 | return f; |
---|
973 | else |
---|
974 | return swapvar( content( swapvar( f, y, x ), y ), y, x ); |
---|
975 | } |
---|
976 | //}}} |
---|
977 | |
---|
978 | //{{{ CanonicalForm vcontent ( const CanonicalForm & f, const Variable & x ) |
---|
979 | //{{{ docu |
---|
980 | // |
---|
981 | // vcontent() - return content of f with repect to variables >= x. |
---|
982 | // |
---|
983 | // The content is recursively calculated over all coefficients in |
---|
984 | // f having level less than x. x should be a polynomial |
---|
985 | // variable. |
---|
986 | // |
---|
987 | //}}} |
---|
988 | CanonicalForm |
---|
989 | vcontent ( const CanonicalForm & f, const Variable & x ) |
---|
990 | { |
---|
991 | ASSERT( x.level() > 0, "cannot calculate vcontent with respect to algebraic variable" ); |
---|
992 | |
---|
993 | if ( f.mvar() <= x ) |
---|
994 | return content( f, x ); |
---|
995 | else { |
---|
996 | CFIterator i; |
---|
997 | CanonicalForm d = 0; |
---|
998 | for ( i = f; i.hasTerms() && ! d.isOne(); i++ ) |
---|
999 | d = gcd( d, vcontent( i.coeff(), x ) ); |
---|
1000 | return d; |
---|
1001 | } |
---|
1002 | } |
---|
1003 | //}}} |
---|
1004 | |
---|
1005 | //{{{ CanonicalForm pp ( const CanonicalForm & f ) |
---|
1006 | //{{{ docu |
---|
1007 | // |
---|
1008 | // pp() - return primitive part of f. |
---|
1009 | // |
---|
1010 | // Returns zero if f equals zero, otherwise f / content(f). |
---|
1011 | // |
---|
1012 | //}}} |
---|
1013 | CanonicalForm |
---|
1014 | pp ( const CanonicalForm & f ) |
---|
1015 | { |
---|
1016 | if ( f.isZero() ) |
---|
1017 | return f; |
---|
1018 | else |
---|
1019 | return f / content( f ); |
---|
1020 | } |
---|
1021 | //}}} |
---|
1022 | |
---|
1023 | CanonicalForm |
---|
1024 | gcd ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
1025 | { |
---|
1026 | bool b = f.isZero(); |
---|
1027 | if ( b || g.isZero() ) |
---|
1028 | { |
---|
1029 | if ( b ) |
---|
1030 | return abs( g ); |
---|
1031 | else |
---|
1032 | return abs( f ); |
---|
1033 | } |
---|
1034 | if ( f.inPolyDomain() || g.inPolyDomain() ) |
---|
1035 | { |
---|
1036 | if ( f.mvar() != g.mvar() ) |
---|
1037 | { |
---|
1038 | if ( f.mvar() > g.mvar() ) |
---|
1039 | return cf_content( f, g ); |
---|
1040 | else |
---|
1041 | return cf_content( g, f ); |
---|
1042 | } |
---|
1043 | if (isOn(SW_USE_QGCD)) |
---|
1044 | { |
---|
1045 | Variable m; |
---|
1046 | if ( |
---|
1047 | (getCharacteristic() == 0) && |
---|
1048 | (hasFirstAlgVar(f,m) || hasFirstAlgVar(g,m)) |
---|
1049 | ) |
---|
1050 | { |
---|
1051 | bool on_rational = isOn(SW_RATIONAL); |
---|
1052 | CanonicalForm r=QGCD(f,g); |
---|
1053 | On(SW_RATIONAL); |
---|
1054 | CanonicalForm cdF = bCommonDen( r ); |
---|
1055 | if (!on_rational) Off(SW_RATIONAL); |
---|
1056 | return cdF*r; |
---|
1057 | } |
---|
1058 | } |
---|
1059 | |
---|
1060 | if ( f.inExtension() && getReduce( f.mvar() ) ) |
---|
1061 | return CanonicalForm(1); |
---|
1062 | else |
---|
1063 | { |
---|
1064 | if ( fdivides( f, g ) ) |
---|
1065 | return abs( f ); |
---|
1066 | else if ( fdivides( g, f ) ) |
---|
1067 | return abs( g ); |
---|
1068 | if ( !( getCharacteristic() == 0 && isOn( SW_RATIONAL ) ) ) |
---|
1069 | { |
---|
1070 | CanonicalForm d; |
---|
1071 | d = gcd_poly( f, g ); |
---|
1072 | return abs( d ); |
---|
1073 | } |
---|
1074 | else |
---|
1075 | { |
---|
1076 | //printf ("here\n"); |
---|
1077 | CanonicalForm cdF = bCommonDen( f ); |
---|
1078 | CanonicalForm cdG = bCommonDen( g ); |
---|
1079 | Off( SW_RATIONAL ); |
---|
1080 | CanonicalForm l = lcm( cdF, cdG ); |
---|
1081 | On( SW_RATIONAL ); |
---|
1082 | CanonicalForm F = f * l, G = g * l; |
---|
1083 | Off( SW_RATIONAL ); |
---|
1084 | l = gcd_poly( F, G ); |
---|
1085 | On( SW_RATIONAL ); |
---|
1086 | return abs( l ); |
---|
1087 | } |
---|
1088 | } |
---|
1089 | } |
---|
1090 | if ( f.inBaseDomain() && g.inBaseDomain() ) |
---|
1091 | return bgcd( f, g ); |
---|
1092 | else |
---|
1093 | return 1; |
---|
1094 | } |
---|
1095 | |
---|
1096 | //{{{ CanonicalForm lcm ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
1097 | //{{{ docu |
---|
1098 | // |
---|
1099 | // lcm() - return least common multiple of f and g. |
---|
1100 | // |
---|
1101 | // The lcm is calculated using the formula lcm(f, g) = f * g / gcd(f, g). |
---|
1102 | // |
---|
1103 | // Returns zero if one of f or g equals zero. |
---|
1104 | // |
---|
1105 | //}}} |
---|
1106 | CanonicalForm |
---|
1107 | lcm ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
1108 | { |
---|
1109 | if ( f.isZero() || g.isZero() ) |
---|
1110 | return 0; |
---|
1111 | else |
---|
1112 | return ( f / gcd( f, g ) ) * g; |
---|
1113 | } |
---|
1114 | //}}} |
---|
1115 | |
---|
1116 | #ifdef HAVE_NTL |
---|
1117 | #ifndef HAVE_FLINT |
---|
1118 | static CanonicalForm |
---|
1119 | gcd_univar_ntl0( const CanonicalForm & F, const CanonicalForm & G ) |
---|
1120 | { |
---|
1121 | ZZX F1=convertFacCF2NTLZZX(F); |
---|
1122 | ZZX G1=convertFacCF2NTLZZX(G); |
---|
1123 | ZZX R=GCD(F1,G1); |
---|
1124 | return convertNTLZZX2CF(R,F.mvar()); |
---|
1125 | } |
---|
1126 | |
---|
1127 | static CanonicalForm |
---|
1128 | gcd_univar_ntlp( const CanonicalForm & F, const CanonicalForm & G ) |
---|
1129 | { |
---|
1130 | if (fac_NTL_char!=getCharacteristic()) |
---|
1131 | { |
---|
1132 | fac_NTL_char=getCharacteristic(); |
---|
1133 | zz_p::init(getCharacteristic()); |
---|
1134 | } |
---|
1135 | zz_pX F1=convertFacCF2NTLzzpX(F); |
---|
1136 | zz_pX G1=convertFacCF2NTLzzpX(G); |
---|
1137 | zz_pX R=GCD(F1,G1); |
---|
1138 | return convertNTLzzpX2CF(R,F.mvar()); |
---|
1139 | } |
---|
1140 | #endif |
---|
1141 | #endif |
---|
1142 | |
---|
1143 | #ifdef HAVE_FLINT |
---|
1144 | static CanonicalForm |
---|
1145 | gcd_univar_flintp (const CanonicalForm& F, const CanonicalForm& G) |
---|
1146 | { |
---|
1147 | nmod_poly_t F1, G1; |
---|
1148 | convertFacCF2nmod_poly_t (F1, F); |
---|
1149 | convertFacCF2nmod_poly_t (G1, G); |
---|
1150 | nmod_poly_gcd (F1, F1, G1); |
---|
1151 | CanonicalForm result= convertnmod_poly_t2FacCF (F1, F.mvar()); |
---|
1152 | nmod_poly_clear (F1); |
---|
1153 | nmod_poly_clear (G1); |
---|
1154 | return result; |
---|
1155 | } |
---|
1156 | |
---|
1157 | static CanonicalForm |
---|
1158 | gcd_univar_flint0( const CanonicalForm & F, const CanonicalForm & G ) |
---|
1159 | { |
---|
1160 | fmpz_poly_t F1, G1; |
---|
1161 | convertFacCF2Fmpz_poly_t(F1, F); |
---|
1162 | convertFacCF2Fmpz_poly_t(G1, G); |
---|
1163 | fmpz_poly_gcd (F1, F1, G1); |
---|
1164 | CanonicalForm result= convertFmpz_poly_t2FacCF (F1, F.mvar()); |
---|
1165 | fmpz_poly_clear (F1); |
---|
1166 | fmpz_poly_clear (G1); |
---|
1167 | return result; |
---|
1168 | } |
---|
1169 | #endif |
---|
1170 | |
---|
1171 | |
---|
1172 | /* |
---|
1173 | * compute positions p1 and pe of optimal variables: |
---|
1174 | * pe is used in "ezgcd" and |
---|
1175 | * p1 in "gcd_poly1" |
---|
1176 | */ |
---|
1177 | /*static |
---|
1178 | void optvalues ( const int * df, const int * dg, const int n, int & p1, int &pe ) |
---|
1179 | { |
---|
1180 | int i, o1, oe; |
---|
1181 | if ( df[n] > dg[n] ) |
---|
1182 | { |
---|
1183 | o1 = df[n]; oe = dg[n]; |
---|
1184 | } |
---|
1185 | else |
---|
1186 | { |
---|
1187 | o1 = dg[n]; oe = df[n]; |
---|
1188 | } |
---|
1189 | i = n-1; |
---|
1190 | while ( i > 0 ) |
---|
1191 | { |
---|
1192 | if ( df[i] != 0 ) |
---|
1193 | { |
---|
1194 | if ( df[i] > dg[i] ) |
---|
1195 | { |
---|
1196 | if ( o1 > df[i]) { o1 = df[i]; p1 = i; } |
---|
1197 | if ( oe <= dg[i]) { oe = dg[i]; pe = i; } |
---|
1198 | } |
---|
1199 | else |
---|
1200 | { |
---|
1201 | if ( o1 > dg[i]) { o1 = dg[i]; p1 = i; } |
---|
1202 | if ( oe <= df[i]) { oe = df[i]; pe = i; } |
---|
1203 | } |
---|
1204 | } |
---|
1205 | i--; |
---|
1206 | } |
---|
1207 | }*/ |
---|
1208 | |
---|
1209 | /* |
---|
1210 | * make some changes of variables, see optvalues |
---|
1211 | */ |
---|
1212 | /*static void |
---|
1213 | cf_prepgcd( const CanonicalForm & f, const CanonicalForm & g, int & cc, int & p1, int &pe ) |
---|
1214 | { |
---|
1215 | int i, k, n; |
---|
1216 | n = f.level(); |
---|
1217 | cc = 0; |
---|
1218 | p1 = pe = n; |
---|
1219 | if ( n == 1 ) |
---|
1220 | return; |
---|
1221 | int * degsf = new int[n+1]; |
---|
1222 | int * degsg = new int[n+1]; |
---|
1223 | for ( i = n; i > 0; i-- ) |
---|
1224 | { |
---|
1225 | degsf[i] = degsg[i] = 0; |
---|
1226 | } |
---|
1227 | degsf = degrees( f, degsf ); |
---|
1228 | degsg = degrees( g, degsg ); |
---|
1229 | |
---|
1230 | k = 0; |
---|
1231 | for ( i = n-1; i > 0; i-- ) |
---|
1232 | { |
---|
1233 | if ( degsf[i] == 0 ) |
---|
1234 | { |
---|
1235 | if ( degsg[i] != 0 ) |
---|
1236 | { |
---|
1237 | cc = -i; |
---|
1238 | break; |
---|
1239 | } |
---|
1240 | } |
---|
1241 | else |
---|
1242 | { |
---|
1243 | if ( degsg[i] == 0 ) |
---|
1244 | { |
---|
1245 | cc = i; |
---|
1246 | break; |
---|
1247 | } |
---|
1248 | else k++; |
---|
1249 | } |
---|
1250 | } |
---|
1251 | |
---|
1252 | if ( ( cc == 0 ) && ( k != 0 ) ) |
---|
1253 | optvalues( degsf, degsg, n, p1, pe ); |
---|
1254 | if ( ( pe != 1 ) && ( degsf[1] != 0 ) ) |
---|
1255 | pe = -pe; |
---|
1256 | |
---|
1257 | delete [] degsf; |
---|
1258 | delete [] degsg; |
---|
1259 | }*/ |
---|
1260 | |
---|
1261 | TIMING_DEFINE_PRINT(chinrem_termination) |
---|
1262 | TIMING_DEFINE_PRINT(chinrem_recursion) |
---|
1263 | |
---|
1264 | CanonicalForm chinrem_gcd ( const CanonicalForm & FF, const CanonicalForm & GG ) |
---|
1265 | { |
---|
1266 | CanonicalForm f, g, cl, q(0), Dp, newD, D, newq, newqh; |
---|
1267 | int p, i, dp_deg, d_deg=-1; |
---|
1268 | |
---|
1269 | CanonicalForm cd ( bCommonDen( FF )); |
---|
1270 | f=cd*FF; |
---|
1271 | Variable x= Variable (1); |
---|
1272 | CanonicalForm cf, cg; |
---|
1273 | cf= icontent (f); |
---|
1274 | f /= cf; |
---|
1275 | //cd = bCommonDen( f ); f *=cd; |
---|
1276 | //f /=vcontent(f,Variable(1)); |
---|
1277 | |
---|
1278 | cd = bCommonDen( GG ); |
---|
1279 | g=cd*GG; |
---|
1280 | cg= icontent (g); |
---|
1281 | g /= cg; |
---|
1282 | //cd = bCommonDen( g ); g *=cd; |
---|
1283 | //g /=vcontent(g,Variable(1)); |
---|
1284 | |
---|
1285 | CanonicalForm Dn, test= 0; |
---|
1286 | CanonicalForm lcf, lcg; |
---|
1287 | lcf= f.lc(); |
---|
1288 | lcg= g.lc(); |
---|
1289 | cl = gcd (f.lc(),g.lc()); |
---|
1290 | CanonicalForm gcdcfcg= gcd (cf, cg); |
---|
1291 | CanonicalForm fp, gp; |
---|
1292 | CanonicalForm b= 1; |
---|
1293 | int minCommonDeg= 0; |
---|
1294 | for (i= tmax (f.level(), g.level()); i > 0; i--) |
---|
1295 | { |
---|
1296 | if (degree (f, i) <= 0 || degree (g, i) <= 0) |
---|
1297 | continue; |
---|
1298 | else |
---|
1299 | { |
---|
1300 | minCommonDeg= tmin (degree (g, i), degree (f, i)); |
---|
1301 | break; |
---|
1302 | } |
---|
1303 | } |
---|
1304 | if (i == 0) |
---|
1305 | return gcdcfcg; |
---|
1306 | for (; i > 0; i--) |
---|
1307 | { |
---|
1308 | if (degree (f, i) <= 0 || degree (g, i) <= 0) |
---|
1309 | continue; |
---|
1310 | else |
---|
1311 | minCommonDeg= tmin (minCommonDeg, tmin (degree (g, i), degree (f, i))); |
---|
1312 | } |
---|
1313 | b= 2*tmin (maxNorm (f), maxNorm (g))*abs (cl)* |
---|
1314 | power (CanonicalForm (2), minCommonDeg); |
---|
1315 | bool equal= false; |
---|
1316 | i = cf_getNumBigPrimes() - 1; |
---|
1317 | |
---|
1318 | CanonicalForm cof, cog, cofp, cogp, newCof, newCog, cofn, cogn, cDn; |
---|
1319 | int maxNumVars= tmax (getNumVars (f), getNumVars (g)); |
---|
1320 | //Off (SW_RATIONAL); |
---|
1321 | while ( true ) |
---|
1322 | { |
---|
1323 | p = cf_getBigPrime( i ); |
---|
1324 | i--; |
---|
1325 | while ( i >= 0 && mod( cl*(lc(f)/cl)*(lc(g)/cl), p ) == 0 ) |
---|
1326 | { |
---|
1327 | p = cf_getBigPrime( i ); |
---|
1328 | i--; |
---|
1329 | } |
---|
1330 | //printf("try p=%d\n",p); |
---|
1331 | setCharacteristic( p ); |
---|
1332 | fp= mapinto (f); |
---|
1333 | gp= mapinto (g); |
---|
1334 | TIMING_START (chinrem_recursion) |
---|
1335 | #ifdef HAVE_NTL |
---|
1336 | if (size (fp)/maxNumVars > 500 && size (gp)/maxNumVars > 500) |
---|
1337 | Dp = GCD_small_p (fp, gp, cofp, cogp); |
---|
1338 | else |
---|
1339 | { |
---|
1340 | Dp= gcd_poly (fp, gp); |
---|
1341 | cofp= fp/Dp; |
---|
1342 | cogp= gp/Dp; |
---|
1343 | } |
---|
1344 | #else |
---|
1345 | Dp= gcd_poly (fp, gp); |
---|
1346 | cofp= fp/Dp; |
---|
1347 | cogp= gp/Dp; |
---|
1348 | #endif |
---|
1349 | TIMING_END_AND_PRINT (chinrem_recursion, |
---|
1350 | "time for gcd mod p in modular gcd: "); |
---|
1351 | Dp /=Dp.lc(); |
---|
1352 | Dp *= mapinto (cl); |
---|
1353 | cofp /= lc (cofp); |
---|
1354 | cofp *= mapinto (lcf); |
---|
1355 | cogp /= lc (cogp); |
---|
1356 | cogp *= mapinto (lcg); |
---|
1357 | setCharacteristic( 0 ); |
---|
1358 | dp_deg=totaldegree(Dp); |
---|
1359 | if ( dp_deg == 0 ) |
---|
1360 | { |
---|
1361 | //printf(" -> 1\n"); |
---|
1362 | return CanonicalForm(gcdcfcg); |
---|
1363 | } |
---|
1364 | if ( q.isZero() ) |
---|
1365 | { |
---|
1366 | D = mapinto( Dp ); |
---|
1367 | cof= mapinto (cofp); |
---|
1368 | cog= mapinto (cogp); |
---|
1369 | d_deg=dp_deg; |
---|
1370 | q = p; |
---|
1371 | Dn= balance_p (D, p); |
---|
1372 | cofn= balance_p (cof, p); |
---|
1373 | cogn= balance_p (cog, p); |
---|
1374 | } |
---|
1375 | else |
---|
1376 | { |
---|
1377 | if ( dp_deg == d_deg ) |
---|
1378 | { |
---|
1379 | chineseRemainder( D, q, mapinto( Dp ), p, newD, newq ); |
---|
1380 | chineseRemainder( cof, q, mapinto (cofp), p, newCof, newq); |
---|
1381 | chineseRemainder( cog, q, mapinto (cogp), p, newCog, newq); |
---|
1382 | cof= newCof; |
---|
1383 | cog= newCog; |
---|
1384 | newqh= newq/2; |
---|
1385 | Dn= balance_p (newD, newq, newqh); |
---|
1386 | cofn= balance_p (newCof, newq, newqh); |
---|
1387 | cogn= balance_p (newCog, newq, newqh); |
---|
1388 | if (test != Dn) //balance_p (newD, newq)) |
---|
1389 | test= balance_p (newD, newq); |
---|
1390 | else |
---|
1391 | equal= true; |
---|
1392 | q = newq; |
---|
1393 | D = newD; |
---|
1394 | } |
---|
1395 | else if ( dp_deg < d_deg ) |
---|
1396 | { |
---|
1397 | //printf(" were all bad, try more\n"); |
---|
1398 | // all previous p's are bad primes |
---|
1399 | q = p; |
---|
1400 | D = mapinto( Dp ); |
---|
1401 | cof= mapinto (cof); |
---|
1402 | cog= mapinto (cog); |
---|
1403 | d_deg=dp_deg; |
---|
1404 | test= 0; |
---|
1405 | equal= false; |
---|
1406 | Dn= balance_p (D, p); |
---|
1407 | cofn= balance_p (cof, p); |
---|
1408 | cogn= balance_p (cog, p); |
---|
1409 | } |
---|
1410 | else |
---|
1411 | { |
---|
1412 | //printf(" was bad, try more\n"); |
---|
1413 | } |
---|
1414 | //else dp_deg > d_deg: bad prime |
---|
1415 | } |
---|
1416 | if ( i >= 0 ) |
---|
1417 | { |
---|
1418 | cDn= icontent (Dn); |
---|
1419 | Dn /= cDn; |
---|
1420 | cofn /= cl/cDn; |
---|
1421 | //cofn /= icontent (cofn); |
---|
1422 | cogn /= cl/cDn; |
---|
1423 | //cogn /= icontent (cogn); |
---|
1424 | TIMING_START (chinrem_termination); |
---|
1425 | if ((terminationTest (f,g, cofn, cogn, Dn)) || |
---|
1426 | ((equal || q > b) && fdivides (Dn, f) && fdivides (Dn, g))) |
---|
1427 | { |
---|
1428 | TIMING_END_AND_PRINT (chinrem_termination, |
---|
1429 | "time for successful termination in modular gcd: "); |
---|
1430 | //printf(" -> success\n"); |
---|
1431 | return Dn*gcdcfcg; |
---|
1432 | } |
---|
1433 | TIMING_END_AND_PRINT (chinrem_termination, |
---|
1434 | "time for unsuccessful termination in modular gcd: "); |
---|
1435 | equal= false; |
---|
1436 | //else: try more primes |
---|
1437 | } |
---|
1438 | else |
---|
1439 | { // try other method |
---|
1440 | //printf("try other gcd\n"); |
---|
1441 | Off(SW_USE_CHINREM_GCD); |
---|
1442 | D=gcd_poly( f, g ); |
---|
1443 | On(SW_USE_CHINREM_GCD); |
---|
1444 | return D*gcdcfcg; |
---|
1445 | } |
---|
1446 | } |
---|
1447 | } |
---|
1448 | |
---|
1449 | |
---|