1 | // -*- c++ -*- |
---|
2 | //***************************************************************************** |
---|
3 | /** @file cf_map_ext.cc |
---|
4 | * |
---|
5 | * @author Martin Lee |
---|
6 | * @date 16.11.2009 |
---|
7 | * |
---|
8 | * This file implements functions to map between extensions of finite fields |
---|
9 | * |
---|
10 | * @par Copyright: |
---|
11 | * (c) by The SINGULAR Team, see LICENSE file |
---|
12 | * |
---|
13 | * @internal |
---|
14 | * @version \$Id$ |
---|
15 | * |
---|
16 | **/ |
---|
17 | //***************************************************************************** |
---|
18 | |
---|
19 | #include <config.h> |
---|
20 | |
---|
21 | #include "assert.h" |
---|
22 | #include "debug.h" |
---|
23 | |
---|
24 | #include "canonicalform.h" |
---|
25 | #include "cf_util.h" |
---|
26 | |
---|
27 | #ifdef HAVE_NTL |
---|
28 | #include <NTL/ZZ_pEXFactoring.h> |
---|
29 | #include "NTLconvert.h" |
---|
30 | #endif |
---|
31 | |
---|
32 | // cyclotomoic polys: |
---|
33 | #include "cf_cyclo.h" |
---|
34 | |
---|
35 | #include "cf_map_ext.h" |
---|
36 | |
---|
37 | #ifdef HAVE_NTL |
---|
38 | |
---|
39 | /// helper function |
---|
40 | static inline |
---|
41 | int findItem (const CFList& list, const CanonicalForm& item) |
---|
42 | { |
---|
43 | int result= 1; |
---|
44 | for (CFListIterator i= list; i.hasItem(); i++, result++) |
---|
45 | { |
---|
46 | if (i.getItem() == item) |
---|
47 | return result; |
---|
48 | } |
---|
49 | return 0; |
---|
50 | } |
---|
51 | |
---|
52 | /// helper function |
---|
53 | static inline |
---|
54 | CanonicalForm getItem (const CFList& list, const int& pos) |
---|
55 | { |
---|
56 | int j= 1; |
---|
57 | if (pos > list.length() || pos < 1) return 0; |
---|
58 | for (CFListIterator i= list; j <= pos; i++, j++) |
---|
59 | { |
---|
60 | if (j == pos) |
---|
61 | return i.getItem(); |
---|
62 | } |
---|
63 | } |
---|
64 | |
---|
65 | |
---|
66 | /// \f$ F_{p} (\alpha ) \subset F_{p}(\beta ) \f$ and \f$ \alpha \f$ is a |
---|
67 | /// primitive element, returns the image of \f$ \alpha \f$ |
---|
68 | static inline |
---|
69 | CanonicalForm mapUp (const Variable& alpha, const Variable& beta) |
---|
70 | { |
---|
71 | int p= getCharacteristic (); |
---|
72 | zz_p::init (p); |
---|
73 | zz_pX NTL_mipo= convertFacCF2NTLzzpX (getMipo (beta)); |
---|
74 | zz_pE::init (NTL_mipo); |
---|
75 | zz_pEX NTL_alpha_mipo= convertFacCF2NTLzz_pEX (getMipo(alpha), NTL_mipo); |
---|
76 | zz_pE root= FindRoot (NTL_alpha_mipo); |
---|
77 | return convertNTLzzpE2CF (root, beta); |
---|
78 | } |
---|
79 | |
---|
80 | /// the CanonicalForm G is the output of map_up, returns F considered as an |
---|
81 | /// element over \f$ F_{p}(\alpha ) \f$, WARNING: make sure coefficients of F |
---|
82 | /// are really elements of a subfield of \f$ F_{p}(\beta ) \f$ which is |
---|
83 | /// isomorphic to \f$ F_{p}(\alpha ) \f$ |
---|
84 | static inline |
---|
85 | CanonicalForm |
---|
86 | mapDown (const CanonicalForm& F, const Variable& alpha, const |
---|
87 | CanonicalForm& G, CFList& source, CFList& dest) |
---|
88 | { |
---|
89 | CanonicalForm buf, buf2; |
---|
90 | int counter= 0; |
---|
91 | int pos; |
---|
92 | int p= getCharacteristic(); |
---|
93 | int d= degree(getMipo(alpha)); |
---|
94 | int bound= ipower(p, d); |
---|
95 | CanonicalForm result= 0; |
---|
96 | CanonicalForm remainder; |
---|
97 | CanonicalForm alpha_power; |
---|
98 | if (degree(F) == 0) return F; |
---|
99 | if (F.level() < 0 && F.isUnivariate()) |
---|
100 | { |
---|
101 | buf= F; |
---|
102 | remainder= mod (buf, G); |
---|
103 | ASSERT (remainder.isZero(), "alpha is not primitive"); |
---|
104 | pos= findItem (source, buf); |
---|
105 | if (pos == 0) |
---|
106 | source.append (buf); |
---|
107 | buf2= buf; |
---|
108 | while (degree (buf) != 0 && counter < bound) |
---|
109 | { |
---|
110 | buf /= G; |
---|
111 | counter++; |
---|
112 | if (buf == buf2) break; |
---|
113 | } |
---|
114 | ASSERT (counter >= bound, "alpha is not primitive"); |
---|
115 | if (pos == 0) |
---|
116 | { |
---|
117 | alpha_power= buf*power (alpha, counter); |
---|
118 | dest.append (alpha_power); |
---|
119 | } |
---|
120 | else |
---|
121 | alpha_power= getItem (dest, pos); |
---|
122 | result = alpha_power; |
---|
123 | return result; |
---|
124 | } |
---|
125 | else |
---|
126 | { |
---|
127 | for (CFIterator i= F; i.hasTerms(); i++) |
---|
128 | { |
---|
129 | buf= mapDown (i.coeff(), alpha, G, source, dest); |
---|
130 | result += buf*power(F.mvar(), i.exp()); |
---|
131 | } |
---|
132 | return result; |
---|
133 | } |
---|
134 | } |
---|
135 | |
---|
136 | /// helper function |
---|
137 | static inline |
---|
138 | CanonicalForm GF2FalphaHelper (const CanonicalForm& F, const Variable& alpha) |
---|
139 | { |
---|
140 | int exp; |
---|
141 | CanonicalForm result= 0; |
---|
142 | char gf_name_buf= gf_name; |
---|
143 | InternalCF* buf; |
---|
144 | if (F.inBaseDomain()) |
---|
145 | { |
---|
146 | if (F.isOne()) return 1; |
---|
147 | buf= F.getval(); |
---|
148 | exp= imm2int(buf); |
---|
149 | result= power (alpha, exp).mapinto(); |
---|
150 | return result; |
---|
151 | } |
---|
152 | for (CFIterator i= F; i.hasTerms(); i++) |
---|
153 | result += GF2FalphaHelper (i.coeff(), alpha)*power (F.mvar(), i.exp()); |
---|
154 | return result; |
---|
155 | } |
---|
156 | |
---|
157 | /// changes representation by primitive element to representation by residue |
---|
158 | /// classes modulo a Conway polynomial |
---|
159 | CanonicalForm GF2FalphaRep (const CanonicalForm& F, const Variable& alpha) |
---|
160 | { |
---|
161 | Variable beta= rootOf (gf_mipo); |
---|
162 | return GF2FalphaHelper (F, beta) (alpha, beta); |
---|
163 | } |
---|
164 | |
---|
165 | /// change representation by residue classes modulo a Conway polynomial |
---|
166 | /// to representation by primitive element |
---|
167 | CanonicalForm Falpha2GFRep (const CanonicalForm& F) |
---|
168 | { |
---|
169 | CanonicalForm result= 0; |
---|
170 | InternalCF* buf; |
---|
171 | |
---|
172 | if (F.inCoeffDomain()) |
---|
173 | { |
---|
174 | if (F.inBaseDomain()) |
---|
175 | return F.mapinto(); |
---|
176 | else |
---|
177 | { |
---|
178 | for (CFIterator i= F; i.hasTerms(); i++) |
---|
179 | { |
---|
180 | buf= int2imm_gf (i.exp()); |
---|
181 | result += i.coeff().mapinto()*CanonicalForm (buf); |
---|
182 | } |
---|
183 | } |
---|
184 | return result; |
---|
185 | } |
---|
186 | for (CFIterator i= F; i.hasTerms(); i++) |
---|
187 | result += Falpha2GFRep (i.coeff())*power (F.mvar(), i.exp()); |
---|
188 | return result; |
---|
189 | } |
---|
190 | |
---|
191 | /// GF_map_up helper |
---|
192 | static inline |
---|
193 | CanonicalForm GFPowUp (const CanonicalForm & F, int k) |
---|
194 | { |
---|
195 | if (F.isOne()) return F; |
---|
196 | CanonicalForm result= 0; |
---|
197 | if (F.inBaseDomain()) |
---|
198 | return power(F, k); |
---|
199 | for (CFIterator i= F; i.hasTerms(); i++) |
---|
200 | result += GFPowUp (i.coeff(), k)*power (F.mvar(), i.exp()); |
---|
201 | return result; |
---|
202 | } |
---|
203 | |
---|
204 | /// maps a polynomial over \f$ GF(p^{k}) \f$ to a polynomial over |
---|
205 | /// \f$ GF(p^{d}) \f$ , d needs to be a multiple of k |
---|
206 | CanonicalForm GFMapUp (const CanonicalForm & F, int k) |
---|
207 | { |
---|
208 | int d= getGFDegree(); |
---|
209 | ASSERT (d%k == 0, "multiple of GF degree expected"); |
---|
210 | int p= getCharacteristic(); |
---|
211 | int ext_field_size= ipower (p, d); |
---|
212 | int field_size= ipower ( p, k); |
---|
213 | int diff= (ext_field_size - 1)/(field_size - 1); |
---|
214 | return GFPowUp (F, diff); |
---|
215 | } |
---|
216 | |
---|
217 | /// GFMapDown helper |
---|
218 | static inline |
---|
219 | CanonicalForm GFPowDown (const CanonicalForm & F, int k) |
---|
220 | { |
---|
221 | if (F.isOne()) return F; |
---|
222 | CanonicalForm result= 0; |
---|
223 | int exp; |
---|
224 | InternalCF* buf; |
---|
225 | if (F.inBaseDomain()) |
---|
226 | { |
---|
227 | buf= F.getval(); |
---|
228 | exp= imm2int (buf); |
---|
229 | if ((exp % k) == 0) |
---|
230 | exp= exp/k; |
---|
231 | else |
---|
232 | return -1; |
---|
233 | |
---|
234 | buf= int2imm_gf (exp); |
---|
235 | return CanonicalForm (buf); |
---|
236 | } |
---|
237 | for (CFIterator i= F; i.hasTerms(); i++) |
---|
238 | result += GFPowDown (i.coeff(), k)*power (F.mvar(), i.exp()); |
---|
239 | return result; |
---|
240 | } |
---|
241 | |
---|
242 | /// maps a polynomial over \f$ GF(p^{d}) \f$ to a polynomial over |
---|
243 | /// \f$ GF(p^{k})\f$ , d needs to be a multiple of k |
---|
244 | CanonicalForm GFMapDown (const CanonicalForm & F, int k) |
---|
245 | { |
---|
246 | int d= getGFDegree(); |
---|
247 | ASSERT (d % k == 0, "multiple of GF degree expected"); |
---|
248 | int p= getCharacteristic(); |
---|
249 | int ext_field_size= ipower (p, d); |
---|
250 | int field_size= ipower ( p, k); |
---|
251 | int diff= (ext_field_size - 1)/(field_size - 1); |
---|
252 | return GFPowDown (F, diff); |
---|
253 | } |
---|
254 | |
---|
255 | static inline |
---|
256 | CanonicalForm mapUp (const CanonicalForm& F, const CanonicalForm& G, |
---|
257 | const Variable& alpha, const CanonicalForm& H, |
---|
258 | CFList& source, CFList& dest) |
---|
259 | { |
---|
260 | CanonicalForm buf, buf2; |
---|
261 | int counter= 0; |
---|
262 | int pos; |
---|
263 | int p= getCharacteristic(); |
---|
264 | int d= degree (getMipo(alpha)); |
---|
265 | int bound= ipower(p, d); |
---|
266 | CanonicalForm result= 0; |
---|
267 | CanonicalForm remainder; |
---|
268 | CanonicalForm H_power; |
---|
269 | if (degree(F) <= 0) return F; |
---|
270 | if (F.level() < 0 && F.isUnivariate()) |
---|
271 | { |
---|
272 | buf= F; |
---|
273 | remainder= mod (buf, G); |
---|
274 | ASSERT (remainder.isZero(), "alpha is not primitive"); |
---|
275 | pos= findItem (source, buf); |
---|
276 | if (pos == 0) |
---|
277 | source.append (buf); |
---|
278 | buf2= buf; |
---|
279 | while (degree (buf) != 0 && counter < bound) |
---|
280 | { |
---|
281 | buf /= G; |
---|
282 | counter++; |
---|
283 | if (buf == buf2) break; |
---|
284 | } |
---|
285 | ASSERT (counter >= bound, "alpha is not primitive"); |
---|
286 | if (pos == 0) |
---|
287 | { |
---|
288 | H_power= buf*power (H, counter); |
---|
289 | dest.append (H_power); |
---|
290 | } |
---|
291 | else |
---|
292 | H_power= getItem (dest, pos); |
---|
293 | result = H_power; |
---|
294 | return result; |
---|
295 | } |
---|
296 | else |
---|
297 | { |
---|
298 | for (CFIterator i= F; i.hasTerms(); i++) |
---|
299 | { |
---|
300 | buf= mapUp (i.coeff(), G, alpha, H, source, dest); |
---|
301 | result += buf*power(F.mvar(), i.exp()); |
---|
302 | } |
---|
303 | return result; |
---|
304 | } |
---|
305 | } |
---|
306 | |
---|
307 | /// determine a primitive element of \f$ F_{p} (\alpha ) \f$, |
---|
308 | /// \f$ \beta \f$ is a primitive element of a field which is isomorphic to |
---|
309 | /// \f$ F_{p}(\alpha ) \f$ |
---|
310 | CanonicalForm |
---|
311 | primitiveElement (const Variable& alpha, Variable& beta, bool fail) |
---|
312 | { |
---|
313 | bool primitive= false; |
---|
314 | fail= false; |
---|
315 | primitive= isPrimitive (alpha, fail); |
---|
316 | if (fail) |
---|
317 | return 0; |
---|
318 | if (primitive) |
---|
319 | { |
---|
320 | beta= alpha; |
---|
321 | return alpha; |
---|
322 | } |
---|
323 | CanonicalForm mipo= getMipo (alpha); |
---|
324 | int d= degree (mipo); |
---|
325 | int p= getCharacteristic (); |
---|
326 | zz_p::init (p); |
---|
327 | zz_pX NTL_mipo; |
---|
328 | CanonicalForm mipo2; |
---|
329 | primitive= false; |
---|
330 | fail= false; |
---|
331 | do |
---|
332 | { |
---|
333 | BuildIrred (NTL_mipo, d); |
---|
334 | mipo2= convertNTLzzpX2CF (NTL_mipo, Variable (1)); |
---|
335 | beta= rootOf (mipo2); |
---|
336 | primitive= isPrimitive (beta, fail); |
---|
337 | if (primitive) |
---|
338 | break; |
---|
339 | if (fail) |
---|
340 | return 0; |
---|
341 | } while (1); |
---|
342 | zz_pX alpha_mipo= convertFacCF2NTLzzpX (mipo); |
---|
343 | zz_pE::init (alpha_mipo); |
---|
344 | zz_pEX NTL_beta_mipo= to_zz_pEX (NTL_mipo); |
---|
345 | zz_pE root= FindRoot (NTL_beta_mipo); |
---|
346 | return convertNTLzzpE2CF (root, alpha); |
---|
347 | } |
---|
348 | |
---|
349 | CanonicalForm |
---|
350 | mapDown (const CanonicalForm& F, const CanonicalForm& prim_elem, const |
---|
351 | CanonicalForm& im_prim_elem, const Variable& alpha, CFList& source, |
---|
352 | CFList& dest) |
---|
353 | { |
---|
354 | return mapUp (F, im_prim_elem, alpha, prim_elem, dest, source); |
---|
355 | } |
---|
356 | |
---|
357 | CanonicalForm |
---|
358 | mapUp (const CanonicalForm& F, const Variable& alpha, const Variable& beta, |
---|
359 | const CanonicalForm& prim_elem, const CanonicalForm& im_prim_elem, |
---|
360 | CFList& source, CFList& dest) |
---|
361 | { |
---|
362 | if (prim_elem == alpha) |
---|
363 | return F (im_prim_elem, alpha); |
---|
364 | return mapUp (F, prim_elem, alpha, im_prim_elem, source, dest); |
---|
365 | } |
---|
366 | |
---|
367 | CanonicalForm |
---|
368 | mapPrimElem (const CanonicalForm& primElem, const Variable& alpha, |
---|
369 | const Variable& beta) |
---|
370 | { |
---|
371 | if (primElem == alpha) |
---|
372 | return mapUp (alpha, beta); |
---|
373 | else |
---|
374 | { |
---|
375 | CanonicalForm primElemMipo= findMinPoly (primElem, alpha); |
---|
376 | int p= getCharacteristic (); |
---|
377 | zz_p::init (p); |
---|
378 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (beta)); |
---|
379 | zz_pE::init (NTLMipo); |
---|
380 | zz_pEX NTLPrimElemMipo= convertFacCF2NTLzz_pEX (primElemMipo, NTLMipo); |
---|
381 | zz_pE root= FindRoot (NTLPrimElemMipo); |
---|
382 | return convertNTLzzpE2CF (root, beta); |
---|
383 | } |
---|
384 | } |
---|
385 | |
---|
386 | CanonicalForm |
---|
387 | findMinPoly (const CanonicalForm& F, const Variable& alpha) |
---|
388 | { |
---|
389 | ASSERT (F.isUnivariate() && F.mvar()==alpha,"expected element of F_p(alpha)"); |
---|
390 | |
---|
391 | zz_p::init (getCharacteristic()); |
---|
392 | zz_pX NTLF= convertFacCF2NTLzzpX (F); |
---|
393 | int d= degree (getMipo (alpha)); |
---|
394 | |
---|
395 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo(alpha)); |
---|
396 | zz_pE::init (NTLMipo); |
---|
397 | vec_zz_p pows; |
---|
398 | pows.SetLength (2*d); |
---|
399 | |
---|
400 | zz_pE powNTLF; |
---|
401 | set (powNTLF); |
---|
402 | zz_pE NTLFE= to_zz_pE (NTLF); |
---|
403 | zz_pX buf; |
---|
404 | for (int i= 0; i < 2*d; i++) |
---|
405 | { |
---|
406 | buf= rep (powNTLF); |
---|
407 | buf.rep.SetLength (d); |
---|
408 | pows [i]= buf.rep[0]; |
---|
409 | powNTLF *= NTLFE; |
---|
410 | } |
---|
411 | |
---|
412 | zz_pX NTLMinPoly; |
---|
413 | MinPolySeq (NTLMinPoly, pows, d); |
---|
414 | |
---|
415 | return convertNTLzzpX2CF (NTLMinPoly, Variable (1)); |
---|
416 | } |
---|
417 | |
---|
418 | #endif |
---|