1 | /*****************************************************************************\ |
---|
2 | * Computer Algebra System SINGULAR |
---|
3 | \*****************************************************************************/ |
---|
4 | /** @file facAbsBiFact.cc |
---|
5 | * |
---|
6 | * @author Martin Lee |
---|
7 | * |
---|
8 | **/ |
---|
9 | /*****************************************************************************/ |
---|
10 | |
---|
11 | |
---|
12 | #include "config.h" |
---|
13 | |
---|
14 | |
---|
15 | #include "timing.h" |
---|
16 | #include "debug.h" |
---|
17 | |
---|
18 | #include "facAbsBiFact.h" |
---|
19 | #include "facBivar.h" |
---|
20 | #include "facFqBivar.h" |
---|
21 | #include "cf_reval.h" |
---|
22 | #include "cf_primes.h" |
---|
23 | #include "cf_algorithm.h" |
---|
24 | #ifdef HAVE_FLINT |
---|
25 | #include "FLINTconvert.h" |
---|
26 | #include <flint/fmpz_poly_factor.h> |
---|
27 | #endif |
---|
28 | #ifdef HAVE_NTL |
---|
29 | #include "NTLconvert.h" |
---|
30 | #include <NTL/LLL.h> |
---|
31 | #endif |
---|
32 | |
---|
33 | #ifdef HAVE_NTL |
---|
34 | TIMING_DEFINE_PRINT(fac_Qa_factorize) |
---|
35 | TIMING_DEFINE_PRINT(fac_evalpoint) |
---|
36 | |
---|
37 | CFAFList uniAbsFactorize (const CanonicalForm& F, bool full) |
---|
38 | { |
---|
39 | CFAFList result; |
---|
40 | if (degree (F) == 1) |
---|
41 | { |
---|
42 | bool isRat= isOn (SW_RATIONAL); |
---|
43 | On (SW_RATIONAL); |
---|
44 | result= CFAFList (CFAFactor (F/Lc(F), 1, 1)); |
---|
45 | result.insert (CFAFactor (Lc (F), 1, 1)); |
---|
46 | if (!isRat) |
---|
47 | Off (SW_RATIONAL); |
---|
48 | return result; |
---|
49 | } |
---|
50 | CanonicalForm LcF= 1; |
---|
51 | Variable alpha; |
---|
52 | CFFList QaFactors; |
---|
53 | CFFListIterator iter; |
---|
54 | alpha= rootOf (F); |
---|
55 | QaFactors= factorize (F, alpha); |
---|
56 | iter= QaFactors; |
---|
57 | if (iter.getItem().factor().inCoeffDomain()) |
---|
58 | { |
---|
59 | LcF = iter.getItem().factor(); |
---|
60 | iter++; |
---|
61 | } |
---|
62 | for (;iter.hasItem(); iter++) |
---|
63 | { |
---|
64 | if (full) |
---|
65 | result.append (CFAFactor (iter.getItem().factor(), getMipo (alpha), |
---|
66 | iter.getItem().exp())); |
---|
67 | if (!full && degree (iter.getItem().factor()) == 1) |
---|
68 | { |
---|
69 | result.append (CFAFactor (iter.getItem().factor(), getMipo (alpha), |
---|
70 | iter.getItem().exp())); |
---|
71 | break; |
---|
72 | } |
---|
73 | } |
---|
74 | result.insert (CFAFactor (LcF, 1, 1)); |
---|
75 | return result; |
---|
76 | } |
---|
77 | |
---|
78 | //TODO optimize choice of p -> choose p as large as possible (better than small p since factorization mod p does not require field extension, also less lifting) |
---|
79 | int |
---|
80 | choosePoint (const CanonicalForm& F, int tdegF, CFArray& eval, bool rec, |
---|
81 | int absValue) |
---|
82 | { |
---|
83 | REvaluation E1 (1, 1, IntRandom (absValue)); |
---|
84 | REvaluation E2 (2, 2, IntRandom (absValue)); |
---|
85 | if (rec) |
---|
86 | { |
---|
87 | E1.nextpoint(); |
---|
88 | E2.nextpoint(); |
---|
89 | } |
---|
90 | |
---|
91 | CanonicalForm f, f1, f2, Fp; |
---|
92 | int i, p; |
---|
93 | CFFList f1Factors, f2Factors; |
---|
94 | CFFListIterator iter; |
---|
95 | int count= 0; |
---|
96 | while (1) |
---|
97 | { |
---|
98 | count++; |
---|
99 | f1= E1 (F); |
---|
100 | if (!f1.isZero() && degree (f1) == degree (F,2)) |
---|
101 | { |
---|
102 | f1Factors= factorize (f1); |
---|
103 | if (f1Factors.getFirst().factor().inCoeffDomain()) |
---|
104 | f1Factors.removeFirst(); |
---|
105 | if (f1Factors.length() == 1 && f1Factors.getFirst().exp() == 1) |
---|
106 | { |
---|
107 | f= E2(f1); |
---|
108 | f2= E2 (F); |
---|
109 | f2Factors= factorize (f2); |
---|
110 | Off (SW_RATIONAL); |
---|
111 | if (f2Factors.getFirst().factor().inCoeffDomain()) |
---|
112 | f2Factors.removeFirst(); |
---|
113 | if (f2Factors.length() == 1 && f2Factors.getFirst().exp() == 1) |
---|
114 | { |
---|
115 | ZZX NTLf1= convertFacCF2NTLZZX (f1); |
---|
116 | ZZX NTLf2= convertFacCF2NTLZZX (f2); |
---|
117 | ZZ NTLD1= discriminant (NTLf1); |
---|
118 | ZZ NTLD2= discriminant (NTLf2); |
---|
119 | CanonicalForm D1= convertZZ2CF (NTLD1); |
---|
120 | CanonicalForm D2= convertZZ2CF (NTLD2); |
---|
121 | if ((!f.isZero()) && |
---|
122 | (abs(f)>cf_getSmallPrime (cf_getNumSmallPrimes()-1))) |
---|
123 | { |
---|
124 | for (i= cf_getNumPrimes()-1; i >= 0; i--) |
---|
125 | { |
---|
126 | if (f % CanonicalForm (cf_getPrime (i)) == 0) |
---|
127 | { |
---|
128 | p= cf_getPrime(i); |
---|
129 | Fp= mod (F,p); |
---|
130 | if (totaldegree (Fp) == tdegF && |
---|
131 | degree (mod (f2,p), 1) == degree (F,1) && |
---|
132 | degree (mod (f1, p),2) == degree (F,2)) |
---|
133 | { |
---|
134 | if (mod (D1, p) != 0 && mod (D2, p) != 0) |
---|
135 | { |
---|
136 | eval[0]= E1[1]; |
---|
137 | eval[1]= E2[2]; |
---|
138 | return p; |
---|
139 | } |
---|
140 | } |
---|
141 | } |
---|
142 | } |
---|
143 | } |
---|
144 | else if (!f.isZero()) |
---|
145 | { |
---|
146 | for (i= cf_getNumSmallPrimes()-1; i >= 0; i--) |
---|
147 | { |
---|
148 | if (f % CanonicalForm (cf_getSmallPrime (i)) == 0) |
---|
149 | { |
---|
150 | p= cf_getSmallPrime (i); |
---|
151 | Fp= mod (F,p); |
---|
152 | if (totaldegree (Fp) == tdegF && |
---|
153 | degree (mod (f2, p),1) == degree (F,1) && |
---|
154 | degree (mod (f1,p),2) == degree (F,2)) |
---|
155 | { |
---|
156 | if (mod (D1, p) != 0 && mod (D2, p) != 0) |
---|
157 | { |
---|
158 | eval[0]= E1[1]; |
---|
159 | eval[1]= E2[2]; |
---|
160 | return p; |
---|
161 | } |
---|
162 | } |
---|
163 | } |
---|
164 | } |
---|
165 | } |
---|
166 | } |
---|
167 | E2.nextpoint(); |
---|
168 | On (SW_RATIONAL); |
---|
169 | } |
---|
170 | } |
---|
171 | E1.nextpoint(); |
---|
172 | if (count == 2) |
---|
173 | { |
---|
174 | count= 0; |
---|
175 | absValue++; |
---|
176 | E1=REvaluation (1, 1, IntRandom (absValue)); |
---|
177 | E2=REvaluation (2, 2, IntRandom (absValue)); |
---|
178 | E1.nextpoint(); |
---|
179 | E2.nextpoint(); |
---|
180 | } |
---|
181 | } |
---|
182 | return 0; |
---|
183 | } |
---|
184 | |
---|
185 | //G is assumed to be bivariate, irreducible over Q, primitive wrt x and y, compressed |
---|
186 | CFAFList absBiFactorizeMain (const CanonicalForm& G, bool full) |
---|
187 | { |
---|
188 | CanonicalForm F= bCommonDen (G)*G; |
---|
189 | bool isRat= isOn (SW_RATIONAL); |
---|
190 | Off (SW_RATIONAL); |
---|
191 | F /= icontent (F); |
---|
192 | On (SW_RATIONAL); |
---|
193 | |
---|
194 | mpz_t * M=new mpz_t [4]; |
---|
195 | mpz_init (M[0]); |
---|
196 | mpz_init (M[1]); |
---|
197 | mpz_init (M[2]); |
---|
198 | mpz_init (M[3]); |
---|
199 | |
---|
200 | mpz_t * S=new mpz_t [2]; |
---|
201 | mpz_init (S[0]); |
---|
202 | mpz_init (S[1]); |
---|
203 | |
---|
204 | F= compress (F, M, S); |
---|
205 | |
---|
206 | if (F.isUnivariate()) |
---|
207 | { |
---|
208 | if (degree (F) == 1) |
---|
209 | { |
---|
210 | mpz_clear (M[0]); |
---|
211 | mpz_clear (M[1]); |
---|
212 | mpz_clear (M[2]); |
---|
213 | mpz_clear (M[3]); |
---|
214 | delete [] M; |
---|
215 | |
---|
216 | mpz_clear (S[0]); |
---|
217 | mpz_clear (S[1]); |
---|
218 | delete [] S; |
---|
219 | if (!isRat) |
---|
220 | Off (SW_RATIONAL); |
---|
221 | return CFAFList (CFAFactor (G, 1, 1)); |
---|
222 | } |
---|
223 | CFAFList result= uniAbsFactorize (F, full); |
---|
224 | if (result.getFirst().factor().inCoeffDomain()) |
---|
225 | result.removeFirst(); |
---|
226 | for (CFAFListIterator iter=result; iter.hasItem(); iter++) |
---|
227 | iter.getItem()= CFAFactor (decompress (iter.getItem().factor(), M, S), |
---|
228 | iter.getItem().minpoly(),iter.getItem().exp()); |
---|
229 | mpz_clear (M[0]); |
---|
230 | mpz_clear (M[1]); |
---|
231 | mpz_clear (M[2]); |
---|
232 | mpz_clear (M[3]); |
---|
233 | delete [] M; |
---|
234 | |
---|
235 | mpz_clear (S[0]); |
---|
236 | mpz_clear (S[1]); |
---|
237 | delete [] S; |
---|
238 | if (!isRat) |
---|
239 | Off (SW_RATIONAL); |
---|
240 | return result; |
---|
241 | } |
---|
242 | |
---|
243 | if (degree (F, 1) == 1 || degree (F, 2) == 1) |
---|
244 | { |
---|
245 | mpz_clear (M[0]); |
---|
246 | mpz_clear (M[1]); |
---|
247 | mpz_clear (M[2]); |
---|
248 | mpz_clear (M[3]); |
---|
249 | delete [] M; |
---|
250 | |
---|
251 | mpz_clear (S[0]); |
---|
252 | mpz_clear (S[1]); |
---|
253 | delete [] S; |
---|
254 | if (!isRat) |
---|
255 | Off (SW_RATIONAL); |
---|
256 | return CFAFList (CFAFactor (G, 1, 1)); |
---|
257 | } |
---|
258 | int minTdeg, tdegF= totaldegree (F); |
---|
259 | CanonicalForm Fp, smallestFactor; |
---|
260 | int p; |
---|
261 | CFFList factors; |
---|
262 | Variable alpha; |
---|
263 | bool rec= false; |
---|
264 | Variable x= Variable (1); |
---|
265 | Variable y= Variable (2); |
---|
266 | CanonicalForm bufF= F; |
---|
267 | CFFListIterator iter; |
---|
268 | CFArray eval= CFArray (2); |
---|
269 | int absValue= 1; |
---|
270 | differentevalpoint: |
---|
271 | while (1) |
---|
272 | { |
---|
273 | TIMING_START (fac_evalpoint); |
---|
274 | p= choosePoint (F, tdegF, eval, rec, absValue); |
---|
275 | TIMING_END_AND_PRINT (fac_evalpoint, "time to find eval point: "); |
---|
276 | |
---|
277 | //after here isOn (SW_RATIONAL)==false |
---|
278 | setCharacteristic (p); |
---|
279 | Fp=F.mapinto(); |
---|
280 | factors= factorize (Fp); |
---|
281 | |
---|
282 | if (factors.getFirst().factor().inCoeffDomain()) |
---|
283 | factors.removeFirst(); |
---|
284 | |
---|
285 | if (factors.length() == 1 && factors.getFirst().exp() == 1) |
---|
286 | { |
---|
287 | if (absIrredTest (Fp)) |
---|
288 | { |
---|
289 | if (isRat) |
---|
290 | On (SW_RATIONAL); |
---|
291 | setCharacteristic(0); |
---|
292 | mpz_clear (M[0]); |
---|
293 | mpz_clear (M[1]); |
---|
294 | mpz_clear (M[2]); |
---|
295 | mpz_clear (M[3]); |
---|
296 | delete [] M; |
---|
297 | |
---|
298 | mpz_clear (S[0]); |
---|
299 | mpz_clear (S[1]); |
---|
300 | delete [] S; |
---|
301 | return CFAFList (CFAFactor (G, 1, 1)); |
---|
302 | } |
---|
303 | else |
---|
304 | { |
---|
305 | setCharacteristic (0); |
---|
306 | if (modularIrredTestWithShift (F)) |
---|
307 | { |
---|
308 | if (isRat) |
---|
309 | On (SW_RATIONAL); |
---|
310 | mpz_clear (M[0]); |
---|
311 | mpz_clear (M[1]); |
---|
312 | mpz_clear (M[2]); |
---|
313 | mpz_clear (M[3]); |
---|
314 | delete [] M; |
---|
315 | |
---|
316 | mpz_clear (S[0]); |
---|
317 | mpz_clear (S[1]); |
---|
318 | delete [] S; |
---|
319 | return CFAFList (CFAFactor (G, 1, 1)); |
---|
320 | } |
---|
321 | rec= true; |
---|
322 | continue; |
---|
323 | } |
---|
324 | } |
---|
325 | iter= factors; |
---|
326 | smallestFactor= iter.getItem().factor(); |
---|
327 | while (smallestFactor.isUnivariate() && iter.hasItem()) |
---|
328 | { |
---|
329 | iter++; |
---|
330 | if (!iter.hasItem()) |
---|
331 | break; |
---|
332 | smallestFactor= iter.getItem().factor(); |
---|
333 | } |
---|
334 | |
---|
335 | minTdeg= totaldegree (smallestFactor); |
---|
336 | if (iter.hasItem()) |
---|
337 | iter++; |
---|
338 | for (; iter.hasItem(); iter++) |
---|
339 | { |
---|
340 | if (!iter.getItem().factor().isUnivariate() && |
---|
341 | (totaldegree (iter.getItem().factor()) < minTdeg)) |
---|
342 | { |
---|
343 | smallestFactor= iter.getItem().factor(); |
---|
344 | minTdeg= totaldegree (smallestFactor); |
---|
345 | } |
---|
346 | } |
---|
347 | if (tdegF % minTdeg == 0) |
---|
348 | break; |
---|
349 | setCharacteristic(0); |
---|
350 | rec=true; |
---|
351 | } |
---|
352 | CanonicalForm Gp= Fp/smallestFactor; |
---|
353 | Gp= Gp /Lc (Gp); |
---|
354 | |
---|
355 | CanonicalForm Gpy= Gp (eval[0].mapinto(), 1); |
---|
356 | CanonicalForm smallestFactorEvaly= smallestFactor (eval[0].mapinto(),1); |
---|
357 | CanonicalForm Gpx= Gp (eval[1].mapinto(), 2); |
---|
358 | CanonicalForm smallestFactorEvalx= smallestFactor (eval[1].mapinto(),2); |
---|
359 | |
---|
360 | bool xValid= !(Gpx.inCoeffDomain() || smallestFactorEvalx.inCoeffDomain() || |
---|
361 | !gcd (Gpx, smallestFactorEvalx).inCoeffDomain()); |
---|
362 | bool yValid= !(Gpy.inCoeffDomain() || smallestFactorEvaly.inCoeffDomain() || |
---|
363 | !gcd (Gpy, smallestFactorEvaly).inCoeffDomain()); |
---|
364 | if (!xValid || !yValid) |
---|
365 | { |
---|
366 | rec= true; |
---|
367 | setCharacteristic (0); |
---|
368 | goto differentevalpoint; |
---|
369 | } |
---|
370 | |
---|
371 | setCharacteristic (0); |
---|
372 | |
---|
373 | CanonicalForm mipo; |
---|
374 | |
---|
375 | CFArray mipos= CFArray (2); |
---|
376 | CFFList mipoFactors; |
---|
377 | for (int i= 1; i < 3; i++) |
---|
378 | { |
---|
379 | CanonicalForm Fi= F(eval[i-1],i); |
---|
380 | |
---|
381 | int s= tdegF/minTdeg + 1; |
---|
382 | CanonicalForm bound= power (maxNorm (Fi), 2*(s-1)); |
---|
383 | bound *= power (CanonicalForm (s),s-1); |
---|
384 | bound *= power (CanonicalForm (2), ((s-1)*(s-1))/2); //possible int overflow |
---|
385 | |
---|
386 | CanonicalForm B = p; |
---|
387 | long k = 1L; |
---|
388 | while ( B < bound ) { |
---|
389 | B *= p; |
---|
390 | k++; |
---|
391 | } |
---|
392 | |
---|
393 | //TODO take floor (log2(k)) |
---|
394 | k= k+1; |
---|
395 | #ifdef HAVE_FLINT |
---|
396 | fmpz_poly_t FLINTFi; |
---|
397 | convertFacCF2Fmpz_poly_t (FLINTFi, Fi); |
---|
398 | setCharacteristic (p); |
---|
399 | nmod_poly_t FLINTFpi, FLINTGpi; |
---|
400 | if (i == 2) |
---|
401 | { |
---|
402 | convertFacCF2nmod_poly_t (FLINTFpi, |
---|
403 | smallestFactorEvalx/lc (smallestFactorEvalx)); |
---|
404 | convertFacCF2nmod_poly_t (FLINTGpi, Gpx/lc (Gpx)); |
---|
405 | } |
---|
406 | else |
---|
407 | { |
---|
408 | convertFacCF2nmod_poly_t (FLINTFpi, |
---|
409 | smallestFactorEvaly/lc (smallestFactorEvaly)); |
---|
410 | convertFacCF2nmod_poly_t (FLINTGpi, Gpy/lc (Gpy)); |
---|
411 | } |
---|
412 | nmod_poly_factor_t nmodFactors; |
---|
413 | nmod_poly_factor_init (nmodFactors); |
---|
414 | nmod_poly_factor_insert (nmodFactors, FLINTFpi, 1L); |
---|
415 | nmod_poly_factor_insert (nmodFactors, FLINTGpi, 1L); |
---|
416 | |
---|
417 | // the following fix is due to interface changes from FLINT 2.3 -> FLINT 2.4 |
---|
418 | # ifndef slong |
---|
419 | # define slong long |
---|
420 | # endif |
---|
421 | |
---|
422 | slong * link= new slong [2]; |
---|
423 | fmpz_poly_t *v= new fmpz_poly_t[2]; |
---|
424 | fmpz_poly_t *w= new fmpz_poly_t[2]; |
---|
425 | fmpz_poly_init(v[0]); |
---|
426 | fmpz_poly_init(v[1]); |
---|
427 | fmpz_poly_init(w[0]); |
---|
428 | fmpz_poly_init(w[1]); |
---|
429 | |
---|
430 | fmpz_poly_factor_t liftedFactors; |
---|
431 | fmpz_poly_factor_init (liftedFactors); |
---|
432 | _fmpz_poly_hensel_start_lift (liftedFactors, link, v, w, FLINTFi, |
---|
433 | nmodFactors, k); |
---|
434 | |
---|
435 | nmod_poly_factor_clear (nmodFactors); |
---|
436 | nmod_poly_clear (FLINTFpi); |
---|
437 | nmod_poly_clear (FLINTGpi); |
---|
438 | |
---|
439 | setCharacteristic(0); |
---|
440 | CanonicalForm liftedSmallestFactor= |
---|
441 | convertFmpz_poly_t2FacCF ((fmpz_poly_t &)liftedFactors->p[0],x); |
---|
442 | |
---|
443 | CanonicalForm otherFactor= |
---|
444 | convertFmpz_poly_t2FacCF ((fmpz_poly_t &)liftedFactors->p[1],x); |
---|
445 | modpk pk= modpk (p, k); |
---|
446 | #else |
---|
447 | modpk pk= modpk (p, k); |
---|
448 | ZZX NTLFi=convertFacCF2NTLZZX (pk (Fi*pk.inverse (lc(Fi)))); |
---|
449 | setCharacteristic (p); |
---|
450 | |
---|
451 | if (fac_NTL_char != p) |
---|
452 | { |
---|
453 | fac_NTL_char= p; |
---|
454 | zz_p::init (p); |
---|
455 | } |
---|
456 | zz_pX NTLFpi, NTLGpi; |
---|
457 | if (i == 2) |
---|
458 | { |
---|
459 | NTLFpi=convertFacCF2NTLzzpX (smallestFactorEvalx/lc(smallestFactorEvalx)); |
---|
460 | NTLGpi=convertFacCF2NTLzzpX (Gpx/lc (Gpx)); |
---|
461 | } |
---|
462 | else |
---|
463 | { |
---|
464 | NTLFpi=convertFacCF2NTLzzpX (smallestFactorEvaly/lc(smallestFactorEvaly)); |
---|
465 | NTLGpi=convertFacCF2NTLzzpX (Gpy/lc (Gpy)); |
---|
466 | } |
---|
467 | vec_zz_pX modFactors; |
---|
468 | modFactors.SetLength(2); |
---|
469 | modFactors[0]= NTLFpi; |
---|
470 | modFactors[1]= NTLGpi; |
---|
471 | vec_ZZX liftedFactors; |
---|
472 | MultiLift (liftedFactors, modFactors, NTLFi, (long) k); |
---|
473 | setCharacteristic(0); |
---|
474 | CanonicalForm liftedSmallestFactor= |
---|
475 | convertNTLZZX2CF (liftedFactors[0], x); |
---|
476 | |
---|
477 | CanonicalForm otherFactor= |
---|
478 | convertNTLZZX2CF (liftedFactors[1], x); |
---|
479 | #endif |
---|
480 | |
---|
481 | Off (SW_SYMMETRIC_FF); |
---|
482 | liftedSmallestFactor= pk (liftedSmallestFactor); |
---|
483 | if (i == 2) |
---|
484 | liftedSmallestFactor= liftedSmallestFactor (eval[0],1); |
---|
485 | else |
---|
486 | liftedSmallestFactor= liftedSmallestFactor (eval[1],1); |
---|
487 | |
---|
488 | On (SW_SYMMETRIC_FF); |
---|
489 | CFMatrix *M= new CFMatrix (s, s); |
---|
490 | (*M)(s,s)= power (CanonicalForm (p), k); |
---|
491 | for (int j= 1; j < s; j++) |
---|
492 | { |
---|
493 | (*M) (j,j)= 1; |
---|
494 | (*M) (j+1,j)= -liftedSmallestFactor; |
---|
495 | } |
---|
496 | |
---|
497 | mat_ZZ * NTLM= convertFacCFMatrix2NTLmat_ZZ (*M); |
---|
498 | |
---|
499 | ZZ det; |
---|
500 | |
---|
501 | transpose (*NTLM, *NTLM); |
---|
502 | (void) LLL (det, *NTLM, 1L, 1L); //use floating point LLL ? |
---|
503 | transpose (*NTLM, *NTLM); |
---|
504 | delete M; |
---|
505 | M= convertNTLmat_ZZ2FacCFMatrix (*NTLM); |
---|
506 | delete NTLM; |
---|
507 | |
---|
508 | mipo= 0; |
---|
509 | for (int j= 1; j <= s; j++) |
---|
510 | mipo += (*M) (j,1)*power (x,s-j); |
---|
511 | |
---|
512 | delete M; |
---|
513 | mipoFactors= factorize (mipo); |
---|
514 | if (mipoFactors.getFirst().factor().inCoeffDomain()) |
---|
515 | mipoFactors.removeFirst(); |
---|
516 | |
---|
517 | #ifdef HAVE_FLINT |
---|
518 | fmpz_poly_clear (v[0]); |
---|
519 | fmpz_poly_clear (v[1]); |
---|
520 | fmpz_poly_clear (w[0]); |
---|
521 | fmpz_poly_clear (w[1]); |
---|
522 | delete [] v; |
---|
523 | delete [] w; |
---|
524 | delete [] link; |
---|
525 | fmpz_poly_factor_clear (liftedFactors); |
---|
526 | #endif |
---|
527 | |
---|
528 | if (mipoFactors.length() > 1 || |
---|
529 | (mipoFactors.length() == 1 && mipoFactors.getFirst().exp() > 1) || |
---|
530 | mipo.inCoeffDomain()) |
---|
531 | { |
---|
532 | rec=true; |
---|
533 | goto differentevalpoint; |
---|
534 | } |
---|
535 | else |
---|
536 | mipos[i-1]= mipo; |
---|
537 | } |
---|
538 | |
---|
539 | if (degree (mipos[0]) != degree (mipos[1])) |
---|
540 | { |
---|
541 | rec=true; |
---|
542 | goto differentevalpoint; |
---|
543 | } |
---|
544 | |
---|
545 | On (SW_RATIONAL); |
---|
546 | if (maxNorm (mipos[0]) < maxNorm (mipos[1])) |
---|
547 | alpha= rootOf (mipos[0]); |
---|
548 | else |
---|
549 | alpha= rootOf (mipos[1]); |
---|
550 | |
---|
551 | int wrongMipo= 0; |
---|
552 | |
---|
553 | Variable beta; |
---|
554 | if (maxNorm (mipos[0]) < maxNorm (mipos[1])) |
---|
555 | { |
---|
556 | mipoFactors= factorize (mipos[1], alpha); |
---|
557 | if (mipoFactors.getFirst().factor().inCoeffDomain()) |
---|
558 | mipoFactors.removeFirst(); |
---|
559 | for (iter= mipoFactors; iter.hasItem(); iter++) |
---|
560 | { |
---|
561 | if (degree (iter.getItem().factor()) > 1) |
---|
562 | wrongMipo++; |
---|
563 | } |
---|
564 | if (wrongMipo == mipoFactors.length()) |
---|
565 | { |
---|
566 | rec=true; |
---|
567 | goto differentevalpoint; |
---|
568 | } |
---|
569 | wrongMipo= 0; |
---|
570 | beta= rootOf (mipos[1]); |
---|
571 | mipoFactors= factorize (mipos[0], beta); |
---|
572 | if (mipoFactors.getFirst().factor().inCoeffDomain()) |
---|
573 | mipoFactors.removeFirst(); |
---|
574 | for (iter= mipoFactors; iter.hasItem(); iter++) |
---|
575 | { |
---|
576 | if (degree (iter.getItem().factor()) > 1) |
---|
577 | wrongMipo++; |
---|
578 | } |
---|
579 | if (wrongMipo == mipoFactors.length()) |
---|
580 | { |
---|
581 | rec=true; |
---|
582 | goto differentevalpoint; |
---|
583 | } |
---|
584 | } |
---|
585 | else |
---|
586 | { |
---|
587 | mipoFactors= factorize (mipos[0], alpha); |
---|
588 | if (mipoFactors.getFirst().factor().inCoeffDomain()) |
---|
589 | mipoFactors.removeFirst(); |
---|
590 | for (iter= mipoFactors; iter.hasItem(); iter++) |
---|
591 | { |
---|
592 | if (degree (iter.getItem().factor()) > 1) |
---|
593 | wrongMipo++; |
---|
594 | } |
---|
595 | if (wrongMipo == mipoFactors.length()) |
---|
596 | { |
---|
597 | rec=true; |
---|
598 | goto differentevalpoint; |
---|
599 | } |
---|
600 | wrongMipo= 0; |
---|
601 | beta= rootOf (mipos[0]); |
---|
602 | mipoFactors= factorize (mipos[1], beta); |
---|
603 | if (mipoFactors.getFirst().factor().inCoeffDomain()) |
---|
604 | mipoFactors.removeFirst(); |
---|
605 | for (iter= mipoFactors; iter.hasItem(); iter++) |
---|
606 | { |
---|
607 | if (degree (iter.getItem().factor()) > 1) |
---|
608 | wrongMipo++; |
---|
609 | } |
---|
610 | if (wrongMipo == mipoFactors.length()) |
---|
611 | { |
---|
612 | rec=true; |
---|
613 | goto differentevalpoint; |
---|
614 | } |
---|
615 | } |
---|
616 | |
---|
617 | |
---|
618 | CanonicalForm F1; |
---|
619 | if (degree (F,1) > minTdeg) |
---|
620 | F1= F (eval[1], 2); |
---|
621 | else |
---|
622 | F1= F (eval[0], 1); |
---|
623 | |
---|
624 | CFFList QaF1Factors; |
---|
625 | bool swap= false; |
---|
626 | if (F1.level() == 2) |
---|
627 | { |
---|
628 | swap= true; |
---|
629 | F1=swapvar (F1, x, y); |
---|
630 | F= swapvar (F, x, y); |
---|
631 | } |
---|
632 | |
---|
633 | wrongMipo= 0; |
---|
634 | QaF1Factors= factorize (F1, alpha); |
---|
635 | if (QaF1Factors.getFirst().factor().inCoeffDomain()) |
---|
636 | QaF1Factors.removeFirst(); |
---|
637 | for (iter= QaF1Factors; iter.hasItem(); iter++) |
---|
638 | { |
---|
639 | if (degree (iter.getItem().factor()) > minTdeg) |
---|
640 | wrongMipo++; |
---|
641 | } |
---|
642 | |
---|
643 | if (wrongMipo == QaF1Factors.length()) |
---|
644 | { |
---|
645 | rec= true; |
---|
646 | F= bufF; |
---|
647 | goto differentevalpoint; |
---|
648 | } |
---|
649 | |
---|
650 | CanonicalForm evaluation; |
---|
651 | if (swap) |
---|
652 | evaluation= eval[0]; |
---|
653 | else |
---|
654 | evaluation= eval[1]; |
---|
655 | |
---|
656 | F *= bCommonDen (F); |
---|
657 | F= F (y + evaluation, y); |
---|
658 | |
---|
659 | int liftBound= degree (F,y) + 1; |
---|
660 | |
---|
661 | modpk b= modpk(); |
---|
662 | |
---|
663 | CanonicalForm den= 1; |
---|
664 | |
---|
665 | mipo= getMipo (alpha); |
---|
666 | |
---|
667 | CFList uniFactors; |
---|
668 | for (iter=QaF1Factors; iter.hasItem(); iter++) |
---|
669 | uniFactors.append (iter.getItem().factor()); |
---|
670 | |
---|
671 | F /= Lc (F1); |
---|
672 | ZZX NTLmipo= convertFacCF2NTLZZX (mipo); |
---|
673 | ZZX NTLLcf= convertFacCF2NTLZZX (Lc (F*bCommonDen (F))); |
---|
674 | ZZ NTLf= resultant (NTLmipo, NTLLcf); |
---|
675 | ZZ NTLD= discriminant (NTLmipo); |
---|
676 | den= abs (convertZZ2CF (NTLD*NTLf)); |
---|
677 | |
---|
678 | // make factors elements of Z(a)[x] disable for modularDiophant |
---|
679 | CanonicalForm multiplier= 1; |
---|
680 | for (CFListIterator i= uniFactors; i.hasItem(); i++) |
---|
681 | { |
---|
682 | multiplier *= bCommonDen (i.getItem()); |
---|
683 | i.getItem()= i.getItem()*bCommonDen(i.getItem()); |
---|
684 | } |
---|
685 | F *= multiplier; |
---|
686 | F *= bCommonDen (F); |
---|
687 | |
---|
688 | Off (SW_RATIONAL); |
---|
689 | int ii= 0; |
---|
690 | CanonicalForm discMipo= convertZZ2CF (NTLD); |
---|
691 | findGoodPrime (bufF*discMipo,ii); |
---|
692 | findGoodPrime (F1*discMipo,ii); |
---|
693 | findGoodPrime (F*discMipo,ii); |
---|
694 | |
---|
695 | int pp=cf_getBigPrime(ii); |
---|
696 | b = coeffBound( F, pp, mipo ); |
---|
697 | modpk bb= coeffBound (F1, pp, mipo); |
---|
698 | if (bb.getk() > b.getk() ) b=bb; |
---|
699 | bb= coeffBound (F, pp, mipo); |
---|
700 | if (bb.getk() > b.getk() ) b=bb; |
---|
701 | |
---|
702 | ExtensionInfo dummy= ExtensionInfo (alpha, false); |
---|
703 | DegreePattern degs= DegreePattern (uniFactors); |
---|
704 | |
---|
705 | bool earlySuccess= false; |
---|
706 | CFList earlyFactors; |
---|
707 | uniFactors= henselLiftAndEarly |
---|
708 | (F, earlySuccess, earlyFactors, degs, liftBound, |
---|
709 | uniFactors, dummy, evaluation, b, den); |
---|
710 | |
---|
711 | DEBOUTLN (cerr, "lifted factors= " << uniFactors); |
---|
712 | |
---|
713 | CanonicalForm MODl= power (y, liftBound); |
---|
714 | |
---|
715 | On (SW_RATIONAL); |
---|
716 | F *= bCommonDen (F); |
---|
717 | Off (SW_RATIONAL); |
---|
718 | |
---|
719 | CFList biFactors; |
---|
720 | |
---|
721 | biFactors= factorRecombination (uniFactors, F, MODl, degs, evaluation, 1, |
---|
722 | uniFactors.length()/2, b, den); |
---|
723 | |
---|
724 | On (SW_RATIONAL); |
---|
725 | |
---|
726 | if (earlySuccess) |
---|
727 | biFactors= Union (earlyFactors, biFactors); |
---|
728 | else if (!earlySuccess && degs.getLength() == 1) |
---|
729 | biFactors= earlyFactors; |
---|
730 | |
---|
731 | bool swap2= false; |
---|
732 | appendSwapDecompress (biFactors, CFList(), CFList(), swap, swap2, CFMap()); |
---|
733 | if (isOn (SW_RATIONAL)) |
---|
734 | normalize (biFactors); |
---|
735 | |
---|
736 | CFAFList result; |
---|
737 | bool found= false; |
---|
738 | |
---|
739 | for (CFListIterator i= biFactors; i.hasItem(); i++) |
---|
740 | { |
---|
741 | if (full) |
---|
742 | result.append (CFAFactor (decompress (i.getItem(), M, S), |
---|
743 | getMipo (alpha), 1)); |
---|
744 | |
---|
745 | if (totaldegree (i.getItem()) == minTdeg) |
---|
746 | { |
---|
747 | if (!full) |
---|
748 | result= CFAFList (CFAFactor (decompress (i.getItem(), M, S), |
---|
749 | getMipo (alpha), 1)); |
---|
750 | found= true; |
---|
751 | |
---|
752 | if (!full) |
---|
753 | break; |
---|
754 | } |
---|
755 | } |
---|
756 | |
---|
757 | if (!found) |
---|
758 | { |
---|
759 | rec= true; |
---|
760 | F= bufF; |
---|
761 | goto differentevalpoint; |
---|
762 | } |
---|
763 | |
---|
764 | if (isRat) |
---|
765 | On (SW_RATIONAL); |
---|
766 | else |
---|
767 | Off (SW_RATIONAL); |
---|
768 | |
---|
769 | mpz_clear (M[0]); |
---|
770 | mpz_clear (M[1]); |
---|
771 | mpz_clear (M[2]); |
---|
772 | mpz_clear (M[3]); |
---|
773 | delete [] M; |
---|
774 | |
---|
775 | mpz_clear (S[0]); |
---|
776 | mpz_clear (S[1]); |
---|
777 | delete [] S; |
---|
778 | |
---|
779 | return result; |
---|
780 | } |
---|
781 | #endif |
---|