1 | /*****************************************************************************\ |
---|
2 | * Computer Algebra System SINGULAR |
---|
3 | \*****************************************************************************/ |
---|
4 | /** @file facAbsFact.h |
---|
5 | * |
---|
6 | * bivariate absolute factorization over Q described in "Modular Las Vegas |
---|
7 | * Algorithms for Polynomial Absolute Factorization" by Bertone, ChÚze, Galligo |
---|
8 | * |
---|
9 | * @author Martin Lee |
---|
10 | * |
---|
11 | **/ |
---|
12 | /*****************************************************************************/ |
---|
13 | |
---|
14 | #ifndef FAC_ABS_FACT_H |
---|
15 | #define FAC_ABS_FACT_H |
---|
16 | |
---|
17 | #include "assert.h" |
---|
18 | |
---|
19 | #include "canonicalform.h" |
---|
20 | #include "cf_map.h" |
---|
21 | #include "cfNewtonPolygon.h" |
---|
22 | |
---|
23 | CFAFList absFactorizeMain (const CanonicalForm& F); |
---|
24 | |
---|
25 | static inline |
---|
26 | void normalize (CFAFList & L) |
---|
27 | { |
---|
28 | for (CFAFListIterator i= L; i.hasItem(); i++) |
---|
29 | i.getItem()= CFAFactor (i.getItem().factor()/Lc (i.getItem().factor()), |
---|
30 | i.getItem().minpoly(), i.getItem().exp()); |
---|
31 | } |
---|
32 | |
---|
33 | static inline |
---|
34 | CFAFList uniAbsFactorize (const CanonicalForm& F) |
---|
35 | { |
---|
36 | CFFList rationalFactors= factorize (F); |
---|
37 | CFFListIterator i= rationalFactors; |
---|
38 | i++; |
---|
39 | CanonicalForm mipo; |
---|
40 | CFAFList result; |
---|
41 | for (; i.hasItem(); i++) |
---|
42 | { |
---|
43 | mipo= rootOf (i.getItem().factor()); |
---|
44 | result.append (CFAFactor (i.getItem().factor(), mipo, i.getItem().exp())); |
---|
45 | } |
---|
46 | result.insert (CFAFactor (rationalFactors.getFirst().factor(), 1, 1)); |
---|
47 | return result; |
---|
48 | } |
---|
49 | |
---|
50 | /*BEGINPUBLIC*/ |
---|
51 | |
---|
52 | CFAFList absFactorize (const CanonicalForm& G); |
---|
53 | |
---|
54 | /*ENDPUBLIC*/ |
---|
55 | |
---|
56 | CFAFList absFactorize (const CanonicalForm& G) |
---|
57 | { |
---|
58 | //TODO handle homogeneous input |
---|
59 | ASSERT (getNumVars (F) == 2, "expected bivariate input"); |
---|
60 | ASSERT (getCharacteristic() == 0 && isOn (SW_RATIONAL), "expected poly over Q"); |
---|
61 | |
---|
62 | CFMap N; |
---|
63 | CanonicalForm F= compress (G, N); |
---|
64 | bool isRat= isOn (SW_RATIONAL); |
---|
65 | if (isRat) |
---|
66 | { |
---|
67 | F *= bCommonDen (F); |
---|
68 | Off (SW_RATIONAL); |
---|
69 | } |
---|
70 | F /= icontent (F); |
---|
71 | if (isRat) |
---|
72 | On (SW_RATIONAL); |
---|
73 | |
---|
74 | CanonicalForm contentX= content (F, 1); |
---|
75 | CanonicalForm contentY= content (F, 2); |
---|
76 | F /= (contentX*contentY); |
---|
77 | CFAFList contentXFactors, contentYFactors; |
---|
78 | contentXFactors= uniAbsFactorize (contentX); |
---|
79 | contentYFactors= uniAbsFactorize (contentY); |
---|
80 | |
---|
81 | if (contentXFactors.getFirst().factor().inCoeffDomain()) |
---|
82 | contentXFactors.removeFirst(); |
---|
83 | if (contentYFactors.getFirst().factor().inCoeffDomain()) |
---|
84 | contentYFactors.removeFirst(); |
---|
85 | if (F.inCoeffDomain()) |
---|
86 | { |
---|
87 | CFAFList result; |
---|
88 | for (CFAFListIterator i= contentXFactors; i.hasItem(); i++) |
---|
89 | result.append (CFAFactor (N (i.getItem().factor()), i.getItem().minpoly(), |
---|
90 | i.getItem().exp())); |
---|
91 | for (CFAFListIterator i= contentYFactors; i.hasItem(); i++) |
---|
92 | result.append (CFAFactor (N (i.getItem().factor()),i.getItem().minpoly(), |
---|
93 | i.getItem().exp())); |
---|
94 | normalize (result); |
---|
95 | result.insert (CFAFactor (Lc (G), 1, 1)); |
---|
96 | return result; |
---|
97 | } |
---|
98 | CFFList rationalFactors= factorize (F); |
---|
99 | |
---|
100 | CFAFList result, resultBuf; |
---|
101 | |
---|
102 | CFAFListIterator iter; |
---|
103 | CFFListIterator i= rationalFactors; |
---|
104 | i++; |
---|
105 | for (; i.hasItem(); i++) |
---|
106 | { |
---|
107 | resultBuf= absFactorizeMain (i.getItem().factor()); |
---|
108 | for (iter= resultBuf; iter.hasItem(); iter++) |
---|
109 | iter.getItem()= CFAFactor (iter.getItem().factor(), |
---|
110 | iter.getItem().minpoly(), i.getItem().exp()); |
---|
111 | result= Union (result, resultBuf); |
---|
112 | } |
---|
113 | |
---|
114 | |
---|
115 | for (CFAFListIterator i= result; i.hasItem(); i++) |
---|
116 | i.getItem()= CFAFactor (N (i.getItem().factor()), i.getItem().minpoly(), |
---|
117 | i.getItem().exp()); |
---|
118 | for (CFAFListIterator i= contentXFactors; i.hasItem(); i++) |
---|
119 | result.append (CFAFactor (N(i.getItem().factor()), i.getItem().minpoly(), |
---|
120 | i.getItem().exp())); |
---|
121 | for (CFAFListIterator i= contentYFactors; i.hasItem(); i++) |
---|
122 | result.append (CFAFactor (N(i.getItem().factor()), i.getItem().minpoly(), |
---|
123 | i.getItem().exp())); |
---|
124 | normalize (result); |
---|
125 | result.insert (CFAFactor (Lc(G), 1, 1)); |
---|
126 | return result; |
---|
127 | } |
---|
128 | |
---|
129 | #endif |
---|