1 | /* emacs edit mode for this file is -*- C++ -*- */ |
---|
2 | /* $Id: cf_gcd.cc,v 1.18 1998-03-10 14:48:05 schmidt Exp $ */ |
---|
3 | |
---|
4 | #include <config.h> |
---|
5 | |
---|
6 | #include "assert.h" |
---|
7 | #include "debug.h" |
---|
8 | |
---|
9 | #include "cf_defs.h" |
---|
10 | #include "canonicalform.h" |
---|
11 | #include "cf_iter.h" |
---|
12 | #include "cf_reval.h" |
---|
13 | #include "cf_primes.h" |
---|
14 | #include "cf_algorithm.h" |
---|
15 | #include "cf_map.h" |
---|
16 | #include "sm_sparsemod.h" |
---|
17 | #include "fac_util.h" |
---|
18 | #include "ftmpl_functions.h" |
---|
19 | |
---|
20 | static CanonicalForm gcd_poly( const CanonicalForm & f, const CanonicalForm& g, bool modularflag ); |
---|
21 | |
---|
22 | bool |
---|
23 | gcd_test_one ( const CanonicalForm & f, const CanonicalForm & g, bool swap ) |
---|
24 | { |
---|
25 | int count = 0; |
---|
26 | // assume polys have same level; |
---|
27 | CFRandom * sample = CFRandomFactory::generate(); |
---|
28 | REvaluation e( 2, tmax( f.level(), g.level() ), *sample ); |
---|
29 | delete sample; |
---|
30 | CanonicalForm lcf, lcg; |
---|
31 | if ( swap ) { |
---|
32 | lcf = swapvar( LC( f ), Variable(1), f.mvar() ); |
---|
33 | lcg = swapvar( LC( g ), Variable(1), f.mvar() ); |
---|
34 | } |
---|
35 | else { |
---|
36 | lcf = LC( f, Variable(1) ); |
---|
37 | lcg = LC( g, Variable(1) ); |
---|
38 | } |
---|
39 | while ( ( e( lcf ).isZero() || e( lcg ).isZero() ) && count < 100 ) { |
---|
40 | e.nextpoint(); |
---|
41 | count++; |
---|
42 | } |
---|
43 | if ( count == 100 ) |
---|
44 | return false; |
---|
45 | CanonicalForm F, G; |
---|
46 | if ( swap ) { |
---|
47 | F=swapvar( f, Variable(1), f.mvar() ); |
---|
48 | G=swapvar( g, Variable(1), g.mvar() ); |
---|
49 | } |
---|
50 | else { |
---|
51 | F = f; |
---|
52 | G = g; |
---|
53 | } |
---|
54 | if ( e(F).taildegree() > 0 && e(G).taildegree() > 0 ) |
---|
55 | return false; |
---|
56 | return gcd( e( F ), e( G ) ).degree() < 1; |
---|
57 | } |
---|
58 | |
---|
59 | //{{{ static CanonicalForm maxnorm ( const CanonicalForm & f ) |
---|
60 | //{{{ docu |
---|
61 | // |
---|
62 | // maxnorm() - return the maximum of the absolute values of all |
---|
63 | // coefficients of f. |
---|
64 | // |
---|
65 | // The absolute value and the maximum are calculated with respect |
---|
66 | // to operator < on canonical forms which is most meaningful for |
---|
67 | // rational numbers and integers. |
---|
68 | // |
---|
69 | // Used by gcd_poly_univar0(). |
---|
70 | // |
---|
71 | //}}} |
---|
72 | static CanonicalForm |
---|
73 | maxnorm ( const CanonicalForm & f ) |
---|
74 | { |
---|
75 | CanonicalForm m = 0; |
---|
76 | CFIterator i; |
---|
77 | for ( i = f; i.hasTerms(); i++ ) |
---|
78 | m = tmax( m, abs( i.coeff() ) ); |
---|
79 | return m; |
---|
80 | } |
---|
81 | //}}} |
---|
82 | |
---|
83 | //{{{ static CanonicalForm balance ( const CanonicalForm & f, const CanonicalForm & q ) |
---|
84 | //{{{ docu |
---|
85 | // |
---|
86 | // balance() - map f from positive to symmetric representation |
---|
87 | // mod q. |
---|
88 | // |
---|
89 | // This makes sense for univariate polynomials over Z only. |
---|
90 | // q should be an integer. |
---|
91 | // |
---|
92 | // Used by gcd_poly_univar0(). |
---|
93 | // |
---|
94 | //}}} |
---|
95 | static CanonicalForm |
---|
96 | balance ( const CanonicalForm & f, const CanonicalForm & q ) |
---|
97 | { |
---|
98 | Variable x = f.mvar(); |
---|
99 | CanonicalForm result = 0, qh = q / 2; |
---|
100 | CanonicalForm c; |
---|
101 | CFIterator i; |
---|
102 | for ( i = f; i.hasTerms(); i++ ) { |
---|
103 | c = mod( i.coeff(), q ); |
---|
104 | if ( c > qh ) |
---|
105 | result += power( x, i.exp() ) * (c - q); |
---|
106 | else |
---|
107 | result += power( x, i.exp() ) * c; |
---|
108 | } |
---|
109 | return result; |
---|
110 | } |
---|
111 | //}}} |
---|
112 | |
---|
113 | //{{{ static CanonicalForm icontent ( const CanonicalForm & f, const CanonicalForm & c ) |
---|
114 | //{{{ docu |
---|
115 | // |
---|
116 | // icontent() - return gcd of c and all coefficients of f which |
---|
117 | // are in a coefficient domain. |
---|
118 | // |
---|
119 | // Used by icontent(). |
---|
120 | // |
---|
121 | //}}} |
---|
122 | static CanonicalForm |
---|
123 | icontent ( const CanonicalForm & f, const CanonicalForm & c ) |
---|
124 | { |
---|
125 | if ( f.inCoeffDomain() ) |
---|
126 | return gcd( f, c ); |
---|
127 | else { |
---|
128 | CanonicalForm g = c; |
---|
129 | for ( CFIterator i = f; i.hasTerms() && ! g.isOne(); i++ ) |
---|
130 | g = icontent( i.coeff(), g ); |
---|
131 | return g; |
---|
132 | } |
---|
133 | } |
---|
134 | //}}} |
---|
135 | |
---|
136 | //{{{ CanonicalForm icontent ( const CanonicalForm & f ) |
---|
137 | //{{{ docu |
---|
138 | // |
---|
139 | // icontent() - return gcd over all coefficients of f which are |
---|
140 | // in a coefficient domain. |
---|
141 | // |
---|
142 | //}}} |
---|
143 | CanonicalForm |
---|
144 | icontent ( const CanonicalForm & f ) |
---|
145 | { |
---|
146 | return icontent( f, 0 ); |
---|
147 | } |
---|
148 | //}}} |
---|
149 | |
---|
150 | //{{{ CanonicalForm extgcd ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & a, CanonicalForm & b ) |
---|
151 | //{{{ docu |
---|
152 | // |
---|
153 | // extgcd() - returns polynomial extended gcd of f and g. |
---|
154 | // |
---|
155 | // Returns gcd(f, g) and a and b sucht that f*a+g*b=gcd(f, g). |
---|
156 | // The gcd is calculated using an extended euclidean polynomial |
---|
157 | // remainder sequence, so f and g should be polynomials over an |
---|
158 | // euclidean domain. Normalizes result. |
---|
159 | // |
---|
160 | // Note: be sure that f and g have the same level! |
---|
161 | // |
---|
162 | //}}} |
---|
163 | CanonicalForm |
---|
164 | extgcd ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & a, CanonicalForm & b ) |
---|
165 | { |
---|
166 | CanonicalForm contf = content( f ); |
---|
167 | CanonicalForm contg = content( g ); |
---|
168 | |
---|
169 | CanonicalForm p0 = f / contf, p1 = g / contg; |
---|
170 | CanonicalForm f0 = 1, f1 = 0, g0 = 0, g1 = 1, q, r; |
---|
171 | |
---|
172 | while ( ! p1.isZero() ) { |
---|
173 | divrem( p0, p1, q, r ); |
---|
174 | p0 = p1; p1 = r; |
---|
175 | r = g0 - g1 * q; |
---|
176 | g0 = g1; g1 = r; |
---|
177 | r = f0 - f1 * q; |
---|
178 | f0 = f1; f1 = r; |
---|
179 | } |
---|
180 | CanonicalForm contp0 = content( p0 ); |
---|
181 | a = f0 / ( contf * contp0 ); |
---|
182 | b = g0 / ( contg * contp0 ); |
---|
183 | p0 /= contp0; |
---|
184 | if ( p0.sign() < 0 ) { |
---|
185 | p0 = -p0; |
---|
186 | a = -a; |
---|
187 | b = -b; |
---|
188 | } |
---|
189 | return p0; |
---|
190 | } |
---|
191 | //}}} |
---|
192 | |
---|
193 | static CanonicalForm |
---|
194 | gcd_poly_univar0( const CanonicalForm & F, const CanonicalForm & G, bool primitive ) |
---|
195 | { |
---|
196 | CanonicalForm f, g, c, cg, cl, BB, B, M, q, Dp, newD, D, newq; |
---|
197 | int p, i, n; |
---|
198 | |
---|
199 | if ( primitive ) { |
---|
200 | f = F; |
---|
201 | g = G; |
---|
202 | c = 1; |
---|
203 | } |
---|
204 | else { |
---|
205 | CanonicalForm cF = content( F ), cG = content( G ); |
---|
206 | f = F / cF; |
---|
207 | g = G / cG; |
---|
208 | c = bgcd( cF, cG ); |
---|
209 | } |
---|
210 | cg = gcd( f.lc(), g.lc() ); |
---|
211 | cl = ( f.lc() / cg ) * g.lc(); |
---|
212 | // B = 2 * cg * tmin( |
---|
213 | // maxnorm(f)*power(CanonicalForm(2),f.degree())*isqrt(f.degree()+1), |
---|
214 | // maxnorm(g)*power(CanonicalForm(2),g.degree())*isqrt(g.degree()+1) |
---|
215 | // )+1; |
---|
216 | M = tmin( maxnorm(f), maxnorm(g) ); |
---|
217 | BB = power(CanonicalForm(2),tmin(f.degree(),g.degree()))*M; |
---|
218 | q = 0; |
---|
219 | i = cf_getNumSmallPrimes() - 1; |
---|
220 | while ( true ) { |
---|
221 | B = BB; |
---|
222 | while ( i >= 0 && q < B ) { |
---|
223 | p = cf_getSmallPrime( i ); |
---|
224 | i--; |
---|
225 | while ( i >= 0 && mod( cl, p ) == 0 ) { |
---|
226 | p = cf_getSmallPrime( i ); |
---|
227 | i--; |
---|
228 | } |
---|
229 | setCharacteristic( p ); |
---|
230 | Dp = gcd( mapinto( f ), mapinto( g ) ); |
---|
231 | Dp = ( Dp / Dp.lc() ) * mapinto( cg ); |
---|
232 | setCharacteristic( 0 ); |
---|
233 | if ( Dp.degree() == 0 ) return c; |
---|
234 | if ( q.isZero() ) { |
---|
235 | D = mapinto( Dp ); |
---|
236 | q = p; |
---|
237 | B = power(CanonicalForm(2),D.degree())*M+1; |
---|
238 | } |
---|
239 | else { |
---|
240 | if ( Dp.degree() == D.degree() ) { |
---|
241 | chineseRemainder( D, q, mapinto( Dp ), p, newD, newq ); |
---|
242 | q = newq; |
---|
243 | D = newD; |
---|
244 | } |
---|
245 | else if ( Dp.degree() < D.degree() ) { |
---|
246 | // all previous p's are bad primes |
---|
247 | q = p; |
---|
248 | D = mapinto( Dp ); |
---|
249 | B = power(CanonicalForm(2),D.degree())*M+1; |
---|
250 | } |
---|
251 | // else p is a bad prime |
---|
252 | } |
---|
253 | } |
---|
254 | if ( i >= 0 ) { |
---|
255 | // now balance D mod q |
---|
256 | D = pp( balance( D, q ) ); |
---|
257 | if ( divides( D, f ) && divides( D, g ) ) |
---|
258 | return D * c; |
---|
259 | else |
---|
260 | q = 0; |
---|
261 | } |
---|
262 | else { |
---|
263 | return gcd_poly( F, G, false ); |
---|
264 | } |
---|
265 | DEBOUTLN( cerr, "another try ..." ); |
---|
266 | } |
---|
267 | } |
---|
268 | |
---|
269 | static CanonicalForm |
---|
270 | gcd_poly1( const CanonicalForm & f, const CanonicalForm & g, bool modularflag ) |
---|
271 | { |
---|
272 | CanonicalForm C, Ci, Ci1, Hi, bi, pi, pi1, pi2; |
---|
273 | int delta; |
---|
274 | Variable v = f.mvar(); |
---|
275 | |
---|
276 | if ( f.degree( v ) >= g.degree( v ) ) { |
---|
277 | pi = f; pi1 = g; |
---|
278 | } |
---|
279 | else { |
---|
280 | pi = g; pi1 = f; |
---|
281 | } |
---|
282 | Ci = content( pi ); Ci1 = content( pi1 ); |
---|
283 | C = gcd( Ci, Ci1 ); |
---|
284 | pi1 = pi1 / Ci1; pi = pi / Ci; |
---|
285 | if ( pi.isUnivariate() && pi1.isUnivariate() ) { |
---|
286 | if ( modularflag ) |
---|
287 | return gcd_poly_univar0( pi, pi1, true ) * C; |
---|
288 | } |
---|
289 | else |
---|
290 | if ( gcd_test_one( pi1, pi, true ) ) |
---|
291 | return C; |
---|
292 | delta = degree( pi, v ) - degree( pi1, v ); |
---|
293 | Hi = power( LC( pi1, v ), delta ); |
---|
294 | if ( (delta+1) % 2 ) |
---|
295 | bi = 1; |
---|
296 | else |
---|
297 | bi = -1; |
---|
298 | while ( degree( pi1, v ) > 0 ) { |
---|
299 | pi2 = psr( pi, pi1, v ); |
---|
300 | pi2 = pi2 / bi; |
---|
301 | pi = pi1; pi1 = pi2; |
---|
302 | if ( degree( pi1, v ) > 0 ) { |
---|
303 | delta = degree( pi, v ) - degree( pi1, v ); |
---|
304 | if ( (delta+1) % 2 ) |
---|
305 | bi = LC( pi, v ) * power( Hi, delta ); |
---|
306 | else |
---|
307 | bi = -LC( pi, v ) * power( Hi, delta ); |
---|
308 | Hi = power( LC( pi1, v ), delta ) / power( Hi, delta-1 ); |
---|
309 | } |
---|
310 | } |
---|
311 | if ( degree( pi1, v ) == 0 ) |
---|
312 | return C; |
---|
313 | else { |
---|
314 | return C * pp( pi ); |
---|
315 | } |
---|
316 | } |
---|
317 | |
---|
318 | //{{{ static CanonicalForm gcd_poly ( const CanonicalForm & f, const CanonicalForm & g, bool modularflag ) |
---|
319 | //{{{ docu |
---|
320 | // |
---|
321 | // gcd_poly() - calculate polynomial gcd. |
---|
322 | // |
---|
323 | // This is the dispatcher for polynomial gcd calculation. We call either |
---|
324 | // ezgcd(), sparsemod() or gcd_poly1() in dependecy on the current |
---|
325 | // characteristic and settings of SW_USE_EZGCD and SW_USE_SPARSEMOD, resp. |
---|
326 | // |
---|
327 | // modularflag is reached down to gcd_poly1() without change in case of |
---|
328 | // zero characteristic. |
---|
329 | // |
---|
330 | // Used by gcd() and gcd_poly_univar0(). |
---|
331 | // |
---|
332 | //}}} |
---|
333 | static CanonicalForm |
---|
334 | gcd_poly ( const CanonicalForm & f, const CanonicalForm & g, bool modularflag ) |
---|
335 | { |
---|
336 | if ( getCharacteristic() != 0 ) { |
---|
337 | return gcd_poly1( f, g, false ); |
---|
338 | } |
---|
339 | else if ( isOn( SW_USE_EZGCD ) && ! ( f.isUnivariate() && g.isUnivariate() ) ) { |
---|
340 | CFMap M, N; |
---|
341 | compress( f, g, M, N ); |
---|
342 | return N( ezgcd( M(f), M(g) ) ); |
---|
343 | } |
---|
344 | else if ( isOn( SW_USE_SPARSEMOD ) && ! ( f.isUnivariate() && g.isUnivariate() ) ) { |
---|
345 | return sparsemod( f, g ); |
---|
346 | } |
---|
347 | else { |
---|
348 | return gcd_poly1( f, g, modularflag ); |
---|
349 | } |
---|
350 | } |
---|
351 | //}}} |
---|
352 | |
---|
353 | //{{{ static CanonicalForm cf_content ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
354 | //{{{ docu |
---|
355 | // |
---|
356 | // cf_content() - return gcd(g, content(f)). |
---|
357 | // |
---|
358 | // content(f) is calculated with respect to f's main variable. |
---|
359 | // |
---|
360 | // Used by gcd(), content(), content( CF, Variable ). |
---|
361 | // |
---|
362 | //}}} |
---|
363 | static CanonicalForm |
---|
364 | cf_content ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
365 | { |
---|
366 | if ( f.inPolyDomain() || ( f.inExtension() && ! getReduce( f.mvar() ) ) ) { |
---|
367 | CFIterator i = f; |
---|
368 | CanonicalForm result = g; |
---|
369 | while ( i.hasTerms() && ! result.isOne() ) { |
---|
370 | result = gcd( result, i.coeff() ); |
---|
371 | i++; |
---|
372 | } |
---|
373 | return result; |
---|
374 | } |
---|
375 | else |
---|
376 | if ( f.sign() < 0 ) |
---|
377 | return -f; |
---|
378 | else |
---|
379 | return f; |
---|
380 | } |
---|
381 | //}}} |
---|
382 | |
---|
383 | //{{{ CanonicalForm content ( const CanonicalForm & f ) |
---|
384 | //{{{ docu |
---|
385 | // |
---|
386 | // content() - return content(f) with respect to main variable. |
---|
387 | // |
---|
388 | // Normalizes result. |
---|
389 | // |
---|
390 | //}}} |
---|
391 | CanonicalForm |
---|
392 | content ( const CanonicalForm & f ) |
---|
393 | { |
---|
394 | return cf_content( f, 0 ); |
---|
395 | } |
---|
396 | //}}} |
---|
397 | |
---|
398 | //{{{ CanonicalForm content ( const CanonicalForm & f, const Variable & x ) |
---|
399 | //{{{ docu |
---|
400 | // |
---|
401 | // content() - return content(f) with respect to x. |
---|
402 | // |
---|
403 | // x should be a polynomial variable. |
---|
404 | // |
---|
405 | //}}} |
---|
406 | CanonicalForm |
---|
407 | content ( const CanonicalForm & f, const Variable & x ) |
---|
408 | { |
---|
409 | ASSERT( x.level() > 0, "cannot calculate content with respect to algebraic variable" ); |
---|
410 | Variable y = f.mvar(); |
---|
411 | |
---|
412 | if ( y == x ) |
---|
413 | return cf_content( f, 0 ); |
---|
414 | else if ( y < x ) |
---|
415 | return f; |
---|
416 | else |
---|
417 | return swapvar( content( swapvar( f, y, x ), y ), y, x ); |
---|
418 | } |
---|
419 | //}}} |
---|
420 | |
---|
421 | //{{{ CanonicalForm vcontent ( const CanonicalForm & f, const Variable & x ) |
---|
422 | //{{{ docu |
---|
423 | // |
---|
424 | // vcontent() - return content of f with repect to variables >= x. |
---|
425 | // |
---|
426 | // The content is recursively calculated over all coefficients in |
---|
427 | // f having level less than x. x should be a polynomial |
---|
428 | // variable. |
---|
429 | // |
---|
430 | //}}} |
---|
431 | CanonicalForm |
---|
432 | vcontent ( const CanonicalForm & f, const Variable & x ) |
---|
433 | { |
---|
434 | ASSERT( x.level() > 0, "cannot calculate vcontent with respect to algebraic variable" ); |
---|
435 | |
---|
436 | if ( f.mvar() <= x ) |
---|
437 | return content( f, x ); |
---|
438 | else { |
---|
439 | CFIterator i; |
---|
440 | CanonicalForm d = 0; |
---|
441 | for ( i = f; i.hasTerms() && ! d.isOne(); i++ ) |
---|
442 | d = gcd( d, vcontent( i.coeff(), x ) ); |
---|
443 | return d; |
---|
444 | } |
---|
445 | } |
---|
446 | //}}} |
---|
447 | |
---|
448 | //{{{ CanonicalForm pp ( const CanonicalForm & f ) |
---|
449 | //{{{ docu |
---|
450 | // |
---|
451 | // pp() - return primitive part of f. |
---|
452 | // |
---|
453 | // Returns zero if f equals zero, otherwise f / content(f). |
---|
454 | // |
---|
455 | //}}} |
---|
456 | CanonicalForm |
---|
457 | pp ( const CanonicalForm & f ) |
---|
458 | { |
---|
459 | if ( f.isZero() ) |
---|
460 | return f; |
---|
461 | else |
---|
462 | return f / content( f ); |
---|
463 | } |
---|
464 | //}}} |
---|
465 | |
---|
466 | CanonicalForm |
---|
467 | gcd ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
468 | { |
---|
469 | if ( f.isZero() ) |
---|
470 | if ( g.lc().sign() < 0 ) |
---|
471 | return -g; |
---|
472 | else |
---|
473 | return g; |
---|
474 | else if ( g.isZero() ) |
---|
475 | if ( f.lc().sign() < 0 ) |
---|
476 | return -f; |
---|
477 | else |
---|
478 | return f; |
---|
479 | else if ( f.inBaseDomain() ) |
---|
480 | if ( g.inBaseDomain() ) |
---|
481 | return bgcd( f, g ); |
---|
482 | else |
---|
483 | return cf_content( g, f ); |
---|
484 | else if ( g.inBaseDomain() ) |
---|
485 | return cf_content( f, g ); |
---|
486 | else if ( f.mvar() == g.mvar() ) |
---|
487 | if ( f.inExtension() && getReduce( f.mvar() ) ) |
---|
488 | return 1; |
---|
489 | else { |
---|
490 | if ( divides( f, g ) ) |
---|
491 | if ( f.lc().sign() < 0 ) |
---|
492 | return -f; |
---|
493 | else |
---|
494 | return f; |
---|
495 | else if ( divides( g, f ) ) |
---|
496 | if ( g.lc().sign() < 0 ) |
---|
497 | return -g; |
---|
498 | else |
---|
499 | return g; |
---|
500 | if ( getCharacteristic() == 0 && isOn( SW_RATIONAL ) ) { |
---|
501 | CanonicalForm cdF = common_den( f ); |
---|
502 | CanonicalForm cdG = common_den( g ); |
---|
503 | Off( SW_RATIONAL ); |
---|
504 | CanonicalForm l = lcm( cdF, cdG ); |
---|
505 | On( SW_RATIONAL ); |
---|
506 | CanonicalForm F = f * l, G = g * l; |
---|
507 | Off( SW_RATIONAL ); |
---|
508 | l = gcd_poly( F, G, true ); |
---|
509 | On( SW_RATIONAL ); |
---|
510 | if ( l.lc().sign() < 0 ) |
---|
511 | return -l; |
---|
512 | else |
---|
513 | return l; |
---|
514 | } |
---|
515 | else { |
---|
516 | CanonicalForm d = gcd_poly( f, g, getCharacteristic()==0 ); |
---|
517 | if ( d.lc().sign() < 0 ) |
---|
518 | return -d; |
---|
519 | else |
---|
520 | return d; |
---|
521 | } |
---|
522 | } |
---|
523 | else if ( f.mvar() > g.mvar() ) |
---|
524 | return cf_content( f, g ); |
---|
525 | else |
---|
526 | return cf_content( g, f ); |
---|
527 | } |
---|
528 | |
---|
529 | //{{{ CanonicalForm lcm ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
530 | //{{{ docu |
---|
531 | // |
---|
532 | // lcm() - return least common multiple of f and g. |
---|
533 | // |
---|
534 | // The lcm is calculated using the formula lcm(f, g) = f * g / gcd(f, g). |
---|
535 | // |
---|
536 | // Returns zero if one of f or g equals zero. |
---|
537 | // |
---|
538 | //}}} |
---|
539 | CanonicalForm |
---|
540 | lcm ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
541 | { |
---|
542 | if ( f.isZero() || g.isZero() ) |
---|
543 | return f; |
---|
544 | else |
---|
545 | return ( f / gcd( f, g ) ) * g; |
---|
546 | } |
---|
547 | //}}} |
---|