1 | /*****************************************************************************\ |
---|
2 | * Computer Algebra System SINGULAR |
---|
3 | \*****************************************************************************/ |
---|
4 | /** @file facBivar.cc |
---|
5 | * |
---|
6 | * bivariate factorization over Q(a) |
---|
7 | * |
---|
8 | * @author Martin Lee |
---|
9 | * |
---|
10 | * @internal @version \$Id$ |
---|
11 | * |
---|
12 | **/ |
---|
13 | /*****************************************************************************/ |
---|
14 | |
---|
15 | #include "config.h" |
---|
16 | |
---|
17 | #include "assert.h" |
---|
18 | #include "debug.h" |
---|
19 | #include "timing.h" |
---|
20 | |
---|
21 | #include "cf_algorithm.h" |
---|
22 | #include "facFqBivar.h" |
---|
23 | #include "facBivar.h" |
---|
24 | #include "facHensel.h" |
---|
25 | #include "facMul.h" |
---|
26 | #include "cf_primes.h" |
---|
27 | |
---|
28 | #ifdef HAVE_NTL |
---|
29 | TIMING_DEFINE_PRINT(uni_factorize) |
---|
30 | TIMING_DEFINE_PRINT(hensel_lift12) |
---|
31 | |
---|
32 | // bound on coeffs of f (cf. Musser: Multivariate Polynomial Factorization, |
---|
33 | // Gelfond: Transcendental and Algebraic Numbers) |
---|
34 | modpk |
---|
35 | coeffBound ( const CanonicalForm & f, int p ) |
---|
36 | { |
---|
37 | int * degs = degrees( f ); |
---|
38 | int M = 0, i, k = f.level(); |
---|
39 | CanonicalForm b= 1; |
---|
40 | for ( i = 1; i <= k; i++ ) |
---|
41 | { |
---|
42 | M += degs[i]; |
---|
43 | b *= degs[i] + 1; |
---|
44 | } |
---|
45 | b /= power (CanonicalForm (2), k); |
---|
46 | b= b.sqrt() + 1; |
---|
47 | b *= 2 * maxNorm( f ) * power( CanonicalForm( 2 ), M ); |
---|
48 | CanonicalForm B = p; |
---|
49 | k = 1; |
---|
50 | while ( B < b ) { |
---|
51 | B *= p; |
---|
52 | k++; |
---|
53 | } |
---|
54 | return modpk( p, k ); |
---|
55 | } |
---|
56 | |
---|
57 | void findGoodPrime(const CanonicalForm &f, int &start) |
---|
58 | { |
---|
59 | if (! f.inBaseDomain() ) |
---|
60 | { |
---|
61 | CFIterator i = f; |
---|
62 | for(;;) |
---|
63 | { |
---|
64 | if ( i.hasTerms() ) |
---|
65 | { |
---|
66 | findGoodPrime(i.coeff(),start); |
---|
67 | if (0==cf_getBigPrime(start)) return; |
---|
68 | if((i.exp()!=0) && ((i.exp() % cf_getBigPrime(start))==0)) |
---|
69 | { |
---|
70 | start++; |
---|
71 | i=f; |
---|
72 | } |
---|
73 | else i++; |
---|
74 | } |
---|
75 | else break; |
---|
76 | } |
---|
77 | } |
---|
78 | else |
---|
79 | { |
---|
80 | if (f.inZ()) |
---|
81 | { |
---|
82 | if (0==cf_getBigPrime(start)) return; |
---|
83 | while((!f.isZero()) && (mod(f,cf_getBigPrime(start))==0)) |
---|
84 | { |
---|
85 | start++; |
---|
86 | if (0==cf_getBigPrime(start)) return; |
---|
87 | } |
---|
88 | } |
---|
89 | } |
---|
90 | } |
---|
91 | |
---|
92 | modpk |
---|
93 | coeffBound ( const CanonicalForm & f, int p, const CanonicalForm& mipo ) |
---|
94 | { |
---|
95 | int * degs = degrees( f ); |
---|
96 | int M = 0, i, k = f.level(); |
---|
97 | CanonicalForm K= 1; |
---|
98 | for ( i = 1; i <= k; i++ ) |
---|
99 | { |
---|
100 | M += degs[i]; |
---|
101 | K *= degs[i] + 1; |
---|
102 | } |
---|
103 | K /= power (CanonicalForm (2), k); |
---|
104 | K= K.sqrt()+1; |
---|
105 | K *= power (CanonicalForm (2), M); |
---|
106 | int N= degree (mipo); |
---|
107 | CanonicalForm b; |
---|
108 | b= 2*power (maxNorm (f), N)*power (maxNorm (mipo), 4*N)*K*power (CanonicalForm (2), N)*(CanonicalForm (M+1).sqrt()+1)*power (CanonicalForm (N+1).sqrt()+1, 7*N); |
---|
109 | b /= power (abs (lc (mipo)), N); |
---|
110 | |
---|
111 | ZZX NTLmipo= convertFacCF2NTLZZX (mipo); |
---|
112 | ZZX NTLLcf= convertFacCF2NTLZZX (Lc (f)); |
---|
113 | ZZ NTLf= resultant (NTLmipo, NTLLcf); |
---|
114 | ZZ NTLD= discriminant (NTLmipo); |
---|
115 | b /= abs (convertZZ2CF (NTLf))*abs (convertZZ2CF (NTLD)); |
---|
116 | |
---|
117 | CanonicalForm B = p; |
---|
118 | k = 1; |
---|
119 | while ( B < b ) { |
---|
120 | B *= p; |
---|
121 | k++; |
---|
122 | } |
---|
123 | return modpk( p, k ); |
---|
124 | } |
---|
125 | |
---|
126 | CFList conv (const CFFList& L) |
---|
127 | { |
---|
128 | CFList result; |
---|
129 | for (CFFListIterator i= L; i.hasItem(); i++) |
---|
130 | result.append (i.getItem().factor()); |
---|
131 | return result; |
---|
132 | } |
---|
133 | |
---|
134 | bool testPoint (const CanonicalForm& F, CanonicalForm& G, int i) |
---|
135 | { |
---|
136 | G= F (i, 2); |
---|
137 | if (G.inCoeffDomain() || degree (F, 1) > degree (G, 1)) |
---|
138 | return false; |
---|
139 | |
---|
140 | if (degree (gcd (deriv (G, G.mvar()), G)) > 0) |
---|
141 | return false; |
---|
142 | return true; |
---|
143 | } |
---|
144 | |
---|
145 | CanonicalForm evalPoint (const CanonicalForm& F, int& i) |
---|
146 | { |
---|
147 | Variable x= Variable (1); |
---|
148 | Variable y= Variable (2); |
---|
149 | CanonicalForm result; |
---|
150 | |
---|
151 | int k; |
---|
152 | |
---|
153 | if (i == 0) |
---|
154 | { |
---|
155 | if (testPoint (F, result, i)) |
---|
156 | return result; |
---|
157 | } |
---|
158 | do |
---|
159 | { |
---|
160 | if (i > 0) |
---|
161 | k= 1; |
---|
162 | else |
---|
163 | k= 2; |
---|
164 | while (k < 3) |
---|
165 | { |
---|
166 | if (k == 1) |
---|
167 | { |
---|
168 | if (testPoint (F, result, i)) |
---|
169 | return result; |
---|
170 | } |
---|
171 | else |
---|
172 | { |
---|
173 | if (testPoint (F, result, -i)) |
---|
174 | return result; |
---|
175 | } |
---|
176 | k++; |
---|
177 | } |
---|
178 | i++; |
---|
179 | } while (1); |
---|
180 | } |
---|
181 | |
---|
182 | CFList |
---|
183 | earlyFactorDetection0 (CanonicalForm& F, CFList& factors,int& adaptedLiftBound, |
---|
184 | DegreePattern& degs, bool& success, int deg) |
---|
185 | { |
---|
186 | DegreePattern bufDegs1= degs; |
---|
187 | DegreePattern bufDegs2; |
---|
188 | CFList result; |
---|
189 | CFList T= factors; |
---|
190 | CanonicalForm buf= F; |
---|
191 | CanonicalForm LCBuf= LC (buf, Variable (1)); |
---|
192 | CanonicalForm g, quot; |
---|
193 | CanonicalForm M= power (F.mvar(), deg); |
---|
194 | adaptedLiftBound= 0; |
---|
195 | int d= degree (F) + degree (LCBuf, F.mvar()); |
---|
196 | for (CFListIterator i= factors; i.hasItem(); i++) |
---|
197 | { |
---|
198 | if (!bufDegs1.find (degree (i.getItem(), 1))) |
---|
199 | continue; |
---|
200 | else |
---|
201 | { |
---|
202 | g= i.getItem() (0, 1); |
---|
203 | g *= LCBuf; |
---|
204 | g= mod (g, M); |
---|
205 | if (fdivides (LC (g), LCBuf)) |
---|
206 | { |
---|
207 | g= mulMod2 (i.getItem(), LCBuf, M); |
---|
208 | g /= content (g, Variable (1)); |
---|
209 | if (fdivides (g, buf, quot)) |
---|
210 | { |
---|
211 | result.append (g); |
---|
212 | buf= quot; |
---|
213 | d -= degree (g) + degree (LC (g, Variable (1)), F.mvar()); |
---|
214 | LCBuf= LC (buf, Variable (1)); |
---|
215 | T= Difference (T, CFList (i.getItem())); |
---|
216 | |
---|
217 | // compute new possible degree pattern |
---|
218 | bufDegs2= DegreePattern (T); |
---|
219 | bufDegs1.intersect (bufDegs2); |
---|
220 | bufDegs1.refine (); |
---|
221 | if (bufDegs1.getLength() <= 1) |
---|
222 | { |
---|
223 | result.append (buf); |
---|
224 | break; |
---|
225 | } |
---|
226 | } |
---|
227 | } |
---|
228 | } |
---|
229 | } |
---|
230 | adaptedLiftBound= d + 1; |
---|
231 | if (d < deg) |
---|
232 | { |
---|
233 | factors= T; |
---|
234 | degs= bufDegs1; |
---|
235 | F= buf; |
---|
236 | success= true; |
---|
237 | } |
---|
238 | if (bufDegs1.getLength() <= 1) |
---|
239 | degs= bufDegs1; |
---|
240 | return result; |
---|
241 | } |
---|
242 | |
---|
243 | |
---|
244 | CFList |
---|
245 | henselLiftAndEarly0 (CanonicalForm& A, bool& earlySuccess, CFList& |
---|
246 | earlyFactors, DegreePattern& degs, int& liftBound, |
---|
247 | const CFList& uniFactors, const CanonicalForm& eval) |
---|
248 | { |
---|
249 | int sizeOfLiftPre; |
---|
250 | int * liftPre= getLiftPrecisions (A, sizeOfLiftPre, degree (LC (A, 1), 2)); |
---|
251 | |
---|
252 | Variable x= Variable (1); |
---|
253 | Variable y= Variable (2); |
---|
254 | CFArray Pi; |
---|
255 | CFList diophant; |
---|
256 | CFList bufUniFactors= uniFactors; |
---|
257 | bufUniFactors.insert (LC (A, x)); |
---|
258 | CFMatrix M= CFMatrix (liftBound, bufUniFactors.length() - 1); |
---|
259 | earlySuccess= false; |
---|
260 | int newLiftBound= 0; |
---|
261 | int smallFactorDeg= tmin (11, liftPre [sizeOfLiftPre- 1] + 1);//this is a tunable parameter |
---|
262 | if (smallFactorDeg >= liftBound || degree (A,y) <= 4) |
---|
263 | henselLift12 (A, bufUniFactors, liftBound, Pi, diophant, M); |
---|
264 | else if (sizeOfLiftPre > 1 && sizeOfLiftPre < 30) |
---|
265 | { |
---|
266 | henselLift12 (A, bufUniFactors, smallFactorDeg, Pi, diophant, M); |
---|
267 | earlyFactors= earlyFactorDetection0 (A, bufUniFactors, newLiftBound, |
---|
268 | degs, earlySuccess, |
---|
269 | smallFactorDeg); |
---|
270 | if (degs.getLength() > 1 && !earlySuccess && |
---|
271 | smallFactorDeg != liftPre [sizeOfLiftPre-1] + 1) |
---|
272 | { |
---|
273 | if (newLiftBound > liftPre[sizeOfLiftPre-1]+1) |
---|
274 | { |
---|
275 | bufUniFactors.insert (LC (A, x)); |
---|
276 | henselLiftResume12 (A, bufUniFactors, smallFactorDeg, |
---|
277 | liftPre[sizeOfLiftPre-1] + 1, Pi, diophant, M); |
---|
278 | earlyFactors= earlyFactorDetection0 (A, bufUniFactors, newLiftBound, |
---|
279 | degs, earlySuccess, liftPre[sizeOfLiftPre-1] + 1); |
---|
280 | } |
---|
281 | } |
---|
282 | else if (earlySuccess) |
---|
283 | liftBound= newLiftBound; |
---|
284 | int i= sizeOfLiftPre - 1; |
---|
285 | while (degs.getLength() > 1 && !earlySuccess && i - 1 >= 0) |
---|
286 | { |
---|
287 | if (newLiftBound > liftPre[i] + 1) |
---|
288 | { |
---|
289 | bufUniFactors.insert (LC (A, x)); |
---|
290 | henselLiftResume12 (A, bufUniFactors, liftPre[i] + 1, |
---|
291 | liftPre[i-1] + 1, Pi, diophant, M); |
---|
292 | earlyFactors= earlyFactorDetection0 (A, bufUniFactors, newLiftBound, |
---|
293 | degs, earlySuccess, liftPre[i-1] + 1); |
---|
294 | } |
---|
295 | else |
---|
296 | { |
---|
297 | liftBound= newLiftBound; |
---|
298 | break; |
---|
299 | } |
---|
300 | i--; |
---|
301 | } |
---|
302 | if (earlySuccess) |
---|
303 | liftBound= newLiftBound; |
---|
304 | //after here all factors are lifted to liftPre[sizeOfLiftPre-1] |
---|
305 | } |
---|
306 | else |
---|
307 | { |
---|
308 | henselLift12 (A, bufUniFactors, smallFactorDeg, Pi, diophant, M); |
---|
309 | earlyFactors= earlyFactorDetection0 (A, bufUniFactors, newLiftBound, |
---|
310 | degs, earlySuccess, |
---|
311 | smallFactorDeg); |
---|
312 | int i= 1; |
---|
313 | while ((degree (A,y)/4)*i + 4 <= smallFactorDeg) |
---|
314 | i++; |
---|
315 | if (degs.getLength() > 1 && !earlySuccess) |
---|
316 | { |
---|
317 | bufUniFactors.insert (LC (A, x)); |
---|
318 | henselLiftResume12 (A, bufUniFactors, smallFactorDeg, |
---|
319 | (degree (A, y)/4)*i + 4, Pi, diophant, M); |
---|
320 | earlyFactors= earlyFactorDetection0 (A, bufUniFactors, newLiftBound, |
---|
321 | degs, earlySuccess, (degree (A, y)/4)*i + 4); |
---|
322 | } |
---|
323 | while (degs.getLength() > 1 && !earlySuccess && i < 4) |
---|
324 | { |
---|
325 | if (newLiftBound > (degree (A, y)/4)*i + 4) |
---|
326 | { |
---|
327 | bufUniFactors.insert (LC (A, x)); |
---|
328 | henselLiftResume12 (A, bufUniFactors, (degree (A,y)/4)*i + 4, |
---|
329 | (degree (A, y)/4)*(i+1) + 4, Pi, diophant, M); |
---|
330 | earlyFactors= earlyFactorDetection0 (A, bufUniFactors, newLiftBound, |
---|
331 | degs, earlySuccess, (degree (A, y)/4)*(i+1) + 4); |
---|
332 | } |
---|
333 | else |
---|
334 | { |
---|
335 | liftBound= newLiftBound; |
---|
336 | break; |
---|
337 | } |
---|
338 | i++; |
---|
339 | } |
---|
340 | if (earlySuccess) |
---|
341 | liftBound= newLiftBound; |
---|
342 | } |
---|
343 | |
---|
344 | return bufUniFactors; |
---|
345 | } |
---|
346 | |
---|
347 | CFList biFactorize (const CanonicalForm& F, const Variable& v) |
---|
348 | { |
---|
349 | if (F.inCoeffDomain()) |
---|
350 | return CFList(F); |
---|
351 | |
---|
352 | bool extension= (v.level() != 1); |
---|
353 | CanonicalForm A; |
---|
354 | CanonicalForm multiplier= 1; |
---|
355 | if (isOn (SW_RATIONAL)) |
---|
356 | A= F*bCommonDen (F); |
---|
357 | else |
---|
358 | A= F; |
---|
359 | |
---|
360 | if (A.isUnivariate()) |
---|
361 | { |
---|
362 | CFFList buf; |
---|
363 | if (extension) |
---|
364 | buf= factorize (A, v); |
---|
365 | else |
---|
366 | buf= factorize (A, true); |
---|
367 | CFList result= conv (buf); |
---|
368 | if (result.getFirst().inCoeffDomain()) |
---|
369 | result.removeFirst(); |
---|
370 | return result; |
---|
371 | } |
---|
372 | |
---|
373 | CFMap N; |
---|
374 | A= compress (A, N); |
---|
375 | Variable y= A.mvar(); |
---|
376 | |
---|
377 | if (y.level() > 2) return CFList (F); |
---|
378 | Variable x= Variable (1); |
---|
379 | |
---|
380 | CanonicalForm contentAx= content (A, x); |
---|
381 | CanonicalForm contentAy= content (A); |
---|
382 | |
---|
383 | A= A/(contentAx*contentAy); |
---|
384 | CFFList contentAxFactors, contentAyFactors; |
---|
385 | |
---|
386 | if (extension) |
---|
387 | { |
---|
388 | if (!contentAx.inCoeffDomain()) |
---|
389 | { |
---|
390 | contentAxFactors= factorize (contentAx, v); |
---|
391 | if (contentAxFactors.getFirst().factor().inCoeffDomain()) |
---|
392 | contentAxFactors.removeFirst(); |
---|
393 | } |
---|
394 | if (!contentAy.inCoeffDomain()) |
---|
395 | { |
---|
396 | contentAyFactors= factorize (contentAy, v); |
---|
397 | if (contentAyFactors.getFirst().factor().inCoeffDomain()) |
---|
398 | contentAyFactors.removeFirst(); |
---|
399 | } |
---|
400 | } |
---|
401 | else |
---|
402 | { |
---|
403 | if (!contentAx.inCoeffDomain()) |
---|
404 | { |
---|
405 | contentAxFactors= factorize (contentAx, true); |
---|
406 | if (contentAxFactors.getFirst().factor().inCoeffDomain()) |
---|
407 | contentAxFactors.removeFirst(); |
---|
408 | } |
---|
409 | if (!contentAy.inCoeffDomain()) |
---|
410 | { |
---|
411 | contentAyFactors= factorize (contentAy, true); |
---|
412 | if (contentAyFactors.getFirst().factor().inCoeffDomain()) |
---|
413 | contentAyFactors.removeFirst(); |
---|
414 | } |
---|
415 | } |
---|
416 | |
---|
417 | //check trivial case |
---|
418 | if (degree (A) == 1 || degree (A, 1) == 1) |
---|
419 | { |
---|
420 | CFList factors; |
---|
421 | factors.append (A); |
---|
422 | |
---|
423 | appendSwapDecompress (factors, conv (contentAxFactors), |
---|
424 | conv (contentAyFactors), false, false, N); |
---|
425 | |
---|
426 | normalize (factors); |
---|
427 | return factors; |
---|
428 | } |
---|
429 | |
---|
430 | //trivial case |
---|
431 | CFList factors; |
---|
432 | if (A.inCoeffDomain()) |
---|
433 | { |
---|
434 | append (factors, conv (contentAxFactors)); |
---|
435 | append (factors, conv (contentAyFactors)); |
---|
436 | decompress (factors, N); |
---|
437 | return factors; |
---|
438 | } |
---|
439 | else if (A.isUnivariate()) |
---|
440 | { |
---|
441 | if (extension) |
---|
442 | factors= conv (factorize (A, v)); |
---|
443 | else |
---|
444 | factors= conv (factorize (A, true)); |
---|
445 | append (factors, conv (contentAxFactors)); |
---|
446 | append (factors, conv (contentAyFactors)); |
---|
447 | decompress (factors, N); |
---|
448 | return factors; |
---|
449 | } |
---|
450 | |
---|
451 | bool swap= false; |
---|
452 | if (degree (A) > degree (A, x)) |
---|
453 | { |
---|
454 | A= swapvar (A, y, x); |
---|
455 | swap= true; |
---|
456 | } |
---|
457 | |
---|
458 | CanonicalForm Aeval, bufAeval, buf; |
---|
459 | CFList uniFactors, list, bufUniFactors; |
---|
460 | DegreePattern degs; |
---|
461 | DegreePattern bufDegs; |
---|
462 | |
---|
463 | CanonicalForm Aeval2, bufAeval2; |
---|
464 | CFList bufUniFactors2, list2, uniFactors2; |
---|
465 | DegreePattern degs2; |
---|
466 | DegreePattern bufDegs2; |
---|
467 | bool swap2= false; |
---|
468 | |
---|
469 | // several univariate factorizations to obtain more information about the |
---|
470 | // degree pattern therefore usually less combinations have to be tried during |
---|
471 | // the recombination process |
---|
472 | int factorNums= 2; |
---|
473 | int subCheck1= substituteCheck (A, x); |
---|
474 | int subCheck2= substituteCheck (A, y); |
---|
475 | buf= swapvar (A,x,y); |
---|
476 | int evaluation, evaluation2, bufEvaluation= 0, bufEvaluation2= 0; |
---|
477 | for (int i= 0; i < factorNums; i++) |
---|
478 | { |
---|
479 | bufAeval= A; |
---|
480 | bufAeval= evalPoint (A, bufEvaluation); |
---|
481 | |
---|
482 | bufAeval2= buf; |
---|
483 | bufAeval2= evalPoint (buf, bufEvaluation2); |
---|
484 | |
---|
485 | |
---|
486 | // univariate factorization |
---|
487 | TIMING_START (uni_factorize); |
---|
488 | |
---|
489 | if (extension) |
---|
490 | bufUniFactors= conv (factorize (bufAeval, v)); |
---|
491 | else |
---|
492 | bufUniFactors= conv (factorize (bufAeval, true)); |
---|
493 | TIMING_END_AND_PRINT (uni_factorize, |
---|
494 | "time for univariate factorization: "); |
---|
495 | DEBOUTLN (cerr, "Lc (bufAeval)*prod (bufUniFactors)== bufAeval " << |
---|
496 | (prod (bufUniFactors)*Lc (bufAeval) == bufAeval)); |
---|
497 | |
---|
498 | TIMING_START (uni_factorize); |
---|
499 | if (extension) |
---|
500 | bufUniFactors2= conv (factorize (bufAeval2, v)); |
---|
501 | else |
---|
502 | bufUniFactors2= conv (factorize (bufAeval2, true)); |
---|
503 | TIMING_END_AND_PRINT (uni_factorize, |
---|
504 | "time for univariate factorization in y: "); |
---|
505 | DEBOUTLN (cerr, "Lc (Aeval2)*prod (uniFactors2)== Aeval2 " << |
---|
506 | (prod (bufUniFactors2)*Lc (bufAeval2) == bufAeval2)); |
---|
507 | |
---|
508 | if (bufUniFactors.getFirst().inCoeffDomain()) |
---|
509 | bufUniFactors.removeFirst(); |
---|
510 | if (bufUniFactors2.getFirst().inCoeffDomain()) |
---|
511 | bufUniFactors2.removeFirst(); |
---|
512 | if (bufUniFactors.length() == 1 || bufUniFactors2.length() == 1) |
---|
513 | { |
---|
514 | factors.append (A); |
---|
515 | |
---|
516 | appendSwapDecompress (factors, conv (contentAxFactors), |
---|
517 | conv (contentAyFactors), swap, swap2, N); |
---|
518 | |
---|
519 | if (isOn (SW_RATIONAL)) |
---|
520 | normalize (factors); |
---|
521 | return factors; |
---|
522 | } |
---|
523 | |
---|
524 | if (i == 0) |
---|
525 | { |
---|
526 | if (subCheck1 > 0) |
---|
527 | { |
---|
528 | int subCheck= substituteCheck (bufUniFactors); |
---|
529 | |
---|
530 | if (subCheck > 1 && (subCheck1%subCheck == 0)) |
---|
531 | { |
---|
532 | CanonicalForm bufA= A; |
---|
533 | subst (bufA, bufA, subCheck, x); |
---|
534 | factors= biFactorize (bufA, v); |
---|
535 | reverseSubst (factors, subCheck, x); |
---|
536 | appendSwapDecompress (factors, conv (contentAxFactors), |
---|
537 | conv (contentAyFactors), swap, swap2, N); |
---|
538 | if (isOn (SW_RATIONAL)) |
---|
539 | normalize (factors); |
---|
540 | return factors; |
---|
541 | } |
---|
542 | } |
---|
543 | |
---|
544 | if (subCheck2 > 0) |
---|
545 | { |
---|
546 | int subCheck= substituteCheck (bufUniFactors2); |
---|
547 | |
---|
548 | if (subCheck > 1 && (subCheck2%subCheck == 0)) |
---|
549 | { |
---|
550 | CanonicalForm bufA= A; |
---|
551 | subst (bufA, bufA, subCheck, y); |
---|
552 | factors= biFactorize (bufA, v); |
---|
553 | reverseSubst (factors, subCheck, y); |
---|
554 | appendSwapDecompress (factors, conv (contentAxFactors), |
---|
555 | conv (contentAyFactors), swap, swap2, N); |
---|
556 | if (isOn (SW_RATIONAL)) |
---|
557 | normalize (factors); |
---|
558 | return factors; |
---|
559 | } |
---|
560 | } |
---|
561 | } |
---|
562 | |
---|
563 | // degree analysis |
---|
564 | bufDegs = DegreePattern (bufUniFactors); |
---|
565 | bufDegs2= DegreePattern (bufUniFactors2); |
---|
566 | |
---|
567 | if (i == 0) |
---|
568 | { |
---|
569 | Aeval= bufAeval; |
---|
570 | evaluation= bufEvaluation; |
---|
571 | uniFactors= bufUniFactors; |
---|
572 | degs= bufDegs; |
---|
573 | Aeval2= bufAeval2; |
---|
574 | evaluation2= bufEvaluation2; |
---|
575 | uniFactors2= bufUniFactors2; |
---|
576 | degs2= bufDegs2; |
---|
577 | } |
---|
578 | else |
---|
579 | { |
---|
580 | degs.intersect (bufDegs); |
---|
581 | degs2.intersect (bufDegs2); |
---|
582 | if (bufUniFactors2.length() < uniFactors2.length()) |
---|
583 | { |
---|
584 | uniFactors2= bufUniFactors2; |
---|
585 | Aeval2= bufAeval2; |
---|
586 | evaluation2= bufEvaluation2; |
---|
587 | } |
---|
588 | if (bufUniFactors.length() < uniFactors.length()) |
---|
589 | { |
---|
590 | if (evaluation != 0) |
---|
591 | { |
---|
592 | uniFactors= bufUniFactors; |
---|
593 | Aeval= bufAeval; |
---|
594 | evaluation= bufEvaluation; |
---|
595 | } |
---|
596 | } |
---|
597 | } |
---|
598 | bufEvaluation++; |
---|
599 | bufEvaluation2++; |
---|
600 | } |
---|
601 | |
---|
602 | if (evaluation != 0 && (uniFactors.length() > uniFactors2.length() || |
---|
603 | (uniFactors.length() == uniFactors2.length() |
---|
604 | && degs.getLength() > degs2.getLength()))) |
---|
605 | { |
---|
606 | degs= degs2; |
---|
607 | uniFactors= uniFactors2; |
---|
608 | evaluation= evaluation2; |
---|
609 | Aeval= Aeval2; |
---|
610 | A= buf; |
---|
611 | swap2= true; |
---|
612 | } |
---|
613 | |
---|
614 | |
---|
615 | if (degs.getLength() == 1) // A is irreducible |
---|
616 | { |
---|
617 | factors.append (A); |
---|
618 | appendSwapDecompress (factors, conv (contentAxFactors), |
---|
619 | conv (contentAyFactors), swap, swap2, N); |
---|
620 | if (isOn (SW_RATIONAL)) |
---|
621 | normalize (factors); |
---|
622 | return factors; |
---|
623 | } |
---|
624 | |
---|
625 | A= A (y + evaluation, y); |
---|
626 | |
---|
627 | int liftBound= degree (A, y) + 1; |
---|
628 | |
---|
629 | modpk b= modpk(); |
---|
630 | if ( !extension) |
---|
631 | { |
---|
632 | Off (SW_RATIONAL); |
---|
633 | int i= 0; |
---|
634 | findGoodPrime(F,i); |
---|
635 | findGoodPrime(Aeval,i); |
---|
636 | findGoodPrime(A,i); |
---|
637 | if (i >= cf_getNumBigPrimes()) |
---|
638 | printf ("out of primes\n"); //TODO exit |
---|
639 | |
---|
640 | int p=cf_getBigPrime(i); |
---|
641 | b = coeffBound( A, p ); |
---|
642 | modpk bb= coeffBound (Aeval, p); |
---|
643 | if (bb.getk() > b.getk() ) b=bb; |
---|
644 | bb= coeffBound (F, p); |
---|
645 | if (bb.getk() > b.getk() ) b=bb; |
---|
646 | } |
---|
647 | |
---|
648 | ExtensionInfo dummy= ExtensionInfo (false); |
---|
649 | bool earlySuccess= false; |
---|
650 | CFList earlyFactors; |
---|
651 | TIMING_START (fac_hensel_lift); |
---|
652 | //maybe one should use a multiple of LC (A,1) and try a nonmonic lifting here? |
---|
653 | uniFactors= henselLiftAndEarly |
---|
654 | (A, earlySuccess, earlyFactors, degs, liftBound, |
---|
655 | uniFactors, dummy, evaluation, b); |
---|
656 | TIMING_END_AND_PRINT (fac_hensel_lift, "time for hensel lifting: "); |
---|
657 | DEBOUTLN (cerr, "lifted factors= " << uniFactors); |
---|
658 | |
---|
659 | CanonicalForm MODl= power (y, liftBound); |
---|
660 | |
---|
661 | factors= factorRecombination (uniFactors, A, MODl, degs, 1, |
---|
662 | uniFactors.length()/2, b); |
---|
663 | |
---|
664 | if (!extension) |
---|
665 | On (SW_RATIONAL); |
---|
666 | |
---|
667 | if (earlySuccess) |
---|
668 | factors= Union (earlyFactors, factors); |
---|
669 | else if (!earlySuccess && degs.getLength() == 1) |
---|
670 | factors= earlyFactors; |
---|
671 | |
---|
672 | for (CFListIterator i= factors; i.hasItem(); i++) |
---|
673 | i.getItem()= i.getItem() (y - evaluation, y); |
---|
674 | |
---|
675 | appendSwapDecompress (factors, conv (contentAxFactors), |
---|
676 | conv (contentAyFactors), swap, swap2, N); |
---|
677 | if (isOn (SW_RATIONAL)) |
---|
678 | normalize (factors); |
---|
679 | |
---|
680 | return factors; |
---|
681 | } |
---|
682 | |
---|
683 | #endif |
---|