1 | /* emacs edit mode for this file is -*- C++ -*- */ |
---|
2 | /* $Id: cf_gcd.cc,v 1.67 2008-09-12 15:47:02 Singular Exp $ */ |
---|
3 | |
---|
4 | #include <config.h> |
---|
5 | |
---|
6 | #include "assert.h" |
---|
7 | #include "debug.h" |
---|
8 | |
---|
9 | #include "cf_defs.h" |
---|
10 | #include "canonicalform.h" |
---|
11 | #include "cf_iter.h" |
---|
12 | #include "cf_reval.h" |
---|
13 | #include "cf_primes.h" |
---|
14 | #include "cf_algorithm.h" |
---|
15 | #include "fac_util.h" |
---|
16 | #include "ftmpl_functions.h" |
---|
17 | #include "ffreval.h" |
---|
18 | #include "algext.h" |
---|
19 | #include "fieldGCD.h" |
---|
20 | |
---|
21 | #ifdef HAVE_NTL |
---|
22 | #include <NTL/ZZX.h> |
---|
23 | #include "NTLconvert.h" |
---|
24 | bool isPurePoly(const CanonicalForm & ); |
---|
25 | static CanonicalForm gcd_univar_ntl0( const CanonicalForm &, const CanonicalForm & ); |
---|
26 | static CanonicalForm gcd_univar_ntlp( const CanonicalForm &, const CanonicalForm & ); |
---|
27 | #endif |
---|
28 | |
---|
29 | static CanonicalForm cf_content ( const CanonicalForm &, const CanonicalForm & ); |
---|
30 | static bool gcd_avoid_mtaildegree ( CanonicalForm &, CanonicalForm &, CanonicalForm & ); |
---|
31 | static void cf_prepgcd( const CanonicalForm &, const CanonicalForm &, int &, int &, int & ); |
---|
32 | |
---|
33 | void out_cf(char *s1,const CanonicalForm &f,char *s2); |
---|
34 | |
---|
35 | CanonicalForm chinrem_gcd(const CanonicalForm & FF,const CanonicalForm & GG); |
---|
36 | CanonicalForm newGCD(CanonicalForm A, CanonicalForm B); |
---|
37 | |
---|
38 | bool |
---|
39 | gcd_test_one ( const CanonicalForm & f, const CanonicalForm & g, bool swap ) |
---|
40 | { |
---|
41 | int count = 0; |
---|
42 | // assume polys have same level; |
---|
43 | CFRandom * sample = CFRandomFactory::generate(); |
---|
44 | REvaluation e( 2, tmax( f.level(), g.level() ), *sample ); |
---|
45 | delete sample; |
---|
46 | CanonicalForm lcf, lcg; |
---|
47 | if ( swap ) |
---|
48 | { |
---|
49 | lcf = swapvar( LC( f ), Variable(1), f.mvar() ); |
---|
50 | lcg = swapvar( LC( g ), Variable(1), f.mvar() ); |
---|
51 | } |
---|
52 | else |
---|
53 | { |
---|
54 | lcf = LC( f, Variable(1) ); |
---|
55 | lcg = LC( g, Variable(1) ); |
---|
56 | } |
---|
57 | #define TEST_ONE_MAX 50 |
---|
58 | while ( ( e( lcf ).isZero() || e( lcg ).isZero() ) && count < TEST_ONE_MAX ) |
---|
59 | { |
---|
60 | e.nextpoint(); |
---|
61 | count++; |
---|
62 | } |
---|
63 | if ( count == TEST_ONE_MAX ) |
---|
64 | return false; |
---|
65 | CanonicalForm F, G; |
---|
66 | if ( swap ) |
---|
67 | { |
---|
68 | F=swapvar( f, Variable(1), f.mvar() ); |
---|
69 | G=swapvar( g, Variable(1), g.mvar() ); |
---|
70 | } |
---|
71 | else |
---|
72 | { |
---|
73 | F = f; |
---|
74 | G = g; |
---|
75 | } |
---|
76 | if ( e(F).taildegree() > 0 && e(G).taildegree() > 0 ) |
---|
77 | return false; |
---|
78 | return gcd( e( F ), e( G ) ).degree() < 1; |
---|
79 | } |
---|
80 | |
---|
81 | //{{{ static CanonicalForm icontent ( const CanonicalForm & f, const CanonicalForm & c ) |
---|
82 | //{{{ docu |
---|
83 | // |
---|
84 | // icontent() - return gcd of c and all coefficients of f which |
---|
85 | // are in a coefficient domain. |
---|
86 | // |
---|
87 | // Used by icontent(). |
---|
88 | // |
---|
89 | //}}} |
---|
90 | static CanonicalForm |
---|
91 | icontent ( const CanonicalForm & f, const CanonicalForm & c ) |
---|
92 | { |
---|
93 | if ( f.inBaseDomain() ) |
---|
94 | { |
---|
95 | if (c.isZero()) return abs(f); |
---|
96 | return bgcd( f, c ); |
---|
97 | } |
---|
98 | //else if ( f.inCoeffDomain() ) |
---|
99 | // return gcd(f,c); |
---|
100 | else |
---|
101 | { |
---|
102 | CanonicalForm g = c; |
---|
103 | for ( CFIterator i = f; i.hasTerms() && ! g.isOne(); i++ ) |
---|
104 | g = icontent( i.coeff(), g ); |
---|
105 | return g; |
---|
106 | } |
---|
107 | } |
---|
108 | //}}} |
---|
109 | |
---|
110 | //{{{ CanonicalForm icontent ( const CanonicalForm & f ) |
---|
111 | //{{{ docu |
---|
112 | // |
---|
113 | // icontent() - return gcd over all coefficients of f which are |
---|
114 | // in a coefficient domain. |
---|
115 | // |
---|
116 | //}}} |
---|
117 | CanonicalForm |
---|
118 | icontent ( const CanonicalForm & f ) |
---|
119 | { |
---|
120 | return icontent( f, 0 ); |
---|
121 | } |
---|
122 | //}}} |
---|
123 | |
---|
124 | //{{{ CanonicalForm extgcd ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & a, CanonicalForm & b ) |
---|
125 | //{{{ docu |
---|
126 | // |
---|
127 | // extgcd() - returns polynomial extended gcd of f and g. |
---|
128 | // |
---|
129 | // Returns gcd(f, g) and a and b sucht that f*a+g*b=gcd(f, g). |
---|
130 | // The gcd is calculated using an extended euclidean polynomial |
---|
131 | // remainder sequence, so f and g should be polynomials over an |
---|
132 | // euclidean domain. Normalizes result. |
---|
133 | // |
---|
134 | // Note: be sure that f and g have the same level! |
---|
135 | // |
---|
136 | //}}} |
---|
137 | CanonicalForm |
---|
138 | extgcd ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & a, CanonicalForm & b ) |
---|
139 | { |
---|
140 | #ifdef HAVE_NTL |
---|
141 | if (isOn(SW_USE_NTL_GCD_P) && ( getCharacteristic() > 0 ) |
---|
142 | && isPurePoly(f) && isPurePoly(g)) |
---|
143 | { |
---|
144 | if (fac_NTL_char!=getCharacteristic()) |
---|
145 | { |
---|
146 | fac_NTL_char=getCharacteristic(); |
---|
147 | #ifdef NTL_ZZ |
---|
148 | ZZ r; |
---|
149 | r=getCharacteristic(); |
---|
150 | ZZ_pContext ccc(r); |
---|
151 | #else |
---|
152 | zz_pContext ccc(getCharacteristic()); |
---|
153 | #endif |
---|
154 | ccc.restore(); |
---|
155 | #ifdef NTL_ZZ |
---|
156 | ZZ_p::init(r); |
---|
157 | #else |
---|
158 | zz_p::init(getCharacteristic()); |
---|
159 | #endif |
---|
160 | } |
---|
161 | #ifdef NTL_ZZ |
---|
162 | ZZ_pX F1=convertFacCF2NTLZZpX(f); |
---|
163 | ZZ_pX G1=convertFacCF2NTLZZpX(g); |
---|
164 | ZZ_pX R; |
---|
165 | ZZ_pX A,B; |
---|
166 | XGCD(R,A,B,F1,G1); |
---|
167 | a=convertNTLZZpX2CF(A,f.mvar()); |
---|
168 | b=convertNTLZZpX2CF(B,f.mvar()); |
---|
169 | return convertNTLZZpX2CF(R,f.mvar()); |
---|
170 | #else |
---|
171 | zz_pX F1=convertFacCF2NTLzzpX(f); |
---|
172 | zz_pX G1=convertFacCF2NTLzzpX(g); |
---|
173 | zz_pX R; |
---|
174 | zz_pX A,B; |
---|
175 | XGCD(R,A,B,F1,G1); |
---|
176 | a=convertNTLzzpX2CF(A,f.mvar()); |
---|
177 | b=convertNTLzzpX2CF(B,f.mvar()); |
---|
178 | return convertNTLzzpX2CF(R,f.mvar()); |
---|
179 | #endif |
---|
180 | } |
---|
181 | #endif |
---|
182 | CanonicalForm contf = content( f ); |
---|
183 | CanonicalForm contg = content( g ); |
---|
184 | |
---|
185 | CanonicalForm p0 = f / contf, p1 = g / contg; |
---|
186 | CanonicalForm f0 = 1, f1 = 0, g0 = 0, g1 = 1, q, r; |
---|
187 | |
---|
188 | while ( ! p1.isZero() ) |
---|
189 | { |
---|
190 | divrem( p0, p1, q, r ); |
---|
191 | p0 = p1; p1 = r; |
---|
192 | r = g0 - g1 * q; |
---|
193 | g0 = g1; g1 = r; |
---|
194 | r = f0 - f1 * q; |
---|
195 | f0 = f1; f1 = r; |
---|
196 | } |
---|
197 | CanonicalForm contp0 = content( p0 ); |
---|
198 | a = f0 / ( contf * contp0 ); |
---|
199 | b = g0 / ( contg * contp0 ); |
---|
200 | p0 /= contp0; |
---|
201 | if ( p0.sign() < 0 ) |
---|
202 | { |
---|
203 | p0 = -p0; |
---|
204 | a = -a; |
---|
205 | b = -b; |
---|
206 | } |
---|
207 | return p0; |
---|
208 | } |
---|
209 | //}}} |
---|
210 | |
---|
211 | //{{{ static CanonicalForm balance ( const CanonicalForm & f, const CanonicalForm & q ) |
---|
212 | //{{{ docu |
---|
213 | // |
---|
214 | // balance() - map f from positive to symmetric representation |
---|
215 | // mod q. |
---|
216 | // |
---|
217 | // This makes sense for univariate polynomials over Z only. |
---|
218 | // q should be an integer. |
---|
219 | // |
---|
220 | // Used by gcd_poly_univar0(). |
---|
221 | // |
---|
222 | //}}} |
---|
223 | static CanonicalForm |
---|
224 | balance ( const CanonicalForm & f, const CanonicalForm & q ) |
---|
225 | { |
---|
226 | Variable x = f.mvar(); |
---|
227 | CanonicalForm result = 0, qh = q / 2; |
---|
228 | CanonicalForm c; |
---|
229 | CFIterator i; |
---|
230 | for ( i = f; i.hasTerms(); i++ ) { |
---|
231 | c = mod( i.coeff(), q ); |
---|
232 | if ( c > qh ) |
---|
233 | result += power( x, i.exp() ) * (c - q); |
---|
234 | else |
---|
235 | result += power( x, i.exp() ) * c; |
---|
236 | } |
---|
237 | return result; |
---|
238 | } |
---|
239 | //}}} |
---|
240 | |
---|
241 | static CanonicalForm |
---|
242 | gcd_poly_univar0( const CanonicalForm & F, const CanonicalForm & G, bool primitive ) |
---|
243 | { |
---|
244 | CanonicalForm f, g, c, cg, cl, BB, B, M, q, Dp, newD, D, newq; |
---|
245 | int p, i, n; |
---|
246 | |
---|
247 | if ( primitive ) |
---|
248 | { |
---|
249 | f = F; |
---|
250 | g = G; |
---|
251 | c = 1; |
---|
252 | } |
---|
253 | else |
---|
254 | { |
---|
255 | CanonicalForm cF = content( F ), cG = content( G ); |
---|
256 | f = F / cF; |
---|
257 | g = G / cG; |
---|
258 | c = bgcd( cF, cG ); |
---|
259 | } |
---|
260 | cg = gcd( f.lc(), g.lc() ); |
---|
261 | cl = ( f.lc() / cg ) * g.lc(); |
---|
262 | // B = 2 * cg * tmin( |
---|
263 | // maxnorm(f)*power(CanonicalForm(2),f.degree())*isqrt(f.degree()+1), |
---|
264 | // maxnorm(g)*power(CanonicalForm(2),g.degree())*isqrt(g.degree()+1) |
---|
265 | // )+1; |
---|
266 | M = tmin( maxNorm(f), maxNorm(g) ); |
---|
267 | BB = power(CanonicalForm(2),tmin(f.degree(),g.degree()))*M; |
---|
268 | q = 0; |
---|
269 | i = cf_getNumSmallPrimes() - 1; |
---|
270 | while ( true ) |
---|
271 | { |
---|
272 | B = BB; |
---|
273 | while ( i >= 0 && q < B ) |
---|
274 | { |
---|
275 | p = cf_getSmallPrime( i ); |
---|
276 | i--; |
---|
277 | while ( i >= 0 && mod( cl, p ) == 0 ) |
---|
278 | { |
---|
279 | p = cf_getSmallPrime( i ); |
---|
280 | i--; |
---|
281 | } |
---|
282 | setCharacteristic( p ); |
---|
283 | Dp = gcd( mapinto( f ), mapinto( g ) ); |
---|
284 | Dp = ( Dp / Dp.lc() ) * mapinto( cg ); |
---|
285 | setCharacteristic( 0 ); |
---|
286 | if ( Dp.degree() == 0 ) |
---|
287 | return c; |
---|
288 | if ( q.isZero() ) |
---|
289 | { |
---|
290 | D = mapinto( Dp ); |
---|
291 | q = p; |
---|
292 | B = power(CanonicalForm(2),D.degree())*M+1; |
---|
293 | } |
---|
294 | else |
---|
295 | { |
---|
296 | if ( Dp.degree() == D.degree() ) |
---|
297 | { |
---|
298 | chineseRemainder( D, q, mapinto( Dp ), p, newD, newq ); |
---|
299 | q = newq; |
---|
300 | D = newD; |
---|
301 | } |
---|
302 | else if ( Dp.degree() < D.degree() ) |
---|
303 | { |
---|
304 | // all previous p's are bad primes |
---|
305 | q = p; |
---|
306 | D = mapinto( Dp ); |
---|
307 | B = power(CanonicalForm(2),D.degree())*M+1; |
---|
308 | } |
---|
309 | // else p is a bad prime |
---|
310 | } |
---|
311 | } |
---|
312 | if ( i >= 0 ) |
---|
313 | { |
---|
314 | // now balance D mod q |
---|
315 | D = pp( balance( D, q ) ); |
---|
316 | if ( fdivides( D, f ) && fdivides( D, g ) ) |
---|
317 | return D * c; |
---|
318 | else |
---|
319 | q = 0; |
---|
320 | } |
---|
321 | else |
---|
322 | return gcd_poly( F, G ); |
---|
323 | DEBOUTLN( cerr, "another try ..." ); |
---|
324 | } |
---|
325 | } |
---|
326 | |
---|
327 | static CanonicalForm |
---|
328 | gcd_poly_p( const CanonicalForm & f, const CanonicalForm & g ) |
---|
329 | { |
---|
330 | CanonicalForm pi, pi1; |
---|
331 | CanonicalForm C, Ci, Ci1, Hi, bi, pi2; |
---|
332 | bool bpure; |
---|
333 | int delta = degree( f ) - degree( g ); |
---|
334 | |
---|
335 | if ( delta >= 0 ) |
---|
336 | { |
---|
337 | pi = f; pi1 = g; |
---|
338 | } |
---|
339 | else |
---|
340 | { |
---|
341 | pi = g; pi1 = f; delta = -delta; |
---|
342 | } |
---|
343 | Ci = content( pi ); Ci1 = content( pi1 ); |
---|
344 | pi1 = pi1 / Ci1; pi = pi / Ci; |
---|
345 | C = gcd( Ci, Ci1 ); |
---|
346 | if ( !( pi.isUnivariate() && pi1.isUnivariate() ) ) |
---|
347 | { |
---|
348 | //out_cf("F:",f,"\n"); |
---|
349 | //out_cf("G:",g,"\n"); |
---|
350 | //out_cf("newGCD:",newGCD(f,g),"\n"); |
---|
351 | if (isOn(SW_USE_GCD_P) && (getCharacteristic()>0)) |
---|
352 | { |
---|
353 | return newGCD(f,g); |
---|
354 | } |
---|
355 | if ( gcd_test_one( pi1, pi, true ) ) |
---|
356 | { |
---|
357 | C=abs(C); |
---|
358 | //out_cf("GCD:",C,"\n"); |
---|
359 | return C; |
---|
360 | } |
---|
361 | bpure = false; |
---|
362 | } |
---|
363 | else |
---|
364 | { |
---|
365 | bpure = isPurePoly(pi) && isPurePoly(pi1); |
---|
366 | #ifdef HAVE_NTL |
---|
367 | if ( isOn(SW_USE_NTL_GCD_P) && bpure ) |
---|
368 | return gcd_univar_ntlp(pi, pi1 ) * C; |
---|
369 | #endif |
---|
370 | } |
---|
371 | Variable v = f.mvar(); |
---|
372 | Hi = power( LC( pi1, v ), delta ); |
---|
373 | if ( (delta+1) % 2 ) |
---|
374 | bi = 1; |
---|
375 | else |
---|
376 | bi = -1; |
---|
377 | while ( degree( pi1, v ) > 0 ) { |
---|
378 | pi2 = psr( pi, pi1, v ); |
---|
379 | pi2 = pi2 / bi; |
---|
380 | pi = pi1; pi1 = pi2; |
---|
381 | if ( degree( pi1, v ) > 0 ) { |
---|
382 | delta = degree( pi, v ) - degree( pi1, v ); |
---|
383 | if ( (delta+1) % 2 ) |
---|
384 | bi = LC( pi, v ) * power( Hi, delta ); |
---|
385 | else |
---|
386 | bi = -LC( pi, v ) * power( Hi, delta ); |
---|
387 | Hi = power( LC( pi1, v ), delta ) / power( Hi, delta-1 ); |
---|
388 | } |
---|
389 | } |
---|
390 | if ( degree( pi1, v ) == 0 ) |
---|
391 | { |
---|
392 | C=abs(C); |
---|
393 | //out_cf("GCD:",C,"\n"); |
---|
394 | return C; |
---|
395 | } |
---|
396 | pi /= content( pi ); |
---|
397 | if ( bpure ) |
---|
398 | pi /= pi.lc(); |
---|
399 | C=abs(C*pi); |
---|
400 | //out_cf("GCD:",C,"\n"); |
---|
401 | return C; |
---|
402 | } |
---|
403 | |
---|
404 | static CanonicalForm |
---|
405 | gcd_poly_0( const CanonicalForm & f, const CanonicalForm & g ) |
---|
406 | { |
---|
407 | CanonicalForm pi, pi1; |
---|
408 | CanonicalForm C, Ci, Ci1, Hi, bi, pi2; |
---|
409 | int delta = degree( f ) - degree( g ); |
---|
410 | |
---|
411 | if ( delta >= 0 ) |
---|
412 | { |
---|
413 | pi = f; pi1 = g; |
---|
414 | } |
---|
415 | else |
---|
416 | { |
---|
417 | pi = g; pi1 = f; delta = -delta; |
---|
418 | } |
---|
419 | Ci = content( pi ); Ci1 = content( pi1 ); |
---|
420 | pi1 = pi1 / Ci1; pi = pi / Ci; |
---|
421 | C = gcd( Ci, Ci1 ); |
---|
422 | if ( pi.isUnivariate() && pi1.isUnivariate() ) |
---|
423 | { |
---|
424 | #ifdef HAVE_NTL |
---|
425 | if ( isOn(SW_USE_NTL_GCD_0) && isPurePoly(pi) && isPurePoly(pi1) ) |
---|
426 | return gcd_univar_ntl0(pi, pi1 ) * C; |
---|
427 | #endif |
---|
428 | return gcd_poly_univar0( pi, pi1, true ) * C; |
---|
429 | } |
---|
430 | else if ( gcd_test_one( pi1, pi, true ) ) |
---|
431 | return C; |
---|
432 | Variable v = f.mvar(); |
---|
433 | Hi = power( LC( pi1, v ), delta ); |
---|
434 | if ( (delta+1) % 2 ) |
---|
435 | bi = 1; |
---|
436 | else |
---|
437 | bi = -1; |
---|
438 | while ( degree( pi1, v ) > 0 ) |
---|
439 | { |
---|
440 | pi2 = psr( pi, pi1, v ); |
---|
441 | pi2 = pi2 / bi; |
---|
442 | pi = pi1; pi1 = pi2; |
---|
443 | if ( degree( pi1, v ) > 0 ) |
---|
444 | { |
---|
445 | delta = degree( pi, v ) - degree( pi1, v ); |
---|
446 | if ( (delta+1) % 2 ) |
---|
447 | bi = LC( pi, v ) * power( Hi, delta ); |
---|
448 | else |
---|
449 | bi = -LC( pi, v ) * power( Hi, delta ); |
---|
450 | Hi = power( LC( pi1, v ), delta ) / power( Hi, delta-1 ); |
---|
451 | } |
---|
452 | } |
---|
453 | if ( degree( pi1, v ) == 0 ) |
---|
454 | return C; |
---|
455 | else |
---|
456 | return C * pp( pi ); |
---|
457 | } |
---|
458 | |
---|
459 | //{{{ CanonicalForm gcd_poly ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
460 | //{{{ docu |
---|
461 | // |
---|
462 | // gcd_poly() - calculate polynomial gcd. |
---|
463 | // |
---|
464 | // This is the dispatcher for polynomial gcd calculation. We call either |
---|
465 | // ezgcd(), sparsemod() or gcd_poly1() in dependecy on the current |
---|
466 | // characteristic and settings of SW_USE_EZGCD and SW_USE_SPARSEMOD, resp. |
---|
467 | // |
---|
468 | // Used by gcd() and gcd_poly_univar0(). |
---|
469 | // |
---|
470 | //}}} |
---|
471 | #if 0 |
---|
472 | int si_factor_reminder=1; |
---|
473 | #endif |
---|
474 | CanonicalForm gcd_poly ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
475 | { |
---|
476 | CanonicalForm fc, gc, d1; |
---|
477 | int mp, cc, p1, pe; |
---|
478 | mp = f.level()+1; |
---|
479 | bool fc_isUnivariate=f.isUnivariate(); |
---|
480 | bool gc_isUnivariate=g.isUnivariate(); |
---|
481 | bool fc_and_gc_Univariate=fc_isUnivariate && gc_isUnivariate; |
---|
482 | #if 1 |
---|
483 | if (( getCharacteristic() == 0 ) |
---|
484 | && (f.level() >4) |
---|
485 | && (g.level() >4) |
---|
486 | && isOn( SW_USE_CHINREM_GCD) |
---|
487 | && (!fc_and_gc_Univariate) |
---|
488 | && (isPurePoly_m(f)) |
---|
489 | && (isPurePoly_m(g)) |
---|
490 | ) |
---|
491 | { |
---|
492 | return chinrem_gcd( f, g ); |
---|
493 | } |
---|
494 | #endif |
---|
495 | cf_prepgcd( f, g, cc, p1, pe); |
---|
496 | if ( cc != 0 ) |
---|
497 | { |
---|
498 | if ( cc > 0 ) |
---|
499 | { |
---|
500 | fc = replacevar( f, Variable(cc), Variable(mp) ); |
---|
501 | gc = g; |
---|
502 | } |
---|
503 | else |
---|
504 | { |
---|
505 | fc = replacevar( g, Variable(-cc), Variable(mp) ); |
---|
506 | gc = f; |
---|
507 | } |
---|
508 | return cf_content( fc, gc ); |
---|
509 | } |
---|
510 | // now each appearing variable is in f and g |
---|
511 | fc = f; |
---|
512 | gc = g; |
---|
513 | if( gcd_avoid_mtaildegree ( fc, gc, d1 ) ) |
---|
514 | return d1; |
---|
515 | if ( getCharacteristic() != 0 ) |
---|
516 | { |
---|
517 | if (isOn(SW_USE_fieldGCD) |
---|
518 | && (!fc_and_gc_Univariate) |
---|
519 | && (getCharacteristic() >100)) |
---|
520 | { |
---|
521 | return fieldGCD(f,g); |
---|
522 | } |
---|
523 | else if (isOn( SW_USE_EZGCD_P ) && (!fc_and_gc_Univariate)) |
---|
524 | { |
---|
525 | if ( pe == 1 ) |
---|
526 | fc = fin_ezgcd( fc, gc ); |
---|
527 | else if ( pe > 0 )// no variable at position 1 |
---|
528 | { |
---|
529 | fc = replacevar( fc, Variable(pe), Variable(1) ); |
---|
530 | gc = replacevar( gc, Variable(pe), Variable(1) ); |
---|
531 | fc = replacevar( fin_ezgcd( fc, gc ), Variable(1), Variable(pe) ); |
---|
532 | } |
---|
533 | else |
---|
534 | { |
---|
535 | pe = -pe; |
---|
536 | fc = swapvar( fc, Variable(pe), Variable(1) ); |
---|
537 | gc = swapvar( gc, Variable(pe), Variable(1) ); |
---|
538 | fc = swapvar( fin_ezgcd( fc, gc ), Variable(1), Variable(pe) ); |
---|
539 | } |
---|
540 | } |
---|
541 | else if (isOn(SW_USE_GCD_P)) |
---|
542 | { |
---|
543 | fc=newGCD(fc,gc); |
---|
544 | } |
---|
545 | else if ( p1 == fc.level() ) |
---|
546 | fc = gcd_poly_p( fc, gc ); |
---|
547 | else |
---|
548 | { |
---|
549 | fc = replacevar( fc, Variable(p1), Variable(mp) ); |
---|
550 | gc = replacevar( gc, Variable(p1), Variable(mp) ); |
---|
551 | fc = replacevar( gcd_poly_p( fc, gc ), Variable(mp), Variable(p1) ); |
---|
552 | } |
---|
553 | } |
---|
554 | else if (!fc_and_gc_Univariate) |
---|
555 | { |
---|
556 | if ( |
---|
557 | isOn(SW_USE_CHINREM_GCD) |
---|
558 | && (gc.level() >5) |
---|
559 | && (fc.level() >5) |
---|
560 | && (isPurePoly_m(fc)) && (isPurePoly_m(gc)) |
---|
561 | ) |
---|
562 | { |
---|
563 | #if 0 |
---|
564 | if ( p1 == fc.level() ) |
---|
565 | fc = chinrem_gcd( fc, gc ); |
---|
566 | else |
---|
567 | { |
---|
568 | fc = replacevar( fc, Variable(p1), Variable(mp) ); |
---|
569 | gc = replacevar( gc, Variable(p1), Variable(mp) ); |
---|
570 | fc = replacevar( chinrem_gcd( fc, gc ), Variable(mp), Variable(p1) ); |
---|
571 | } |
---|
572 | #else |
---|
573 | fc = chinrem_gcd( fc, gc); |
---|
574 | #endif |
---|
575 | } |
---|
576 | if ( isOn( SW_USE_EZGCD ) ) |
---|
577 | { |
---|
578 | if ( pe == 1 ) |
---|
579 | fc = ezgcd( fc, gc ); |
---|
580 | else if ( pe > 0 )// no variable at position 1 |
---|
581 | { |
---|
582 | fc = replacevar( fc, Variable(pe), Variable(1) ); |
---|
583 | gc = replacevar( gc, Variable(pe), Variable(1) ); |
---|
584 | fc = replacevar( ezgcd( fc, gc ), Variable(1), Variable(pe) ); |
---|
585 | } |
---|
586 | else |
---|
587 | { |
---|
588 | pe = -pe; |
---|
589 | fc = swapvar( fc, Variable(pe), Variable(1) ); |
---|
590 | gc = swapvar( gc, Variable(pe), Variable(1) ); |
---|
591 | fc = swapvar( ezgcd( fc, gc ), Variable(1), Variable(pe) ); |
---|
592 | } |
---|
593 | } |
---|
594 | else if ( |
---|
595 | isOn(SW_USE_CHINREM_GCD) |
---|
596 | && (isPurePoly_m(fc)) && (isPurePoly_m(gc)) |
---|
597 | ) |
---|
598 | { |
---|
599 | #if 0 |
---|
600 | if ( p1 == fc.level() ) |
---|
601 | fc = chinrem_gcd( fc, gc ); |
---|
602 | else |
---|
603 | { |
---|
604 | fc = replacevar( fc, Variable(p1), Variable(mp) ); |
---|
605 | gc = replacevar( gc, Variable(p1), Variable(mp) ); |
---|
606 | fc = replacevar( chinrem_gcd( fc, gc ), Variable(mp), Variable(p1) ); |
---|
607 | } |
---|
608 | #else |
---|
609 | fc = chinrem_gcd( fc, gc); |
---|
610 | #endif |
---|
611 | } |
---|
612 | else |
---|
613 | { |
---|
614 | fc = gcd_poly_0( fc, gc ); |
---|
615 | } |
---|
616 | } |
---|
617 | else |
---|
618 | { |
---|
619 | fc = gcd_poly_0( fc, gc ); |
---|
620 | } |
---|
621 | if ( d1.degree() > 0 ) |
---|
622 | fc *= d1; |
---|
623 | return fc; |
---|
624 | } |
---|
625 | //}}} |
---|
626 | |
---|
627 | //{{{ static CanonicalForm cf_content ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
628 | //{{{ docu |
---|
629 | // |
---|
630 | // cf_content() - return gcd(g, content(f)). |
---|
631 | // |
---|
632 | // content(f) is calculated with respect to f's main variable. |
---|
633 | // |
---|
634 | // Used by gcd(), content(), content( CF, Variable ). |
---|
635 | // |
---|
636 | //}}} |
---|
637 | static CanonicalForm |
---|
638 | cf_content ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
639 | { |
---|
640 | if ( f.inPolyDomain() || ( f.inExtension() && ! getReduce( f.mvar() ) ) ) |
---|
641 | { |
---|
642 | CFIterator i = f; |
---|
643 | CanonicalForm result = g; |
---|
644 | while ( i.hasTerms() && ! result.isOne() ) |
---|
645 | { |
---|
646 | result = gcd( i.coeff(), result ); |
---|
647 | i++; |
---|
648 | } |
---|
649 | return result; |
---|
650 | } |
---|
651 | else |
---|
652 | return abs( f ); |
---|
653 | } |
---|
654 | //}}} |
---|
655 | |
---|
656 | //{{{ CanonicalForm content ( const CanonicalForm & f ) |
---|
657 | //{{{ docu |
---|
658 | // |
---|
659 | // content() - return content(f) with respect to main variable. |
---|
660 | // |
---|
661 | // Normalizes result. |
---|
662 | // |
---|
663 | //}}} |
---|
664 | CanonicalForm |
---|
665 | content ( const CanonicalForm & f ) |
---|
666 | { |
---|
667 | if ( f.inPolyDomain() || ( f.inExtension() && ! getReduce( f.mvar() ) ) ) |
---|
668 | { |
---|
669 | CFIterator i = f; |
---|
670 | CanonicalForm result = abs( i.coeff() ); |
---|
671 | i++; |
---|
672 | while ( i.hasTerms() && ! result.isOne() ) |
---|
673 | { |
---|
674 | result = gcd( i.coeff(), result ); |
---|
675 | i++; |
---|
676 | } |
---|
677 | return result; |
---|
678 | } |
---|
679 | else |
---|
680 | return abs( f ); |
---|
681 | } |
---|
682 | //}}} |
---|
683 | |
---|
684 | //{{{ CanonicalForm content ( const CanonicalForm & f, const Variable & x ) |
---|
685 | //{{{ docu |
---|
686 | // |
---|
687 | // content() - return content(f) with respect to x. |
---|
688 | // |
---|
689 | // x should be a polynomial variable. |
---|
690 | // |
---|
691 | //}}} |
---|
692 | CanonicalForm |
---|
693 | content ( const CanonicalForm & f, const Variable & x ) |
---|
694 | { |
---|
695 | ASSERT( x.level() > 0, "cannot calculate content with respect to algebraic variable" ); |
---|
696 | Variable y = f.mvar(); |
---|
697 | |
---|
698 | if ( y == x ) |
---|
699 | return cf_content( f, 0 ); |
---|
700 | else if ( y < x ) |
---|
701 | return f; |
---|
702 | else |
---|
703 | return swapvar( content( swapvar( f, y, x ), y ), y, x ); |
---|
704 | } |
---|
705 | //}}} |
---|
706 | |
---|
707 | //{{{ CanonicalForm vcontent ( const CanonicalForm & f, const Variable & x ) |
---|
708 | //{{{ docu |
---|
709 | // |
---|
710 | // vcontent() - return content of f with repect to variables >= x. |
---|
711 | // |
---|
712 | // The content is recursively calculated over all coefficients in |
---|
713 | // f having level less than x. x should be a polynomial |
---|
714 | // variable. |
---|
715 | // |
---|
716 | //}}} |
---|
717 | CanonicalForm |
---|
718 | vcontent ( const CanonicalForm & f, const Variable & x ) |
---|
719 | { |
---|
720 | ASSERT( x.level() > 0, "cannot calculate vcontent with respect to algebraic variable" ); |
---|
721 | |
---|
722 | if ( f.mvar() <= x ) |
---|
723 | return content( f, x ); |
---|
724 | else { |
---|
725 | CFIterator i; |
---|
726 | CanonicalForm d = 0; |
---|
727 | for ( i = f; i.hasTerms() && ! d.isOne(); i++ ) |
---|
728 | d = gcd( d, vcontent( i.coeff(), x ) ); |
---|
729 | return d; |
---|
730 | } |
---|
731 | } |
---|
732 | //}}} |
---|
733 | |
---|
734 | //{{{ CanonicalForm pp ( const CanonicalForm & f ) |
---|
735 | //{{{ docu |
---|
736 | // |
---|
737 | // pp() - return primitive part of f. |
---|
738 | // |
---|
739 | // Returns zero if f equals zero, otherwise f / content(f). |
---|
740 | // |
---|
741 | //}}} |
---|
742 | CanonicalForm |
---|
743 | pp ( const CanonicalForm & f ) |
---|
744 | { |
---|
745 | if ( f.isZero() ) |
---|
746 | return f; |
---|
747 | else |
---|
748 | return f / content( f ); |
---|
749 | } |
---|
750 | //}}} |
---|
751 | |
---|
752 | CanonicalForm |
---|
753 | gcd ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
754 | { |
---|
755 | bool b = f.isZero(); |
---|
756 | if ( b || g.isZero() ) |
---|
757 | { |
---|
758 | if ( b ) |
---|
759 | return abs( g ); |
---|
760 | else |
---|
761 | return abs( f ); |
---|
762 | } |
---|
763 | if ( f.inPolyDomain() || g.inPolyDomain() ) |
---|
764 | { |
---|
765 | if ( f.mvar() != g.mvar() ) |
---|
766 | { |
---|
767 | if ( f.mvar() > g.mvar() ) |
---|
768 | return cf_content( f, g ); |
---|
769 | else |
---|
770 | return cf_content( g, f ); |
---|
771 | } |
---|
772 | if (isOn(SW_USE_QGCD)) |
---|
773 | { |
---|
774 | Variable m; |
---|
775 | if ((hasFirstAlgVar(f,m) || hasFirstAlgVar(g,m)) |
---|
776 | //&& f.isUnivariate() |
---|
777 | //&& g.isUnivariate() |
---|
778 | && (getCharacteristic() == 0) |
---|
779 | ) |
---|
780 | { |
---|
781 | //if ((f.level()==g.level()) && f.isUnivariate() && g.isUnivariate()) |
---|
782 | // return univarQGCD(f,g); |
---|
783 | //else |
---|
784 | //return QGCD(f,g); |
---|
785 | bool on_rational = isOn(SW_RATIONAL); |
---|
786 | CanonicalForm r=QGCD(f,g); |
---|
787 | On(SW_RATIONAL); |
---|
788 | CanonicalForm cdF = bCommonDen( r ); |
---|
789 | if (!on_rational) Off(SW_RATIONAL); |
---|
790 | return cdF*r; |
---|
791 | } |
---|
792 | } |
---|
793 | |
---|
794 | if ( f.inExtension() && getReduce( f.mvar() ) ) |
---|
795 | return CanonicalForm(1); |
---|
796 | else |
---|
797 | { |
---|
798 | if ( fdivides( f, g ) ) |
---|
799 | return abs( f ); |
---|
800 | else if ( fdivides( g, f ) ) |
---|
801 | return abs( g ); |
---|
802 | if ( !( getCharacteristic() == 0 && isOn( SW_RATIONAL ) ) ) |
---|
803 | { |
---|
804 | CanonicalForm d; |
---|
805 | #if 1 |
---|
806 | do{ d = gcd_poly( f, g ); } |
---|
807 | while ((!fdivides(d,f)) || (!fdivides(d,g))); |
---|
808 | #else |
---|
809 | while(1) |
---|
810 | { |
---|
811 | d = gcd_poly( f, g ); |
---|
812 | if ((fdivides(d,f)) && (fdivides(d,g))) break; |
---|
813 | printf("g"); fflush(stdout); |
---|
814 | } |
---|
815 | #endif |
---|
816 | return abs( d ); |
---|
817 | } |
---|
818 | else |
---|
819 | { |
---|
820 | CanonicalForm cdF = bCommonDen( f ); |
---|
821 | CanonicalForm cdG = bCommonDen( g ); |
---|
822 | Off( SW_RATIONAL ); |
---|
823 | CanonicalForm l = lcm( cdF, cdG ); |
---|
824 | On( SW_RATIONAL ); |
---|
825 | CanonicalForm F = f * l, G = g * l; |
---|
826 | Off( SW_RATIONAL ); |
---|
827 | do { l = gcd_poly( F, G ); } |
---|
828 | while ((!fdivides(l,F)) || (!fdivides(l,G))); |
---|
829 | On( SW_RATIONAL ); |
---|
830 | return abs( l ); |
---|
831 | } |
---|
832 | } |
---|
833 | } |
---|
834 | if ( f.inBaseDomain() && g.inBaseDomain() ) |
---|
835 | return bgcd( f, g ); |
---|
836 | else |
---|
837 | return 1; |
---|
838 | } |
---|
839 | |
---|
840 | //{{{ CanonicalForm lcm ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
841 | //{{{ docu |
---|
842 | // |
---|
843 | // lcm() - return least common multiple of f and g. |
---|
844 | // |
---|
845 | // The lcm is calculated using the formula lcm(f, g) = f * g / gcd(f, g). |
---|
846 | // |
---|
847 | // Returns zero if one of f or g equals zero. |
---|
848 | // |
---|
849 | //}}} |
---|
850 | CanonicalForm |
---|
851 | lcm ( const CanonicalForm & f, const CanonicalForm & g ) |
---|
852 | { |
---|
853 | if ( f.isZero() || g.isZero() ) |
---|
854 | return 0; |
---|
855 | else |
---|
856 | return ( f / gcd( f, g ) ) * g; |
---|
857 | } |
---|
858 | //}}} |
---|
859 | |
---|
860 | #ifdef HAVE_NTL |
---|
861 | |
---|
862 | static CanonicalForm |
---|
863 | gcd_univar_ntl0( const CanonicalForm & F, const CanonicalForm & G ) |
---|
864 | { |
---|
865 | ZZX F1=convertFacCF2NTLZZX(F); |
---|
866 | ZZX G1=convertFacCF2NTLZZX(G); |
---|
867 | ZZX R=GCD(F1,G1); |
---|
868 | return convertNTLZZX2CF(R,F.mvar()); |
---|
869 | } |
---|
870 | |
---|
871 | static CanonicalForm |
---|
872 | gcd_univar_ntlp( const CanonicalForm & F, const CanonicalForm & G ) |
---|
873 | { |
---|
874 | if (fac_NTL_char!=getCharacteristic()) |
---|
875 | { |
---|
876 | fac_NTL_char=getCharacteristic(); |
---|
877 | #ifdef NTL_ZZ |
---|
878 | ZZ r; |
---|
879 | r=getCharacteristic(); |
---|
880 | ZZ_pContext ccc(r); |
---|
881 | #else |
---|
882 | zz_pContext ccc(getCharacteristic()); |
---|
883 | #endif |
---|
884 | ccc.restore(); |
---|
885 | #ifdef NTL_ZZ |
---|
886 | ZZ_p::init(r); |
---|
887 | #else |
---|
888 | zz_p::init(getCharacteristic()); |
---|
889 | #endif |
---|
890 | } |
---|
891 | #ifdef NTL_ZZ |
---|
892 | ZZ_pX F1=convertFacCF2NTLZZpX(F); |
---|
893 | ZZ_pX G1=convertFacCF2NTLZZpX(G); |
---|
894 | ZZ_pX R=GCD(F1,G1); |
---|
895 | return convertNTLZZpX2CF(R,F.mvar()); |
---|
896 | #else |
---|
897 | zz_pX F1=convertFacCF2NTLzzpX(F); |
---|
898 | zz_pX G1=convertFacCF2NTLzzpX(G); |
---|
899 | zz_pX R=GCD(F1,G1); |
---|
900 | return convertNTLzzpX2CF(R,F.mvar()); |
---|
901 | #endif |
---|
902 | } |
---|
903 | |
---|
904 | #endif |
---|
905 | |
---|
906 | static bool |
---|
907 | gcd_avoid_mtaildegree ( CanonicalForm & f1, CanonicalForm & g1, CanonicalForm & d1 ) |
---|
908 | { |
---|
909 | bool rdy = true; |
---|
910 | int df = f1.taildegree(); |
---|
911 | int dg = g1.taildegree(); |
---|
912 | |
---|
913 | d1 = d1.genOne(); |
---|
914 | if ( dg == 0 ) |
---|
915 | { |
---|
916 | if ( df == 0 ) |
---|
917 | return false; |
---|
918 | else |
---|
919 | { |
---|
920 | if ( f1.degree() == df ) |
---|
921 | d1 = cf_content( g1, LC( f1 ) ); |
---|
922 | else |
---|
923 | { |
---|
924 | f1 /= power( f1.mvar(), df ); |
---|
925 | rdy = false; |
---|
926 | } |
---|
927 | } |
---|
928 | } |
---|
929 | else |
---|
930 | { |
---|
931 | if ( df == 0) |
---|
932 | { |
---|
933 | if ( g1.degree() == dg ) |
---|
934 | d1 = cf_content( f1, LC( g1 ) ); |
---|
935 | else |
---|
936 | { |
---|
937 | g1 /= power( g1.mvar(), dg ); |
---|
938 | rdy = false; |
---|
939 | } |
---|
940 | } |
---|
941 | else |
---|
942 | { |
---|
943 | if ( df > dg ) |
---|
944 | d1 = power( f1.mvar(), dg ); |
---|
945 | else |
---|
946 | d1 = power( f1.mvar(), df ); |
---|
947 | if ( f1.degree() == df ) |
---|
948 | { |
---|
949 | if (g1.degree() == dg) |
---|
950 | d1 *= gcd( LC( f1 ), LC( g1 ) ); |
---|
951 | else |
---|
952 | { |
---|
953 | g1 /= power( g1.mvar(), dg); |
---|
954 | d1 *= cf_content( g1, LC( f1 ) ); |
---|
955 | } |
---|
956 | } |
---|
957 | else |
---|
958 | { |
---|
959 | f1 /= power( f1.mvar(), df ); |
---|
960 | if ( g1.degree() == dg ) |
---|
961 | d1 *= cf_content( f1, LC( g1 ) ); |
---|
962 | else |
---|
963 | { |
---|
964 | g1 /= power( g1.mvar(), dg ); |
---|
965 | rdy = false; |
---|
966 | } |
---|
967 | } |
---|
968 | } |
---|
969 | } |
---|
970 | return rdy; |
---|
971 | } |
---|
972 | |
---|
973 | /* |
---|
974 | * compute positions p1 and pe of optimal variables: |
---|
975 | * pe is used in "ezgcd" and |
---|
976 | * p1 in "gcd_poly1" |
---|
977 | */ |
---|
978 | static |
---|
979 | void optvalues ( const int * df, const int * dg, const int n, int & p1, int &pe ) |
---|
980 | { |
---|
981 | int i, o1, oe; |
---|
982 | if ( df[n] > dg[n] ) |
---|
983 | { |
---|
984 | o1 = df[n]; oe = dg[n]; |
---|
985 | } |
---|
986 | else |
---|
987 | { |
---|
988 | o1 = dg[n]; oe = df[n]; |
---|
989 | } |
---|
990 | i = n-1; |
---|
991 | while ( i > 0 ) |
---|
992 | { |
---|
993 | if ( df[i] != 0 ) |
---|
994 | { |
---|
995 | if ( df[i] > dg[i] ) |
---|
996 | { |
---|
997 | if ( o1 > df[i]) { o1 = df[i]; p1 = i; } |
---|
998 | if ( oe <= dg[i]) { oe = dg[i]; pe = i; } |
---|
999 | } |
---|
1000 | else |
---|
1001 | { |
---|
1002 | if ( o1 > dg[i]) { o1 = dg[i]; p1 = i; } |
---|
1003 | if ( oe <= df[i]) { oe = df[i]; pe = i; } |
---|
1004 | } |
---|
1005 | } |
---|
1006 | i--; |
---|
1007 | } |
---|
1008 | } |
---|
1009 | |
---|
1010 | /* |
---|
1011 | * make some changes of variables, see optvalues |
---|
1012 | */ |
---|
1013 | static void |
---|
1014 | cf_prepgcd( const CanonicalForm & f, const CanonicalForm & g, int & cc, int & p1, int &pe ) |
---|
1015 | { |
---|
1016 | int i, k, n; |
---|
1017 | n = f.level(); |
---|
1018 | cc = 0; |
---|
1019 | p1 = pe = n; |
---|
1020 | if ( n == 1 ) |
---|
1021 | return; |
---|
1022 | int * degsf = new int[n+1]; |
---|
1023 | int * degsg = new int[n+1]; |
---|
1024 | for ( i = n; i > 0; i-- ) |
---|
1025 | { |
---|
1026 | degsf[i] = degsg[i] = 0; |
---|
1027 | } |
---|
1028 | degsf = degrees( f, degsf ); |
---|
1029 | degsg = degrees( g, degsg ); |
---|
1030 | |
---|
1031 | k = 0; |
---|
1032 | for ( i = n-1; i > 0; i-- ) |
---|
1033 | { |
---|
1034 | if ( degsf[i] == 0 ) |
---|
1035 | { |
---|
1036 | if ( degsg[i] != 0 ) |
---|
1037 | { |
---|
1038 | cc = -i; |
---|
1039 | break; |
---|
1040 | } |
---|
1041 | } |
---|
1042 | else |
---|
1043 | { |
---|
1044 | if ( degsg[i] == 0 ) |
---|
1045 | { |
---|
1046 | cc = i; |
---|
1047 | break; |
---|
1048 | } |
---|
1049 | else k++; |
---|
1050 | } |
---|
1051 | } |
---|
1052 | |
---|
1053 | if ( ( cc == 0 ) && ( k != 0 ) ) |
---|
1054 | optvalues( degsf, degsg, n, p1, pe ); |
---|
1055 | if ( ( pe != 1 ) && ( degsf[1] != 0 ) ) |
---|
1056 | pe = -pe; |
---|
1057 | |
---|
1058 | delete [] degsf; |
---|
1059 | delete [] degsg; |
---|
1060 | } |
---|
1061 | |
---|
1062 | |
---|
1063 | static CanonicalForm |
---|
1064 | balance_p ( const CanonicalForm & f, const CanonicalForm & q ) |
---|
1065 | { |
---|
1066 | Variable x = f.mvar(); |
---|
1067 | CanonicalForm result = 0, qh = q / 2; |
---|
1068 | CanonicalForm c; |
---|
1069 | CFIterator i; |
---|
1070 | for ( i = f; i.hasTerms(); i++ ) |
---|
1071 | { |
---|
1072 | c = i.coeff(); |
---|
1073 | if ( c.inCoeffDomain()) |
---|
1074 | { |
---|
1075 | if ( c > qh ) |
---|
1076 | result += power( x, i.exp() ) * (c - q); |
---|
1077 | else |
---|
1078 | result += power( x, i.exp() ) * c; |
---|
1079 | } |
---|
1080 | else |
---|
1081 | result += power( x, i.exp() ) * balance_p(c,q); |
---|
1082 | } |
---|
1083 | return result; |
---|
1084 | } |
---|
1085 | |
---|
1086 | CanonicalForm chinrem_gcd ( const CanonicalForm & FF, const CanonicalForm & GG ) |
---|
1087 | { |
---|
1088 | CanonicalForm f, g, cg, cl, q, Dp, newD, D, newq; |
---|
1089 | int p, i, dp_deg, d_deg;; |
---|
1090 | |
---|
1091 | CanonicalForm cd = bCommonDen( FF ); |
---|
1092 | f=cd*FF; |
---|
1093 | f /=vcontent(f,Variable(1)); |
---|
1094 | //cd = bCommonDen( f ); f *=cd; |
---|
1095 | //f /=vcontent(f,Variable(1)); |
---|
1096 | |
---|
1097 | cd = bCommonDen( GG ); |
---|
1098 | g=cd*GG; |
---|
1099 | g /=vcontent(g,Variable(1)); |
---|
1100 | //cd = bCommonDen( g ); g *=cd; |
---|
1101 | //g /=vcontent(g,Variable(1)); |
---|
1102 | |
---|
1103 | q = 0; |
---|
1104 | i = cf_getNumBigPrimes() - 1; |
---|
1105 | cl = f.lc()* g.lc(); |
---|
1106 | |
---|
1107 | while ( true ) |
---|
1108 | { |
---|
1109 | p = cf_getBigPrime( i ); |
---|
1110 | i--; |
---|
1111 | while ( i >= 0 && mod( cl, p ) == 0 ) |
---|
1112 | { |
---|
1113 | p = cf_getBigPrime( i ); |
---|
1114 | i--; |
---|
1115 | } |
---|
1116 | //printf("try p=%d\n",p); |
---|
1117 | setCharacteristic( p ); |
---|
1118 | Dp = gcd_poly( mapinto( f ), mapinto( g ) ); |
---|
1119 | Dp /=Dp.lc(); |
---|
1120 | setCharacteristic( 0 ); |
---|
1121 | dp_deg=totaldegree(Dp); |
---|
1122 | if ( dp_deg == 0 ) |
---|
1123 | { |
---|
1124 | //printf(" -> 1\n"); |
---|
1125 | return CanonicalForm(1); |
---|
1126 | } |
---|
1127 | if ( q.isZero() ) |
---|
1128 | { |
---|
1129 | D = mapinto( Dp ); |
---|
1130 | d_deg=dp_deg; |
---|
1131 | q = p; |
---|
1132 | } |
---|
1133 | else |
---|
1134 | { |
---|
1135 | if ( dp_deg == d_deg ) |
---|
1136 | { |
---|
1137 | chineseRemainder( D, q, mapinto( Dp ), p, newD, newq ); |
---|
1138 | q = newq; |
---|
1139 | D = newD; |
---|
1140 | } |
---|
1141 | else if ( dp_deg < d_deg ) |
---|
1142 | { |
---|
1143 | //printf(" were all bad, try more\n"); |
---|
1144 | // all previous p's are bad primes |
---|
1145 | q = p; |
---|
1146 | D = mapinto( Dp ); |
---|
1147 | d_deg=dp_deg; |
---|
1148 | } |
---|
1149 | else |
---|
1150 | { |
---|
1151 | //printf(" was bad, try more\n"); |
---|
1152 | } |
---|
1153 | //else dp_deg > d_deg: bad prime |
---|
1154 | } |
---|
1155 | if ( i >= 0 ) |
---|
1156 | { |
---|
1157 | CanonicalForm Dn= Farey(D,q); |
---|
1158 | int is_rat=isOn(SW_RATIONAL); |
---|
1159 | On(SW_RATIONAL); |
---|
1160 | CanonicalForm cd = bCommonDen( Dn ); // we need On(SW_RATIONAL) |
---|
1161 | if (!is_rat) Off(SW_RATIONAL); |
---|
1162 | Dn *=cd; |
---|
1163 | //Dn /=vcontent(Dn,Variable(1)); |
---|
1164 | if ( fdivides( Dn, f ) && fdivides( Dn, g ) ) |
---|
1165 | { |
---|
1166 | //printf(" -> success\n"); |
---|
1167 | return Dn; |
---|
1168 | } |
---|
1169 | //else: try more primes |
---|
1170 | } |
---|
1171 | else |
---|
1172 | { // try other method |
---|
1173 | //printf("try other gcd\n"); |
---|
1174 | Off(SW_USE_CHINREM_GCD); |
---|
1175 | D=gcd_poly( f, g ); |
---|
1176 | On(SW_USE_CHINREM_GCD); |
---|
1177 | return D; |
---|
1178 | } |
---|
1179 | } |
---|
1180 | } |
---|
1181 | #include "algext.cc" |
---|