1 | /*****************************************************************************\ |
---|
2 | * Computer Algebra System SINGULAR |
---|
3 | \*****************************************************************************/ |
---|
4 | /** @file facFqBivar.cc |
---|
5 | * |
---|
6 | * This file provides functions for factorizing a bivariate polynomial over |
---|
7 | * \f$ F_{p} \f$ , \f$ F_{p}(\alpha ) \f$ or GF, based on "Modern Computer |
---|
8 | * Algebra, Chapter 15" by J. von zur Gathen & J. Gerhard and "Factoring |
---|
9 | * multivariate polynomials over a finite field" by L. Bernardin. |
---|
10 | * |
---|
11 | * ABSTRACT: In contrast to biFactorizer() in facFqFactorice.cc we evaluate and |
---|
12 | * factorize the polynomial in both variables. So far factor recombination is |
---|
13 | * done naive! |
---|
14 | * |
---|
15 | * @author Martin Lee |
---|
16 | * |
---|
17 | * @internal @version \$Id$ |
---|
18 | * |
---|
19 | **/ |
---|
20 | /*****************************************************************************/ |
---|
21 | |
---|
22 | #include <config.h> |
---|
23 | |
---|
24 | #include "assert.h" |
---|
25 | #include "debug.h" |
---|
26 | #include "timing.h" |
---|
27 | |
---|
28 | #include "canonicalform.h" |
---|
29 | #include "cf_defs.h" |
---|
30 | #include "cf_map_ext.h" |
---|
31 | #include "cf_random.h" |
---|
32 | #include "facHensel.h" |
---|
33 | #include "cf_map.h" |
---|
34 | #include "cf_gcd_smallp.h" |
---|
35 | #include "facFqBivarUtil.h" |
---|
36 | #include "facFqBivar.h" |
---|
37 | #include "cfNewtonPolygon.h" |
---|
38 | |
---|
39 | #ifdef HAVE_NTL |
---|
40 | #include "NTLconvert.h" |
---|
41 | |
---|
42 | TIMING_DEFINE_PRINT(fac_uni_factorizer); |
---|
43 | TIMING_DEFINE_PRINT(fac_hensel_lift); |
---|
44 | TIMING_DEFINE_PRINT(fac_factor_recombination); |
---|
45 | |
---|
46 | CanonicalForm prodMod0 (const CFList& L, const CanonicalForm& M) |
---|
47 | { |
---|
48 | if (L.isEmpty()) |
---|
49 | return 1; |
---|
50 | else if (L.length() == 1) |
---|
51 | return mod (L.getFirst()(0, 1) , M); |
---|
52 | else if (L.length() == 2) |
---|
53 | return mod (L.getFirst()(0, 1)*L.getLast()(0, 1), M); |
---|
54 | else |
---|
55 | { |
---|
56 | int l= L.length()/2; |
---|
57 | CFListIterator i= L; |
---|
58 | CFList tmp1, tmp2; |
---|
59 | CanonicalForm buf1, buf2; |
---|
60 | for (int j= 1; j <= l; j++, i++) |
---|
61 | tmp1.append (i.getItem()); |
---|
62 | tmp2= Difference (L, tmp1); |
---|
63 | buf1= prodMod0 (tmp1, M); |
---|
64 | buf2= prodMod0 (tmp2, M); |
---|
65 | return mod (buf1*buf2, M); |
---|
66 | } |
---|
67 | } |
---|
68 | |
---|
69 | CanonicalForm evalPoint (const CanonicalForm& F, CanonicalForm & eval, |
---|
70 | const Variable& alpha, CFList& list, const bool& GF, |
---|
71 | bool& fail) |
---|
72 | { |
---|
73 | fail= false; |
---|
74 | Variable x= Variable(2); |
---|
75 | FFRandom genFF; |
---|
76 | GFRandom genGF; |
---|
77 | CanonicalForm random, mipo; |
---|
78 | double bound; |
---|
79 | int p= getCharacteristic (); |
---|
80 | if (alpha.level() != 1) |
---|
81 | { |
---|
82 | mipo= getMipo (alpha); |
---|
83 | int d= degree (mipo); |
---|
84 | bound= ipower (p, d); |
---|
85 | } |
---|
86 | else if (GF) |
---|
87 | { |
---|
88 | int d= getGFDegree(); |
---|
89 | bound= ipower (p, d); |
---|
90 | } |
---|
91 | else |
---|
92 | bound= p; |
---|
93 | |
---|
94 | random= 0; |
---|
95 | do |
---|
96 | { |
---|
97 | if (list.length() >= bound) |
---|
98 | { |
---|
99 | fail= true; |
---|
100 | break; |
---|
101 | } |
---|
102 | if (list.isEmpty()) |
---|
103 | random= 0; |
---|
104 | else if (GF) |
---|
105 | { |
---|
106 | if (list.length() == 1) |
---|
107 | random= getGFGenerator(); |
---|
108 | else |
---|
109 | random= genGF.generate(); |
---|
110 | } |
---|
111 | else if (list.length() < p || alpha.level() == 1) |
---|
112 | random= genFF.generate(); |
---|
113 | else if (alpha != x && list.length() >= p) |
---|
114 | { |
---|
115 | if (list.length() == p) |
---|
116 | random= alpha; |
---|
117 | else |
---|
118 | { |
---|
119 | AlgExtRandomF genAlgExt (alpha); |
---|
120 | random= genAlgExt.generate(); |
---|
121 | } |
---|
122 | } |
---|
123 | if (find (list, random)) continue; |
---|
124 | eval= F (random, x); |
---|
125 | if (degree (eval) != degree (F, Variable (1))) |
---|
126 | { //leading coeff vanishes |
---|
127 | if (!find (list, random)) |
---|
128 | list.append (random); |
---|
129 | continue; |
---|
130 | } |
---|
131 | if (degree (gcd (deriv (eval, eval.mvar()), eval), eval.mvar()) > 0) |
---|
132 | { //evaluated polynomial is not squarefree |
---|
133 | if (!find (list, random)) |
---|
134 | list.append (random); |
---|
135 | continue; |
---|
136 | } |
---|
137 | } while (find (list, random)); |
---|
138 | |
---|
139 | return random; |
---|
140 | } |
---|
141 | |
---|
142 | CFList |
---|
143 | uniFactorizer (const CanonicalForm& A, const Variable& alpha, const bool& GF) |
---|
144 | { |
---|
145 | Variable x= A.mvar(); |
---|
146 | ASSERT (A.isUnivariate(), "univariate polynomial expected"); |
---|
147 | CFFList factorsA; |
---|
148 | ZZ p= to_ZZ (getCharacteristic()); |
---|
149 | ZZ_p::init (p); |
---|
150 | if (GF) |
---|
151 | { |
---|
152 | Variable beta= rootOf (gf_mipo); |
---|
153 | int k= getGFDegree(); |
---|
154 | char cGFName= gf_name; |
---|
155 | setCharacteristic (getCharacteristic()); |
---|
156 | CanonicalForm buf= GF2FalphaRep (A, beta); |
---|
157 | if (getCharacteristic() > 2) |
---|
158 | { |
---|
159 | ZZ_pX NTLMipo= convertFacCF2NTLZZpX (gf_mipo); |
---|
160 | ZZ_pE::init (NTLMipo); |
---|
161 | ZZ_pEX NTLA= convertFacCF2NTLZZ_pEX (buf, NTLMipo); |
---|
162 | MakeMonic (NTLA); |
---|
163 | vec_pair_ZZ_pEX_long NTLFactorsA= CanZass (NTLA); |
---|
164 | ZZ_pE multi= to_ZZ_pE (1); |
---|
165 | factorsA= convertNTLvec_pair_ZZpEX_long2FacCFFList (NTLFactorsA, multi, |
---|
166 | x, beta); |
---|
167 | } |
---|
168 | else |
---|
169 | { |
---|
170 | GF2X NTLMipo= convertFacCF2NTLGF2X (gf_mipo); |
---|
171 | GF2E::init (NTLMipo); |
---|
172 | GF2EX NTLA= convertFacCF2NTLGF2EX (buf, NTLMipo); |
---|
173 | MakeMonic (NTLA); |
---|
174 | vec_pair_GF2EX_long NTLFactorsA= CanZass (NTLA); |
---|
175 | GF2E multi= to_GF2E (1); |
---|
176 | factorsA= convertNTLvec_pair_GF2EX_long2FacCFFList (NTLFactorsA, multi, |
---|
177 | x, beta); |
---|
178 | } |
---|
179 | setCharacteristic (getCharacteristic(), k, cGFName); |
---|
180 | for (CFFListIterator i= factorsA; i.hasItem(); i++) |
---|
181 | { |
---|
182 | buf= i.getItem().factor(); |
---|
183 | buf= Falpha2GFRep (buf); |
---|
184 | i.getItem()= CFFactor (buf, i.getItem().exp()); |
---|
185 | } |
---|
186 | } |
---|
187 | else if (alpha.level() != 1) |
---|
188 | { |
---|
189 | if (getCharacteristic() > 2) |
---|
190 | { |
---|
191 | ZZ_pX NTLMipo= convertFacCF2NTLZZpX (getMipo (alpha)); |
---|
192 | ZZ_pE::init (NTLMipo); |
---|
193 | ZZ_pEX NTLA= convertFacCF2NTLZZ_pEX (A, NTLMipo); |
---|
194 | MakeMonic (NTLA); |
---|
195 | vec_pair_ZZ_pEX_long NTLFactorsA= CanZass (NTLA); |
---|
196 | ZZ_pE multi= to_ZZ_pE (1); |
---|
197 | factorsA= convertNTLvec_pair_ZZpEX_long2FacCFFList (NTLFactorsA, multi, |
---|
198 | x, alpha); |
---|
199 | } |
---|
200 | else |
---|
201 | { |
---|
202 | GF2X NTLMipo= convertFacCF2NTLGF2X (getMipo (alpha)); |
---|
203 | GF2E::init (NTLMipo); |
---|
204 | GF2EX NTLA= convertFacCF2NTLGF2EX (A, NTLMipo); |
---|
205 | MakeMonic (NTLA); |
---|
206 | vec_pair_GF2EX_long NTLFactorsA= CanZass (NTLA); |
---|
207 | GF2E multi= to_GF2E (1); |
---|
208 | factorsA= convertNTLvec_pair_GF2EX_long2FacCFFList (NTLFactorsA, multi, |
---|
209 | x, alpha); |
---|
210 | } |
---|
211 | } |
---|
212 | else |
---|
213 | { |
---|
214 | if (getCharacteristic() > 2) |
---|
215 | { |
---|
216 | ZZ_pX NTLA= convertFacCF2NTLZZpX (A); |
---|
217 | MakeMonic (NTLA); |
---|
218 | vec_pair_ZZ_pX_long NTLFactorsA= CanZass (NTLA); |
---|
219 | ZZ_p multi= to_ZZ_p (1); |
---|
220 | factorsA= convertNTLvec_pair_ZZpX_long2FacCFFList (NTLFactorsA, multi, |
---|
221 | x); |
---|
222 | } |
---|
223 | else |
---|
224 | { |
---|
225 | GF2X NTLA= convertFacCF2NTLGF2X (A); |
---|
226 | vec_pair_GF2X_long NTLFactorsA= CanZass (NTLA); |
---|
227 | GF2 multi= to_GF2 (1); |
---|
228 | factorsA= convertNTLvec_pair_GF2X_long2FacCFFList (NTLFactorsA, multi, |
---|
229 | x); |
---|
230 | } |
---|
231 | } |
---|
232 | CFList uniFactors; |
---|
233 | for (CFFListIterator i= factorsA; i.hasItem(); i++) |
---|
234 | uniFactors.append (i.getItem().factor()); |
---|
235 | return uniFactors; |
---|
236 | } |
---|
237 | |
---|
238 | /// naive factor recombination as decribed in "Factoring |
---|
239 | /// multivariate polynomials over a finite field" by L Bernardin. |
---|
240 | CFList |
---|
241 | extFactorRecombination (CFList& factors, CanonicalForm& F, |
---|
242 | const CanonicalForm& M, const ExtensionInfo& info, |
---|
243 | DegreePattern& degs, const CanonicalForm& eval, int s, |
---|
244 | int thres) |
---|
245 | { |
---|
246 | if (factors.length() == 0) |
---|
247 | { |
---|
248 | F= 1; |
---|
249 | return CFList(); |
---|
250 | } |
---|
251 | |
---|
252 | Variable alpha= info.getAlpha(); |
---|
253 | Variable beta= info.getBeta(); |
---|
254 | CanonicalForm gamma= info.getGamma(); |
---|
255 | CanonicalForm delta= info.getDelta(); |
---|
256 | int k= info.getGFDegree(); |
---|
257 | |
---|
258 | Variable y= F.mvar(); |
---|
259 | CFList source, dest; |
---|
260 | if (degs.getLength() <= 1 || factors.length() == 1) |
---|
261 | { |
---|
262 | CFList result= CFList(mapDown (F(y-eval, y), info, source, dest)); |
---|
263 | F= 1; |
---|
264 | return result; |
---|
265 | } |
---|
266 | |
---|
267 | DEBOUTLN (cerr, "LC (F, 1)*prodMod (factors, M) == F " << |
---|
268 | (LC (F, 1)*prodMod (factors, M) == F)); |
---|
269 | int degMipoBeta; |
---|
270 | if (!k && beta.level() == 1) |
---|
271 | degMipoBeta= 1; |
---|
272 | else if (!k && beta.level() != 1) |
---|
273 | degMipoBeta= degree (getMipo (beta)); |
---|
274 | |
---|
275 | CFList T, S, Diff; |
---|
276 | T= factors; |
---|
277 | |
---|
278 | CFList result; |
---|
279 | CanonicalForm buf, buf2; |
---|
280 | |
---|
281 | buf= F; |
---|
282 | |
---|
283 | CanonicalForm g, LCBuf= LC (buf, Variable (1)); |
---|
284 | int * v= new int [T.length()]; |
---|
285 | for (int i= 0; i < T.length(); i++) |
---|
286 | v[i]= 0; |
---|
287 | |
---|
288 | CFArray TT; |
---|
289 | DegreePattern bufDegs1, bufDegs2; |
---|
290 | bufDegs1= degs; |
---|
291 | int subsetDeg; |
---|
292 | TT= copy (factors); |
---|
293 | bool nosubset= false; |
---|
294 | bool recombination= false; |
---|
295 | bool trueFactor= false; |
---|
296 | while (T.length() >= 2*s && s <= thres) |
---|
297 | { |
---|
298 | while (nosubset == false) |
---|
299 | { |
---|
300 | if (T.length() == s) |
---|
301 | { |
---|
302 | delete [] v; |
---|
303 | if (recombination) |
---|
304 | { |
---|
305 | T.insert (LCBuf); |
---|
306 | g= prodMod (T, M); |
---|
307 | T.removeFirst(); |
---|
308 | g /= content(g); |
---|
309 | g= g (y - eval, y); |
---|
310 | g /= Lc (g); |
---|
311 | appendTestMapDown (result, g, info, source, dest); |
---|
312 | F= 1; |
---|
313 | return result; |
---|
314 | } |
---|
315 | else |
---|
316 | { |
---|
317 | appendMapDown (result, F (y - eval, y), info, source, dest); |
---|
318 | F= 1; |
---|
319 | return result; |
---|
320 | } |
---|
321 | } |
---|
322 | S= subset (v, s, TT, nosubset); |
---|
323 | if (nosubset) break; |
---|
324 | subsetDeg= subsetDegree (S); |
---|
325 | // skip those combinations that are not possible |
---|
326 | if (!degs.find (subsetDeg)) |
---|
327 | continue; |
---|
328 | else |
---|
329 | { |
---|
330 | g= prodMod0 (S, M); |
---|
331 | g= mod (g*LCBuf, M); |
---|
332 | g /= content (g); |
---|
333 | if (fdivides (LC (g), LCBuf)) |
---|
334 | { |
---|
335 | S.insert (LCBuf); |
---|
336 | g= prodMod (S, M); |
---|
337 | S.removeFirst(); |
---|
338 | g /= content (g, Variable (1)); |
---|
339 | if (fdivides (g, buf)) |
---|
340 | { |
---|
341 | buf2= g (y - eval, y); |
---|
342 | buf2 /= Lc (buf2); |
---|
343 | |
---|
344 | if (!k && beta.level() == 1) |
---|
345 | { |
---|
346 | if (degree (buf2, alpha) < degMipoBeta) |
---|
347 | { |
---|
348 | buf /= g; |
---|
349 | LCBuf= LC (buf, Variable (1)); |
---|
350 | recombination= true; |
---|
351 | appendTestMapDown (result, buf2, info, source, dest); |
---|
352 | trueFactor= true; |
---|
353 | } |
---|
354 | } |
---|
355 | else |
---|
356 | { |
---|
357 | if (!isInExtension (buf2, gamma, k, delta, source, dest)) |
---|
358 | { |
---|
359 | buf /= g; |
---|
360 | LCBuf= LC (buf, Variable (1)); |
---|
361 | recombination= true; |
---|
362 | appendTestMapDown (result, buf2, info, source, dest); |
---|
363 | trueFactor= true; |
---|
364 | } |
---|
365 | } |
---|
366 | if (trueFactor) |
---|
367 | { |
---|
368 | T= Difference (T, S); |
---|
369 | // compute new possible degree pattern |
---|
370 | bufDegs2= DegreePattern (T); |
---|
371 | bufDegs1.intersect (bufDegs2); |
---|
372 | bufDegs1.refine (); |
---|
373 | if (T.length() < 2*s || T.length() == s || |
---|
374 | bufDegs1.getLength() == 1) |
---|
375 | { |
---|
376 | delete [] v; |
---|
377 | if (recombination) |
---|
378 | { |
---|
379 | appendTestMapDown (result, buf (y - eval, y), info, source, |
---|
380 | dest); |
---|
381 | F= 1; |
---|
382 | return result; |
---|
383 | } |
---|
384 | else |
---|
385 | { |
---|
386 | appendMapDown (result, F (y - eval, y), info, source, dest); |
---|
387 | F= 1; |
---|
388 | return result; |
---|
389 | } |
---|
390 | } |
---|
391 | trueFactor= false; |
---|
392 | TT= copy (T); |
---|
393 | indexUpdate (v, s, T.length(), nosubset); |
---|
394 | if (nosubset) break; |
---|
395 | } |
---|
396 | } |
---|
397 | } |
---|
398 | } |
---|
399 | } |
---|
400 | s++; |
---|
401 | if (T.length() < 2*s || T.length() == s) |
---|
402 | { |
---|
403 | delete [] v; |
---|
404 | if (recombination) |
---|
405 | { |
---|
406 | appendTestMapDown (result, buf (y - eval, y), info, source, dest); |
---|
407 | F= 1; |
---|
408 | return result; |
---|
409 | } |
---|
410 | else |
---|
411 | { |
---|
412 | appendMapDown (result, F (y - eval, y), info, source, dest); |
---|
413 | F= 1; |
---|
414 | return result; |
---|
415 | } |
---|
416 | } |
---|
417 | for (int i= 0; i < T.length(); i++) |
---|
418 | v[i]= 0; |
---|
419 | nosubset= false; |
---|
420 | } |
---|
421 | if (T.length() < 2*s) |
---|
422 | { |
---|
423 | appendMapDown (result, F (y - eval, y), info, source, dest); |
---|
424 | F= 1; |
---|
425 | delete [] v; |
---|
426 | return result; |
---|
427 | } |
---|
428 | |
---|
429 | if (s > thres) |
---|
430 | { |
---|
431 | factors= T; |
---|
432 | F= buf; |
---|
433 | degs= bufDegs1; |
---|
434 | } |
---|
435 | |
---|
436 | delete [] v; |
---|
437 | return result; |
---|
438 | } |
---|
439 | |
---|
440 | /// naive factor recombination as decribed in "Factoring |
---|
441 | /// multivariate polynomials over a finite field" by L Bernardin. |
---|
442 | CFList |
---|
443 | factorRecombination (CFList& factors, CanonicalForm& F, |
---|
444 | const CanonicalForm& M, DegreePattern& degs, int s, |
---|
445 | int thres |
---|
446 | ) |
---|
447 | { |
---|
448 | if (factors.length() == 0) |
---|
449 | { |
---|
450 | F= 1; |
---|
451 | return CFList (); |
---|
452 | } |
---|
453 | if (degs.getLength() <= 1 || factors.length() == 1) |
---|
454 | { |
---|
455 | CFList result= CFList (F); |
---|
456 | F= 1; |
---|
457 | return result; |
---|
458 | } |
---|
459 | DEBOUTLN (cerr, "LC (F, 1)*prodMod (factors, M) == F " << |
---|
460 | (LC (F, 1)*prodMod (factors, M) == F)); |
---|
461 | CFList T, S; |
---|
462 | |
---|
463 | T= factors; |
---|
464 | CFList result; |
---|
465 | CanonicalForm LCBuf= LC (F, Variable (1)); |
---|
466 | CanonicalForm g, buf= F; |
---|
467 | int * v= new int [T.length()]; |
---|
468 | for (int i= 0; i < T.length(); i++) |
---|
469 | v[i]= 0; |
---|
470 | bool nosubset= false; |
---|
471 | CFArray TT; |
---|
472 | DegreePattern bufDegs1, bufDegs2; |
---|
473 | bufDegs1= degs; |
---|
474 | int subsetDeg; |
---|
475 | TT= copy (factors); |
---|
476 | bool recombination= false; |
---|
477 | while (T.length() >= 2*s && s <= thres) |
---|
478 | { |
---|
479 | while (nosubset == false) |
---|
480 | { |
---|
481 | if (T.length() == s) |
---|
482 | { |
---|
483 | delete [] v; |
---|
484 | if (recombination) |
---|
485 | { |
---|
486 | T.insert (LCBuf); |
---|
487 | g= prodMod (T, M); |
---|
488 | T.removeFirst(); |
---|
489 | result.append (g/content (g, Variable (1))); |
---|
490 | F= 1; |
---|
491 | return result; |
---|
492 | } |
---|
493 | else |
---|
494 | { |
---|
495 | result= CFList (F); |
---|
496 | F= 1; |
---|
497 | return result; |
---|
498 | } |
---|
499 | } |
---|
500 | S= subset (v, s, TT, nosubset); |
---|
501 | if (nosubset) break; |
---|
502 | subsetDeg= subsetDegree (S); |
---|
503 | // skip those combinations that are not possible |
---|
504 | if (!degs.find (subsetDeg)) |
---|
505 | continue; |
---|
506 | else |
---|
507 | { |
---|
508 | g= prodMod0 (S, M); |
---|
509 | g= mod (g*LCBuf, M); |
---|
510 | g /= content (g); |
---|
511 | if (fdivides (LC(g), LCBuf)) |
---|
512 | { |
---|
513 | S.insert (LCBuf); |
---|
514 | g= prodMod (S, M); |
---|
515 | S.removeFirst(); |
---|
516 | g /= content (g, Variable (1)); |
---|
517 | if (fdivides (g, buf)) |
---|
518 | { |
---|
519 | recombination= true; |
---|
520 | result.append (g); |
---|
521 | buf /= g; |
---|
522 | LCBuf= LC (buf, Variable(1)); |
---|
523 | T= Difference (T, S); |
---|
524 | |
---|
525 | // compute new possible degree pattern |
---|
526 | bufDegs2= DegreePattern (T); |
---|
527 | bufDegs1.intersect (bufDegs2); |
---|
528 | bufDegs1.refine (); |
---|
529 | if (T.length() < 2*s || T.length() == s || |
---|
530 | bufDegs1.getLength() == 1) |
---|
531 | { |
---|
532 | delete [] v; |
---|
533 | if (recombination) |
---|
534 | { |
---|
535 | result.append (buf); |
---|
536 | F= 1; |
---|
537 | return result; |
---|
538 | } |
---|
539 | else |
---|
540 | { |
---|
541 | result= CFList (F); |
---|
542 | F= 1; |
---|
543 | return result; |
---|
544 | } |
---|
545 | } |
---|
546 | TT= copy (T); |
---|
547 | indexUpdate (v, s, T.length(), nosubset); |
---|
548 | if (nosubset) break; |
---|
549 | } |
---|
550 | } |
---|
551 | } |
---|
552 | } |
---|
553 | s++; |
---|
554 | if (T.length() < 2*s || T.length() == s) |
---|
555 | { |
---|
556 | delete [] v; |
---|
557 | if (recombination) |
---|
558 | { |
---|
559 | result.append (buf); |
---|
560 | F= 1; |
---|
561 | return result; |
---|
562 | } |
---|
563 | else |
---|
564 | { |
---|
565 | result= CFList (F); |
---|
566 | F= 1; |
---|
567 | return result; |
---|
568 | } |
---|
569 | } |
---|
570 | for (int i= 0; i < T.length(); i++) |
---|
571 | v[i]= 0; |
---|
572 | nosubset= false; |
---|
573 | } |
---|
574 | delete [] v; |
---|
575 | if (T.length() < 2*s) |
---|
576 | { |
---|
577 | result.append (F); |
---|
578 | F= 1; |
---|
579 | return result; |
---|
580 | } |
---|
581 | |
---|
582 | if (s > thres) |
---|
583 | { |
---|
584 | factors= T; |
---|
585 | F= buf; |
---|
586 | degs= bufDegs1; |
---|
587 | } |
---|
588 | |
---|
589 | return result; |
---|
590 | } |
---|
591 | |
---|
592 | Variable chooseExtension (const Variable & alpha, const Variable& beta, int k) |
---|
593 | { |
---|
594 | zz_p::init (getCharacteristic()); |
---|
595 | zz_pX NTLIrredpoly; |
---|
596 | int i, m; |
---|
597 | // extension of F_p needed |
---|
598 | if (alpha.level() == 1 && beta.level() == 1 && k == 1) |
---|
599 | { |
---|
600 | i= 1; |
---|
601 | m= 2; |
---|
602 | } //extension of F_p(alpha) needed but want to factorize over F_p |
---|
603 | else if (alpha.level() != 1 && beta.level() == 1 && k == 1) |
---|
604 | { |
---|
605 | i= 1; |
---|
606 | m= degree (getMipo (alpha)) + 1; |
---|
607 | } //extension of F_p(alpha) needed for first time |
---|
608 | else if (alpha.level() != 1 && beta.level() == 1 && k != 1) |
---|
609 | { |
---|
610 | i= 2; |
---|
611 | m= degree (getMipo (alpha)); |
---|
612 | } |
---|
613 | else if (alpha.level() != 1 && beta.level() != 1 && k != 1) |
---|
614 | { |
---|
615 | m= degree (getMipo (beta)); |
---|
616 | i= degree (getMipo (alpha))/m + 1; |
---|
617 | } |
---|
618 | BuildIrred (NTLIrredpoly, i*m); |
---|
619 | CanonicalForm newMipo= convertNTLzzpX2CF (NTLIrredpoly, Variable (1)); |
---|
620 | return rootOf (newMipo); |
---|
621 | } |
---|
622 | |
---|
623 | CFList |
---|
624 | earlyFactorDetection (CanonicalForm& F, CFList& factors,int& adaptedLiftBound, |
---|
625 | DegreePattern& degs, bool& success, int deg) |
---|
626 | { |
---|
627 | DegreePattern bufDegs1= degs; |
---|
628 | DegreePattern bufDegs2; |
---|
629 | CFList result; |
---|
630 | CFList T= factors; |
---|
631 | CanonicalForm buf= F; |
---|
632 | CanonicalForm LCBuf= LC (buf, Variable (1)); |
---|
633 | CanonicalForm g; |
---|
634 | CanonicalForm M= power (F.mvar(), deg); |
---|
635 | adaptedLiftBound= 0; |
---|
636 | int d= degree (F) + degree (LCBuf); |
---|
637 | for (CFListIterator i= factors; i.hasItem(); i++) |
---|
638 | { |
---|
639 | if (!bufDegs1.find (degree (i.getItem(), 1))) |
---|
640 | continue; |
---|
641 | else |
---|
642 | { |
---|
643 | g= i.getItem() (0, 1); |
---|
644 | g *= LCBuf; |
---|
645 | g= mod (g, M); |
---|
646 | if (fdivides (LC (g), LCBuf)) |
---|
647 | { |
---|
648 | g= mulMod2 (i.getItem(), LCBuf, M); |
---|
649 | g /= content (g, Variable (1)); |
---|
650 | if (fdivides (g, buf)) |
---|
651 | { |
---|
652 | result.append (g); |
---|
653 | buf /= g; |
---|
654 | d -= degree (g) + degree (LC (g, Variable (1))); |
---|
655 | LCBuf= LC (buf, Variable (1)); |
---|
656 | T= Difference (T, CFList (i.getItem())); |
---|
657 | |
---|
658 | // compute new possible degree pattern |
---|
659 | bufDegs2= DegreePattern (T); |
---|
660 | bufDegs1.intersect (bufDegs2); |
---|
661 | bufDegs1.refine (); |
---|
662 | if (bufDegs1.getLength() <= 1) |
---|
663 | { |
---|
664 | result.append (buf); |
---|
665 | break; |
---|
666 | } |
---|
667 | } |
---|
668 | } |
---|
669 | } |
---|
670 | } |
---|
671 | adaptedLiftBound= d + 1; |
---|
672 | if (d < deg) |
---|
673 | { |
---|
674 | factors= T; |
---|
675 | degs= bufDegs1; |
---|
676 | F= buf; |
---|
677 | success= true; |
---|
678 | } |
---|
679 | if (bufDegs1.getLength() <= 1) |
---|
680 | degs= bufDegs1; |
---|
681 | return result; |
---|
682 | } |
---|
683 | |
---|
684 | CFList |
---|
685 | extEarlyFactorDetection (CanonicalForm& F, CFList& factors, |
---|
686 | int& adaptedLiftBound, DegreePattern& degs, |
---|
687 | bool& success, const ExtensionInfo& info, |
---|
688 | const CanonicalForm& eval, int deg) |
---|
689 | { |
---|
690 | Variable alpha= info.getAlpha(); |
---|
691 | Variable beta= info.getBeta(); |
---|
692 | CanonicalForm gamma= info.getGamma(); |
---|
693 | CanonicalForm delta= info.getDelta(); |
---|
694 | int k= info.getGFDegree(); |
---|
695 | DegreePattern bufDegs1= degs, bufDegs2; |
---|
696 | CFList result; |
---|
697 | CFList T= factors; |
---|
698 | Variable y= F.mvar(); |
---|
699 | CanonicalForm buf= F, LCBuf= LC (buf, Variable (1)), g, buf2; |
---|
700 | CanonicalForm M= power (y, deg); |
---|
701 | adaptedLiftBound= 0; |
---|
702 | bool trueFactor= false; |
---|
703 | int d= degree (F) + degree (LCBuf); |
---|
704 | CFList source, dest; |
---|
705 | int degMipoBeta; |
---|
706 | if (!k && beta.level() == 1) |
---|
707 | degMipoBeta= 1; |
---|
708 | else if (!k && beta.level() != 1) |
---|
709 | degMipoBeta= degree (getMipo (beta)); |
---|
710 | for (CFListIterator i= factors; i.hasItem(); i++) |
---|
711 | { |
---|
712 | if (!bufDegs1.find (degree (i.getItem(), 1))) |
---|
713 | continue; |
---|
714 | else |
---|
715 | { |
---|
716 | g= i.getItem() (0, 1); |
---|
717 | g *= LCBuf; |
---|
718 | g= mod (g, M); |
---|
719 | if (fdivides (LC (g), LCBuf)) |
---|
720 | { |
---|
721 | g= mulMod2 (i.getItem(), LCBuf, M); |
---|
722 | g /= content (g, Variable (1)); |
---|
723 | if (fdivides (g, buf)) |
---|
724 | { |
---|
725 | buf2= g (y - eval, y); |
---|
726 | buf2 /= Lc (buf2); |
---|
727 | |
---|
728 | if (!k && beta == Variable (1)) |
---|
729 | { |
---|
730 | if (degree (buf2, alpha) < degMipoBeta) |
---|
731 | { |
---|
732 | appendTestMapDown (result, buf2, info, source, dest); |
---|
733 | buf /= g; |
---|
734 | d -= degree (g) + degree (LC (g, Variable (1))); |
---|
735 | LCBuf= LC (buf, Variable (1)); |
---|
736 | trueFactor= true; |
---|
737 | } |
---|
738 | } |
---|
739 | else |
---|
740 | { |
---|
741 | if (!isInExtension (buf2, gamma, k, delta, source, dest)) |
---|
742 | { |
---|
743 | appendTestMapDown (result, buf2, info, source, dest); |
---|
744 | buf /= g; |
---|
745 | d -= degree (g) + degree (LC (g, Variable (1))); |
---|
746 | LCBuf= LC (buf, Variable (1)); |
---|
747 | trueFactor= true; |
---|
748 | } |
---|
749 | } |
---|
750 | if (trueFactor) |
---|
751 | { |
---|
752 | T= Difference (T, CFList (i.getItem())); |
---|
753 | |
---|
754 | // compute new possible degree pattern |
---|
755 | bufDegs2= DegreePattern (T); |
---|
756 | bufDegs1.intersect (bufDegs2); |
---|
757 | bufDegs1.refine (); |
---|
758 | trueFactor= false; |
---|
759 | if (bufDegs1.getLength() <= 1) |
---|
760 | { |
---|
761 | buf= buf (y - eval, y); |
---|
762 | buf /= Lc (buf); |
---|
763 | appendMapDown (result, buf, info, source, dest); |
---|
764 | break; |
---|
765 | } |
---|
766 | } |
---|
767 | } |
---|
768 | } |
---|
769 | } |
---|
770 | } |
---|
771 | adaptedLiftBound= d + 1; |
---|
772 | if (adaptedLiftBound < deg) |
---|
773 | { |
---|
774 | success= true; |
---|
775 | factors= T; |
---|
776 | degs= bufDegs1; |
---|
777 | F= buf; |
---|
778 | } |
---|
779 | if (bufDegs1.getLength() <= 1) |
---|
780 | degs= bufDegs1; |
---|
781 | |
---|
782 | return result; |
---|
783 | } |
---|
784 | |
---|
785 | CFList |
---|
786 | henselLiftAndEarly (CanonicalForm& A, bool& earlySuccess, CFList& |
---|
787 | earlyFactors, DegreePattern& degs, int& liftBound, |
---|
788 | const CFList& uniFactors, const ExtensionInfo& info, |
---|
789 | const CanonicalForm& eval) |
---|
790 | { |
---|
791 | Variable alpha= info.getAlpha(); |
---|
792 | Variable beta= info.getBeta(); |
---|
793 | CanonicalForm gamma= info.getGamma(); |
---|
794 | CanonicalForm delta= info.getDelta(); |
---|
795 | int k= info.getGFDegree(); |
---|
796 | bool extension= info.isInExtension(); |
---|
797 | |
---|
798 | Variable x= Variable (1); |
---|
799 | Variable y= Variable (2); |
---|
800 | CFArray Pi; |
---|
801 | CFList diophant; |
---|
802 | CFList bufUniFactors= uniFactors; |
---|
803 | bufUniFactors.insert (LC (A, x)); |
---|
804 | CFMatrix M= CFMatrix (liftBound, bufUniFactors.length() - 1); |
---|
805 | earlySuccess= false; |
---|
806 | int newLiftBound= 0; |
---|
807 | int smallFactorDeg= 11; //this is a tunable parameter |
---|
808 | if (smallFactorDeg >= liftBound) |
---|
809 | henselLift12 (A, bufUniFactors, liftBound, Pi, diophant, M); |
---|
810 | else if (smallFactorDeg >= degree (A, y) + 1) |
---|
811 | { |
---|
812 | henselLift12 (A, bufUniFactors, degree (A, y) + 1, Pi, diophant, M); |
---|
813 | if (!extension) |
---|
814 | earlyFactors= earlyFactorDetection (A, bufUniFactors, newLiftBound, |
---|
815 | degs, earlySuccess, degree (A, y) + 1); |
---|
816 | else |
---|
817 | earlyFactors= extEarlyFactorDetection (A, bufUniFactors, |
---|
818 | newLiftBound, degs, earlySuccess, info, eval, |
---|
819 | degree (A, y) + 1); |
---|
820 | if (degs.getLength() > 1 && !earlySuccess) |
---|
821 | { |
---|
822 | if (newLiftBound > degree (A, y) + 1) |
---|
823 | { |
---|
824 | liftBound= newLiftBound; |
---|
825 | bufUniFactors.insert (LC(A, x)); |
---|
826 | henselLiftResume12 (A, bufUniFactors, degree (A, y) + 1, liftBound, |
---|
827 | Pi, diophant, M); |
---|
828 | } |
---|
829 | } |
---|
830 | else if (earlySuccess) |
---|
831 | liftBound= newLiftBound; |
---|
832 | } |
---|
833 | else if (smallFactorDeg < degree (A, y) + 1) |
---|
834 | { |
---|
835 | henselLift12 (A, bufUniFactors, smallFactorDeg, Pi, diophant, M); |
---|
836 | if (!extension) |
---|
837 | earlyFactors= earlyFactorDetection (A, bufUniFactors, newLiftBound, |
---|
838 | degs, earlySuccess, |
---|
839 | smallFactorDeg); |
---|
840 | else |
---|
841 | earlyFactors= extEarlyFactorDetection (A, bufUniFactors, |
---|
842 | newLiftBound, degs, earlySuccess, |
---|
843 | info, eval, smallFactorDeg); |
---|
844 | if (degs.getLength() > 1 && !earlySuccess) |
---|
845 | { |
---|
846 | bufUniFactors.insert (LC (A, x)); |
---|
847 | henselLiftResume12 (A, bufUniFactors, smallFactorDeg, degree (A, y) |
---|
848 | + 1, Pi, diophant, M); |
---|
849 | if (!extension) |
---|
850 | earlyFactors= earlyFactorDetection (A, bufUniFactors, newLiftBound, |
---|
851 | degs, earlySuccess, degree (A, y) + 1); |
---|
852 | else |
---|
853 | earlyFactors= extEarlyFactorDetection (A, bufUniFactors, |
---|
854 | newLiftBound, degs, earlySuccess, |
---|
855 | info, eval, degree(A,y) + 1); |
---|
856 | if (degs.getLength() > 1 && !earlySuccess) |
---|
857 | { |
---|
858 | if (newLiftBound > degree (A, y) + 1) |
---|
859 | { |
---|
860 | bufUniFactors.insert (LC(A, x)); |
---|
861 | henselLiftResume12 (A, bufUniFactors, degree (A, y) + 1, liftBound, |
---|
862 | Pi, diophant, M); |
---|
863 | } |
---|
864 | } |
---|
865 | else if (earlySuccess) |
---|
866 | liftBound= newLiftBound; |
---|
867 | } |
---|
868 | else if (earlySuccess) |
---|
869 | liftBound= newLiftBound; |
---|
870 | } |
---|
871 | if (newLiftBound > 0) |
---|
872 | liftBound= newLiftBound; |
---|
873 | return bufUniFactors; |
---|
874 | } |
---|
875 | |
---|
876 | long isReduced (const mat_zz_p& M) |
---|
877 | { |
---|
878 | long i, j, nonZero; |
---|
879 | for (i = 1; i <= M.NumRows(); i++) |
---|
880 | { |
---|
881 | nonZero= 0; |
---|
882 | for (j = 1; j <= M.NumCols(); j++) |
---|
883 | { |
---|
884 | if (!IsZero (M (i,j))) |
---|
885 | nonZero++; |
---|
886 | } |
---|
887 | if (nonZero != 1) |
---|
888 | return 0; |
---|
889 | } |
---|
890 | return 1; |
---|
891 | } |
---|
892 | |
---|
893 | long isReduced (const mat_zz_pE& M) |
---|
894 | { |
---|
895 | long i, j, nonZero; |
---|
896 | for (i = 1; i <= M.NumRows(); i++) |
---|
897 | { |
---|
898 | nonZero= 0; |
---|
899 | for (j = 1; j <= M.NumCols(); j++) |
---|
900 | { |
---|
901 | if (!IsZero (M (i,j))) |
---|
902 | nonZero++; |
---|
903 | } |
---|
904 | if (nonZero != 1) |
---|
905 | return 0; |
---|
906 | } |
---|
907 | return 1; |
---|
908 | } |
---|
909 | |
---|
910 | int * extractZeroOneVecs (const mat_zz_p& M) |
---|
911 | { |
---|
912 | long i, j; |
---|
913 | bool nonZeroOne= false; |
---|
914 | int * result= new int [M.NumCols()]; |
---|
915 | for (i = 1; i <= M.NumCols(); i++) |
---|
916 | { |
---|
917 | for (j = 1; j <= M.NumRows(); j++) |
---|
918 | { |
---|
919 | if (!(IsOne (M (j,i)) || IsZero (M (j,i)))) |
---|
920 | { |
---|
921 | nonZeroOne= true; |
---|
922 | break; |
---|
923 | } |
---|
924 | } |
---|
925 | if (!nonZeroOne) |
---|
926 | result [i - 1]= 1; |
---|
927 | else |
---|
928 | result [i - 1]= 0; |
---|
929 | nonZeroOne= false; |
---|
930 | } |
---|
931 | return result; |
---|
932 | } |
---|
933 | |
---|
934 | int * extractZeroOneVecs (const mat_zz_pE& M) |
---|
935 | { |
---|
936 | long i, j; |
---|
937 | bool nonZeroOne= false; |
---|
938 | int * result= new int [M.NumCols()]; |
---|
939 | for (i = 1; i <= M.NumCols(); i++) |
---|
940 | { |
---|
941 | for (j = 1; j <= M.NumRows(); j++) |
---|
942 | { |
---|
943 | if (!(IsOne (M (j,i)) || IsZero (M (j,i)))) |
---|
944 | { |
---|
945 | nonZeroOne= true; |
---|
946 | break; |
---|
947 | } |
---|
948 | } |
---|
949 | if (!nonZeroOne) |
---|
950 | result [i - 1]= 1; |
---|
951 | else |
---|
952 | result [i - 1]= 0; |
---|
953 | nonZeroOne= false; |
---|
954 | } |
---|
955 | return result; |
---|
956 | } |
---|
957 | |
---|
958 | void |
---|
959 | reconstructionTry (CFList& reconstructedFactors, CanonicalForm& F, const CFList& |
---|
960 | factors, const int liftBound, int& factorsFound, int*& |
---|
961 | factorsFoundIndex, mat_zz_pE& N, bool beenInThres |
---|
962 | ) |
---|
963 | { |
---|
964 | Variable y= Variable (2); |
---|
965 | Variable x= Variable (1); |
---|
966 | CanonicalForm yToL= power (y, liftBound); |
---|
967 | for (long i= 1; i <= N.NumCols(); i++) |
---|
968 | { |
---|
969 | if (factorsFoundIndex [i - 1] == 1) |
---|
970 | continue; |
---|
971 | CFListIterator iter= factors; |
---|
972 | CanonicalForm buf; |
---|
973 | if (beenInThres) |
---|
974 | { |
---|
975 | int count= 1; |
---|
976 | while (count < i) |
---|
977 | { |
---|
978 | count++; |
---|
979 | iter++; |
---|
980 | } |
---|
981 | buf= iter.getItem(); |
---|
982 | } |
---|
983 | else |
---|
984 | { |
---|
985 | buf= 1; |
---|
986 | for (long j= 1; j <= N.NumRows(); j++, iter++) |
---|
987 | { |
---|
988 | if (!IsZero (N (j,i))) |
---|
989 | buf= mulMod2 (buf, iter.getItem(), yToL); |
---|
990 | } |
---|
991 | } |
---|
992 | buf *= LC (F, x); |
---|
993 | buf= mod (buf, yToL); |
---|
994 | buf /= content (buf, x); |
---|
995 | if (fdivides (buf, F)) |
---|
996 | { |
---|
997 | factorsFoundIndex[i - 1]= 1; |
---|
998 | factorsFound++; |
---|
999 | F /= buf; |
---|
1000 | F /= Lc (F); |
---|
1001 | reconstructedFactors.append (buf); |
---|
1002 | } |
---|
1003 | if (degree (F) <= 0) |
---|
1004 | return; |
---|
1005 | if (factorsFound + 1 == N.NumCols()) |
---|
1006 | { |
---|
1007 | reconstructedFactors.append (F); |
---|
1008 | return; |
---|
1009 | } |
---|
1010 | } |
---|
1011 | } |
---|
1012 | |
---|
1013 | void |
---|
1014 | reconstructionTry (CFList& reconstructedFactors, CanonicalForm& F, const CFList& |
---|
1015 | factors, const int liftBound, int& factorsFound, int*& |
---|
1016 | factorsFoundIndex, mat_zz_p& N, bool beenInThres |
---|
1017 | ) |
---|
1018 | { |
---|
1019 | Variable y= Variable (2); |
---|
1020 | Variable x= Variable (1); |
---|
1021 | CanonicalForm yToL= power (y, liftBound); |
---|
1022 | for (long i= 1; i <= N.NumCols(); i++) |
---|
1023 | { |
---|
1024 | if (factorsFoundIndex [i - 1] == 1) |
---|
1025 | continue; |
---|
1026 | CFListIterator iter= factors; |
---|
1027 | CanonicalForm buf; |
---|
1028 | if (beenInThres) |
---|
1029 | { |
---|
1030 | int count= 1; |
---|
1031 | while (count < i) |
---|
1032 | { |
---|
1033 | count++; |
---|
1034 | iter++; |
---|
1035 | } |
---|
1036 | buf= iter.getItem(); |
---|
1037 | } |
---|
1038 | else |
---|
1039 | { |
---|
1040 | buf= 1; |
---|
1041 | for (long j= 1; j <= N.NumRows(); j++, iter++) |
---|
1042 | { |
---|
1043 | if (!IsZero (N (j,i))) |
---|
1044 | buf= mulMod2 (buf, iter.getItem(), yToL); |
---|
1045 | } |
---|
1046 | } |
---|
1047 | buf *= LC (F, x); |
---|
1048 | buf= mod (buf, yToL); |
---|
1049 | buf /= content (buf, x); |
---|
1050 | if (fdivides (buf, F)) |
---|
1051 | { |
---|
1052 | factorsFoundIndex[i - 1]= 1; |
---|
1053 | factorsFound++; |
---|
1054 | F /= buf; |
---|
1055 | F /= Lc (F); |
---|
1056 | reconstructedFactors.append (buf); |
---|
1057 | } |
---|
1058 | if (degree (F) <= 0) |
---|
1059 | return; |
---|
1060 | if (factorsFound + 1 == N.NumCols()) |
---|
1061 | { |
---|
1062 | reconstructedFactors.append (F); |
---|
1063 | return; |
---|
1064 | } |
---|
1065 | } |
---|
1066 | } |
---|
1067 | |
---|
1068 | CFList |
---|
1069 | reconstruction (CanonicalForm& G, CFList& factors, int* zeroOneVecs, int |
---|
1070 | precision, const mat_zz_pE& N |
---|
1071 | ) |
---|
1072 | { |
---|
1073 | Variable y= Variable (2); |
---|
1074 | Variable x= Variable (1); |
---|
1075 | CanonicalForm F= G; |
---|
1076 | CanonicalForm yToL= power (y, precision); |
---|
1077 | CFList result; |
---|
1078 | CFList bufFactors= factors; |
---|
1079 | CFList factorsConsidered; |
---|
1080 | for (long i= 1; i <= N.NumCols(); i++) |
---|
1081 | { |
---|
1082 | if (zeroOneVecs [i - 1] == 0) |
---|
1083 | continue; |
---|
1084 | CFListIterator iter= factors; |
---|
1085 | CanonicalForm buf= 1; |
---|
1086 | factorsConsidered= CFList(); |
---|
1087 | for (long j= 1; j <= N.NumRows(); j++, iter++) |
---|
1088 | { |
---|
1089 | if (!IsZero (N (j,i))) |
---|
1090 | { |
---|
1091 | factorsConsidered.append (iter.getItem()); |
---|
1092 | buf= mulMod2 (buf, iter.getItem(), yToL); |
---|
1093 | } |
---|
1094 | } |
---|
1095 | buf *= LC (F, x); |
---|
1096 | buf= mod (buf, yToL); |
---|
1097 | buf /= content (buf, x); |
---|
1098 | if (fdivides (buf, F)) |
---|
1099 | { |
---|
1100 | F /= buf; |
---|
1101 | F /= Lc (F); |
---|
1102 | result.append (buf); |
---|
1103 | bufFactors= Difference (bufFactors, factorsConsidered); |
---|
1104 | } |
---|
1105 | if (degree (F) <= 0) |
---|
1106 | { |
---|
1107 | G= F; |
---|
1108 | factors= bufFactors; |
---|
1109 | return result; |
---|
1110 | } |
---|
1111 | } |
---|
1112 | G= F; |
---|
1113 | factors= bufFactors; |
---|
1114 | return result; |
---|
1115 | } |
---|
1116 | |
---|
1117 | CFList |
---|
1118 | monicReconstruction (CanonicalForm& G, CFList& factors, int* zeroOneVecs, |
---|
1119 | int precision, const mat_zz_pE& N |
---|
1120 | ) |
---|
1121 | { |
---|
1122 | Variable y= Variable (2); |
---|
1123 | Variable x= Variable (1); |
---|
1124 | CanonicalForm F= G; |
---|
1125 | CanonicalForm yToL= power (y, precision); |
---|
1126 | CFList result; |
---|
1127 | CFList bufFactors= factors; |
---|
1128 | CFList factorsConsidered; |
---|
1129 | for (long i= 1; i <= N.NumCols(); i++) |
---|
1130 | { |
---|
1131 | if (zeroOneVecs [i - 1] == 0) |
---|
1132 | continue; |
---|
1133 | CFListIterator iter= factors; |
---|
1134 | CanonicalForm buf= 1; |
---|
1135 | factorsConsidered= CFList(); |
---|
1136 | for (long j= 1; j <= N.NumRows(); j++, iter++) |
---|
1137 | { |
---|
1138 | if (!IsZero (N (j,i))) |
---|
1139 | { |
---|
1140 | factorsConsidered.append (iter.getItem()); |
---|
1141 | buf= mulMod2 (buf, iter.getItem(), yToL); |
---|
1142 | } |
---|
1143 | } |
---|
1144 | CanonicalForm buf2= buf; |
---|
1145 | buf *= LC (F, x); |
---|
1146 | buf= mod (buf, yToL); |
---|
1147 | buf /= content (buf, x); |
---|
1148 | if (fdivides (buf, F)) |
---|
1149 | { |
---|
1150 | F /= buf; |
---|
1151 | F /= Lc (F); |
---|
1152 | result.append (buf2); |
---|
1153 | bufFactors= Difference (bufFactors, factorsConsidered); |
---|
1154 | } |
---|
1155 | if (degree (F) <= 0) |
---|
1156 | { |
---|
1157 | G= F; |
---|
1158 | factors= bufFactors; |
---|
1159 | return result; |
---|
1160 | } |
---|
1161 | } |
---|
1162 | G= F; |
---|
1163 | factors= bufFactors; |
---|
1164 | return result; |
---|
1165 | } |
---|
1166 | |
---|
1167 | CFList |
---|
1168 | extReconstruction (CanonicalForm& G, CFList& factors, int* zeroOneVecs, int |
---|
1169 | precision, const mat_zz_p& N, const ExtensionInfo& info, |
---|
1170 | const CanonicalForm& evaluation |
---|
1171 | ) |
---|
1172 | { |
---|
1173 | Variable y= Variable (2); |
---|
1174 | Variable x= Variable (1); |
---|
1175 | Variable alpha= info.getAlpha(); |
---|
1176 | Variable beta= info.getBeta(); |
---|
1177 | int k= info.getGFDegree(); |
---|
1178 | CanonicalForm gamma= info.getGamma(); |
---|
1179 | CanonicalForm delta= info.getDelta(); |
---|
1180 | CanonicalForm F= G; |
---|
1181 | CanonicalForm yToL= power (y, precision); |
---|
1182 | CFList result; |
---|
1183 | CFList bufFactors= factors; |
---|
1184 | CFList factorsConsidered; |
---|
1185 | CanonicalForm buf2; |
---|
1186 | for (long i= 1; i <= N.NumCols(); i++) |
---|
1187 | { |
---|
1188 | if (zeroOneVecs [i - 1] == 0) |
---|
1189 | continue; |
---|
1190 | CFListIterator iter= factors; |
---|
1191 | CanonicalForm buf= 1; |
---|
1192 | factorsConsidered= CFList(); |
---|
1193 | for (long j= 1; j <= N.NumRows(); j++, iter++) |
---|
1194 | { |
---|
1195 | if (!IsZero (N (j,i))) |
---|
1196 | { |
---|
1197 | factorsConsidered.append (iter.getItem()); |
---|
1198 | buf= mulMod2 (buf, iter.getItem(), yToL); |
---|
1199 | } |
---|
1200 | } |
---|
1201 | buf *= LC (F, x); |
---|
1202 | buf= mod (buf, yToL); |
---|
1203 | buf /= content (buf, x); |
---|
1204 | buf2= buf (y-evaluation, y); |
---|
1205 | if (!k && beta == Variable (1)) |
---|
1206 | { |
---|
1207 | if (degree (buf2, alpha) < 1) |
---|
1208 | { |
---|
1209 | if (fdivides (buf, F)) |
---|
1210 | { |
---|
1211 | F /= buf; |
---|
1212 | F /= Lc (F); |
---|
1213 | result.append (buf2); |
---|
1214 | bufFactors= Difference (bufFactors, factorsConsidered); |
---|
1215 | } |
---|
1216 | } |
---|
1217 | } |
---|
1218 | else |
---|
1219 | { |
---|
1220 | CFList source, dest; |
---|
1221 | |
---|
1222 | if (!isInExtension (buf2, gamma, k, delta, source, dest)) |
---|
1223 | { |
---|
1224 | if (fdivides (buf, F)) |
---|
1225 | { |
---|
1226 | F /= buf; |
---|
1227 | F /= Lc (F); |
---|
1228 | result.append (buf2); |
---|
1229 | bufFactors= Difference (bufFactors, factorsConsidered); |
---|
1230 | } |
---|
1231 | } |
---|
1232 | } |
---|
1233 | if (degree (F) <= 0) |
---|
1234 | { |
---|
1235 | G= F; |
---|
1236 | factors= bufFactors; |
---|
1237 | return result; |
---|
1238 | } |
---|
1239 | } |
---|
1240 | G= F; |
---|
1241 | factors= bufFactors; |
---|
1242 | return result; |
---|
1243 | } |
---|
1244 | |
---|
1245 | CFList |
---|
1246 | reconstruction (CanonicalForm& G, CFList& factors, int* zeroOneVecs, |
---|
1247 | int precision, const mat_zz_p& N) |
---|
1248 | { |
---|
1249 | Variable y= Variable (2); |
---|
1250 | Variable x= Variable (1); |
---|
1251 | CanonicalForm F= G; |
---|
1252 | CanonicalForm yToL= power (y, precision); |
---|
1253 | CFList result; |
---|
1254 | CFList bufFactors= factors; |
---|
1255 | CFList factorsConsidered; |
---|
1256 | for (long i= 1; i <= N.NumCols(); i++) |
---|
1257 | { |
---|
1258 | if (zeroOneVecs [i - 1] == 0) |
---|
1259 | continue; |
---|
1260 | CFListIterator iter= factors; |
---|
1261 | CanonicalForm buf= 1; |
---|
1262 | factorsConsidered= CFList(); |
---|
1263 | for (long j= 1; j <= N.NumRows(); j++, iter++) |
---|
1264 | { |
---|
1265 | if (!IsZero (N (j,i))) |
---|
1266 | { |
---|
1267 | factorsConsidered.append (iter.getItem()); |
---|
1268 | buf= mulMod2 (buf, iter.getItem(), yToL); |
---|
1269 | } |
---|
1270 | } |
---|
1271 | buf *= LC (F, x); |
---|
1272 | buf= mod (buf, yToL); |
---|
1273 | buf /= content (buf, x); |
---|
1274 | if (fdivides (buf, F)) |
---|
1275 | { |
---|
1276 | F /= buf; |
---|
1277 | F /= Lc (F); |
---|
1278 | result.append (buf); |
---|
1279 | bufFactors= Difference (bufFactors, factorsConsidered); |
---|
1280 | } |
---|
1281 | if (degree (F) <= 0) |
---|
1282 | { |
---|
1283 | G= F; |
---|
1284 | factors= bufFactors; |
---|
1285 | return result; |
---|
1286 | } |
---|
1287 | } |
---|
1288 | G= F; |
---|
1289 | factors= bufFactors; |
---|
1290 | return result; |
---|
1291 | } |
---|
1292 | |
---|
1293 | void |
---|
1294 | extReconstructionTry (CFList& reconstructedFactors, CanonicalForm& F, const |
---|
1295 | CFList& factors, const int liftBound, int& factorsFound, |
---|
1296 | int*& factorsFoundIndex, mat_zz_p& N, bool beenInThres, |
---|
1297 | const ExtensionInfo& info, const CanonicalForm& evaluation |
---|
1298 | ) |
---|
1299 | { |
---|
1300 | Variable y= Variable (2); |
---|
1301 | Variable x= Variable (1); |
---|
1302 | Variable alpha= info.getAlpha(); |
---|
1303 | Variable beta= info.getBeta(); |
---|
1304 | int k= info.getGFDegree(); |
---|
1305 | CanonicalForm gamma= info.getGamma(); |
---|
1306 | CanonicalForm delta= info.getDelta(); |
---|
1307 | CanonicalForm yToL= power (y, liftBound); |
---|
1308 | CFList source, dest; |
---|
1309 | for (long i= 1; i <= N.NumCols(); i++) |
---|
1310 | { |
---|
1311 | if (factorsFoundIndex [i - 1] == 1) |
---|
1312 | continue; |
---|
1313 | CFListIterator iter= factors; |
---|
1314 | CanonicalForm buf; |
---|
1315 | CanonicalForm buf2; |
---|
1316 | if (beenInThres) |
---|
1317 | { |
---|
1318 | int count= 1; |
---|
1319 | while (count < i) |
---|
1320 | { |
---|
1321 | count++; |
---|
1322 | iter++; |
---|
1323 | } |
---|
1324 | buf= iter.getItem(); |
---|
1325 | } |
---|
1326 | else |
---|
1327 | { |
---|
1328 | buf= 1; |
---|
1329 | for (long j= 1; j <= N.NumRows(); j++, iter++) |
---|
1330 | { |
---|
1331 | if (!IsZero (N (j,i))) |
---|
1332 | buf= mulMod2 (buf, iter.getItem(), yToL); |
---|
1333 | } |
---|
1334 | } |
---|
1335 | buf *= LC (F, x); |
---|
1336 | buf= mod (buf, yToL); |
---|
1337 | buf /= content (buf, x); |
---|
1338 | buf2= buf (y - evaluation, y); |
---|
1339 | if (!k && beta == Variable (1)) |
---|
1340 | { |
---|
1341 | if (degree (buf2, alpha) < 1) |
---|
1342 | { |
---|
1343 | if (fdivides (buf, F)) |
---|
1344 | { |
---|
1345 | factorsFoundIndex[i - 1]= 1; |
---|
1346 | factorsFound++; |
---|
1347 | F /= buf; |
---|
1348 | F /= Lc (F); |
---|
1349 | buf2= mapDown (buf2, info, source, dest); |
---|
1350 | reconstructedFactors.append (buf2); |
---|
1351 | } |
---|
1352 | } |
---|
1353 | } |
---|
1354 | else |
---|
1355 | { |
---|
1356 | CFList source, dest; |
---|
1357 | if (!isInExtension (buf2, gamma, k, delta, source, dest)) |
---|
1358 | { |
---|
1359 | if (fdivides (buf, F)) |
---|
1360 | { |
---|
1361 | factorsFoundIndex[i - 1]= 1; |
---|
1362 | factorsFound++; |
---|
1363 | F /= buf; |
---|
1364 | F /= Lc (F); |
---|
1365 | buf2= mapDown (buf2, info, source, dest); |
---|
1366 | reconstructedFactors.append (buf2); |
---|
1367 | } |
---|
1368 | } |
---|
1369 | } |
---|
1370 | if (degree (F) <= 0) |
---|
1371 | return; |
---|
1372 | if (factorsFound + 1 == N.NumCols()) |
---|
1373 | { |
---|
1374 | CanonicalForm tmp= F (y - evaluation, y); |
---|
1375 | tmp= mapDown (tmp, info, source, dest); |
---|
1376 | reconstructedFactors.append (tmp); |
---|
1377 | return; |
---|
1378 | } |
---|
1379 | } |
---|
1380 | } |
---|
1381 | |
---|
1382 | //over Fp |
---|
1383 | int |
---|
1384 | liftAndComputeLattice (const CanonicalForm& F, int* bounds, int sizeBounds, int |
---|
1385 | start, int liftBound, int minBound, CFList& factors, |
---|
1386 | mat_zz_p& NTLN, CFList& diophant, CFMatrix& M, CFArray& |
---|
1387 | Pi, CFArray& bufQ, bool& irreducible |
---|
1388 | ) |
---|
1389 | { |
---|
1390 | CanonicalForm LCF= LC (F, 1); |
---|
1391 | CFArray *A= new CFArray [factors.length() - 1]; |
---|
1392 | bool wasInBounds= false; |
---|
1393 | bool hitBound= false; |
---|
1394 | int l= (minBound+1)*2; |
---|
1395 | int stepSize= 2; |
---|
1396 | int oldL= l/2; |
---|
1397 | bool reduced= false; |
---|
1398 | while (l <= liftBound) |
---|
1399 | { |
---|
1400 | |
---|
1401 | if (start) |
---|
1402 | { |
---|
1403 | henselLiftResume12 (F, factors, start, l, Pi, diophant, M); |
---|
1404 | start= 0; |
---|
1405 | } |
---|
1406 | else |
---|
1407 | { |
---|
1408 | if (wasInBounds) |
---|
1409 | henselLiftResume12 (F, factors, oldL, l, Pi, diophant, M); |
---|
1410 | else |
---|
1411 | henselLift12 (F, factors, l, Pi, diophant, M); |
---|
1412 | } |
---|
1413 | |
---|
1414 | factors.insert (LCF); |
---|
1415 | CFListIterator j= factors; |
---|
1416 | j++; |
---|
1417 | |
---|
1418 | for (int i= 0; i < factors.length() - 1; i++, j++) |
---|
1419 | { |
---|
1420 | if (!wasInBounds) |
---|
1421 | { |
---|
1422 | A[i]= logarithmicDerivative (F, j.getItem(), l, bufQ[i]); |
---|
1423 | } |
---|
1424 | else |
---|
1425 | A[i]= logarithmicDerivative (F, j.getItem(), l, oldL, bufQ[i], bufQ[i]); |
---|
1426 | } |
---|
1427 | |
---|
1428 | for (int i= 0; i < sizeBounds; i++) |
---|
1429 | { |
---|
1430 | if (bounds [i] + 1 <= l/2) |
---|
1431 | { |
---|
1432 | wasInBounds= true; |
---|
1433 | int k= tmin (bounds [i] + 1, l/2); |
---|
1434 | CFMatrix C= CFMatrix (l - k, factors.length() - 1); |
---|
1435 | for (int ii= 0; ii < factors.length() - 1; ii++) |
---|
1436 | { |
---|
1437 | CFArray buf; |
---|
1438 | if (A[ii].size() - 1 >= i) |
---|
1439 | buf= getCoeffs (A[ii] [i], k); |
---|
1440 | writeInMatrix (C, buf, ii + 1, 0); |
---|
1441 | } |
---|
1442 | mat_zz_p* NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
1443 | mat_zz_p NTLK= (*NTLC)*NTLN; |
---|
1444 | transpose (NTLK, NTLK); |
---|
1445 | kernel (NTLK, NTLK); |
---|
1446 | transpose (NTLK, NTLK); |
---|
1447 | NTLN *= NTLK; |
---|
1448 | |
---|
1449 | if (NTLN.NumCols() == 1) |
---|
1450 | { |
---|
1451 | irreducible= true; |
---|
1452 | break; |
---|
1453 | } |
---|
1454 | if (isReduced (NTLN)) |
---|
1455 | { |
---|
1456 | reduced= true; |
---|
1457 | break; |
---|
1458 | } |
---|
1459 | } |
---|
1460 | } |
---|
1461 | |
---|
1462 | if (irreducible) |
---|
1463 | break; |
---|
1464 | if (reduced) |
---|
1465 | break; |
---|
1466 | oldL= l; |
---|
1467 | l += stepSize; |
---|
1468 | stepSize *= 2; |
---|
1469 | if (l > liftBound) |
---|
1470 | { |
---|
1471 | if (!hitBound) |
---|
1472 | { |
---|
1473 | l= liftBound; |
---|
1474 | hitBound= true; |
---|
1475 | } |
---|
1476 | else |
---|
1477 | break; |
---|
1478 | } |
---|
1479 | } |
---|
1480 | delete [] A; |
---|
1481 | return l; |
---|
1482 | } |
---|
1483 | |
---|
1484 | //over field extension |
---|
1485 | int |
---|
1486 | extLiftAndComputeLattice (const CanonicalForm& F, int* bounds, int sizeBounds, |
---|
1487 | int liftBound, int minBound, int start, CFList& |
---|
1488 | factors, mat_zz_p& NTLN, CFList& diophant, |
---|
1489 | CFMatrix& M, CFArray& Pi, CFArray& bufQ, bool& |
---|
1490 | irreducible, const CanonicalForm& evaluation, const |
---|
1491 | ExtensionInfo& info, CFList& source, CFList& dest |
---|
1492 | ) |
---|
1493 | { |
---|
1494 | bool GF= (CFFactory::gettype()==GaloisFieldDomain); |
---|
1495 | CanonicalForm LCF= LC (F, 1); |
---|
1496 | CFArray *A= new CFArray [factors.length() - 1]; |
---|
1497 | bool wasInBounds= false; |
---|
1498 | bool hitBound= false; |
---|
1499 | int degMipo; |
---|
1500 | Variable alpha; |
---|
1501 | alpha= info.getAlpha(); |
---|
1502 | degMipo= degree (getMipo (alpha)); |
---|
1503 | |
---|
1504 | Variable gamma= info.getBeta(); |
---|
1505 | CanonicalForm primElemAlpha= info.getGamma(); |
---|
1506 | CanonicalForm imPrimElemAlpha= info.getDelta(); |
---|
1507 | |
---|
1508 | int stepSize= 2; |
---|
1509 | int l= ((minBound+1)/degMipo+1)*2; |
---|
1510 | l= tmax (l, 2); |
---|
1511 | if (start > l) |
---|
1512 | l= start; |
---|
1513 | int oldL= l/2; |
---|
1514 | bool reduced= false; |
---|
1515 | while (l <= liftBound) |
---|
1516 | { |
---|
1517 | if (start) |
---|
1518 | { |
---|
1519 | henselLiftResume12 (F, factors, start, l, Pi, diophant, M); |
---|
1520 | start= 0; |
---|
1521 | } |
---|
1522 | else |
---|
1523 | { |
---|
1524 | if (wasInBounds) |
---|
1525 | henselLiftResume12 (F, factors, oldL, l, Pi, diophant, M); |
---|
1526 | else |
---|
1527 | henselLift12 (F, factors, l, Pi, diophant, M); |
---|
1528 | } |
---|
1529 | |
---|
1530 | Variable y= F.mvar(); |
---|
1531 | Variable x= Variable (1); |
---|
1532 | |
---|
1533 | factors.insert (LCF); |
---|
1534 | |
---|
1535 | if (GF) |
---|
1536 | setCharacteristic (getCharacteristic()); |
---|
1537 | |
---|
1538 | CanonicalForm powX= power (y-gamma, l); |
---|
1539 | CFMatrix Mat= CFMatrix (l*degMipo, l*degMipo); |
---|
1540 | for (int i= 0; i < l*degMipo; i++) |
---|
1541 | { |
---|
1542 | |
---|
1543 | CanonicalForm imBasis= mod (power (y, i), powX); |
---|
1544 | imBasis= imBasis (power (y, degMipo), y); |
---|
1545 | imBasis= imBasis (y, gamma); |
---|
1546 | CFIterator iter= imBasis; |
---|
1547 | for (; iter.hasTerms(); iter++) |
---|
1548 | Mat (iter.exp()+ 1, i+1)= iter.coeff(); |
---|
1549 | } |
---|
1550 | |
---|
1551 | mat_zz_p* NTLMat= convertFacCFMatrix2NTLmat_zz_p (Mat); |
---|
1552 | *NTLMat= inv (*NTLMat); |
---|
1553 | |
---|
1554 | if (GF) |
---|
1555 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
1556 | |
---|
1557 | CFListIterator j= factors; |
---|
1558 | j++; |
---|
1559 | |
---|
1560 | for (int i= 0; i < factors.length() - 1; i++, j++) |
---|
1561 | { |
---|
1562 | if (!wasInBounds) |
---|
1563 | A[i]= logarithmicDerivative (F, j.getItem(), l, bufQ[i]); |
---|
1564 | else |
---|
1565 | A[i]= logarithmicDerivative (F, j.getItem(), l, oldL, bufQ[i], bufQ[i]); |
---|
1566 | } |
---|
1567 | |
---|
1568 | for (int i= 0; i < sizeBounds; i++) |
---|
1569 | { |
---|
1570 | if (bounds [i] + 1 <= (l/2)*degMipo) |
---|
1571 | { |
---|
1572 | wasInBounds= true; |
---|
1573 | int k= tmin (bounds [i] + 1, (l/2)*degMipo); |
---|
1574 | CFMatrix C= CFMatrix (l*degMipo - k, factors.length() - 1); |
---|
1575 | |
---|
1576 | for (int ii= 0; ii < factors.length() - 1; ii++) |
---|
1577 | { |
---|
1578 | CFArray buf; |
---|
1579 | if (A[ii].size() - 1 >= i) |
---|
1580 | { |
---|
1581 | if (GF) |
---|
1582 | { |
---|
1583 | A [ii] [i]= A [ii] [i] (y-evaluation, y); |
---|
1584 | setCharacteristic (getCharacteristic()); |
---|
1585 | A[ii] [i]= GF2FalphaRep (A[ii] [i], alpha); |
---|
1586 | if (alpha != gamma) |
---|
1587 | A [ii] [i]= mapDown (A[ii] [i], imPrimElemAlpha, primElemAlpha, |
---|
1588 | gamma, source, dest |
---|
1589 | ); |
---|
1590 | buf= getCoeffs (A[ii] [i], k, l, degMipo, gamma, 0, *NTLMat); |
---|
1591 | } |
---|
1592 | else |
---|
1593 | { |
---|
1594 | A [ii] [i]= A [ii] [i] (y-evaluation, y); |
---|
1595 | if (alpha != gamma) |
---|
1596 | A[ii] [i]= mapDown (A[ii] [i], imPrimElemAlpha, primElemAlpha, |
---|
1597 | gamma, source, dest |
---|
1598 | ); |
---|
1599 | buf= getCoeffs (A[ii] [i], k, l, degMipo, gamma, 0, *NTLMat); |
---|
1600 | } |
---|
1601 | } |
---|
1602 | writeInMatrix (C, buf, ii + 1, 0); |
---|
1603 | if (GF) |
---|
1604 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
1605 | } |
---|
1606 | |
---|
1607 | if (GF) |
---|
1608 | setCharacteristic(getCharacteristic()); |
---|
1609 | |
---|
1610 | mat_zz_p* NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
1611 | mat_zz_p NTLK= (*NTLC)*NTLN; |
---|
1612 | transpose (NTLK, NTLK); |
---|
1613 | kernel (NTLK, NTLK); |
---|
1614 | transpose (NTLK, NTLK); |
---|
1615 | NTLN *= NTLK; |
---|
1616 | |
---|
1617 | if (GF) |
---|
1618 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
1619 | |
---|
1620 | if (NTLN.NumCols() == 1) |
---|
1621 | { |
---|
1622 | irreducible= true; |
---|
1623 | break; |
---|
1624 | } |
---|
1625 | if (isReduced (NTLN)) |
---|
1626 | { |
---|
1627 | reduced= true; |
---|
1628 | break; |
---|
1629 | } |
---|
1630 | } |
---|
1631 | } |
---|
1632 | |
---|
1633 | if (NTLN.NumCols() == 1) |
---|
1634 | { |
---|
1635 | irreducible= true; |
---|
1636 | break; |
---|
1637 | } |
---|
1638 | if (reduced) |
---|
1639 | break; |
---|
1640 | oldL= l; |
---|
1641 | l += stepSize; |
---|
1642 | stepSize *= 2; |
---|
1643 | if (l > liftBound) |
---|
1644 | { |
---|
1645 | if (!hitBound) |
---|
1646 | { |
---|
1647 | l= liftBound; |
---|
1648 | hitBound= true; |
---|
1649 | } |
---|
1650 | else |
---|
1651 | break; |
---|
1652 | } |
---|
1653 | } |
---|
1654 | delete [] A; |
---|
1655 | return l; |
---|
1656 | } |
---|
1657 | |
---|
1658 | // over Fq |
---|
1659 | int |
---|
1660 | liftAndComputeLattice (const CanonicalForm& F, int* bounds, int sizeBounds, |
---|
1661 | int start, int liftBound, int minBound, CFList& factors, |
---|
1662 | mat_zz_pE& NTLN, CFList& diophant, CFMatrix& M, CFArray& |
---|
1663 | Pi, CFArray& bufQ, bool& irreducible |
---|
1664 | ) |
---|
1665 | { |
---|
1666 | bool GF= (CFFactory::gettype () == GaloisFieldDomain); |
---|
1667 | CanonicalForm LCF= LC (F, 1); |
---|
1668 | CFArray *A= new CFArray [factors.length() - 1]; |
---|
1669 | bool wasInBounds= false; |
---|
1670 | bool hitBound= false; |
---|
1671 | int l= (minBound+1)*2; |
---|
1672 | int stepSize= 2; |
---|
1673 | int oldL= l/2; |
---|
1674 | bool reduced= false; |
---|
1675 | while (l <= liftBound) |
---|
1676 | { |
---|
1677 | if (start) |
---|
1678 | { |
---|
1679 | henselLiftResume12 (F, factors, start, l, Pi, diophant, M); |
---|
1680 | start= 0; |
---|
1681 | } |
---|
1682 | else |
---|
1683 | { |
---|
1684 | if (wasInBounds) |
---|
1685 | henselLiftResume12 (F, factors, oldL, l, Pi, diophant, M); |
---|
1686 | else |
---|
1687 | henselLift12 (F, factors, l, Pi, diophant, M); |
---|
1688 | } |
---|
1689 | |
---|
1690 | factors.insert (LCF); |
---|
1691 | CFListIterator j= factors; |
---|
1692 | j++; |
---|
1693 | |
---|
1694 | for (int i= 0; i < factors.length() - 1; i++, j++) |
---|
1695 | { |
---|
1696 | if (l == (minBound+1)*2) |
---|
1697 | { |
---|
1698 | A[i]= logarithmicDerivative (F, j.getItem(), l, bufQ[i]); |
---|
1699 | } |
---|
1700 | else |
---|
1701 | { |
---|
1702 | A[i]= logarithmicDerivative (F, j.getItem(), l, oldL, bufQ[i], |
---|
1703 | bufQ[i] |
---|
1704 | ); |
---|
1705 | } |
---|
1706 | } |
---|
1707 | |
---|
1708 | for (int i= 0; i < sizeBounds; i++) |
---|
1709 | { |
---|
1710 | if (bounds [i] + 1 <= l/2) |
---|
1711 | { |
---|
1712 | wasInBounds= true; |
---|
1713 | int k= tmin (bounds [i] + 1, l/2); |
---|
1714 | CFMatrix C= CFMatrix (l - k, factors.length() - 1); |
---|
1715 | for (int ii= 0; ii < factors.length() - 1; ii++) |
---|
1716 | { |
---|
1717 | CFArray buf; |
---|
1718 | if (A[ii].size() - 1 >= i) |
---|
1719 | buf= getCoeffs (A[ii] [i], k); |
---|
1720 | writeInMatrix (C, buf, ii + 1, 0); |
---|
1721 | } |
---|
1722 | |
---|
1723 | mat_zz_pE* NTLC= convertFacCFMatrix2NTLmat_zz_pE(C); |
---|
1724 | mat_zz_pE NTLK= (*NTLC)*NTLN; |
---|
1725 | transpose (NTLK, NTLK); |
---|
1726 | kernel (NTLK, NTLK); |
---|
1727 | transpose (NTLK, NTLK); |
---|
1728 | NTLN *= NTLK; |
---|
1729 | |
---|
1730 | if (NTLN.NumCols() == 1) |
---|
1731 | { |
---|
1732 | irreducible= true; |
---|
1733 | break; |
---|
1734 | } |
---|
1735 | if (isReduced (NTLN)) |
---|
1736 | { |
---|
1737 | reduced= true; |
---|
1738 | break; |
---|
1739 | } |
---|
1740 | } |
---|
1741 | } |
---|
1742 | |
---|
1743 | if (NTLN.NumCols() == 1) |
---|
1744 | { |
---|
1745 | irreducible= true; |
---|
1746 | break; |
---|
1747 | } |
---|
1748 | if (reduced) |
---|
1749 | break; |
---|
1750 | oldL= l; |
---|
1751 | l += stepSize; |
---|
1752 | stepSize *= 2; |
---|
1753 | if (l > liftBound) |
---|
1754 | { |
---|
1755 | if (!hitBound) |
---|
1756 | { |
---|
1757 | l= liftBound; |
---|
1758 | hitBound= true; |
---|
1759 | } |
---|
1760 | else |
---|
1761 | break; |
---|
1762 | } |
---|
1763 | } |
---|
1764 | delete [] A; |
---|
1765 | return l; |
---|
1766 | } |
---|
1767 | |
---|
1768 | int |
---|
1769 | liftAndComputeLatticeFq2Fp (const CanonicalForm& F, int* bounds, int sizeBounds, |
---|
1770 | int start, int liftBound, int minBound, CFList& |
---|
1771 | factors, mat_zz_p& NTLN, CFList& diophant, CFMatrix& |
---|
1772 | M, CFArray& Pi, CFArray& bufQ, bool& irreducible, |
---|
1773 | const Variable& alpha |
---|
1774 | ) |
---|
1775 | { |
---|
1776 | bool GF= (CFFactory::gettype () == GaloisFieldDomain); |
---|
1777 | CanonicalForm LCF= LC (F, 1); |
---|
1778 | CFArray *A= new CFArray [factors.length() - 1]; |
---|
1779 | bool wasInBounds= false; |
---|
1780 | int l= (minBound+1)*2; |
---|
1781 | int oldL= l/2; |
---|
1782 | int stepSize= 2; |
---|
1783 | bool hitBound= false; |
---|
1784 | int extensionDeg= degree (getMipo (alpha)); |
---|
1785 | bool reduced= false; |
---|
1786 | while (l <= liftBound) |
---|
1787 | { |
---|
1788 | if (start) |
---|
1789 | { |
---|
1790 | henselLiftResume12 (F, factors, start, l, Pi, diophant, M); |
---|
1791 | start= 0; |
---|
1792 | } |
---|
1793 | else |
---|
1794 | { |
---|
1795 | if (wasInBounds) |
---|
1796 | henselLiftResume12 (F, factors, oldL, l, Pi, diophant, M); |
---|
1797 | else |
---|
1798 | henselLift12 (F, factors, l, Pi, diophant, M); |
---|
1799 | } |
---|
1800 | |
---|
1801 | factors.insert (LCF); |
---|
1802 | CFListIterator j= factors; |
---|
1803 | j++; |
---|
1804 | |
---|
1805 | for (int i= 0; i < factors.length() - 1; i++, j++) |
---|
1806 | { |
---|
1807 | if (l == (minBound+1)*2) |
---|
1808 | { |
---|
1809 | A[i]= logarithmicDerivative (F, j.getItem(), l, bufQ[i]); |
---|
1810 | } |
---|
1811 | else |
---|
1812 | { |
---|
1813 | A[i]= logarithmicDerivative (F, j.getItem(), l, oldL, bufQ[i], |
---|
1814 | bufQ[i] |
---|
1815 | ); |
---|
1816 | } |
---|
1817 | } |
---|
1818 | |
---|
1819 | for (int i= 0; i < sizeBounds; i++) |
---|
1820 | { |
---|
1821 | if (bounds [i] + 1 <= l/2) |
---|
1822 | { |
---|
1823 | wasInBounds= true; |
---|
1824 | int k= tmin (bounds [i] + 1, l/2); |
---|
1825 | CFMatrix C= CFMatrix ((l - k)*extensionDeg, factors.length() - 1); |
---|
1826 | for (int ii= 0; ii < factors.length() - 1; ii++) |
---|
1827 | { |
---|
1828 | CFArray buf; |
---|
1829 | if (A[ii].size() - 1 >= i) |
---|
1830 | buf= getCoeffs (A[ii] [i], k, alpha); |
---|
1831 | writeInMatrix (C, buf, ii + 1, 0); |
---|
1832 | } |
---|
1833 | |
---|
1834 | mat_zz_p* NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
1835 | mat_zz_p NTLK= (*NTLC)*NTLN; |
---|
1836 | transpose (NTLK, NTLK); |
---|
1837 | kernel (NTLK, NTLK); |
---|
1838 | transpose (NTLK, NTLK); |
---|
1839 | NTLN *= NTLK; |
---|
1840 | |
---|
1841 | if (NTLN.NumCols() == 1) |
---|
1842 | { |
---|
1843 | irreducible= true; |
---|
1844 | break; |
---|
1845 | } |
---|
1846 | if (isReduced (NTLN)) |
---|
1847 | { |
---|
1848 | reduced= true; |
---|
1849 | break; |
---|
1850 | } |
---|
1851 | } |
---|
1852 | } |
---|
1853 | |
---|
1854 | if (NTLN.NumCols() == 1) |
---|
1855 | { |
---|
1856 | irreducible= true; |
---|
1857 | break; |
---|
1858 | } |
---|
1859 | if (reduced) |
---|
1860 | break; |
---|
1861 | oldL= l; |
---|
1862 | l += stepSize; |
---|
1863 | stepSize *= 2; |
---|
1864 | if (l > liftBound) |
---|
1865 | { |
---|
1866 | if (!hitBound) |
---|
1867 | { |
---|
1868 | l= liftBound; |
---|
1869 | hitBound= true; |
---|
1870 | } |
---|
1871 | else |
---|
1872 | break; |
---|
1873 | } |
---|
1874 | } |
---|
1875 | delete [] A; |
---|
1876 | return l; |
---|
1877 | } |
---|
1878 | |
---|
1879 | CFList |
---|
1880 | increasePrecision (CanonicalForm& F, CFList& factors, int factorsFound, |
---|
1881 | int oldNumCols, int oldL, int precision |
---|
1882 | ) |
---|
1883 | { |
---|
1884 | bool irreducible= false; |
---|
1885 | int d; |
---|
1886 | int* bounds= computeBounds (F, d); |
---|
1887 | CFArray * A= new CFArray [factors.length()]; |
---|
1888 | CFArray bufQ= CFArray (factors.length()); |
---|
1889 | mat_zz_p NTLN; |
---|
1890 | ident (NTLN, factors.length()); |
---|
1891 | int minBound= bounds[0]; |
---|
1892 | for (int i= 1; i < d; i++) |
---|
1893 | { |
---|
1894 | if (bounds[i] != 0) |
---|
1895 | minBound= tmin (minBound, bounds[i]); |
---|
1896 | } |
---|
1897 | int l= tmax (2*(minBound + 1), oldL); |
---|
1898 | int oldL2= l/2; |
---|
1899 | int stepSize= 2; |
---|
1900 | bool useOldQs= false; |
---|
1901 | bool hitBound= false; |
---|
1902 | while (l <= precision) |
---|
1903 | { |
---|
1904 | CFListIterator j= factors; |
---|
1905 | if (useOldQs) |
---|
1906 | { |
---|
1907 | for (int i= 0; i < factors.length(); i++, j++) |
---|
1908 | A[i]= logarithmicDerivative (F, j.getItem(), l, oldL2, bufQ[i], |
---|
1909 | bufQ[i] |
---|
1910 | ); |
---|
1911 | } |
---|
1912 | else |
---|
1913 | { |
---|
1914 | for (int i= 0; i < factors.length(); i++, j++) |
---|
1915 | A[i]= logarithmicDerivative (F, j.getItem(), l, bufQ [i]); |
---|
1916 | } |
---|
1917 | useOldQs= true; |
---|
1918 | for (int i= 0; i < d; i++) |
---|
1919 | { |
---|
1920 | if (bounds [i] + 1 <= l/2) |
---|
1921 | { |
---|
1922 | int k= tmin (bounds [i] + 1, l/2); |
---|
1923 | CFMatrix C= CFMatrix (l - k, factors.length()); |
---|
1924 | for (int ii= 0; ii < factors.length(); ii++) |
---|
1925 | { |
---|
1926 | CFArray buf; |
---|
1927 | if (A[ii].size() - 1 >= i) |
---|
1928 | buf= getCoeffs (A[ii] [i], k); |
---|
1929 | writeInMatrix (C, buf, ii + 1, 0); |
---|
1930 | } |
---|
1931 | mat_zz_p* NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
1932 | mat_zz_p NTLK= (*NTLC)*NTLN; |
---|
1933 | transpose (NTLK, NTLK); |
---|
1934 | kernel (NTLK, NTLK); |
---|
1935 | transpose (NTLK, NTLK); |
---|
1936 | NTLN *= NTLK; |
---|
1937 | if (NTLN.NumCols() == 1) |
---|
1938 | { |
---|
1939 | irreducible= true; |
---|
1940 | delete [] A; |
---|
1941 | delete [] bounds; |
---|
1942 | CanonicalForm G= F; |
---|
1943 | F= 1; |
---|
1944 | return CFList (G); |
---|
1945 | } |
---|
1946 | } |
---|
1947 | } |
---|
1948 | |
---|
1949 | if (NTLN.NumCols() < oldNumCols - factorsFound) |
---|
1950 | { |
---|
1951 | if (isReduced (NTLN)) |
---|
1952 | { |
---|
1953 | int d= degree (F) + 1; |
---|
1954 | int * factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
1955 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
1956 | factorsFoundIndex[i]= 0; |
---|
1957 | int factorsFound2= 0; |
---|
1958 | CFList result; |
---|
1959 | CanonicalForm bufF= F; |
---|
1960 | reconstructionTry (result, bufF, factors, degree (F) + 1, factorsFound2, |
---|
1961 | factorsFoundIndex, NTLN, false |
---|
1962 | ); |
---|
1963 | F= bufF; |
---|
1964 | if (result.length() > 0) |
---|
1965 | { |
---|
1966 | delete [] factorsFoundIndex; |
---|
1967 | delete [] A; |
---|
1968 | delete [] bounds; |
---|
1969 | return result; |
---|
1970 | } |
---|
1971 | delete [] factorsFoundIndex; |
---|
1972 | } |
---|
1973 | else if (l == precision) |
---|
1974 | { |
---|
1975 | CanonicalForm bufF= F; |
---|
1976 | int * zeroOne= extractZeroOneVecs (NTLN); |
---|
1977 | CFList result= reconstruction (bufF, factors, zeroOne, precision, NTLN); |
---|
1978 | F= bufF; |
---|
1979 | delete [] zeroOne; |
---|
1980 | delete [] A; |
---|
1981 | delete [] bounds; |
---|
1982 | return result; |
---|
1983 | } |
---|
1984 | } |
---|
1985 | oldL2= l; |
---|
1986 | l += stepSize; |
---|
1987 | stepSize *= 2; |
---|
1988 | if (l > precision) |
---|
1989 | { |
---|
1990 | if (!hitBound) |
---|
1991 | { |
---|
1992 | l= precision; |
---|
1993 | hitBound= true; |
---|
1994 | } |
---|
1995 | else |
---|
1996 | break; |
---|
1997 | } |
---|
1998 | } |
---|
1999 | delete [] bounds; |
---|
2000 | delete [] A; |
---|
2001 | return CFList(); |
---|
2002 | } |
---|
2003 | |
---|
2004 | CFList |
---|
2005 | increasePrecision (CanonicalForm& F, CFList& factors, int factorsFound, |
---|
2006 | int oldNumCols, int oldL, const Variable& alpha, |
---|
2007 | int precision |
---|
2008 | ) |
---|
2009 | { |
---|
2010 | bool irreducible= false; |
---|
2011 | int d; |
---|
2012 | int* bounds= computeBounds (F, d); |
---|
2013 | CFArray * A= new CFArray [factors.length()]; |
---|
2014 | CFArray bufQ= CFArray (factors.length()); |
---|
2015 | mat_zz_pE NTLN; |
---|
2016 | ident (NTLN, factors.length()); |
---|
2017 | int minBound= bounds[0]; |
---|
2018 | for (int i= 1; i < d; i++) |
---|
2019 | { |
---|
2020 | if (bounds[i] != 0) |
---|
2021 | minBound= tmin (minBound, bounds[i]); |
---|
2022 | } |
---|
2023 | int l= tmax (2*(minBound + 1), oldL); |
---|
2024 | int oldL2= l/2; |
---|
2025 | int stepSize= 2; |
---|
2026 | bool useOldQs= false; |
---|
2027 | bool hitBound= false; |
---|
2028 | while (l <= precision) |
---|
2029 | { |
---|
2030 | CFListIterator j= factors; |
---|
2031 | if (useOldQs) |
---|
2032 | { |
---|
2033 | for (int i= 0; i < factors.length(); i++, j++) |
---|
2034 | A[i]= logarithmicDerivative (F, j.getItem(), l, oldL2, bufQ[i], |
---|
2035 | bufQ[i] |
---|
2036 | ); |
---|
2037 | } |
---|
2038 | else |
---|
2039 | { |
---|
2040 | for (int i= 0; i < factors.length(); i++, j++) |
---|
2041 | A[i]= logarithmicDerivative (F, j.getItem(), l, bufQ [i]); |
---|
2042 | } |
---|
2043 | useOldQs= true; |
---|
2044 | for (int i= 0; i < d; i++) |
---|
2045 | { |
---|
2046 | if (bounds [i] + 1 <= l/2) |
---|
2047 | { |
---|
2048 | int k= tmin (bounds [i] + 1, l/2); |
---|
2049 | CFMatrix C= CFMatrix (l - k, factors.length()); |
---|
2050 | for (int ii= 0; ii < factors.length(); ii++) |
---|
2051 | { |
---|
2052 | CFArray buf; |
---|
2053 | if (A[ii].size() - 1 >= i) |
---|
2054 | buf= getCoeffs (A[ii] [i], k); |
---|
2055 | writeInMatrix (C, buf, ii + 1, 0); |
---|
2056 | } |
---|
2057 | mat_zz_pE* NTLC= convertFacCFMatrix2NTLmat_zz_pE(C); |
---|
2058 | mat_zz_pE NTLK= (*NTLC)*NTLN; |
---|
2059 | transpose (NTLK, NTLK); |
---|
2060 | kernel (NTLK, NTLK); |
---|
2061 | transpose (NTLK, NTLK); |
---|
2062 | NTLN *= NTLK; |
---|
2063 | if (NTLN.NumCols() == 1) |
---|
2064 | { |
---|
2065 | irreducible= true; |
---|
2066 | delete [] A; |
---|
2067 | delete [] bounds; |
---|
2068 | return CFList (F); |
---|
2069 | } |
---|
2070 | } |
---|
2071 | } |
---|
2072 | |
---|
2073 | if (NTLN.NumCols() < oldNumCols - factorsFound) |
---|
2074 | { |
---|
2075 | if (isReduced (NTLN)) |
---|
2076 | { |
---|
2077 | int d= degree (F) + 1; |
---|
2078 | int * factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
2079 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
2080 | factorsFoundIndex[i]= 0; |
---|
2081 | int factorsFound2= 0; |
---|
2082 | CFList result; |
---|
2083 | CanonicalForm bufF= F; |
---|
2084 | reconstructionTry (result, bufF, factors, degree (F) + 1, factorsFound2, |
---|
2085 | factorsFoundIndex, NTLN, false); |
---|
2086 | if (result.length() == NTLN.NumCols()) |
---|
2087 | { |
---|
2088 | delete [] factorsFoundIndex; |
---|
2089 | delete [] A; |
---|
2090 | delete [] bounds; |
---|
2091 | return result; |
---|
2092 | } |
---|
2093 | delete [] factorsFoundIndex; |
---|
2094 | } |
---|
2095 | else if (l == precision) |
---|
2096 | { |
---|
2097 | CanonicalForm bufF= F; |
---|
2098 | int * zeroOne= extractZeroOneVecs (NTLN); |
---|
2099 | CFList result= reconstruction (bufF, factors, zeroOne, precision, NTLN); |
---|
2100 | F= bufF; |
---|
2101 | delete [] zeroOne; |
---|
2102 | delete [] A; |
---|
2103 | delete [] bounds; |
---|
2104 | return result; |
---|
2105 | } |
---|
2106 | } |
---|
2107 | oldL2= l; |
---|
2108 | l += stepSize; |
---|
2109 | stepSize *= 2; |
---|
2110 | if (l > precision) |
---|
2111 | { |
---|
2112 | if (!hitBound) |
---|
2113 | { |
---|
2114 | l= precision; |
---|
2115 | hitBound= true; |
---|
2116 | } |
---|
2117 | else |
---|
2118 | break; |
---|
2119 | } |
---|
2120 | } |
---|
2121 | delete [] bounds; |
---|
2122 | delete [] A; |
---|
2123 | return CFList(); |
---|
2124 | } |
---|
2125 | |
---|
2126 | //over field extension |
---|
2127 | CFList |
---|
2128 | extIncreasePrecision (CanonicalForm& F, CFList& factors, int factorsFound, |
---|
2129 | int oldNumCols, int oldL, const CanonicalForm& evaluation, |
---|
2130 | const ExtensionInfo& info, CFList& source, CFList& dest, |
---|
2131 | int precision |
---|
2132 | ) |
---|
2133 | { |
---|
2134 | bool GF= (CFFactory::gettype()==GaloisFieldDomain); |
---|
2135 | int degMipo= degree (getMipo (info.getAlpha())); |
---|
2136 | Variable alpha= info.getAlpha(); |
---|
2137 | bool irreducible= false; |
---|
2138 | int d; |
---|
2139 | int* bounds= computeBounds (F, d); |
---|
2140 | |
---|
2141 | CFArray * A= new CFArray [factors.length()]; |
---|
2142 | CFArray bufQ= CFArray (factors.length()); |
---|
2143 | zz_p::init (getCharacteristic()); |
---|
2144 | mat_zz_p NTLN; |
---|
2145 | ident (NTLN, factors.length()); |
---|
2146 | int minBound= bounds[0]; |
---|
2147 | for (int i= 1; i < d; i++) |
---|
2148 | { |
---|
2149 | if (bounds[i] != 0) |
---|
2150 | minBound= tmin (minBound, bounds[i]); |
---|
2151 | } |
---|
2152 | int l= tmax (oldL, 2*((minBound+1)/degMipo+1)); |
---|
2153 | int oldL2= l/2; |
---|
2154 | int stepSize= 2; |
---|
2155 | bool useOldQs= false; |
---|
2156 | bool hitBound= false; |
---|
2157 | Variable gamma= info.getBeta(); |
---|
2158 | CanonicalForm primElemAlpha= info.getGamma(); |
---|
2159 | CanonicalForm imPrimElemAlpha= info.getDelta(); |
---|
2160 | while (l <= precision) |
---|
2161 | { |
---|
2162 | CFListIterator j= factors; |
---|
2163 | if (GF) |
---|
2164 | setCharacteristic (getCharacteristic()); |
---|
2165 | Variable y= F.mvar(); |
---|
2166 | CanonicalForm powX= power (y-gamma, l); |
---|
2167 | CFMatrix Mat= CFMatrix (l*degMipo, l*degMipo); |
---|
2168 | for (int i= 0; i < l*degMipo; i++) |
---|
2169 | { |
---|
2170 | |
---|
2171 | CanonicalForm imBasis= mod (power (y, i), powX); |
---|
2172 | imBasis= imBasis (power (y, degMipo), y); |
---|
2173 | imBasis= imBasis (y, gamma); |
---|
2174 | CFIterator iter= imBasis; |
---|
2175 | for (; iter.hasTerms(); iter++) |
---|
2176 | Mat (iter.exp()+ 1, i+1)= iter.coeff(); |
---|
2177 | } |
---|
2178 | |
---|
2179 | mat_zz_p* NTLMat= convertFacCFMatrix2NTLmat_zz_p (Mat); |
---|
2180 | *NTLMat= inv (*NTLMat); |
---|
2181 | if (GF) |
---|
2182 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
2183 | |
---|
2184 | if (useOldQs) |
---|
2185 | { |
---|
2186 | for (int i= 0; i < factors.length(); i++, j++) |
---|
2187 | A[i]= logarithmicDerivative (F, j.getItem(), l, oldL2, bufQ[i], |
---|
2188 | bufQ[i] |
---|
2189 | ); |
---|
2190 | } |
---|
2191 | else |
---|
2192 | { |
---|
2193 | for (int i= 0; i < factors.length(); i++, j++) |
---|
2194 | A[i]= logarithmicDerivative (F, j.getItem(), l, bufQ [i]); |
---|
2195 | } |
---|
2196 | useOldQs= true; |
---|
2197 | for (int i= 0; i < d; i++) |
---|
2198 | { |
---|
2199 | if (bounds [i] + 1 <= (l/2)*degMipo) |
---|
2200 | { |
---|
2201 | int k= tmin (bounds [i] + 1, (l/2)*degMipo); |
---|
2202 | CFMatrix C= CFMatrix (l*degMipo - k, factors.length()); |
---|
2203 | for (int ii= 0; ii < factors.length(); ii++) |
---|
2204 | { |
---|
2205 | CFArray buf; |
---|
2206 | if (A[ii].size() - 1 >= i) |
---|
2207 | { |
---|
2208 | if (GF) |
---|
2209 | { |
---|
2210 | A[ii] [i]= A [ii] [i] (y-evaluation, y); |
---|
2211 | setCharacteristic (getCharacteristic()); |
---|
2212 | A[ii] [i]= GF2FalphaRep (A[ii] [i], alpha); |
---|
2213 | if (alpha != gamma) |
---|
2214 | A [ii] [i]= mapDown (A[ii] [i], imPrimElemAlpha, primElemAlpha, |
---|
2215 | gamma, source, dest |
---|
2216 | ); |
---|
2217 | buf= getCoeffs (A[ii] [i], k, l, degMipo, gamma, 0, *NTLMat); |
---|
2218 | } |
---|
2219 | else |
---|
2220 | { |
---|
2221 | A [ii] [i]= A [ii] [i] (y-evaluation, y); |
---|
2222 | if (alpha != gamma) |
---|
2223 | A[ii] [i]= mapDown (A[ii] [i], imPrimElemAlpha, primElemAlpha, |
---|
2224 | gamma, source, dest |
---|
2225 | ); |
---|
2226 | buf= getCoeffs (A[ii] [i], k, l, degMipo, gamma, 0, *NTLMat); |
---|
2227 | } |
---|
2228 | } |
---|
2229 | writeInMatrix (C, buf, ii + 1, 0); |
---|
2230 | if (GF) |
---|
2231 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
2232 | } |
---|
2233 | |
---|
2234 | if (GF) |
---|
2235 | setCharacteristic(getCharacteristic()); |
---|
2236 | |
---|
2237 | mat_zz_p* NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
2238 | mat_zz_p NTLK= (*NTLC)*NTLN; |
---|
2239 | transpose (NTLK, NTLK); |
---|
2240 | kernel (NTLK, NTLK); |
---|
2241 | transpose (NTLK, NTLK); |
---|
2242 | NTLN *= NTLK; |
---|
2243 | |
---|
2244 | if (GF) |
---|
2245 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
2246 | |
---|
2247 | if (NTLN.NumCols() == 1) |
---|
2248 | { |
---|
2249 | irreducible= true; |
---|
2250 | Variable y= Variable (2); |
---|
2251 | CanonicalForm tmp= F (y - evaluation, y); |
---|
2252 | CFList source, dest; |
---|
2253 | tmp= mapDown (tmp, info, source, dest); |
---|
2254 | delete [] A; |
---|
2255 | delete [] bounds; |
---|
2256 | return CFList (tmp); |
---|
2257 | } |
---|
2258 | } |
---|
2259 | } |
---|
2260 | |
---|
2261 | if (NTLN.NumCols() < oldNumCols - factorsFound) |
---|
2262 | { |
---|
2263 | if (isReduced (NTLN)) |
---|
2264 | { |
---|
2265 | int d= degree (F) + 1; |
---|
2266 | int * factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
2267 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
2268 | factorsFoundIndex[i]= 0; |
---|
2269 | int factorsFound2= 0; |
---|
2270 | CFList result; |
---|
2271 | CanonicalForm bufF= F; |
---|
2272 | extReconstructionTry (result, bufF, factors, degree (F)+1, factorsFound2, |
---|
2273 | factorsFoundIndex, NTLN, false, info, evaluation |
---|
2274 | ); |
---|
2275 | if (result.length() == NTLN.NumCols()) |
---|
2276 | { |
---|
2277 | delete [] factorsFoundIndex; |
---|
2278 | delete [] A; |
---|
2279 | delete [] bounds; |
---|
2280 | return result; |
---|
2281 | } |
---|
2282 | delete [] factorsFoundIndex; |
---|
2283 | } |
---|
2284 | else if (l == precision) |
---|
2285 | { |
---|
2286 | CanonicalForm bufF= F; |
---|
2287 | int * zeroOne= extractZeroOneVecs (NTLN); |
---|
2288 | CFList result= extReconstruction (bufF, factors, zeroOne, precision, |
---|
2289 | NTLN, info, evaluation |
---|
2290 | ); |
---|
2291 | F= bufF; |
---|
2292 | delete [] zeroOne; |
---|
2293 | delete [] A; |
---|
2294 | delete [] bounds; |
---|
2295 | return result; |
---|
2296 | } |
---|
2297 | } |
---|
2298 | oldL2= l; |
---|
2299 | l += stepSize; |
---|
2300 | stepSize *= 2; |
---|
2301 | if (l > precision) |
---|
2302 | { |
---|
2303 | if (!hitBound) |
---|
2304 | { |
---|
2305 | hitBound= true; |
---|
2306 | l= precision; |
---|
2307 | } |
---|
2308 | else |
---|
2309 | break; |
---|
2310 | } |
---|
2311 | } |
---|
2312 | delete [] bounds; |
---|
2313 | delete [] A; |
---|
2314 | return CFList(); |
---|
2315 | } |
---|
2316 | |
---|
2317 | CFList |
---|
2318 | increasePrecision2 (const CanonicalForm& F, CFList& factors, |
---|
2319 | const Variable& alpha, int precision) |
---|
2320 | { |
---|
2321 | bool irreducible= false; |
---|
2322 | int d; |
---|
2323 | int* bounds= computeBounds (F, d); |
---|
2324 | CFArray * A= new CFArray [factors.length()]; |
---|
2325 | CFArray bufQ= CFArray (factors.length()); |
---|
2326 | zz_p::init (getCharacteristic()); |
---|
2327 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
2328 | zz_pE::init (NTLMipo); |
---|
2329 | mat_zz_pE NTLN; |
---|
2330 | ident (NTLN, factors.length()); |
---|
2331 | int minBound= bounds[0]; |
---|
2332 | for (int i= 1; i < d; i++) |
---|
2333 | { |
---|
2334 | if (bounds[i] != 0) |
---|
2335 | minBound= tmin (minBound, bounds[i]); |
---|
2336 | } |
---|
2337 | int l= tmin (2*(minBound + 1), precision); |
---|
2338 | int oldL= l/2; |
---|
2339 | int stepSize= 2; |
---|
2340 | bool useOldQs= false; |
---|
2341 | bool hitBound= false; |
---|
2342 | Variable y= Variable (2); |
---|
2343 | while (l <= precision) |
---|
2344 | { |
---|
2345 | CFListIterator j= factors; |
---|
2346 | if (useOldQs) |
---|
2347 | { |
---|
2348 | for (int i= 0; i < factors.length(); i++, j++) |
---|
2349 | A[i]= logarithmicDerivative (F, j.getItem(), l, oldL, bufQ[i], bufQ[i]); |
---|
2350 | } |
---|
2351 | else |
---|
2352 | { |
---|
2353 | for (int i= 0; i < factors.length(); i++, j++) |
---|
2354 | { |
---|
2355 | A[i]= logarithmicDerivative (F, j.getItem(), l, bufQ [i]); |
---|
2356 | } |
---|
2357 | } |
---|
2358 | useOldQs= true; |
---|
2359 | for (int i= 0; i < d; i++) |
---|
2360 | { |
---|
2361 | if (bounds [i] + 1 <= l/2) |
---|
2362 | { |
---|
2363 | int k= tmin (bounds [i] + 1, l/2); |
---|
2364 | CFMatrix C= CFMatrix (l - k, factors.length()); |
---|
2365 | for (int ii= 0; ii < factors.length(); ii++) |
---|
2366 | { |
---|
2367 | CFArray buf; |
---|
2368 | if (A[ii].size() - 1 >= i) |
---|
2369 | buf= getCoeffs (A[ii] [i], k); |
---|
2370 | writeInMatrix (C, buf, ii + 1, 0); |
---|
2371 | } |
---|
2372 | mat_zz_pE* NTLC= convertFacCFMatrix2NTLmat_zz_pE(C); |
---|
2373 | mat_zz_pE NTLK= (*NTLC)*NTLN; |
---|
2374 | transpose (NTLK, NTLK); |
---|
2375 | kernel (NTLK, NTLK); |
---|
2376 | transpose (NTLK, NTLK); |
---|
2377 | NTLN *= NTLK; |
---|
2378 | if (NTLN.NumCols() == 1) |
---|
2379 | { |
---|
2380 | irreducible= true; |
---|
2381 | delete [] A; |
---|
2382 | delete [] bounds; |
---|
2383 | return CFList (F); |
---|
2384 | } |
---|
2385 | } |
---|
2386 | } |
---|
2387 | |
---|
2388 | if (isReduced (NTLN) || l == precision) |
---|
2389 | { |
---|
2390 | CanonicalForm bufF= F; |
---|
2391 | int * zeroOne= extractZeroOneVecs (NTLN); |
---|
2392 | CFList bufFactors= factors; |
---|
2393 | CFList result= monicReconstruction (bufF, factors, zeroOne, precision, |
---|
2394 | NTLN |
---|
2395 | ); |
---|
2396 | if (result.length() != NTLN.NumCols() && l != precision) |
---|
2397 | factors= bufFactors; |
---|
2398 | if (result.length() == NTLN.NumCols()) |
---|
2399 | { |
---|
2400 | delete [] zeroOne; |
---|
2401 | delete [] A; |
---|
2402 | delete [] bounds; |
---|
2403 | return result; |
---|
2404 | } |
---|
2405 | if (l == precision) |
---|
2406 | { |
---|
2407 | delete [] zeroOne; |
---|
2408 | delete [] A; |
---|
2409 | delete [] bounds; |
---|
2410 | return Union (result, factors); |
---|
2411 | } |
---|
2412 | } |
---|
2413 | oldL= l; |
---|
2414 | l += stepSize; |
---|
2415 | stepSize *= 2; |
---|
2416 | if (l > precision) |
---|
2417 | { |
---|
2418 | if (!hitBound) |
---|
2419 | { |
---|
2420 | l= precision; |
---|
2421 | hitBound= true; |
---|
2422 | } |
---|
2423 | else |
---|
2424 | break; |
---|
2425 | } |
---|
2426 | } |
---|
2427 | delete [] bounds; |
---|
2428 | delete [] A; |
---|
2429 | return CFList(); |
---|
2430 | } |
---|
2431 | |
---|
2432 | |
---|
2433 | CFList |
---|
2434 | increasePrecisionFq2Fp (CanonicalForm& F, CFList& factors, int factorsFound, |
---|
2435 | int oldNumCols, int oldL, const Variable& alpha, |
---|
2436 | int precision |
---|
2437 | ) |
---|
2438 | { |
---|
2439 | bool irreducible= false; |
---|
2440 | int d; |
---|
2441 | int* bounds= computeBounds (F, d); |
---|
2442 | int extensionDeg= degree (getMipo (alpha)); |
---|
2443 | CFArray * A= new CFArray [factors.length()]; |
---|
2444 | CFArray bufQ= CFArray (factors.length()); |
---|
2445 | mat_zz_p NTLN; |
---|
2446 | ident (NTLN, factors.length()); |
---|
2447 | int minBound= bounds[0]; |
---|
2448 | for (int i= 1; i < d; i++) |
---|
2449 | { |
---|
2450 | if (bounds[i] != 0) |
---|
2451 | minBound= tmin (minBound, bounds[i]); |
---|
2452 | } |
---|
2453 | int l= tmax (2*(minBound + 1), oldL); |
---|
2454 | int oldL2= l/2; |
---|
2455 | int stepSize= 2; |
---|
2456 | bool useOldQs= false; |
---|
2457 | bool hitBound= false; |
---|
2458 | while (l <= precision) |
---|
2459 | { |
---|
2460 | CFListIterator j= factors; |
---|
2461 | if (useOldQs) |
---|
2462 | { |
---|
2463 | for (int i= 0; i < factors.length(); i++, j++) |
---|
2464 | A[i]= logarithmicDerivative (F, j.getItem(), l, oldL2, bufQ[i], |
---|
2465 | bufQ[i] |
---|
2466 | ); |
---|
2467 | } |
---|
2468 | else |
---|
2469 | { |
---|
2470 | for (int i= 0; i < factors.length(); i++, j++) |
---|
2471 | A[i]= logarithmicDerivative (F, j.getItem(), l, bufQ [i]); |
---|
2472 | } |
---|
2473 | useOldQs= true; |
---|
2474 | for (int i= 0; i < d; i++) |
---|
2475 | { |
---|
2476 | if (bounds [i] + 1 <= l/2) |
---|
2477 | { |
---|
2478 | int k= tmin (bounds [i] + 1, l/2); |
---|
2479 | CFMatrix C= CFMatrix ((l - k)*extensionDeg, factors.length()); |
---|
2480 | for (int ii= 0; ii < factors.length(); ii++) |
---|
2481 | { |
---|
2482 | CFArray buf; |
---|
2483 | if (A[ii].size() - 1 >= i) |
---|
2484 | buf= getCoeffs (A[ii] [i], k, alpha); |
---|
2485 | writeInMatrix (C, buf, ii + 1, 0); |
---|
2486 | } |
---|
2487 | mat_zz_p* NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
2488 | mat_zz_p NTLK= (*NTLC)*NTLN; |
---|
2489 | transpose (NTLK, NTLK); |
---|
2490 | kernel (NTLK, NTLK); |
---|
2491 | transpose (NTLK, NTLK); |
---|
2492 | NTLN *= NTLK; |
---|
2493 | if (NTLN.NumCols() == 1) |
---|
2494 | { |
---|
2495 | irreducible= true; |
---|
2496 | delete [] A; |
---|
2497 | delete [] bounds; |
---|
2498 | return CFList (F); |
---|
2499 | } |
---|
2500 | } |
---|
2501 | } |
---|
2502 | |
---|
2503 | if (NTLN.NumCols() < oldNumCols - factorsFound) |
---|
2504 | { |
---|
2505 | if (isReduced (NTLN)) |
---|
2506 | { |
---|
2507 | int d= degree (F) + 1; |
---|
2508 | int * factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
2509 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
2510 | factorsFoundIndex[i]= 0; |
---|
2511 | int factorsFound2= 0; |
---|
2512 | CFList result; |
---|
2513 | CanonicalForm bufF= F; |
---|
2514 | reconstructionTry (result, bufF, factors, degree (F) + 1, factorsFound2, |
---|
2515 | factorsFoundIndex, NTLN, false |
---|
2516 | ); |
---|
2517 | if (result.length() == NTLN.NumCols()) |
---|
2518 | { |
---|
2519 | delete [] factorsFoundIndex; |
---|
2520 | delete [] A; |
---|
2521 | delete [] bounds; |
---|
2522 | return result; |
---|
2523 | } |
---|
2524 | delete [] factorsFoundIndex; |
---|
2525 | } |
---|
2526 | else if (l == precision) |
---|
2527 | { |
---|
2528 | CanonicalForm bufF= F; |
---|
2529 | int * zeroOne= extractZeroOneVecs (NTLN); |
---|
2530 | CFList result= reconstruction (bufF, factors, zeroOne, precision, NTLN); |
---|
2531 | F= bufF; |
---|
2532 | delete [] zeroOne; |
---|
2533 | delete [] A; |
---|
2534 | delete [] bounds; |
---|
2535 | return result; |
---|
2536 | } |
---|
2537 | } |
---|
2538 | oldL2= l; |
---|
2539 | l += stepSize; |
---|
2540 | stepSize *= 2; |
---|
2541 | if (l > precision) |
---|
2542 | { |
---|
2543 | if (!hitBound) |
---|
2544 | { |
---|
2545 | hitBound= true; |
---|
2546 | l= precision; |
---|
2547 | } |
---|
2548 | else |
---|
2549 | break; |
---|
2550 | } |
---|
2551 | } |
---|
2552 | delete [] bounds; |
---|
2553 | delete [] A; |
---|
2554 | return CFList(); |
---|
2555 | } |
---|
2556 | |
---|
2557 | CFList |
---|
2558 | increasePrecision (CanonicalForm& F, CFList& factors, int oldL, int |
---|
2559 | l, int d, int* bounds, CFArray& bufQ, mat_zz_p& NTLN |
---|
2560 | ) |
---|
2561 | { |
---|
2562 | CFList result= CFList(); |
---|
2563 | bool irreducible= false; |
---|
2564 | CFArray * A= new CFArray [factors.length()]; |
---|
2565 | int oldL2= oldL/2; |
---|
2566 | bool hitBound= false; |
---|
2567 | if (NTLN.NumRows() != factors.length()) //refined factors |
---|
2568 | { |
---|
2569 | ident (NTLN, factors.length()); |
---|
2570 | bufQ= CFArray (factors.length()); |
---|
2571 | } |
---|
2572 | bool useOldQs= false; |
---|
2573 | while (oldL <= l) |
---|
2574 | { |
---|
2575 | CFListIterator j= factors; |
---|
2576 | if (useOldQs) |
---|
2577 | { |
---|
2578 | for (int i= 0; i < factors.length(); i++, j++) |
---|
2579 | A[i]= logarithmicDerivative (F, j.getItem(), oldL, oldL2, bufQ[i], |
---|
2580 | bufQ[i] |
---|
2581 | ); |
---|
2582 | } |
---|
2583 | else |
---|
2584 | { |
---|
2585 | for (int i= 0; i < factors.length(); i++, j++) |
---|
2586 | A[i]= logarithmicDerivative (F, j.getItem(), oldL, bufQ [i]); |
---|
2587 | } |
---|
2588 | useOldQs= true; |
---|
2589 | |
---|
2590 | for (int i= 0; i < d; i++) |
---|
2591 | { |
---|
2592 | if (bounds [i] + 1 <= oldL/2) |
---|
2593 | { |
---|
2594 | int k= tmin (bounds [i] + 1, oldL/2); |
---|
2595 | CFMatrix C= CFMatrix (oldL - k, factors.length()); |
---|
2596 | for (int ii= 0; ii < factors.length(); ii++) |
---|
2597 | { |
---|
2598 | CFArray buf; |
---|
2599 | if (A[ii].size() - 1 >= i) |
---|
2600 | buf= getCoeffs (A[ii] [i], k); |
---|
2601 | writeInMatrix (C, buf, ii + 1, 0); |
---|
2602 | } |
---|
2603 | mat_zz_p* NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
2604 | mat_zz_p NTLK= (*NTLC)*NTLN; |
---|
2605 | transpose (NTLK, NTLK); |
---|
2606 | kernel (NTLK, NTLK); |
---|
2607 | transpose (NTLK, NTLK); |
---|
2608 | NTLN *= NTLK; |
---|
2609 | if (NTLN.NumCols() == 1) |
---|
2610 | { |
---|
2611 | irreducible= true; |
---|
2612 | delete [] A; |
---|
2613 | return CFList (F); |
---|
2614 | } |
---|
2615 | } |
---|
2616 | } |
---|
2617 | if (NTLN.NumCols() == 1) |
---|
2618 | { |
---|
2619 | irreducible= true; |
---|
2620 | delete [] A; |
---|
2621 | return CFList (F); |
---|
2622 | } |
---|
2623 | int * zeroOneVecs; |
---|
2624 | zeroOneVecs= extractZeroOneVecs (NTLN); |
---|
2625 | CanonicalForm bufF= F; |
---|
2626 | CFList bufUniFactors= factors; |
---|
2627 | result= reconstruction (bufF, bufUniFactors, zeroOneVecs, oldL, NTLN); |
---|
2628 | delete [] zeroOneVecs; |
---|
2629 | if (degree (bufF) + 1 + degree (LC (bufF, 1)) < oldL && result.length() > 0) |
---|
2630 | { |
---|
2631 | F= bufF; |
---|
2632 | factors= bufUniFactors; |
---|
2633 | delete [] A; |
---|
2634 | return result; |
---|
2635 | } |
---|
2636 | |
---|
2637 | result= CFList(); |
---|
2638 | oldL2= oldL; |
---|
2639 | oldL *= 2; |
---|
2640 | if (oldL > l) |
---|
2641 | { |
---|
2642 | if (!hitBound) |
---|
2643 | { |
---|
2644 | oldL= l; |
---|
2645 | hitBound= true; |
---|
2646 | } |
---|
2647 | else |
---|
2648 | break; |
---|
2649 | } |
---|
2650 | } |
---|
2651 | delete [] A; |
---|
2652 | return result; |
---|
2653 | } |
---|
2654 | |
---|
2655 | CFList |
---|
2656 | increasePrecision (CanonicalForm& F, CFList& factors, int oldL, int |
---|
2657 | l, int d, int* bounds, CFArray& bufQ, mat_zz_pE& NTLN |
---|
2658 | ) |
---|
2659 | { |
---|
2660 | CFList result= CFList(); |
---|
2661 | bool irreducible= false; |
---|
2662 | CFArray * A= new CFArray [factors.length()]; |
---|
2663 | int oldL2= oldL/2; |
---|
2664 | bool hitBound= false; |
---|
2665 | bool useOldQs= false; |
---|
2666 | if (NTLN.NumRows() != factors.length()) //refined factors |
---|
2667 | ident (NTLN, factors.length()); |
---|
2668 | while (oldL <= l) |
---|
2669 | { |
---|
2670 | CFListIterator j= factors; |
---|
2671 | if (useOldQs) |
---|
2672 | { |
---|
2673 | for (int i= 0; i < factors.length(); i++, j++) |
---|
2674 | A[i]= logarithmicDerivative (F, j.getItem(), oldL, oldL2, bufQ[i], |
---|
2675 | bufQ[i] |
---|
2676 | ); |
---|
2677 | } |
---|
2678 | else |
---|
2679 | { |
---|
2680 | for (int i= 0; i < factors.length(); i++, j++) |
---|
2681 | A[i]= logarithmicDerivative (F, j.getItem(), oldL, bufQ [i]); |
---|
2682 | } |
---|
2683 | useOldQs= true; |
---|
2684 | |
---|
2685 | for (int i= 0; i < d; i++) |
---|
2686 | { |
---|
2687 | if (bounds [i] + 1 <= oldL/2) |
---|
2688 | { |
---|
2689 | int k= tmin (bounds [i] + 1, oldL/2); |
---|
2690 | CFMatrix C= CFMatrix (oldL - k, factors.length()); |
---|
2691 | for (int ii= 0; ii < factors.length(); ii++) |
---|
2692 | { |
---|
2693 | CFArray buf; |
---|
2694 | if (A[ii].size() - 1 >= i) |
---|
2695 | buf= getCoeffs (A[ii] [i], k); |
---|
2696 | writeInMatrix (C, buf, ii + 1, 0); |
---|
2697 | } |
---|
2698 | mat_zz_pE* NTLC= convertFacCFMatrix2NTLmat_zz_pE(C); |
---|
2699 | mat_zz_pE NTLK= (*NTLC)*NTLN; |
---|
2700 | transpose (NTLK, NTLK); |
---|
2701 | kernel (NTLK, NTLK); |
---|
2702 | transpose (NTLK, NTLK); |
---|
2703 | NTLN *= NTLK; |
---|
2704 | if (NTLN.NumCols() == 1) |
---|
2705 | { |
---|
2706 | irreducible= true; |
---|
2707 | delete [] A; |
---|
2708 | return CFList (F); |
---|
2709 | } |
---|
2710 | } |
---|
2711 | } |
---|
2712 | if (NTLN.NumCols() == 1) |
---|
2713 | { |
---|
2714 | irreducible= true; |
---|
2715 | delete [] A; |
---|
2716 | return CFList (F); |
---|
2717 | } |
---|
2718 | |
---|
2719 | int * zeroOneVecs; |
---|
2720 | zeroOneVecs= extractZeroOneVecs (NTLN); |
---|
2721 | CanonicalForm bufF= F; |
---|
2722 | CFList bufUniFactors= factors; |
---|
2723 | result= reconstruction (bufF, bufUniFactors, zeroOneVecs, oldL, NTLN); |
---|
2724 | delete [] zeroOneVecs; |
---|
2725 | if (degree (bufF) + 1 + degree (LC (bufF, 1)) < l && result.length() > 0) |
---|
2726 | { |
---|
2727 | F= bufF; |
---|
2728 | factors= bufUniFactors; |
---|
2729 | delete [] A; |
---|
2730 | return result; |
---|
2731 | } |
---|
2732 | |
---|
2733 | result= CFList(); |
---|
2734 | oldL2= oldL; |
---|
2735 | oldL *= 2; |
---|
2736 | if (oldL > l) |
---|
2737 | { |
---|
2738 | if (!hitBound) |
---|
2739 | { |
---|
2740 | oldL= l; |
---|
2741 | hitBound= true; |
---|
2742 | } |
---|
2743 | else |
---|
2744 | break; |
---|
2745 | } |
---|
2746 | } |
---|
2747 | delete [] A; |
---|
2748 | return result; |
---|
2749 | } |
---|
2750 | |
---|
2751 | //over field extension |
---|
2752 | CFList |
---|
2753 | extIncreasePrecision (CanonicalForm& F, CFList& factors, int oldL, int l, int d, |
---|
2754 | int* bounds, CFArray& bufQ, mat_zz_p& NTLN, const |
---|
2755 | CanonicalForm& evaluation, const ExtensionInfo& info, |
---|
2756 | CFList& source, CFList& dest |
---|
2757 | ) |
---|
2758 | { |
---|
2759 | CFList result= CFList(); |
---|
2760 | bool irreducible= false; |
---|
2761 | CFArray * A= new CFArray [factors.length()]; |
---|
2762 | int oldL2= oldL/2; //be careful |
---|
2763 | bool hitBound= false; |
---|
2764 | bool useOldQs= false; |
---|
2765 | bool GF= (CFFactory::gettype()==GaloisFieldDomain); |
---|
2766 | int degMipo= degree (getMipo (info.getAlpha())); |
---|
2767 | Variable alpha= info.getAlpha(); |
---|
2768 | |
---|
2769 | Variable gamma= info.getBeta(); |
---|
2770 | CanonicalForm primElemAlpha= info.getGamma(); |
---|
2771 | CanonicalForm imPrimElemAlpha= info.getDelta(); |
---|
2772 | bool reduced= false; |
---|
2773 | if (NTLN.NumRows() != factors.length()) //refined factors |
---|
2774 | ident (NTLN, factors.length()); |
---|
2775 | while (oldL <= l) |
---|
2776 | { |
---|
2777 | CFListIterator j= factors; |
---|
2778 | if (GF) |
---|
2779 | setCharacteristic (getCharacteristic()); |
---|
2780 | Variable y= F.mvar(); |
---|
2781 | CanonicalForm powX= power (y-gamma, oldL); |
---|
2782 | CFMatrix Mat= CFMatrix (oldL*degMipo, oldL*degMipo); |
---|
2783 | for (int i= 0; i < oldL*degMipo; i++) |
---|
2784 | { |
---|
2785 | |
---|
2786 | CanonicalForm imBasis= mod (power (y, i), powX); |
---|
2787 | imBasis= imBasis (power (y, degMipo), y); |
---|
2788 | imBasis= imBasis (y, gamma); |
---|
2789 | int ind= oldL*degMipo - 1; |
---|
2790 | CFIterator iter= imBasis; |
---|
2791 | for (; iter.hasTerms(); iter++) |
---|
2792 | Mat (iter.exp()+ 1, i+1)= iter.coeff(); |
---|
2793 | } |
---|
2794 | |
---|
2795 | mat_zz_p* NTLMat= convertFacCFMatrix2NTLmat_zz_p (Mat); |
---|
2796 | *NTLMat= inv (*NTLMat); |
---|
2797 | if (GF) |
---|
2798 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
2799 | |
---|
2800 | if (useOldQs) |
---|
2801 | { |
---|
2802 | for (int i= 0; i < factors.length(); i++, j++) |
---|
2803 | A[i]= logarithmicDerivative (F, j.getItem(), oldL, oldL2, bufQ[i], |
---|
2804 | bufQ[i]); |
---|
2805 | } |
---|
2806 | else |
---|
2807 | { |
---|
2808 | for (int i= 0; i < factors.length(); i++, j++) |
---|
2809 | A[i]= logarithmicDerivative (F, j.getItem(), oldL, bufQ [i]); |
---|
2810 | } |
---|
2811 | useOldQs= true; |
---|
2812 | |
---|
2813 | for (int i= 0; i < d; i++) |
---|
2814 | { |
---|
2815 | if (bounds [i] + 1 <= oldL/2) |
---|
2816 | { |
---|
2817 | int k= tmin (bounds [i] + 1, oldL/2); |
---|
2818 | CFMatrix C= CFMatrix (oldL*degMipo - k, factors.length()); |
---|
2819 | for (int ii= 0; ii < factors.length(); ii++) |
---|
2820 | { |
---|
2821 | CFArray buf; |
---|
2822 | if (A[ii].size() - 1 >= i) |
---|
2823 | { |
---|
2824 | if (GF) |
---|
2825 | { |
---|
2826 | A [ii] [i]= A [ii] [i] (y-evaluation, y); |
---|
2827 | setCharacteristic (getCharacteristic()); |
---|
2828 | A[ii] [i]= GF2FalphaRep (A[ii] [i], alpha); |
---|
2829 | if (alpha != gamma) |
---|
2830 | A [ii] [i]= mapDown (A[ii] [i], imPrimElemAlpha, primElemAlpha, |
---|
2831 | gamma, source, dest |
---|
2832 | ); |
---|
2833 | buf= getCoeffs (A[ii] [i], k, oldL, degMipo, gamma, 0, *NTLMat); |
---|
2834 | } |
---|
2835 | else |
---|
2836 | { |
---|
2837 | A [ii] [i]= A [ii] [i] (y-evaluation, y); |
---|
2838 | if (alpha != gamma) |
---|
2839 | A[ii] [i]= mapDown (A[ii] [i], imPrimElemAlpha, primElemAlpha, |
---|
2840 | gamma, source, dest |
---|
2841 | ); |
---|
2842 | buf= getCoeffs (A[ii] [i], k, oldL, degMipo, gamma, 0, *NTLMat); |
---|
2843 | } |
---|
2844 | } |
---|
2845 | writeInMatrix (C, buf, ii + 1, 0); |
---|
2846 | if (GF) |
---|
2847 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
2848 | } |
---|
2849 | |
---|
2850 | if (GF) |
---|
2851 | setCharacteristic(getCharacteristic()); |
---|
2852 | |
---|
2853 | mat_zz_p* NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
2854 | mat_zz_p NTLK= (*NTLC)*NTLN; |
---|
2855 | transpose (NTLK, NTLK); |
---|
2856 | kernel (NTLK, NTLK); |
---|
2857 | transpose (NTLK, NTLK); |
---|
2858 | NTLN *= NTLK; |
---|
2859 | |
---|
2860 | if (GF) |
---|
2861 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
2862 | |
---|
2863 | if (NTLN.NumCols() == 1) |
---|
2864 | { |
---|
2865 | irreducible= true; |
---|
2866 | Variable y= Variable (2); |
---|
2867 | CanonicalForm tmp= F (y - evaluation, y); |
---|
2868 | CFList source, dest; |
---|
2869 | tmp= mapDown (tmp, info, source, dest); |
---|
2870 | delete [] A; |
---|
2871 | return CFList (tmp); |
---|
2872 | } |
---|
2873 | } |
---|
2874 | } |
---|
2875 | if (NTLN.NumCols() == 1) |
---|
2876 | { |
---|
2877 | irreducible= true; |
---|
2878 | Variable y= Variable (2); |
---|
2879 | CanonicalForm tmp= F (y - evaluation, y); |
---|
2880 | CFList source, dest; |
---|
2881 | tmp= mapDown (tmp, info, source, dest); |
---|
2882 | delete [] A; |
---|
2883 | return CFList (tmp); |
---|
2884 | } |
---|
2885 | |
---|
2886 | int * zeroOneVecs; |
---|
2887 | zeroOneVecs= extractZeroOneVecs (NTLN); |
---|
2888 | CanonicalForm bufF= F; |
---|
2889 | CFList bufUniFactors= factors; |
---|
2890 | result= extReconstruction (bufF, bufUniFactors, zeroOneVecs, oldL, NTLN, |
---|
2891 | info, evaluation |
---|
2892 | ); |
---|
2893 | delete [] zeroOneVecs; |
---|
2894 | if (degree (bufF) + 1 + degree (LC (bufF, 1)) < l && result.length() > 0) |
---|
2895 | { |
---|
2896 | F= bufF; |
---|
2897 | factors= bufUniFactors; |
---|
2898 | return result; |
---|
2899 | } |
---|
2900 | |
---|
2901 | if (isReduced (NTLN)) |
---|
2902 | { |
---|
2903 | int factorsFound= 0; |
---|
2904 | CanonicalForm bufF= F; |
---|
2905 | int* factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
2906 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
2907 | factorsFoundIndex[i]= 0; |
---|
2908 | extReconstructionTry (result, bufF, factors, l, factorsFound, |
---|
2909 | factorsFoundIndex, NTLN, false, info, evaluation |
---|
2910 | ); |
---|
2911 | if (NTLN.NumCols() == result.length()) |
---|
2912 | { |
---|
2913 | delete [] A; |
---|
2914 | delete [] factorsFoundIndex; |
---|
2915 | return result; |
---|
2916 | } |
---|
2917 | } |
---|
2918 | result= CFList(); |
---|
2919 | oldL2= oldL; |
---|
2920 | oldL *= 2; |
---|
2921 | if (oldL > l) |
---|
2922 | { |
---|
2923 | if (!hitBound) |
---|
2924 | { |
---|
2925 | oldL= l; |
---|
2926 | hitBound= true; |
---|
2927 | } |
---|
2928 | else |
---|
2929 | break; |
---|
2930 | } |
---|
2931 | } |
---|
2932 | delete [] A; |
---|
2933 | return result; |
---|
2934 | } |
---|
2935 | |
---|
2936 | CFList |
---|
2937 | increasePrecisionFq2Fp (CanonicalForm& F, CFList& factors, int oldL, int l, |
---|
2938 | int d, int* bounds, CFArray& bufQ, mat_zz_p& NTLN, |
---|
2939 | const Variable& alpha |
---|
2940 | ) |
---|
2941 | { |
---|
2942 | CFList result= CFList(); |
---|
2943 | bool irreducible= false; |
---|
2944 | CFArray * A= new CFArray [factors.length()]; |
---|
2945 | int extensionDeg= degree (getMipo (alpha)); |
---|
2946 | int oldL2= oldL/2; |
---|
2947 | bool hitBound= false; |
---|
2948 | bool useOldQs= false; |
---|
2949 | if (NTLN.NumRows() != factors.length()) //refined factors |
---|
2950 | { |
---|
2951 | int minBound= bounds [0]; |
---|
2952 | for (int i= 1; i < d; i++) |
---|
2953 | { |
---|
2954 | if (bounds [i] != 0) |
---|
2955 | minBound= tmin (minBound, bounds [i]); |
---|
2956 | } |
---|
2957 | oldL= 2*(minBound+1); |
---|
2958 | oldL2= minBound + 1; |
---|
2959 | ident (NTLN, factors.length()); |
---|
2960 | } |
---|
2961 | while (oldL <= l) |
---|
2962 | { |
---|
2963 | CFListIterator j= factors; |
---|
2964 | if (useOldQs) |
---|
2965 | { |
---|
2966 | for (int i= 0; i < factors.length(); i++, j++) |
---|
2967 | A[i]= logarithmicDerivative (F, j.getItem(), oldL, oldL2, bufQ[i], |
---|
2968 | bufQ[i] |
---|
2969 | ); |
---|
2970 | } |
---|
2971 | else |
---|
2972 | { |
---|
2973 | for (int i= 0; i < factors.length(); i++, j++) |
---|
2974 | A[i]= logarithmicDerivative (F, j.getItem(), oldL, bufQ [i]); |
---|
2975 | } |
---|
2976 | useOldQs= true; |
---|
2977 | |
---|
2978 | for (int i= 0; i < d; i++) |
---|
2979 | { |
---|
2980 | if (bounds [i] + 1 <= oldL/2) |
---|
2981 | { |
---|
2982 | int k= tmin (bounds [i] + 1, oldL/2); |
---|
2983 | CFMatrix C= CFMatrix ((oldL - k)*extensionDeg, factors.length()); |
---|
2984 | for (int ii= 0; ii < factors.length(); ii++) |
---|
2985 | { |
---|
2986 | CFArray buf; |
---|
2987 | if (A[ii].size() - 1 >= i) |
---|
2988 | buf= getCoeffs (A[ii] [i], k, alpha); |
---|
2989 | writeInMatrix (C, buf, ii + 1, 0); |
---|
2990 | } |
---|
2991 | mat_zz_p* NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
2992 | mat_zz_p NTLK= (*NTLC)*NTLN; |
---|
2993 | transpose (NTLK, NTLK); |
---|
2994 | kernel (NTLK, NTLK); |
---|
2995 | transpose (NTLK, NTLK); |
---|
2996 | NTLN *= NTLK; |
---|
2997 | if (NTLN.NumCols() == 1) |
---|
2998 | { |
---|
2999 | irreducible= true; |
---|
3000 | delete [] A; |
---|
3001 | return CFList (F); |
---|
3002 | } |
---|
3003 | } |
---|
3004 | } |
---|
3005 | |
---|
3006 | int * zeroOneVecs; |
---|
3007 | zeroOneVecs= extractZeroOneVecs (NTLN); |
---|
3008 | |
---|
3009 | CanonicalForm bufF= F; |
---|
3010 | CFList bufUniFactors= factors; |
---|
3011 | result= reconstruction (bufF, bufUniFactors, zeroOneVecs, oldL, NTLN); |
---|
3012 | delete [] zeroOneVecs; |
---|
3013 | if (degree (bufF) + 1 + degree (LC (bufF, 1)) < l && result.length() > 0) |
---|
3014 | { |
---|
3015 | F= bufF; |
---|
3016 | factors= bufUniFactors; |
---|
3017 | delete [] A; |
---|
3018 | return result; |
---|
3019 | } |
---|
3020 | |
---|
3021 | result= CFList(); |
---|
3022 | oldL2= oldL; |
---|
3023 | oldL *= 2; |
---|
3024 | if (oldL > l) |
---|
3025 | { |
---|
3026 | if (!hitBound) |
---|
3027 | { |
---|
3028 | oldL= l; |
---|
3029 | hitBound= true; |
---|
3030 | } |
---|
3031 | else |
---|
3032 | break; |
---|
3033 | } |
---|
3034 | } |
---|
3035 | delete [] A; |
---|
3036 | return result; |
---|
3037 | } |
---|
3038 | |
---|
3039 | CFList |
---|
3040 | furtherLiftingAndIncreasePrecision (CanonicalForm& F, CFList& |
---|
3041 | factors, int l, int liftBound, int d, int* |
---|
3042 | bounds, mat_zz_p& NTLN, CFList& diophant, |
---|
3043 | CFMatrix& M, CFArray& Pi, CFArray& bufQ |
---|
3044 | ) |
---|
3045 | { |
---|
3046 | CanonicalForm LCF= LC (F, 1); |
---|
3047 | CFList result; |
---|
3048 | bool irreducible= false; |
---|
3049 | CFList bufFactors= factors; |
---|
3050 | CFArray *A = new CFArray [bufFactors.length()]; |
---|
3051 | bool useOldQs= false; |
---|
3052 | bool hitBound= false; |
---|
3053 | int oldL= l; |
---|
3054 | int stepSize= 8; //TODO choose better step size? |
---|
3055 | l += tmax (tmin (8, degree (F) + 1 + degree (LC (F, 1))-l), 2); |
---|
3056 | if (NTLN.NumRows() != factors.length()) //refined factors |
---|
3057 | ident (NTLN, factors.length()); |
---|
3058 | while (l <= liftBound) |
---|
3059 | { |
---|
3060 | bufFactors.insert (LCF); |
---|
3061 | henselLiftResume12 (F, bufFactors, oldL, l, Pi, diophant, M); |
---|
3062 | bufFactors.insert (LCF); |
---|
3063 | bufFactors.removeFirst(); |
---|
3064 | CFListIterator j= bufFactors; |
---|
3065 | if (useOldQs) |
---|
3066 | { |
---|
3067 | for (int i= 0; i < bufFactors.length(); i++, j++) |
---|
3068 | A[i]= logarithmicDerivative (F, j.getItem(), l, oldL, bufQ[i],bufQ[i]); |
---|
3069 | } |
---|
3070 | else |
---|
3071 | { |
---|
3072 | for (int i= 0; i < bufFactors.length(); i++, j++) |
---|
3073 | A[i]= logarithmicDerivative (F, j.getItem(), l, bufQ [i]); |
---|
3074 | } |
---|
3075 | for (int i= 0; i < d; i++) |
---|
3076 | { |
---|
3077 | if (bounds [i] + 1 <= l/2) |
---|
3078 | { |
---|
3079 | int k= tmin (bounds [i] + 1, l/2); |
---|
3080 | CFMatrix C= CFMatrix (l - k, bufFactors.length()); |
---|
3081 | for (int ii= 0; ii < bufFactors.length(); ii++) |
---|
3082 | { |
---|
3083 | CFArray buf; |
---|
3084 | if (A[ii].size() - 1 >= i) |
---|
3085 | buf= getCoeffs (A[ii] [i], k); |
---|
3086 | writeInMatrix (C, buf, ii + 1, 0); |
---|
3087 | } |
---|
3088 | mat_zz_p* NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
3089 | mat_zz_p NTLK= (*NTLC)*NTLN; |
---|
3090 | transpose (NTLK, NTLK); |
---|
3091 | kernel (NTLK, NTLK); |
---|
3092 | transpose (NTLK, NTLK); |
---|
3093 | NTLN *= NTLK; |
---|
3094 | if (NTLN.NumCols() == 1) |
---|
3095 | { |
---|
3096 | irreducible= true; |
---|
3097 | break; |
---|
3098 | } |
---|
3099 | } |
---|
3100 | } |
---|
3101 | |
---|
3102 | if (NTLN.NumCols() == 1) |
---|
3103 | { |
---|
3104 | irreducible= true; |
---|
3105 | break; |
---|
3106 | } |
---|
3107 | |
---|
3108 | int * zeroOneVecs= extractZeroOneVecs (NTLN); |
---|
3109 | CanonicalForm bufF= F; |
---|
3110 | result= reconstruction (bufF, bufFactors, zeroOneVecs, l, NTLN); |
---|
3111 | delete [] zeroOneVecs; |
---|
3112 | if (result.length() > 0 && degree (bufF) + 1 + degree (LC (bufF, 1)) <= l) |
---|
3113 | { |
---|
3114 | F= bufF; |
---|
3115 | factors= bufFactors; |
---|
3116 | delete [] A; |
---|
3117 | return result; |
---|
3118 | } |
---|
3119 | |
---|
3120 | if (isReduced (NTLN)) |
---|
3121 | { |
---|
3122 | int factorsFound= 0; |
---|
3123 | CanonicalForm bufF= F; |
---|
3124 | int* factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
3125 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
3126 | factorsFoundIndex[i]= 0; |
---|
3127 | if (l < liftBound) |
---|
3128 | reconstructionTry (result, bufF, bufFactors, l, factorsFound, |
---|
3129 | factorsFoundIndex, NTLN, false |
---|
3130 | ); |
---|
3131 | else |
---|
3132 | reconstructionTry (result, bufF, bufFactors, degree (bufF) + 1 + |
---|
3133 | degree (LCF), factorsFound, factorsFoundIndex, |
---|
3134 | NTLN, false |
---|
3135 | ); |
---|
3136 | |
---|
3137 | if (NTLN.NumCols() == result.length()) |
---|
3138 | { |
---|
3139 | delete [] A; |
---|
3140 | delete [] factorsFoundIndex; |
---|
3141 | return result; |
---|
3142 | } |
---|
3143 | delete [] factorsFoundIndex; |
---|
3144 | } |
---|
3145 | result= CFList(); |
---|
3146 | oldL= l; |
---|
3147 | stepSize *= 2; |
---|
3148 | l += stepSize; |
---|
3149 | if (l > liftBound) |
---|
3150 | { |
---|
3151 | if (!hitBound) |
---|
3152 | { |
---|
3153 | l= liftBound; |
---|
3154 | hitBound= true; |
---|
3155 | } |
---|
3156 | else |
---|
3157 | break; |
---|
3158 | } |
---|
3159 | } |
---|
3160 | if (irreducible) |
---|
3161 | { |
---|
3162 | delete [] A; |
---|
3163 | return CFList (F); |
---|
3164 | } |
---|
3165 | delete [] A; |
---|
3166 | factors= bufFactors; |
---|
3167 | return CFList(); |
---|
3168 | } |
---|
3169 | |
---|
3170 | //Fq |
---|
3171 | CFList |
---|
3172 | furtherLiftingAndIncreasePrecision (CanonicalForm& F, CFList& |
---|
3173 | factors, int l, int liftBound, int d, int* |
---|
3174 | bounds, mat_zz_pE& NTLN, CFList& diophant, |
---|
3175 | CFMatrix& M, CFArray& Pi, CFArray& bufQ |
---|
3176 | ) |
---|
3177 | { |
---|
3178 | CanonicalForm LCF= LC (F, 1); |
---|
3179 | CFList result; |
---|
3180 | bool irreducible= false; |
---|
3181 | CFList bufFactors= factors; |
---|
3182 | CFArray *A = new CFArray [bufFactors.length()]; |
---|
3183 | bool useOldQs= false; |
---|
3184 | bool hitBound= false; |
---|
3185 | int oldL= l; |
---|
3186 | int stepSize= 8; //TODO choose better step size? |
---|
3187 | l += tmax (tmin (8, degree (F) + 1 + degree (LC (F, 1))-l), 2); |
---|
3188 | if (NTLN.NumRows() != factors.length()) //refined factors |
---|
3189 | ident (NTLN, factors.length()); |
---|
3190 | while (l <= liftBound) |
---|
3191 | { |
---|
3192 | bufFactors.insert (LCF); |
---|
3193 | henselLiftResume12 (F, bufFactors, oldL, l, Pi, diophant, M); |
---|
3194 | CFListIterator j= bufFactors; |
---|
3195 | if (useOldQs) |
---|
3196 | { |
---|
3197 | for (int i= 0; i < bufFactors.length(); i++, j++) |
---|
3198 | A[i]= logarithmicDerivative (F, j.getItem(), l, oldL, bufQ[i],bufQ[i]); |
---|
3199 | } |
---|
3200 | else |
---|
3201 | { |
---|
3202 | for (int i= 0; i < bufFactors.length(); i++, j++) |
---|
3203 | A[i]= logarithmicDerivative (F, j.getItem(), l, bufQ [i]); |
---|
3204 | } |
---|
3205 | for (int i= 0; i < d; i++) |
---|
3206 | { |
---|
3207 | if (bounds [i] + 1 <= l/2) |
---|
3208 | { |
---|
3209 | int k= tmin (bounds [i] + 1, l/2); |
---|
3210 | CFMatrix C= CFMatrix (l - k, bufFactors.length()); |
---|
3211 | for (int ii= 0; ii < bufFactors.length(); ii++) |
---|
3212 | { |
---|
3213 | CFArray buf; |
---|
3214 | if (A[ii].size() - 1 >= i) |
---|
3215 | buf= getCoeffs (A[ii] [i], k); |
---|
3216 | writeInMatrix (C, buf, ii + 1, 0); |
---|
3217 | } |
---|
3218 | mat_zz_pE* NTLC= convertFacCFMatrix2NTLmat_zz_pE(C); |
---|
3219 | mat_zz_pE NTLK= (*NTLC)*NTLN; |
---|
3220 | transpose (NTLK, NTLK); |
---|
3221 | kernel (NTLK, NTLK); |
---|
3222 | transpose (NTLK, NTLK); |
---|
3223 | NTLN *= NTLK; |
---|
3224 | if (NTLN.NumCols() == 1) |
---|
3225 | { |
---|
3226 | irreducible= true; |
---|
3227 | break; |
---|
3228 | } |
---|
3229 | } |
---|
3230 | } |
---|
3231 | if (NTLN.NumCols() == 1) |
---|
3232 | { |
---|
3233 | irreducible= true; |
---|
3234 | break; |
---|
3235 | } |
---|
3236 | |
---|
3237 | int * zeroOneVecs= extractZeroOneVecs (NTLN); |
---|
3238 | CanonicalForm bufF= F; |
---|
3239 | result= reconstruction (bufF, bufFactors, zeroOneVecs, l, NTLN); |
---|
3240 | delete [] zeroOneVecs; |
---|
3241 | if (result.length() > 0 && degree (bufF) + 1 + degree (LC (bufF, 1)) <= l) |
---|
3242 | { |
---|
3243 | F= bufF; |
---|
3244 | factors= bufFactors; |
---|
3245 | delete [] A; |
---|
3246 | return result; |
---|
3247 | } |
---|
3248 | |
---|
3249 | if (isReduced (NTLN)) |
---|
3250 | { |
---|
3251 | int factorsFound= 0; |
---|
3252 | CanonicalForm bufF= F; |
---|
3253 | int* factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
3254 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
3255 | factorsFoundIndex[i]= 0; |
---|
3256 | if (l < liftBound) |
---|
3257 | reconstructionTry (result, bufF, bufFactors, l, factorsFound, |
---|
3258 | factorsFoundIndex, NTLN, false |
---|
3259 | ); |
---|
3260 | else |
---|
3261 | reconstructionTry (result, bufF, bufFactors, degree (bufF) + 1 + |
---|
3262 | degree (LCF), factorsFound, factorsFoundIndex, |
---|
3263 | NTLN, false |
---|
3264 | ); |
---|
3265 | if (NTLN.NumCols() == result.length()) |
---|
3266 | { |
---|
3267 | delete [] A; |
---|
3268 | delete [] factorsFoundIndex; |
---|
3269 | return result; |
---|
3270 | } |
---|
3271 | delete [] factorsFoundIndex; |
---|
3272 | } |
---|
3273 | result= CFList(); |
---|
3274 | oldL= l; |
---|
3275 | stepSize *= 2; |
---|
3276 | l += stepSize; |
---|
3277 | if (l > liftBound) |
---|
3278 | { |
---|
3279 | if (!hitBound) |
---|
3280 | { |
---|
3281 | l= liftBound; |
---|
3282 | hitBound= true; |
---|
3283 | } |
---|
3284 | else |
---|
3285 | break; |
---|
3286 | } |
---|
3287 | } |
---|
3288 | if (irreducible) |
---|
3289 | { |
---|
3290 | delete [] A; |
---|
3291 | return CFList (F); |
---|
3292 | } |
---|
3293 | delete [] A; |
---|
3294 | factors= bufFactors; |
---|
3295 | return CFList(); |
---|
3296 | } |
---|
3297 | |
---|
3298 | //over field extension |
---|
3299 | CFList |
---|
3300 | extFurtherLiftingAndIncreasePrecision (CanonicalForm& F, CFList& factors, int l, |
---|
3301 | int liftBound, int d, int* bounds, |
---|
3302 | mat_zz_p& NTLN, CFList& diophant, |
---|
3303 | CFMatrix& M, CFArray& Pi, CFArray& bufQ, |
---|
3304 | const CanonicalForm& evaluation, const |
---|
3305 | ExtensionInfo& info, CFList& source, |
---|
3306 | CFList& dest |
---|
3307 | ) |
---|
3308 | { |
---|
3309 | CanonicalForm LCF= LC (F, 1); |
---|
3310 | CFList result; |
---|
3311 | bool irreducible= false; |
---|
3312 | CFList bufFactors= factors; |
---|
3313 | CFArray *A = new CFArray [bufFactors.length()]; |
---|
3314 | bool useOldQs= false; |
---|
3315 | bool hitBound= false; |
---|
3316 | bool GF= (CFFactory::gettype()==GaloisFieldDomain); |
---|
3317 | int degMipo= degree (getMipo (info.getAlpha())); |
---|
3318 | Variable alpha= info.getAlpha(); |
---|
3319 | int oldL= l; //be careful |
---|
3320 | int stepSize= 8; |
---|
3321 | l += tmax (tmin (8, degree (F) + 1 + degree (LC (F, 1))-l),2); |
---|
3322 | bool reduced= false; |
---|
3323 | Variable gamma= info.getBeta(); |
---|
3324 | CanonicalForm primElemAlpha= info.getGamma(); |
---|
3325 | CanonicalForm imPrimElemAlpha= info.getDelta(); |
---|
3326 | if (NTLN.NumRows() != factors.length()) //refined factors |
---|
3327 | ident (NTLN, factors.length()); |
---|
3328 | while (l <= liftBound) |
---|
3329 | { |
---|
3330 | bufFactors.insert (LCF); |
---|
3331 | henselLiftResume12 (F, bufFactors, oldL, l, Pi, diophant, M); |
---|
3332 | |
---|
3333 | if (GF) |
---|
3334 | setCharacteristic (getCharacteristic()); |
---|
3335 | |
---|
3336 | Variable y= F.mvar(); |
---|
3337 | CanonicalForm powX= power (y-gamma, l); |
---|
3338 | CFMatrix Mat= CFMatrix (l*degMipo, l*degMipo); |
---|
3339 | for (int i= 0; i < l*degMipo; i++) |
---|
3340 | { |
---|
3341 | |
---|
3342 | CanonicalForm imBasis= mod (power (y, i), powX); |
---|
3343 | imBasis= imBasis (power (y, degMipo), y); |
---|
3344 | imBasis= imBasis (y, gamma); |
---|
3345 | CFIterator iter= imBasis; |
---|
3346 | for (; iter.hasTerms(); iter++) |
---|
3347 | Mat (iter.exp()+ 1, i+1)= iter.coeff(); |
---|
3348 | } |
---|
3349 | |
---|
3350 | mat_zz_p* NTLMat= convertFacCFMatrix2NTLmat_zz_p (Mat); |
---|
3351 | *NTLMat= inv (*NTLMat); |
---|
3352 | |
---|
3353 | if (GF) |
---|
3354 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
3355 | |
---|
3356 | CFListIterator j= bufFactors; |
---|
3357 | if (useOldQs) |
---|
3358 | { |
---|
3359 | for (int i= 0; i < bufFactors.length(); i++, j++) |
---|
3360 | A[i]= logarithmicDerivative (F, j.getItem(), l, oldL, bufQ[i],bufQ[i]); |
---|
3361 | } |
---|
3362 | else |
---|
3363 | { |
---|
3364 | for (int i= 0; i < bufFactors.length(); i++, j++) |
---|
3365 | A[i]= logarithmicDerivative (F, j.getItem(), l, bufQ [i]); |
---|
3366 | } |
---|
3367 | for (int i= 0; i < d; i++) |
---|
3368 | { |
---|
3369 | if (bounds [i] + 1 <= l/2) |
---|
3370 | { |
---|
3371 | int k= tmin (bounds [i] + 1, l/2); |
---|
3372 | CFMatrix C= CFMatrix (l*degMipo - k, bufFactors.length()); |
---|
3373 | for (int ii= 0; ii < bufFactors.length(); ii++) |
---|
3374 | { |
---|
3375 | CFArray buf; |
---|
3376 | if (A[ii].size() - 1 >= i) |
---|
3377 | { |
---|
3378 | if (GF) |
---|
3379 | { |
---|
3380 | A [ii] [i]= A [ii] [i] (y-evaluation, y); |
---|
3381 | setCharacteristic (getCharacteristic()); |
---|
3382 | A[ii] [i]= GF2FalphaRep (A[ii] [i], alpha); |
---|
3383 | if (alpha != gamma) |
---|
3384 | A [ii] [i]= mapDown (A[ii] [i], imPrimElemAlpha, primElemAlpha, |
---|
3385 | gamma, source, dest |
---|
3386 | ); |
---|
3387 | buf= getCoeffs (A[ii] [i], k, l, degMipo, gamma, 0, *NTLMat); |
---|
3388 | } |
---|
3389 | else |
---|
3390 | { |
---|
3391 | A [ii] [i]= A [ii] [i] (y-evaluation, y); |
---|
3392 | if (alpha != gamma) |
---|
3393 | A[ii] [i]= mapDown (A[ii] [i], imPrimElemAlpha, primElemAlpha, |
---|
3394 | gamma, source, dest |
---|
3395 | ); |
---|
3396 | buf= getCoeffs (A[ii] [i], k, l, degMipo, gamma, 0, *NTLMat); |
---|
3397 | } |
---|
3398 | } |
---|
3399 | writeInMatrix (C, buf, ii + 1, 0); |
---|
3400 | if (GF) |
---|
3401 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
3402 | } |
---|
3403 | |
---|
3404 | if (GF) |
---|
3405 | setCharacteristic(getCharacteristic()); |
---|
3406 | mat_zz_p* NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
3407 | mat_zz_p NTLK= (*NTLC)*NTLN; |
---|
3408 | transpose (NTLK, NTLK); |
---|
3409 | kernel (NTLK, NTLK); |
---|
3410 | transpose (NTLK, NTLK); |
---|
3411 | NTLN *= NTLK; |
---|
3412 | if (GF) |
---|
3413 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
3414 | |
---|
3415 | if (NTLN.NumCols() == 1) |
---|
3416 | { |
---|
3417 | irreducible= true; |
---|
3418 | break; |
---|
3419 | } |
---|
3420 | } |
---|
3421 | } |
---|
3422 | if (NTLN.NumCols() == 1) |
---|
3423 | { |
---|
3424 | irreducible= true; |
---|
3425 | break; |
---|
3426 | } |
---|
3427 | |
---|
3428 | int * zeroOneVecs= extractZeroOneVecs (NTLN); |
---|
3429 | CanonicalForm bufF= F; |
---|
3430 | result= extReconstruction (bufF, bufFactors, zeroOneVecs, l, NTLN, info, |
---|
3431 | evaluation |
---|
3432 | ); |
---|
3433 | delete [] zeroOneVecs; |
---|
3434 | if (result.length() > 0 && degree (bufF) + 1 + degree (LC (bufF, 1)) <= l) |
---|
3435 | { |
---|
3436 | F= bufF; |
---|
3437 | factors= bufFactors; |
---|
3438 | delete [] A; |
---|
3439 | return result; |
---|
3440 | } |
---|
3441 | |
---|
3442 | if (isReduced (NTLN)) |
---|
3443 | { |
---|
3444 | int factorsFound= 0; |
---|
3445 | CanonicalForm bufF= F; |
---|
3446 | int* factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
3447 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
3448 | factorsFoundIndex[i]= 0; |
---|
3449 | if (l < degree (bufF) + 1 + degree (LCF)) |
---|
3450 | extReconstructionTry (result, bufF, bufFactors, l, factorsFound, |
---|
3451 | factorsFoundIndex, NTLN, false, info, evaluation |
---|
3452 | ); |
---|
3453 | else |
---|
3454 | extReconstructionTry (result, bufF, bufFactors, degree (bufF) + 1 + |
---|
3455 | degree (LCF), factorsFound, factorsFoundIndex, |
---|
3456 | NTLN, false, info, evaluation |
---|
3457 | ); |
---|
3458 | if (NTLN.NumCols() == result.length()) |
---|
3459 | { |
---|
3460 | delete [] A; |
---|
3461 | delete [] factorsFoundIndex; |
---|
3462 | return result; |
---|
3463 | } |
---|
3464 | delete [] factorsFoundIndex; |
---|
3465 | } |
---|
3466 | result= CFList(); |
---|
3467 | oldL= l; |
---|
3468 | stepSize *= 2; |
---|
3469 | l += stepSize; |
---|
3470 | if (l > liftBound) |
---|
3471 | { |
---|
3472 | if (!hitBound) |
---|
3473 | { |
---|
3474 | l= liftBound; |
---|
3475 | hitBound= true; |
---|
3476 | } |
---|
3477 | else |
---|
3478 | break; |
---|
3479 | } |
---|
3480 | } |
---|
3481 | if (irreducible) |
---|
3482 | { |
---|
3483 | delete [] A; |
---|
3484 | Variable y= Variable (2); |
---|
3485 | CanonicalForm tmp= F (y - evaluation, y); |
---|
3486 | CFList source, dest; |
---|
3487 | tmp= mapDown (tmp, info, source, dest); |
---|
3488 | return CFList (tmp); |
---|
3489 | } |
---|
3490 | delete [] A; |
---|
3491 | factors= bufFactors; |
---|
3492 | return CFList(); |
---|
3493 | } |
---|
3494 | |
---|
3495 | CFList |
---|
3496 | furtherLiftingAndIncreasePrecisionFq2Fp (CanonicalForm& F, CFList& factors, int |
---|
3497 | l, int liftBound, int d, int* bounds, |
---|
3498 | mat_zz_p& NTLN, CFList& diophant, |
---|
3499 | CFMatrix& M, CFArray& Pi, CFArray& bufQ, |
---|
3500 | const Variable& alpha |
---|
3501 | ) |
---|
3502 | { |
---|
3503 | CanonicalForm LCF= LC (F, 1); |
---|
3504 | CFList result; |
---|
3505 | bool irreducible= false; |
---|
3506 | CFList bufFactors= factors; |
---|
3507 | CFArray *A = new CFArray [bufFactors.length()]; |
---|
3508 | bool useOldQs= false; |
---|
3509 | int extensionDeg= degree (getMipo (alpha)); |
---|
3510 | bool hitBound= false; |
---|
3511 | int oldL= l; |
---|
3512 | int stepSize= 8; //TODO choose better step size? |
---|
3513 | l += tmax (tmin (8, degree (F) + 1 + degree (LC (F, 1))-l), 2); |
---|
3514 | bool reduced= false; |
---|
3515 | if (NTLN.NumRows() != factors.length()) //refined factors |
---|
3516 | ident (NTLN, factors.length()); |
---|
3517 | while (l <= liftBound) |
---|
3518 | { |
---|
3519 | bufFactors.insert (LCF); |
---|
3520 | henselLiftResume12 (F, bufFactors, oldL, l, Pi, diophant, M); |
---|
3521 | CFListIterator j= bufFactors; |
---|
3522 | if (useOldQs) |
---|
3523 | { |
---|
3524 | for (int i= 0; i < bufFactors.length(); i++, j++) |
---|
3525 | A[i]= logarithmicDerivative (F, j.getItem(), l, oldL, bufQ[i],bufQ[i]); |
---|
3526 | } |
---|
3527 | else |
---|
3528 | { |
---|
3529 | for (int i= 0; i < bufFactors.length(); i++, j++) |
---|
3530 | A[i]= logarithmicDerivative (F, j.getItem(), l, bufQ [i]); |
---|
3531 | } |
---|
3532 | for (int i= 0; i < d; i++) |
---|
3533 | { |
---|
3534 | if (bounds [i] + 1 <= l/2) |
---|
3535 | { |
---|
3536 | int k= tmin (bounds [i] + 1, l/2); |
---|
3537 | CFMatrix C= CFMatrix ((l - k)*extensionDeg, bufFactors.length()); |
---|
3538 | for (int ii= 0; ii < bufFactors.length(); ii++) |
---|
3539 | { |
---|
3540 | CFArray buf; |
---|
3541 | if (A[ii].size() - 1 >= i) |
---|
3542 | buf= getCoeffs (A[ii] [i], k, alpha); |
---|
3543 | writeInMatrix (C, buf, ii + 1, 0); |
---|
3544 | } |
---|
3545 | mat_zz_p* NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
3546 | mat_zz_p NTLK= (*NTLC)*NTLN; |
---|
3547 | transpose (NTLK, NTLK); |
---|
3548 | kernel (NTLK, NTLK); |
---|
3549 | transpose (NTLK, NTLK); |
---|
3550 | NTLN *= NTLK; |
---|
3551 | if (NTLN.NumCols() == 1) |
---|
3552 | { |
---|
3553 | irreducible= true; |
---|
3554 | break; |
---|
3555 | } |
---|
3556 | } |
---|
3557 | } |
---|
3558 | if (NTLN.NumCols() == 1) |
---|
3559 | { |
---|
3560 | irreducible= true; |
---|
3561 | break; |
---|
3562 | } |
---|
3563 | |
---|
3564 | int * zeroOneVecs= extractZeroOneVecs (NTLN); |
---|
3565 | CanonicalForm bufF= F; |
---|
3566 | result= reconstruction (bufF, bufFactors, zeroOneVecs, l, NTLN); |
---|
3567 | delete [] zeroOneVecs; |
---|
3568 | if (result.length() > 0 && degree (bufF) + 1 + degree (LC (bufF, 1)) <= l) |
---|
3569 | { |
---|
3570 | F= bufF; |
---|
3571 | factors= bufFactors; |
---|
3572 | delete [] A; |
---|
3573 | return result; |
---|
3574 | } |
---|
3575 | |
---|
3576 | if (isReduced (NTLN)) |
---|
3577 | { |
---|
3578 | int factorsFound= 0; |
---|
3579 | CanonicalForm bufF= F; |
---|
3580 | int* factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
3581 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
3582 | factorsFoundIndex[i]= 0; |
---|
3583 | if (l < degree (bufF) + 1 + degree (LCF)) |
---|
3584 | reconstructionTry (result, bufF, bufFactors, l, factorsFound, |
---|
3585 | factorsFoundIndex, NTLN, false |
---|
3586 | ); |
---|
3587 | else |
---|
3588 | reconstructionTry (result, bufF, bufFactors, degree (bufF) + 1 + |
---|
3589 | degree (LCF), factorsFound, factorsFoundIndex, |
---|
3590 | NTLN, false |
---|
3591 | ); |
---|
3592 | if (NTLN.NumCols() == result.length()) |
---|
3593 | { |
---|
3594 | delete [] A; |
---|
3595 | delete [] factorsFoundIndex; |
---|
3596 | return result; |
---|
3597 | } |
---|
3598 | delete [] factorsFoundIndex; |
---|
3599 | } |
---|
3600 | result= CFList(); |
---|
3601 | oldL= l; |
---|
3602 | stepSize *= 2; |
---|
3603 | l += stepSize; |
---|
3604 | if (l > liftBound) |
---|
3605 | { |
---|
3606 | if (!hitBound) |
---|
3607 | { |
---|
3608 | l= liftBound; |
---|
3609 | hitBound= true; |
---|
3610 | } |
---|
3611 | else |
---|
3612 | break; |
---|
3613 | } |
---|
3614 | } |
---|
3615 | if (irreducible) |
---|
3616 | { |
---|
3617 | delete [] A; |
---|
3618 | return CFList (F); |
---|
3619 | } |
---|
3620 | delete [] A; |
---|
3621 | factors= bufFactors; |
---|
3622 | return CFList(); |
---|
3623 | } |
---|
3624 | |
---|
3625 | void |
---|
3626 | refineAndRestartLift (const CanonicalForm& F, const mat_zz_p& NTLN, int |
---|
3627 | liftBound, int l, CFList& factors, CFMatrix& M, CFArray& |
---|
3628 | Pi, CFList& diophant |
---|
3629 | ) |
---|
3630 | { |
---|
3631 | CFList bufFactors; |
---|
3632 | Variable y= Variable (2); |
---|
3633 | CanonicalForm LCF= LC (F, 1); |
---|
3634 | for (long i= 1; i <= NTLN.NumCols(); i++) |
---|
3635 | { |
---|
3636 | CFListIterator iter= factors; |
---|
3637 | CanonicalForm buf= 1; |
---|
3638 | for (long j= 1; j <= NTLN.NumRows(); j++, iter++) |
---|
3639 | { |
---|
3640 | if (!IsZero (NTLN (j,i))) |
---|
3641 | buf= mulNTL (buf, mod (iter.getItem(), y)); |
---|
3642 | } |
---|
3643 | bufFactors.append (buf); |
---|
3644 | } |
---|
3645 | factors= bufFactors; |
---|
3646 | M= CFMatrix (liftBound, factors.length()); |
---|
3647 | Pi= CFArray(); |
---|
3648 | diophant= CFList(); |
---|
3649 | factors.insert (LCF); |
---|
3650 | henselLift12 (F, factors, l, Pi, diophant, M); |
---|
3651 | } |
---|
3652 | |
---|
3653 | void |
---|
3654 | refineAndRestartLift (const CanonicalForm& F, const mat_zz_pE& NTLN, int |
---|
3655 | liftBound, int l, CFList& factors, CFMatrix& M, CFArray& |
---|
3656 | Pi, CFList& diophant |
---|
3657 | ) |
---|
3658 | { |
---|
3659 | CFList bufFactors; |
---|
3660 | Variable y= Variable (2); |
---|
3661 | CanonicalForm LCF= LC (F, 1); |
---|
3662 | for (long i= 1; i <= NTLN.NumCols(); i++) |
---|
3663 | { |
---|
3664 | CFListIterator iter= factors; |
---|
3665 | CanonicalForm buf= 1; |
---|
3666 | for (long j= 1; j <= NTLN.NumRows(); j++, iter++) |
---|
3667 | { |
---|
3668 | if (!IsZero (NTLN (j,i))) |
---|
3669 | buf= mulNTL (buf, mod (iter.getItem(), y)); |
---|
3670 | } |
---|
3671 | bufFactors.append (buf); |
---|
3672 | } |
---|
3673 | factors= bufFactors; |
---|
3674 | M= CFMatrix (liftBound, factors.length()); |
---|
3675 | Pi= CFArray(); |
---|
3676 | diophant= CFList(); |
---|
3677 | factors.insert (LCF); |
---|
3678 | henselLift12 (F, factors, l, Pi, diophant, M); |
---|
3679 | } |
---|
3680 | |
---|
3681 | CFList |
---|
3682 | earlyReconstructionAndLifting (const CanonicalForm& F, const mat_zz_p& N, |
---|
3683 | CanonicalForm& bufF, CFList& factors, int& l, |
---|
3684 | int& factorsFound, bool beenInThres, CFMatrix& M, |
---|
3685 | CFArray& Pi, CFList& diophant |
---|
3686 | ) |
---|
3687 | { |
---|
3688 | bufF= F; |
---|
3689 | factorsFound= 0; |
---|
3690 | CanonicalForm LCF= LC (F, 1); |
---|
3691 | CFList result; |
---|
3692 | int smallFactorDeg= 11; |
---|
3693 | mat_zz_p NTLN= N; |
---|
3694 | int * factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
3695 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
3696 | factorsFoundIndex [i]= 0; |
---|
3697 | |
---|
3698 | if (degree (F) + 1 > smallFactorDeg) |
---|
3699 | { |
---|
3700 | if (l < smallFactorDeg) |
---|
3701 | { |
---|
3702 | factors.insert (LCF); |
---|
3703 | henselLiftResume12 (F, factors, l, smallFactorDeg, Pi, diophant, M); |
---|
3704 | l= smallFactorDeg; |
---|
3705 | } |
---|
3706 | reconstructionTry (result, bufF, factors, smallFactorDeg, factorsFound, |
---|
3707 | factorsFoundIndex, NTLN, beenInThres |
---|
3708 | ); |
---|
3709 | if (result.length() == NTLN.NumCols()) |
---|
3710 | { |
---|
3711 | delete [] factorsFoundIndex; |
---|
3712 | return result; |
---|
3713 | } |
---|
3714 | } |
---|
3715 | |
---|
3716 | if (l < degree (bufF)/2+2) |
---|
3717 | { |
---|
3718 | factors.insert (LCF); |
---|
3719 | henselLiftResume12 (F, factors, l, degree (bufF)/2 + 2, Pi, diophant, M); |
---|
3720 | l= degree (bufF)/2 + 2; |
---|
3721 | } |
---|
3722 | reconstructionTry (result, bufF, factors, degree (bufF)/2 + 2, |
---|
3723 | factorsFound, factorsFoundIndex, NTLN, beenInThres |
---|
3724 | ); |
---|
3725 | if (result.length() == NTLN.NumCols()) |
---|
3726 | { |
---|
3727 | delete [] factorsFoundIndex; |
---|
3728 | return result; |
---|
3729 | } |
---|
3730 | |
---|
3731 | if (l < degree (F) + 1) |
---|
3732 | { |
---|
3733 | factors.insert (LCF); |
---|
3734 | henselLiftResume12 (F, factors, l, degree (bufF) + 1, Pi, diophant, M); |
---|
3735 | l= degree (bufF) + 1; |
---|
3736 | } |
---|
3737 | reconstructionTry (result, bufF, factors, degree (bufF) + 1, factorsFound, |
---|
3738 | factorsFoundIndex, NTLN, beenInThres |
---|
3739 | ); |
---|
3740 | if (result.length() == NTLN.NumCols()) |
---|
3741 | { |
---|
3742 | delete [] factorsFoundIndex; |
---|
3743 | return result; |
---|
3744 | } |
---|
3745 | delete [] factorsFoundIndex; |
---|
3746 | return result; |
---|
3747 | } |
---|
3748 | |
---|
3749 | CFList |
---|
3750 | earlyReconstructionAndLifting (const CanonicalForm& F, const mat_zz_pE& N, |
---|
3751 | CanonicalForm& bufF, CFList& factors, int& l, |
---|
3752 | int& factorsFound, bool beenInThres, CFMatrix& M, |
---|
3753 | CFArray& Pi, CFList& diophant |
---|
3754 | ) |
---|
3755 | { |
---|
3756 | bufF= F; |
---|
3757 | factorsFound= 0; |
---|
3758 | CanonicalForm LCF= LC (F, 1); |
---|
3759 | CFList result; |
---|
3760 | int smallFactorDeg= 11; |
---|
3761 | mat_zz_pE NTLN= N; |
---|
3762 | int * factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
3763 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
3764 | factorsFoundIndex [i]= 0; |
---|
3765 | if (degree (F) + 1 > smallFactorDeg) |
---|
3766 | { |
---|
3767 | if (l < smallFactorDeg) |
---|
3768 | { |
---|
3769 | factors.insert (LCF); |
---|
3770 | henselLiftResume12 (F, factors, l, smallFactorDeg, Pi, diophant, M); |
---|
3771 | l= smallFactorDeg; |
---|
3772 | } |
---|
3773 | reconstructionTry (result, bufF, factors, smallFactorDeg, factorsFound, |
---|
3774 | factorsFoundIndex, NTLN, beenInThres |
---|
3775 | ); |
---|
3776 | if (result.length() == NTLN.NumCols()) |
---|
3777 | { |
---|
3778 | delete [] factorsFoundIndex; |
---|
3779 | return result; |
---|
3780 | } |
---|
3781 | } |
---|
3782 | |
---|
3783 | if (l < degree (bufF)/2+2) |
---|
3784 | { |
---|
3785 | factors.insert (LCF); |
---|
3786 | henselLiftResume12 (F, factors, l, degree (bufF)/2 + 2, Pi, diophant, M); |
---|
3787 | l= degree (bufF)/2 + 2; |
---|
3788 | } |
---|
3789 | reconstructionTry (result, bufF, factors, degree (bufF)/2 + 2, |
---|
3790 | factorsFound, factorsFoundIndex, NTLN, beenInThres |
---|
3791 | ); |
---|
3792 | if (result.length() == NTLN.NumCols()) |
---|
3793 | { |
---|
3794 | delete [] factorsFoundIndex; |
---|
3795 | return result; |
---|
3796 | } |
---|
3797 | |
---|
3798 | if (l < degree (F) + 1) |
---|
3799 | { |
---|
3800 | factors.insert (LCF); |
---|
3801 | henselLiftResume12 (F, factors, l, degree (bufF) + 1, Pi, diophant, M); |
---|
3802 | l= degree (bufF) + 1; |
---|
3803 | } |
---|
3804 | reconstructionTry (result, bufF, factors, degree (bufF) + 1, factorsFound, |
---|
3805 | factorsFoundIndex, NTLN, beenInThres |
---|
3806 | ); |
---|
3807 | if (result.length() == NTLN.NumCols()) |
---|
3808 | { |
---|
3809 | delete [] factorsFoundIndex; |
---|
3810 | return result; |
---|
3811 | } |
---|
3812 | delete [] factorsFoundIndex; |
---|
3813 | return result; |
---|
3814 | } |
---|
3815 | |
---|
3816 | //over field extension |
---|
3817 | CFList |
---|
3818 | extEarlyReconstructionAndLifting (const CanonicalForm& F, const mat_zz_p& N, |
---|
3819 | CanonicalForm& bufF, CFList& factors, int& l, |
---|
3820 | int& factorsFound, bool beenInThres, CFMatrix& |
---|
3821 | M, CFArray& Pi, CFList& diophant, const |
---|
3822 | ExtensionInfo& info, const CanonicalForm& |
---|
3823 | evaluation |
---|
3824 | ) |
---|
3825 | { |
---|
3826 | bufF= F; |
---|
3827 | factorsFound= 0; |
---|
3828 | CanonicalForm LCF= LC (F, 1); |
---|
3829 | CFList result; |
---|
3830 | int smallFactorDeg= 11; |
---|
3831 | mat_zz_p NTLN= N; |
---|
3832 | int * factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
3833 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
3834 | factorsFoundIndex [i]= 0; |
---|
3835 | |
---|
3836 | if (degree (F) + 1 > smallFactorDeg) |
---|
3837 | { |
---|
3838 | if (l < smallFactorDeg) |
---|
3839 | { |
---|
3840 | factors.insert (LCF); |
---|
3841 | henselLiftResume12 (F, factors, l, smallFactorDeg, Pi, diophant, M); |
---|
3842 | l= smallFactorDeg; |
---|
3843 | } |
---|
3844 | extReconstructionTry (result, bufF, factors, smallFactorDeg, factorsFound, |
---|
3845 | factorsFoundIndex, NTLN, beenInThres, info, |
---|
3846 | evaluation |
---|
3847 | ); |
---|
3848 | if (result.length() == NTLN.NumCols()) |
---|
3849 | { |
---|
3850 | delete [] factorsFoundIndex; |
---|
3851 | return result; |
---|
3852 | } |
---|
3853 | } |
---|
3854 | |
---|
3855 | if (l < degree (bufF)/2+2) |
---|
3856 | { |
---|
3857 | factors.insert (LCF); |
---|
3858 | henselLiftResume12 (F, factors, l, degree (bufF)/2 + 2, Pi, diophant, M); |
---|
3859 | l= degree (bufF)/2 + 2; |
---|
3860 | } |
---|
3861 | extReconstructionTry (result, bufF, factors, degree (bufF)/2 + 2, |
---|
3862 | factorsFound, factorsFoundIndex, NTLN, beenInThres, info, |
---|
3863 | evaluation |
---|
3864 | ); |
---|
3865 | if (result.length() == NTLN.NumCols()) |
---|
3866 | { |
---|
3867 | delete [] factorsFoundIndex; |
---|
3868 | return result; |
---|
3869 | } |
---|
3870 | |
---|
3871 | if (l < degree (bufF) + 1) |
---|
3872 | { |
---|
3873 | factors.insert (LCF); |
---|
3874 | henselLiftResume12 (F, factors, l, degree (bufF) + 1, Pi, diophant, M); |
---|
3875 | l= degree (bufF) + 1; |
---|
3876 | } |
---|
3877 | |
---|
3878 | extReconstructionTry (result, bufF, factors, degree (bufF) + 1, factorsFound, |
---|
3879 | factorsFoundIndex, NTLN, beenInThres, info, evaluation |
---|
3880 | ); |
---|
3881 | if (result.length() == NTLN.NumCols()) |
---|
3882 | { |
---|
3883 | delete [] factorsFoundIndex; |
---|
3884 | return result; |
---|
3885 | } |
---|
3886 | delete [] factorsFoundIndex; |
---|
3887 | return result; |
---|
3888 | } |
---|
3889 | |
---|
3890 | CFList |
---|
3891 | sieveSmallFactors (const CanonicalForm& G, CFList& uniFactors, DegreePattern& |
---|
3892 | degPat, CanonicalForm& H, CFList& diophant, CFArray& Pi, |
---|
3893 | CFMatrix& M, bool& success, int d |
---|
3894 | ) |
---|
3895 | { |
---|
3896 | CanonicalForm F= G; |
---|
3897 | CFList bufUniFactors= uniFactors; |
---|
3898 | bufUniFactors.insert (LC (F, 1)); |
---|
3899 | int smallFactorDeg= d; |
---|
3900 | DegreePattern degs= degPat; |
---|
3901 | henselLift12 (F, bufUniFactors, smallFactorDeg, Pi, diophant, M); |
---|
3902 | int adaptedLiftBound; |
---|
3903 | success= false; |
---|
3904 | CFList earlyFactors= earlyFactorDetection (F, bufUniFactors, adaptedLiftBound, |
---|
3905 | degs, success, smallFactorDeg |
---|
3906 | ); |
---|
3907 | if (degs.getLength() == 1) |
---|
3908 | { |
---|
3909 | degPat= degs; |
---|
3910 | return earlyFactors; |
---|
3911 | } |
---|
3912 | if (success) |
---|
3913 | { |
---|
3914 | H= F; |
---|
3915 | return earlyFactors; |
---|
3916 | } |
---|
3917 | int sizeOldF= size (F); |
---|
3918 | int sizeF; |
---|
3919 | CFList result; |
---|
3920 | CanonicalForm bufF= F; |
---|
3921 | if (earlyFactors.length() > 0) |
---|
3922 | { |
---|
3923 | for (CFListIterator i= earlyFactors; i.hasItem(); i++) |
---|
3924 | bufF /= i.getItem(); |
---|
3925 | } |
---|
3926 | |
---|
3927 | if (size (bufF) < sizeOldF) |
---|
3928 | { |
---|
3929 | H= bufF; |
---|
3930 | success= true; |
---|
3931 | return earlyFactors; |
---|
3932 | } |
---|
3933 | else |
---|
3934 | { |
---|
3935 | uniFactors= bufUniFactors; |
---|
3936 | return CFList(); |
---|
3937 | } |
---|
3938 | } |
---|
3939 | |
---|
3940 | CFList |
---|
3941 | extSieveSmallFactors (const CanonicalForm& G, CFList& uniFactors, DegreePattern& |
---|
3942 | degPat, CanonicalForm& H, CFList& diophant, CFArray& Pi, |
---|
3943 | CFMatrix& M, bool& success, int d, const CanonicalForm& |
---|
3944 | evaluation, const ExtensionInfo& info |
---|
3945 | ) |
---|
3946 | { |
---|
3947 | CanonicalForm F= G; |
---|
3948 | CFList bufUniFactors= uniFactors; |
---|
3949 | bufUniFactors.insert (LC (F, 1)); |
---|
3950 | int smallFactorDeg= d; |
---|
3951 | DegreePattern degs= degPat; |
---|
3952 | henselLift12 (F, bufUniFactors, smallFactorDeg, Pi, diophant, M); |
---|
3953 | int adaptedLiftBound; |
---|
3954 | success= false; |
---|
3955 | CFList earlyFactors= extEarlyFactorDetection (F, bufUniFactors, |
---|
3956 | adaptedLiftBound, degs, success, |
---|
3957 | info, evaluation, smallFactorDeg |
---|
3958 | ); |
---|
3959 | if (degs.getLength() == 1) |
---|
3960 | { |
---|
3961 | degPat= degs; |
---|
3962 | return earlyFactors; |
---|
3963 | } |
---|
3964 | if (success) |
---|
3965 | { |
---|
3966 | H= F; |
---|
3967 | return earlyFactors; |
---|
3968 | } |
---|
3969 | Variable y= F.mvar(); |
---|
3970 | CanonicalForm shiftedF= F (y - evaluation, y); |
---|
3971 | int sizeOldF= size (shiftedF); |
---|
3972 | int sizeF; |
---|
3973 | CFList result; |
---|
3974 | CanonicalForm bufF= shiftedF; |
---|
3975 | if (earlyFactors.length() > 0) |
---|
3976 | { |
---|
3977 | for (CFListIterator i= earlyFactors; i.hasItem(); i++) |
---|
3978 | { |
---|
3979 | bufF /= i.getItem(); |
---|
3980 | result.append (i.getItem()); |
---|
3981 | } |
---|
3982 | } |
---|
3983 | |
---|
3984 | if (size (bufF) < sizeOldF) |
---|
3985 | { |
---|
3986 | H= bufF (y + evaluation, y); //shift back to zero |
---|
3987 | success= true; |
---|
3988 | return result; |
---|
3989 | } |
---|
3990 | else |
---|
3991 | { |
---|
3992 | uniFactors= bufUniFactors; |
---|
3993 | return CFList(); |
---|
3994 | } |
---|
3995 | } |
---|
3996 | |
---|
3997 | CFList |
---|
3998 | henselLiftAndLatticeRecombi (const CanonicalForm& G, const CFList& uniFactors, |
---|
3999 | const Variable& alpha, const DegreePattern& degPat |
---|
4000 | ) |
---|
4001 | { |
---|
4002 | DegreePattern degs= degPat; |
---|
4003 | CanonicalForm F= G; |
---|
4004 | CanonicalForm LCF= LC (F, 1); |
---|
4005 | Variable y= F.mvar(); |
---|
4006 | Variable x= Variable (1); |
---|
4007 | int d; |
---|
4008 | int* bounds= computeBounds (F, d); |
---|
4009 | |
---|
4010 | int minBound= bounds[0]; |
---|
4011 | for (int i= 1; i < d; i++) |
---|
4012 | { |
---|
4013 | if (bounds[i] != 0) |
---|
4014 | minBound= tmin (minBound, bounds[i]); |
---|
4015 | } |
---|
4016 | |
---|
4017 | CFList bufUniFactors= uniFactors; |
---|
4018 | CFArray Pi; |
---|
4019 | CFList diophant; |
---|
4020 | int liftBound= 2*totaldegree (F) - 1; |
---|
4021 | CFMatrix M= CFMatrix (liftBound, bufUniFactors.length()); |
---|
4022 | |
---|
4023 | CFList smallFactors; |
---|
4024 | CanonicalForm H; |
---|
4025 | bool success; |
---|
4026 | smallFactors= sieveSmallFactors (F, bufUniFactors, degs, H, diophant, Pi, M, |
---|
4027 | success, 2*(minBound + 1) |
---|
4028 | ); |
---|
4029 | |
---|
4030 | if (smallFactors.length() > 0) |
---|
4031 | { |
---|
4032 | if (smallFactors.length() == 1) |
---|
4033 | { |
---|
4034 | if (smallFactors.getFirst() == F) |
---|
4035 | { |
---|
4036 | delete [] bounds; |
---|
4037 | return CFList (G); |
---|
4038 | } |
---|
4039 | } |
---|
4040 | if (degs.getLength() <= 1) |
---|
4041 | { |
---|
4042 | delete [] bounds; |
---|
4043 | return smallFactors; |
---|
4044 | } |
---|
4045 | } |
---|
4046 | |
---|
4047 | int index; |
---|
4048 | for (CFListIterator i= smallFactors; i.hasItem(); i++) |
---|
4049 | { |
---|
4050 | index= 1; |
---|
4051 | CanonicalForm tmp1, tmp2; |
---|
4052 | tmp1= mod (i.getItem(),y); |
---|
4053 | tmp1 /= Lc (tmp1); |
---|
4054 | for (CFListIterator j= bufUniFactors; j.hasItem(); j++, index++) |
---|
4055 | { |
---|
4056 | tmp2= mod (j.getItem(), y); |
---|
4057 | tmp2 /= Lc (tmp2); |
---|
4058 | if (tmp1 == tmp2) |
---|
4059 | { |
---|
4060 | index++; |
---|
4061 | j.remove(index); |
---|
4062 | break; |
---|
4063 | } |
---|
4064 | } |
---|
4065 | } |
---|
4066 | |
---|
4067 | if (bufUniFactors.isEmpty()) |
---|
4068 | { |
---|
4069 | delete [] bounds; |
---|
4070 | return smallFactors; |
---|
4071 | } |
---|
4072 | |
---|
4073 | if (success) |
---|
4074 | { |
---|
4075 | F= H; |
---|
4076 | delete [] bounds; |
---|
4077 | bounds= computeBounds (F, d); |
---|
4078 | LCF= LC (F, 1); |
---|
4079 | |
---|
4080 | minBound= bounds[0]; |
---|
4081 | for (int i= 1; i < d; i++) |
---|
4082 | { |
---|
4083 | if (bounds[i] != 0) |
---|
4084 | minBound= tmin (minBound, bounds[i]); |
---|
4085 | } |
---|
4086 | Pi= CFArray(); |
---|
4087 | diophant= CFList(); |
---|
4088 | liftBound= 2*totaldegree (F) - 1; |
---|
4089 | M= CFMatrix (liftBound, bufUniFactors.length()); |
---|
4090 | DegreePattern bufDegs= DegreePattern (bufUniFactors); |
---|
4091 | degs.intersect (bufDegs); |
---|
4092 | degs.refine(); |
---|
4093 | if (degs.getLength() <= 1) |
---|
4094 | { |
---|
4095 | smallFactors.append (F); |
---|
4096 | delete [] bounds; |
---|
4097 | return smallFactors; |
---|
4098 | } |
---|
4099 | } |
---|
4100 | |
---|
4101 | bool reduceFq2Fp= (degree (F) > getCharacteristic()); |
---|
4102 | bufUniFactors.insert (LCF); |
---|
4103 | int l= 1; |
---|
4104 | |
---|
4105 | zz_p::init (getCharacteristic()); |
---|
4106 | mat_zz_p NTLN; |
---|
4107 | if (alpha.level() != 1) |
---|
4108 | { |
---|
4109 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
4110 | zz_pE::init (NTLMipo); |
---|
4111 | } |
---|
4112 | mat_zz_pE NTLNe; |
---|
4113 | if (alpha.level() == 1) |
---|
4114 | ident (NTLN, bufUniFactors.length() - 1); |
---|
4115 | else |
---|
4116 | { |
---|
4117 | if (reduceFq2Fp) |
---|
4118 | ident (NTLN, bufUniFactors.length() - 1); |
---|
4119 | else |
---|
4120 | ident (NTLNe, bufUniFactors.length() - 1); |
---|
4121 | } |
---|
4122 | bool wasInBounds= false; |
---|
4123 | bool irreducible= false; |
---|
4124 | CFArray bufQ= CFArray (bufUniFactors.length() - 1); |
---|
4125 | |
---|
4126 | int oldL; |
---|
4127 | if (success) |
---|
4128 | { |
---|
4129 | int start= 0; |
---|
4130 | if (alpha.level() == 1) |
---|
4131 | oldL= liftAndComputeLattice (F, bounds, d, start, liftBound, minBound, |
---|
4132 | bufUniFactors, NTLN, diophant, M, Pi, bufQ, |
---|
4133 | irreducible |
---|
4134 | ); |
---|
4135 | else |
---|
4136 | { |
---|
4137 | if (reduceFq2Fp) |
---|
4138 | oldL= liftAndComputeLatticeFq2Fp (F, bounds, d, start, liftBound, |
---|
4139 | minBound, bufUniFactors, NTLN, |
---|
4140 | diophant, M, Pi, bufQ, irreducible, |
---|
4141 | alpha |
---|
4142 | ); |
---|
4143 | else |
---|
4144 | oldL= liftAndComputeLattice (F, bounds, d, start, liftBound, minBound, |
---|
4145 | bufUniFactors, NTLNe, diophant, M, Pi, bufQ, |
---|
4146 | irreducible |
---|
4147 | ); |
---|
4148 | } |
---|
4149 | } |
---|
4150 | else |
---|
4151 | { |
---|
4152 | if (alpha.level() == 1) |
---|
4153 | oldL= liftAndComputeLattice (F, bounds, d, 2*(minBound + 1), liftBound, |
---|
4154 | minBound, bufUniFactors, NTLN, diophant, M, |
---|
4155 | Pi, bufQ, irreducible |
---|
4156 | ); |
---|
4157 | else |
---|
4158 | { |
---|
4159 | if (reduceFq2Fp) |
---|
4160 | oldL= liftAndComputeLatticeFq2Fp (F, bounds, d, 2*(minBound + 1), |
---|
4161 | liftBound, minBound, bufUniFactors, |
---|
4162 | NTLN, diophant, M, Pi, bufQ, |
---|
4163 | irreducible, alpha |
---|
4164 | ); |
---|
4165 | else |
---|
4166 | oldL= liftAndComputeLattice (F, bounds, d, 2*(minBound + 1), liftBound, |
---|
4167 | minBound, bufUniFactors, NTLNe, diophant, |
---|
4168 | M, Pi, bufQ, irreducible |
---|
4169 | ); |
---|
4170 | } |
---|
4171 | } |
---|
4172 | |
---|
4173 | bufUniFactors.removeFirst(); |
---|
4174 | if (oldL > liftBound) |
---|
4175 | { |
---|
4176 | delete [] bounds; |
---|
4177 | return Union (smallFactors, |
---|
4178 | factorRecombination (bufUniFactors, F, |
---|
4179 | power (y, degree (F) + 1 + degree (LCF)), |
---|
4180 | degs, 1, bufUniFactors.length()/2 |
---|
4181 | ) |
---|
4182 | ); |
---|
4183 | } |
---|
4184 | |
---|
4185 | l= oldL; |
---|
4186 | if (irreducible) |
---|
4187 | { |
---|
4188 | delete [] bounds; |
---|
4189 | return Union (CFList (F), smallFactors); |
---|
4190 | } |
---|
4191 | |
---|
4192 | CanonicalForm yToL= power (y,l); |
---|
4193 | |
---|
4194 | CFList result; |
---|
4195 | if (l >= degree (F) + 1) |
---|
4196 | { |
---|
4197 | int * factorsFoundIndex; |
---|
4198 | if (alpha.level() == 1 || (alpha.level() != 1 && reduceFq2Fp)) |
---|
4199 | { |
---|
4200 | factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
4201 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
4202 | factorsFoundIndex[i]= 0; |
---|
4203 | } |
---|
4204 | else |
---|
4205 | { |
---|
4206 | factorsFoundIndex= new int [NTLNe.NumCols()]; |
---|
4207 | for (long i= 0; i < NTLNe.NumCols(); i++) |
---|
4208 | factorsFoundIndex[i]= 0; |
---|
4209 | } |
---|
4210 | int factorsFound= 0; |
---|
4211 | CanonicalForm bufF= F; |
---|
4212 | if (alpha.level() == 1 || (alpha.level() != 1 && reduceFq2Fp)) |
---|
4213 | reconstructionTry (result, bufF, bufUniFactors, degree (F) + 1, |
---|
4214 | factorsFound, factorsFoundIndex, NTLN, false |
---|
4215 | ); |
---|
4216 | else |
---|
4217 | reconstructionTry (result, bufF, bufUniFactors, degree (F) + 1, |
---|
4218 | factorsFound, factorsFoundIndex, NTLNe, false |
---|
4219 | ); |
---|
4220 | if (alpha.level() == 1 || (alpha.level() != 1 && reduceFq2Fp)) |
---|
4221 | { |
---|
4222 | if (result.length() == NTLN.NumCols()) |
---|
4223 | { |
---|
4224 | delete [] factorsFoundIndex; |
---|
4225 | delete [] bounds; |
---|
4226 | return Union (result, smallFactors); |
---|
4227 | } |
---|
4228 | } |
---|
4229 | else |
---|
4230 | { |
---|
4231 | if (result.length() == NTLNe.NumCols()) |
---|
4232 | { |
---|
4233 | delete [] factorsFoundIndex; |
---|
4234 | delete [] bounds; |
---|
4235 | return Union (result, smallFactors); |
---|
4236 | } |
---|
4237 | } |
---|
4238 | delete [] factorsFoundIndex; |
---|
4239 | } |
---|
4240 | if (l >= liftBound) |
---|
4241 | { |
---|
4242 | int * factorsFoundIndex; |
---|
4243 | if (alpha.level() == 1 || (alpha.level() != 1 && reduceFq2Fp)) |
---|
4244 | { |
---|
4245 | factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
4246 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
4247 | factorsFoundIndex[i]= 0; |
---|
4248 | } |
---|
4249 | else |
---|
4250 | { |
---|
4251 | factorsFoundIndex= new int [NTLNe.NumCols()]; |
---|
4252 | for (long i= 0; i < NTLNe.NumCols(); i++) |
---|
4253 | factorsFoundIndex[i]= 0; |
---|
4254 | } |
---|
4255 | CanonicalForm bufF= F; |
---|
4256 | int factorsFound= 0; |
---|
4257 | if (alpha.level() == 1 || (alpha.level() != 1 && reduceFq2Fp)) |
---|
4258 | reconstructionTry (result, bufF, bufUniFactors, degree (F) + 1 + degree |
---|
4259 | (LCF), factorsFound, factorsFoundIndex, NTLN, false |
---|
4260 | ); |
---|
4261 | else |
---|
4262 | reconstructionTry (result, bufF, bufUniFactors, degree (F) + 1 + degree |
---|
4263 | (LCF), factorsFound, factorsFoundIndex, NTLNe, false |
---|
4264 | ); |
---|
4265 | if (alpha.level() == 1 || (alpha.level() != 1 && reduceFq2Fp)) |
---|
4266 | { |
---|
4267 | if (result.length() == NTLN.NumCols()) |
---|
4268 | { |
---|
4269 | delete [] factorsFoundIndex; |
---|
4270 | delete [] bounds; |
---|
4271 | return Union (result, smallFactors); |
---|
4272 | } |
---|
4273 | } |
---|
4274 | else |
---|
4275 | { |
---|
4276 | if (result.length() == NTLNe.NumCols()) |
---|
4277 | { |
---|
4278 | delete [] factorsFoundIndex; |
---|
4279 | delete [] bounds; |
---|
4280 | return Union (result, smallFactors); |
---|
4281 | } |
---|
4282 | } |
---|
4283 | delete [] factorsFoundIndex; |
---|
4284 | } |
---|
4285 | |
---|
4286 | result= CFList(); |
---|
4287 | bool beenInThres= false; |
---|
4288 | int thres= 100; |
---|
4289 | if (l <= thres) |
---|
4290 | { |
---|
4291 | if (alpha.level() == 1 || (alpha.level() != 1 && reduceFq2Fp)) |
---|
4292 | { |
---|
4293 | if (NTLN.NumCols() < bufUniFactors.length()) |
---|
4294 | { |
---|
4295 | refineAndRestartLift (F, NTLN, liftBound, l, bufUniFactors, M, Pi, |
---|
4296 | diophant |
---|
4297 | ); |
---|
4298 | beenInThres= true; |
---|
4299 | } |
---|
4300 | } |
---|
4301 | else |
---|
4302 | { |
---|
4303 | if (NTLNe.NumCols() < bufUniFactors.length()) |
---|
4304 | { |
---|
4305 | refineAndRestartLift (F, NTLNe, liftBound, l, bufUniFactors, M, Pi, |
---|
4306 | diophant |
---|
4307 | ); |
---|
4308 | beenInThres= true; |
---|
4309 | } |
---|
4310 | } |
---|
4311 | } |
---|
4312 | |
---|
4313 | CanonicalForm bufF= F; |
---|
4314 | int factorsFound= 0; |
---|
4315 | if (alpha.level() == 1 || (alpha.level() != 1 && reduceFq2Fp)) |
---|
4316 | { |
---|
4317 | result= earlyReconstructionAndLifting (F, NTLN, bufF, bufUniFactors, l, |
---|
4318 | factorsFound, beenInThres, M, Pi, |
---|
4319 | diophant |
---|
4320 | ); |
---|
4321 | |
---|
4322 | if (result.length() == NTLN.NumCols()) |
---|
4323 | { |
---|
4324 | delete [] bounds; |
---|
4325 | return Union (result, smallFactors); |
---|
4326 | } |
---|
4327 | } |
---|
4328 | else |
---|
4329 | { |
---|
4330 | result= earlyReconstructionAndLifting (F, NTLNe, bufF, bufUniFactors, l, |
---|
4331 | factorsFound, beenInThres, M, Pi, |
---|
4332 | diophant |
---|
4333 | ); |
---|
4334 | |
---|
4335 | if (result.length() == NTLNe.NumCols()) |
---|
4336 | { |
---|
4337 | delete [] bounds; |
---|
4338 | return Union (result, smallFactors); |
---|
4339 | } |
---|
4340 | } |
---|
4341 | |
---|
4342 | if (result.length() > 0) |
---|
4343 | { |
---|
4344 | if (beenInThres) |
---|
4345 | { |
---|
4346 | int index; |
---|
4347 | for (CFListIterator i= result; i.hasItem(); i++) |
---|
4348 | { |
---|
4349 | index= 1; |
---|
4350 | CanonicalForm tmp1, tmp2; |
---|
4351 | tmp1= mod (i.getItem(), y); |
---|
4352 | tmp1 /= Lc (tmp1); |
---|
4353 | for (CFListIterator j= bufUniFactors; j.hasItem(); j++, index++) |
---|
4354 | { |
---|
4355 | tmp2= mod (j.getItem(), y); |
---|
4356 | tmp2 /= Lc (tmp2); |
---|
4357 | if (tmp1 == tmp2) |
---|
4358 | { |
---|
4359 | index++; |
---|
4360 | j.remove(index); |
---|
4361 | break; |
---|
4362 | } |
---|
4363 | } |
---|
4364 | } |
---|
4365 | } |
---|
4366 | else |
---|
4367 | { |
---|
4368 | int * zeroOne= extractZeroOneVecs (NTLN); |
---|
4369 | CFList bufBufUniFactors= bufUniFactors; |
---|
4370 | for (int i= 0; i < NTLN.NumCols(); i++) |
---|
4371 | { |
---|
4372 | if (zeroOne [i] == 0) |
---|
4373 | continue; |
---|
4374 | CFListIterator iter= bufUniFactors; |
---|
4375 | CanonicalForm buf= 1; |
---|
4376 | CFList factorsConsidered; |
---|
4377 | for (int j= 0; j < NTLN.NumRows(); j++, iter++) |
---|
4378 | { |
---|
4379 | if (!IsZero (NTLN (j + 1,i + 1))) |
---|
4380 | { |
---|
4381 | factorsConsidered.append (iter.getItem()); |
---|
4382 | buf *= mod (iter.getItem(), y); |
---|
4383 | } |
---|
4384 | } |
---|
4385 | buf /= Lc (buf); |
---|
4386 | for (CFListIterator iter2= result; iter2.hasItem(); iter2++) |
---|
4387 | { |
---|
4388 | CanonicalForm tmp= mod (iter2.getItem(), y); |
---|
4389 | tmp /= Lc (tmp); |
---|
4390 | if (tmp == buf) |
---|
4391 | { |
---|
4392 | bufBufUniFactors= Difference (bufBufUniFactors, factorsConsidered); |
---|
4393 | break; |
---|
4394 | } |
---|
4395 | } |
---|
4396 | } |
---|
4397 | bufUniFactors= bufBufUniFactors; |
---|
4398 | delete [] zeroOne; |
---|
4399 | } |
---|
4400 | |
---|
4401 | int oldNumCols; |
---|
4402 | CFList resultBufF; |
---|
4403 | irreducible= false; |
---|
4404 | |
---|
4405 | if (alpha.level() == 1) |
---|
4406 | { |
---|
4407 | oldNumCols= NTLN.NumCols(); |
---|
4408 | resultBufF= increasePrecision (bufF, bufUniFactors, factorsFound, |
---|
4409 | oldNumCols, oldL, l |
---|
4410 | ); |
---|
4411 | } |
---|
4412 | else |
---|
4413 | { |
---|
4414 | if (reduceFq2Fp) |
---|
4415 | { |
---|
4416 | oldNumCols= NTLN.NumCols(); |
---|
4417 | |
---|
4418 | resultBufF= increasePrecisionFq2Fp (bufF, bufUniFactors, factorsFound, |
---|
4419 | oldNumCols, oldL, alpha, l |
---|
4420 | ); |
---|
4421 | } |
---|
4422 | else |
---|
4423 | { |
---|
4424 | oldNumCols= NTLNe.NumCols(); |
---|
4425 | |
---|
4426 | resultBufF= increasePrecision (bufF, bufUniFactors, factorsFound, |
---|
4427 | oldNumCols, oldL, alpha, l |
---|
4428 | ); |
---|
4429 | } |
---|
4430 | } |
---|
4431 | |
---|
4432 | if (bufUniFactors.isEmpty() || degree (bufF) <= 0) |
---|
4433 | { |
---|
4434 | delete [] bounds; |
---|
4435 | result= Union (resultBufF, result); |
---|
4436 | return Union (result, smallFactors); |
---|
4437 | } |
---|
4438 | |
---|
4439 | for (CFListIterator i= bufUniFactors; i.hasItem(); i++) |
---|
4440 | i.getItem()= mod (i.getItem(), y); |
---|
4441 | |
---|
4442 | result= Union (result, resultBufF); |
---|
4443 | result= Union (result, smallFactors); |
---|
4444 | delete [] bounds; |
---|
4445 | DegreePattern bufDegs= DegreePattern (bufUniFactors); |
---|
4446 | degs.intersect (bufDegs); |
---|
4447 | degs.refine(); |
---|
4448 | if (degs.getLength() == 1 || bufUniFactors.length() == 1) |
---|
4449 | { |
---|
4450 | result.append (bufF); |
---|
4451 | return result; |
---|
4452 | } |
---|
4453 | return Union (result, henselLiftAndLatticeRecombi (bufF, bufUniFactors, |
---|
4454 | alpha, degs |
---|
4455 | ) |
---|
4456 | ); |
---|
4457 | } |
---|
4458 | |
---|
4459 | if (l < liftBound) |
---|
4460 | { |
---|
4461 | if (alpha.level() == 1) |
---|
4462 | { |
---|
4463 | result=increasePrecision (F, bufUniFactors, oldL, l, d, bounds, bufQ, |
---|
4464 | NTLN |
---|
4465 | ); |
---|
4466 | } |
---|
4467 | else |
---|
4468 | { |
---|
4469 | if (reduceFq2Fp) |
---|
4470 | { |
---|
4471 | result=increasePrecisionFq2Fp (F, bufUniFactors, oldL, l, d, bounds, |
---|
4472 | bufQ, NTLN, alpha |
---|
4473 | ); |
---|
4474 | } |
---|
4475 | else |
---|
4476 | { |
---|
4477 | result=increasePrecision (F, bufUniFactors, oldL, l, d, bounds, bufQ, |
---|
4478 | NTLNe |
---|
4479 | ); |
---|
4480 | } |
---|
4481 | } |
---|
4482 | if (alpha.level() == 1 || (alpha.level() != 1 && reduceFq2Fp)) |
---|
4483 | { |
---|
4484 | if (result.length()== NTLN.NumCols()) |
---|
4485 | { |
---|
4486 | delete [] bounds; |
---|
4487 | result= Union (result, smallFactors); |
---|
4488 | return result; |
---|
4489 | } |
---|
4490 | } |
---|
4491 | else |
---|
4492 | { |
---|
4493 | if (result.length()== NTLNe.NumCols()) |
---|
4494 | { |
---|
4495 | delete [] bounds; |
---|
4496 | result= Union (result, smallFactors); |
---|
4497 | return result; |
---|
4498 | } |
---|
4499 | } |
---|
4500 | |
---|
4501 | if (result.isEmpty()) |
---|
4502 | { |
---|
4503 | if (alpha.level() == 1) |
---|
4504 | result= furtherLiftingAndIncreasePrecision (F,bufUniFactors, l, |
---|
4505 | liftBound, d, bounds, NTLN, |
---|
4506 | diophant, M, Pi, bufQ |
---|
4507 | ); |
---|
4508 | else |
---|
4509 | { |
---|
4510 | if (reduceFq2Fp) |
---|
4511 | result= furtherLiftingAndIncreasePrecisionFq2Fp (F,bufUniFactors, l, |
---|
4512 | liftBound, d, bounds, |
---|
4513 | NTLN, diophant, M, |
---|
4514 | Pi, bufQ, alpha |
---|
4515 | ); |
---|
4516 | else |
---|
4517 | result= furtherLiftingAndIncreasePrecision (F,bufUniFactors, l, |
---|
4518 | liftBound, d, bounds, |
---|
4519 | NTLNe, diophant, M, |
---|
4520 | Pi, bufQ |
---|
4521 | ); |
---|
4522 | } |
---|
4523 | |
---|
4524 | if (alpha.level() == 1 || (alpha.level() != 1 && reduceFq2Fp)) |
---|
4525 | { |
---|
4526 | if (result.length() == NTLN.NumCols()) |
---|
4527 | { |
---|
4528 | delete [] bounds; |
---|
4529 | result= Union (result, smallFactors); |
---|
4530 | return result; |
---|
4531 | } |
---|
4532 | } |
---|
4533 | else |
---|
4534 | { |
---|
4535 | if (result.length() == NTLNe.NumCols()) |
---|
4536 | { |
---|
4537 | delete [] bounds; |
---|
4538 | result= Union (result, smallFactors); |
---|
4539 | return result; |
---|
4540 | } |
---|
4541 | } |
---|
4542 | } |
---|
4543 | } |
---|
4544 | |
---|
4545 | DEBOUTLN (cerr, "lattice recombination failed"); |
---|
4546 | |
---|
4547 | DegreePattern bufDegs= DegreePattern (bufUniFactors); |
---|
4548 | degs.intersect (bufDegs); |
---|
4549 | degs.refine(); |
---|
4550 | |
---|
4551 | delete [] bounds; |
---|
4552 | bounds= computeBounds (F, d); |
---|
4553 | minBound= bounds[0]; |
---|
4554 | for (int i= 1; i < d; i++) |
---|
4555 | { |
---|
4556 | if (bounds[i] != 0) |
---|
4557 | minBound= tmin (minBound, bounds[i]); |
---|
4558 | } |
---|
4559 | |
---|
4560 | if (minBound > 16 || result.length() == 0) |
---|
4561 | { |
---|
4562 | result= Union (result, smallFactors); |
---|
4563 | CanonicalForm MODl= power (y, degree (F) + 1 + degree (LC (F, 1))); |
---|
4564 | delete [] bounds; |
---|
4565 | return Union (result, factorRecombination (bufUniFactors, F, MODl, degs, 1, |
---|
4566 | bufUniFactors.length()/2 |
---|
4567 | ) |
---|
4568 | ); |
---|
4569 | } |
---|
4570 | else |
---|
4571 | { |
---|
4572 | result= Union (result, smallFactors); |
---|
4573 | for (CFListIterator i= bufUniFactors; i.hasItem(); i++) |
---|
4574 | i.getItem()= mod (i.getItem(), y); |
---|
4575 | delete [] bounds; |
---|
4576 | return Union (result, henselLiftAndLatticeRecombi (F, bufUniFactors, alpha, |
---|
4577 | degs |
---|
4578 | ) |
---|
4579 | ); |
---|
4580 | } |
---|
4581 | } |
---|
4582 | |
---|
4583 | ExtensionInfo |
---|
4584 | init4ext (const ExtensionInfo& info, const CanonicalForm& evaluation, |
---|
4585 | int& degMipo |
---|
4586 | ) |
---|
4587 | { |
---|
4588 | bool GF= (CFFactory::gettype() == GaloisFieldDomain); |
---|
4589 | Variable alpha= info.getAlpha(); |
---|
4590 | if (GF) |
---|
4591 | { |
---|
4592 | degMipo= getGFDegree(); |
---|
4593 | CanonicalForm GFMipo= gf_mipo; |
---|
4594 | setCharacteristic (getCharacteristic()); |
---|
4595 | GFMipo.mapinto(); |
---|
4596 | alpha= rootOf (GFMipo); |
---|
4597 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
4598 | } |
---|
4599 | else |
---|
4600 | { |
---|
4601 | alpha= info.getAlpha(); |
---|
4602 | degMipo= degree (getMipo (alpha)); |
---|
4603 | } |
---|
4604 | |
---|
4605 | Variable gamma; |
---|
4606 | CanonicalForm primElemAlpha, imPrimElemAlpha; |
---|
4607 | if ((!GF && evaluation != alpha) || (GF && evaluation != getGFGenerator())) |
---|
4608 | { |
---|
4609 | CanonicalForm bufEvaluation; |
---|
4610 | if (GF) |
---|
4611 | { |
---|
4612 | setCharacteristic (getCharacteristic()); |
---|
4613 | bufEvaluation= GF2FalphaRep (evaluation, alpha); |
---|
4614 | } |
---|
4615 | else |
---|
4616 | bufEvaluation= evaluation; |
---|
4617 | CanonicalForm mipo= findMinPoly (bufEvaluation, alpha); |
---|
4618 | gamma= rootOf (mipo); |
---|
4619 | Variable V_buf; |
---|
4620 | bool fail; |
---|
4621 | primElemAlpha= primitiveElement (alpha, V_buf, fail); |
---|
4622 | imPrimElemAlpha= map (primElemAlpha, alpha, bufEvaluation, gamma); |
---|
4623 | |
---|
4624 | if (GF) |
---|
4625 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
4626 | } |
---|
4627 | else |
---|
4628 | gamma= alpha; |
---|
4629 | ExtensionInfo info2= ExtensionInfo (alpha, gamma, primElemAlpha, |
---|
4630 | imPrimElemAlpha, 1, info.getGFName(), true |
---|
4631 | ); |
---|
4632 | |
---|
4633 | return info2; |
---|
4634 | } |
---|
4635 | |
---|
4636 | CFList |
---|
4637 | extHenselLiftAndLatticeRecombi(const CanonicalForm& G, const CFList& uniFactors, |
---|
4638 | const ExtensionInfo& extInfo, const |
---|
4639 | DegreePattern& degPat, const CanonicalForm& eval |
---|
4640 | ) |
---|
4641 | { |
---|
4642 | bool GF= (CFFactory::gettype()==GaloisFieldDomain); |
---|
4643 | CanonicalForm evaluation= eval; |
---|
4644 | ExtensionInfo info= extInfo; |
---|
4645 | Variable alpha; |
---|
4646 | DegreePattern degs= degPat; |
---|
4647 | CanonicalForm F= G; |
---|
4648 | Variable x= Variable (1); |
---|
4649 | Variable y= F.mvar(); |
---|
4650 | CFList bufUniFactors= uniFactors; |
---|
4651 | |
---|
4652 | |
---|
4653 | int degMipo; |
---|
4654 | ExtensionInfo info2= init4ext (info, evaluation, degMipo); |
---|
4655 | |
---|
4656 | CFList source, dest; |
---|
4657 | CanonicalForm LCF= LC (F, 1); |
---|
4658 | |
---|
4659 | int d; |
---|
4660 | int* bounds= computeBounds (F, d); |
---|
4661 | int minBound= bounds[0]; |
---|
4662 | for (int i= 1; i < d; i++) |
---|
4663 | { |
---|
4664 | if (bounds[i] != 0) |
---|
4665 | minBound= tmin (minBound, bounds[i]); |
---|
4666 | } |
---|
4667 | |
---|
4668 | |
---|
4669 | CFArray Pi; |
---|
4670 | CFList diophant; |
---|
4671 | int liftBound= tmax ((2*totaldegree (F) - 1)/degMipo + 1, degree (F) + 1 + |
---|
4672 | degree (LC (F, 1))); |
---|
4673 | CFMatrix M= CFMatrix (liftBound, bufUniFactors.length()); |
---|
4674 | |
---|
4675 | CFList smallFactors; |
---|
4676 | CanonicalForm H; |
---|
4677 | bool success; |
---|
4678 | smallFactors= extSieveSmallFactors (F, bufUniFactors, degs, H, diophant, Pi, |
---|
4679 | M, success, minBound + 1, evaluation, info |
---|
4680 | ); |
---|
4681 | |
---|
4682 | if (smallFactors.length() > 0) |
---|
4683 | { |
---|
4684 | if (smallFactors.length() == 1) |
---|
4685 | { |
---|
4686 | if (smallFactors.getFirst() == F) |
---|
4687 | { |
---|
4688 | delete [] bounds; |
---|
4689 | CFList source, dest; |
---|
4690 | CanonicalForm tmp= G (y - evaluation, y); |
---|
4691 | tmp= mapDown (tmp, info, source, dest); |
---|
4692 | return CFList (tmp); |
---|
4693 | } |
---|
4694 | } |
---|
4695 | if (degs.getLength() <= 1) |
---|
4696 | { |
---|
4697 | delete [] bounds; |
---|
4698 | return smallFactors; |
---|
4699 | } |
---|
4700 | } |
---|
4701 | |
---|
4702 | int index; |
---|
4703 | for (CFListIterator i= smallFactors; i.hasItem(); i++) |
---|
4704 | { |
---|
4705 | index= 1; |
---|
4706 | CanonicalForm tmp1, tmp2; |
---|
4707 | tmp1= mod (i.getItem(), y - evaluation); |
---|
4708 | tmp1 /= Lc (tmp1); |
---|
4709 | for (CFListIterator j= bufUniFactors; j.hasItem(); j++, index++) |
---|
4710 | { |
---|
4711 | tmp2= mod (j.getItem(), y); |
---|
4712 | tmp2 /= Lc (tmp2); |
---|
4713 | if (tmp1 == tmp2) |
---|
4714 | { |
---|
4715 | index++; |
---|
4716 | j.remove(index); |
---|
4717 | break; |
---|
4718 | } |
---|
4719 | } |
---|
4720 | } |
---|
4721 | |
---|
4722 | if (bufUniFactors.isEmpty()) |
---|
4723 | { |
---|
4724 | delete [] bounds; |
---|
4725 | return smallFactors; |
---|
4726 | } |
---|
4727 | |
---|
4728 | if (success) |
---|
4729 | { |
---|
4730 | F= H; |
---|
4731 | delete [] bounds; |
---|
4732 | bounds= computeBounds (F, d); |
---|
4733 | LCF= LC (F, 1); |
---|
4734 | |
---|
4735 | minBound= bounds[0]; |
---|
4736 | for (int i= 1; i < d; i++) |
---|
4737 | { |
---|
4738 | if (bounds[i] != 0) |
---|
4739 | minBound= tmin (minBound, bounds[i]); |
---|
4740 | } |
---|
4741 | Pi= CFArray(); |
---|
4742 | diophant= CFList(); |
---|
4743 | liftBound=tmax ((2*totaldegree (F) - 1)/degMipo + 1, degree (F) + 1 + |
---|
4744 | degree (LC (F, 1))); |
---|
4745 | M= CFMatrix (liftBound, bufUniFactors.length()); |
---|
4746 | DegreePattern bufDegs= DegreePattern (bufUniFactors); |
---|
4747 | degs.intersect (bufDegs); |
---|
4748 | degs.refine(); |
---|
4749 | if (degs.getLength() <= 1) |
---|
4750 | { |
---|
4751 | delete [] bounds; |
---|
4752 | CFList source, dest; |
---|
4753 | CanonicalForm tmp= F (y - evaluation, y); |
---|
4754 | tmp= mapDown (tmp, info, source, dest); |
---|
4755 | smallFactors.append (tmp); |
---|
4756 | return smallFactors; |
---|
4757 | } |
---|
4758 | } |
---|
4759 | |
---|
4760 | bufUniFactors.insert (LCF); |
---|
4761 | int l= 1; |
---|
4762 | |
---|
4763 | zz_p::init (getCharacteristic()); |
---|
4764 | zz_pX NTLMipo; |
---|
4765 | mat_zz_p NTLN; |
---|
4766 | |
---|
4767 | ident (NTLN, bufUniFactors.length() - 1); |
---|
4768 | bool wasInBounds= false; |
---|
4769 | bool irreducible= false; |
---|
4770 | CFArray bufQ= CFArray (bufUniFactors.length() - 1); |
---|
4771 | |
---|
4772 | int oldL; |
---|
4773 | if (success) |
---|
4774 | { |
---|
4775 | int start= 0; |
---|
4776 | oldL= extLiftAndComputeLattice (F, bounds, d, liftBound, minBound, start, |
---|
4777 | bufUniFactors, NTLN, diophant, M, Pi, bufQ, |
---|
4778 | irreducible, evaluation, info2, source, dest |
---|
4779 | ); |
---|
4780 | } |
---|
4781 | else |
---|
4782 | { |
---|
4783 | oldL= extLiftAndComputeLattice (F, bounds, d, liftBound, minBound, |
---|
4784 | minBound + 1, bufUniFactors, NTLN, diophant, |
---|
4785 | M, Pi, bufQ, irreducible, evaluation, info2, |
---|
4786 | source, dest |
---|
4787 | ); |
---|
4788 | } |
---|
4789 | |
---|
4790 | bufUniFactors.removeFirst(); |
---|
4791 | if (oldL > liftBound) |
---|
4792 | { |
---|
4793 | delete [] bounds; |
---|
4794 | return Union (smallFactors, extFactorRecombination |
---|
4795 | (bufUniFactors, F, |
---|
4796 | power (y, degree (F) + 1 + degree (LCF)),info, |
---|
4797 | degs, evaluation, 1, bufUniFactors.length()/2 |
---|
4798 | ) |
---|
4799 | ); |
---|
4800 | } |
---|
4801 | |
---|
4802 | l= oldL; |
---|
4803 | if (irreducible) |
---|
4804 | { |
---|
4805 | delete [] bounds; |
---|
4806 | CFList source, dest; |
---|
4807 | CanonicalForm tmp= F (y - evaluation, y); |
---|
4808 | tmp= mapDown (tmp, info, source, dest); |
---|
4809 | return Union (CFList (tmp), smallFactors); |
---|
4810 | } |
---|
4811 | |
---|
4812 | CanonicalForm yToL= power (y,l); |
---|
4813 | |
---|
4814 | CFList result; |
---|
4815 | if (l >= degree (F) + 1) |
---|
4816 | { |
---|
4817 | int * factorsFoundIndex; |
---|
4818 | |
---|
4819 | factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
4820 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
4821 | factorsFoundIndex[i]= 0; |
---|
4822 | |
---|
4823 | int factorsFound= 0; |
---|
4824 | CanonicalForm bufF= F; |
---|
4825 | |
---|
4826 | extReconstructionTry (result, bufF, bufUniFactors, degree (F) + 1, |
---|
4827 | factorsFound, factorsFoundIndex, NTLN, false, info, |
---|
4828 | evaluation |
---|
4829 | ); |
---|
4830 | |
---|
4831 | if (result.length() == NTLN.NumCols()) |
---|
4832 | { |
---|
4833 | delete [] factorsFoundIndex; |
---|
4834 | delete [] bounds; |
---|
4835 | return Union (result, smallFactors); |
---|
4836 | } |
---|
4837 | |
---|
4838 | delete [] factorsFoundIndex; |
---|
4839 | } |
---|
4840 | if (l >= liftBound) |
---|
4841 | { |
---|
4842 | int * factorsFoundIndex; |
---|
4843 | factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
4844 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
4845 | factorsFoundIndex[i]= 0; |
---|
4846 | CanonicalForm bufF= F; |
---|
4847 | int factorsFound= 0; |
---|
4848 | |
---|
4849 | extReconstructionTry (result, bufF, bufUniFactors, degree (F) + 1 + degree |
---|
4850 | (LCF), factorsFound, factorsFoundIndex, NTLN, false, |
---|
4851 | info, evaluation |
---|
4852 | ); |
---|
4853 | |
---|
4854 | if (result.length() == NTLN.NumCols()) |
---|
4855 | { |
---|
4856 | delete [] factorsFoundIndex; |
---|
4857 | delete [] bounds; |
---|
4858 | return Union (result, smallFactors); |
---|
4859 | } |
---|
4860 | delete [] factorsFoundIndex; |
---|
4861 | } |
---|
4862 | |
---|
4863 | result= CFList(); |
---|
4864 | bool beenInThres= false; |
---|
4865 | int thres= 100; |
---|
4866 | if (l <= thres && bufUniFactors.length() > NTLN.NumCols()) |
---|
4867 | { |
---|
4868 | refineAndRestartLift (F, NTLN, 2*totaldegree (F)-1, l, bufUniFactors, M, Pi, |
---|
4869 | diophant |
---|
4870 | ); |
---|
4871 | beenInThres= true; |
---|
4872 | } |
---|
4873 | |
---|
4874 | |
---|
4875 | CanonicalForm bufF= F; |
---|
4876 | int factorsFound= 0; |
---|
4877 | |
---|
4878 | result= extEarlyReconstructionAndLifting (F, NTLN, bufF, bufUniFactors, l, |
---|
4879 | factorsFound, beenInThres, M, Pi, |
---|
4880 | diophant, info, evaluation |
---|
4881 | ); |
---|
4882 | |
---|
4883 | if (result.length() == NTLN.NumCols()) |
---|
4884 | { |
---|
4885 | delete [] bounds; |
---|
4886 | return Union (result, smallFactors); |
---|
4887 | } |
---|
4888 | |
---|
4889 | if (result.length() > 0) |
---|
4890 | { |
---|
4891 | if (beenInThres) |
---|
4892 | { |
---|
4893 | int index; |
---|
4894 | for (CFListIterator i= result; i.hasItem(); i++) |
---|
4895 | { |
---|
4896 | index= 1; |
---|
4897 | CanonicalForm tmp1, tmp2; |
---|
4898 | tmp1= mod (i.getItem(), y-evaluation); |
---|
4899 | tmp1 /= Lc (tmp1); |
---|
4900 | for (CFListIterator j= bufUniFactors; j.hasItem(); j++, index++) |
---|
4901 | { |
---|
4902 | tmp2= mod (j.getItem(), y); |
---|
4903 | tmp2 /= Lc (tmp2); |
---|
4904 | if (tmp1 == tmp2) |
---|
4905 | { |
---|
4906 | index++; |
---|
4907 | j.remove(index); |
---|
4908 | break; |
---|
4909 | } |
---|
4910 | } |
---|
4911 | } |
---|
4912 | } |
---|
4913 | else |
---|
4914 | { |
---|
4915 | int * zeroOne= extractZeroOneVecs (NTLN); |
---|
4916 | CFList bufBufUniFactors= bufUniFactors; |
---|
4917 | for (int i= 0; i < NTLN.NumCols(); i++) |
---|
4918 | { |
---|
4919 | if (zeroOne [i] == 0) |
---|
4920 | continue; |
---|
4921 | CFListIterator iter= bufUniFactors; |
---|
4922 | CanonicalForm buf= 1; |
---|
4923 | CFList factorsConsidered; |
---|
4924 | for (int j= 0; j < NTLN.NumRows(); j++, iter++) |
---|
4925 | { |
---|
4926 | if (!IsZero (NTLN (j + 1,i + 1))) |
---|
4927 | { |
---|
4928 | factorsConsidered.append (iter.getItem()); |
---|
4929 | buf *= mod (iter.getItem(), y); |
---|
4930 | } |
---|
4931 | } |
---|
4932 | buf /= Lc (buf); |
---|
4933 | for (CFListIterator iter2= result; iter2.hasItem(); iter2++) |
---|
4934 | { |
---|
4935 | CanonicalForm tmp= mod (iter2.getItem(), y - evaluation); |
---|
4936 | tmp /= Lc (tmp); |
---|
4937 | if (tmp == buf) |
---|
4938 | { |
---|
4939 | bufBufUniFactors= Difference (bufBufUniFactors, factorsConsidered); |
---|
4940 | break; |
---|
4941 | } |
---|
4942 | } |
---|
4943 | } |
---|
4944 | bufUniFactors= bufBufUniFactors; |
---|
4945 | delete [] zeroOne; |
---|
4946 | } |
---|
4947 | |
---|
4948 | int oldNumCols; |
---|
4949 | CFList resultBufF; |
---|
4950 | irreducible= false; |
---|
4951 | |
---|
4952 | oldNumCols= NTLN.NumCols(); |
---|
4953 | resultBufF= extIncreasePrecision (bufF, bufUniFactors, factorsFound, |
---|
4954 | oldNumCols, oldL, evaluation, info2, |
---|
4955 | source, dest, l |
---|
4956 | ); |
---|
4957 | |
---|
4958 | if (bufUniFactors.isEmpty() || degree (bufF) <= 0) |
---|
4959 | { |
---|
4960 | delete [] bounds; |
---|
4961 | result= Union (resultBufF, result); |
---|
4962 | return Union (result, smallFactors); |
---|
4963 | } |
---|
4964 | |
---|
4965 | for (CFListIterator i= bufUniFactors; i.hasItem(); i++) |
---|
4966 | i.getItem()= mod (i.getItem(), y); |
---|
4967 | |
---|
4968 | delete [] bounds; |
---|
4969 | CFList bufResult; |
---|
4970 | DegreePattern bufDegs= DegreePattern (bufUniFactors); |
---|
4971 | degs.intersect (bufDegs); |
---|
4972 | degs.refine(); |
---|
4973 | result= Union (result, smallFactors); |
---|
4974 | if (degs.getLength() == 1 || bufUniFactors.length() == 1) |
---|
4975 | { |
---|
4976 | result.append (bufF); |
---|
4977 | return result; |
---|
4978 | } |
---|
4979 | return Union (result, extHenselLiftAndLatticeRecombi (bufF, bufUniFactors, |
---|
4980 | info, degs, evaluation |
---|
4981 | ) |
---|
4982 | ); |
---|
4983 | } |
---|
4984 | |
---|
4985 | if (l/degMipo < liftBound) |
---|
4986 | { |
---|
4987 | result=extIncreasePrecision (F, bufUniFactors, oldL, l, d, bounds, bufQ, |
---|
4988 | NTLN, evaluation, info2, source, dest |
---|
4989 | ); |
---|
4990 | |
---|
4991 | if (result.length()== NTLN.NumCols()) |
---|
4992 | { |
---|
4993 | delete [] bounds; |
---|
4994 | result= Union (result, smallFactors); |
---|
4995 | return result; |
---|
4996 | } |
---|
4997 | |
---|
4998 | if (result.isEmpty()) |
---|
4999 | { |
---|
5000 | result= extFurtherLiftingAndIncreasePrecision (F,bufUniFactors, l, |
---|
5001 | liftBound, d, bounds, NTLN, |
---|
5002 | diophant, M, Pi, bufQ, |
---|
5003 | evaluation, info2, source, |
---|
5004 | dest |
---|
5005 | ); |
---|
5006 | if (result.length()== NTLN.NumCols()) |
---|
5007 | { |
---|
5008 | delete [] bounds; |
---|
5009 | result= Union (result, smallFactors); |
---|
5010 | return result; |
---|
5011 | } |
---|
5012 | } |
---|
5013 | } |
---|
5014 | |
---|
5015 | DEBOUTLN (cerr, "lattice recombination failed"); |
---|
5016 | |
---|
5017 | DegreePattern bufDegs= DegreePattern (bufUniFactors); |
---|
5018 | degs.intersect (bufDegs); |
---|
5019 | degs.refine(); |
---|
5020 | |
---|
5021 | delete [] bounds; |
---|
5022 | bounds= computeBounds (F, d); |
---|
5023 | minBound= bounds[0]; |
---|
5024 | for (int i= 1; i < d; i++) |
---|
5025 | { |
---|
5026 | if (bounds[i] != 0) |
---|
5027 | minBound= tmin (minBound, bounds[i]); |
---|
5028 | } |
---|
5029 | |
---|
5030 | if (minBound > 16 || result.length() == 0) |
---|
5031 | { |
---|
5032 | result= Union (result, smallFactors); |
---|
5033 | CanonicalForm MODl= power (y, degree (F) + 1 + degree (LC (F, 1))); |
---|
5034 | delete [] bounds; |
---|
5035 | return Union (result, extFactorRecombination (bufUniFactors, F, MODl, info, |
---|
5036 | degs, evaluation, 1, |
---|
5037 | bufUniFactors.length()/2 |
---|
5038 | ) |
---|
5039 | ); |
---|
5040 | } |
---|
5041 | else |
---|
5042 | { |
---|
5043 | result= Union (result, smallFactors); |
---|
5044 | for (CFListIterator i= bufUniFactors; i.hasItem(); i++) |
---|
5045 | i.getItem()= mod (i.getItem(), y); |
---|
5046 | delete [] bounds; |
---|
5047 | return Union (result, extHenselLiftAndLatticeRecombi (F, bufUniFactors, |
---|
5048 | info, degs, evaluation |
---|
5049 | ) |
---|
5050 | ); |
---|
5051 | } |
---|
5052 | } |
---|
5053 | |
---|
5054 | CFList |
---|
5055 | extBiFactorize (const CanonicalForm& F, const ExtensionInfo& info); |
---|
5056 | |
---|
5057 | /// bivariate factorization over finite fields as decribed in "Factoring |
---|
5058 | /// multivariate polynomials over a finite field" by L Bernardin. |
---|
5059 | CFList |
---|
5060 | biFactorize (const CanonicalForm& F, const ExtensionInfo& info) |
---|
5061 | { |
---|
5062 | if (F.inCoeffDomain()) |
---|
5063 | return CFList(F); |
---|
5064 | |
---|
5065 | CanonicalForm A= F; |
---|
5066 | bool GF= (CFFactory::gettype() == GaloisFieldDomain); |
---|
5067 | |
---|
5068 | Variable alpha= info.getAlpha(); |
---|
5069 | Variable beta= info.getBeta(); |
---|
5070 | CanonicalForm gamma= info.getGamma(); |
---|
5071 | CanonicalForm delta= info.getDelta(); |
---|
5072 | int k= info.getGFDegree(); |
---|
5073 | bool extension= info.isInExtension(); |
---|
5074 | if (A.isUnivariate()) |
---|
5075 | { |
---|
5076 | if (extension == false) |
---|
5077 | return uniFactorizer (F, alpha, GF); |
---|
5078 | else |
---|
5079 | { |
---|
5080 | CFList source, dest; |
---|
5081 | A= mapDown (A, info, source, dest); |
---|
5082 | return uniFactorizer (A, beta, GF); |
---|
5083 | } |
---|
5084 | } |
---|
5085 | |
---|
5086 | CFMap N; |
---|
5087 | A= compress (A, N); |
---|
5088 | Variable y= A.mvar(); |
---|
5089 | |
---|
5090 | if (y.level() > 2) return CFList (F); |
---|
5091 | Variable x= Variable (1); |
---|
5092 | |
---|
5093 | //remove and factorize content |
---|
5094 | CanonicalForm contentAx= content (A, x); |
---|
5095 | CanonicalForm contentAy= content (A); |
---|
5096 | |
---|
5097 | A= A/(contentAx*contentAy); |
---|
5098 | CFList contentAxFactors, contentAyFactors; |
---|
5099 | |
---|
5100 | if (!extension) |
---|
5101 | { |
---|
5102 | contentAxFactors= uniFactorizer (contentAx, alpha, GF); |
---|
5103 | contentAyFactors= uniFactorizer (contentAy, alpha, GF); |
---|
5104 | } |
---|
5105 | |
---|
5106 | //trivial case |
---|
5107 | CFList factors; |
---|
5108 | if (A.inCoeffDomain()) |
---|
5109 | { |
---|
5110 | append (factors, contentAxFactors); |
---|
5111 | append (factors, contentAyFactors); |
---|
5112 | decompress (factors, N); |
---|
5113 | return factors; |
---|
5114 | } |
---|
5115 | else if (A.isUnivariate()) |
---|
5116 | { |
---|
5117 | factors= uniFactorizer (A, alpha, GF); |
---|
5118 | append (factors, contentAxFactors); |
---|
5119 | append (factors, contentAyFactors); |
---|
5120 | decompress (factors, N); |
---|
5121 | return factors; |
---|
5122 | } |
---|
5123 | |
---|
5124 | // check derivatives |
---|
5125 | bool derivXZero= false; |
---|
5126 | CanonicalForm derivX= deriv (A, x); |
---|
5127 | CanonicalForm gcdDerivX; |
---|
5128 | if (derivX.isZero()) |
---|
5129 | derivXZero= true; |
---|
5130 | else |
---|
5131 | { |
---|
5132 | gcdDerivX= gcd (A, derivX); |
---|
5133 | if (degree (gcdDerivX) > 0) |
---|
5134 | { |
---|
5135 | CanonicalForm g= A/gcdDerivX; |
---|
5136 | CFList factorsG= |
---|
5137 | Union (biFactorize (g, info), biFactorize (gcdDerivX, info)); |
---|
5138 | append (factorsG, contentAxFactors); |
---|
5139 | append (factorsG, contentAyFactors); |
---|
5140 | decompress (factorsG, N); |
---|
5141 | normalize (factors); |
---|
5142 | return factorsG; |
---|
5143 | } |
---|
5144 | } |
---|
5145 | bool derivYZero= false; |
---|
5146 | CanonicalForm derivY= deriv (A, y); |
---|
5147 | CanonicalForm gcdDerivY; |
---|
5148 | if (derivY.isZero()) |
---|
5149 | derivYZero= true; |
---|
5150 | else |
---|
5151 | { |
---|
5152 | gcdDerivY= gcd (A, derivY); |
---|
5153 | if (degree (gcdDerivY) > 0) |
---|
5154 | { |
---|
5155 | CanonicalForm g= A/gcdDerivY; |
---|
5156 | CFList factorsG= |
---|
5157 | Union (biFactorize (g, info), biFactorize (gcdDerivY, info)); |
---|
5158 | append (factorsG, contentAxFactors); |
---|
5159 | append (factorsG, contentAyFactors); |
---|
5160 | decompress (factorsG, N); |
---|
5161 | normalize (factors); |
---|
5162 | return factorsG; |
---|
5163 | } |
---|
5164 | } |
---|
5165 | //main variable is chosen s.t. the degree in x is minimal |
---|
5166 | bool swap= false; |
---|
5167 | if ((degree (A) > degree (A, x)) || derivXZero) |
---|
5168 | { |
---|
5169 | if (!derivYZero) |
---|
5170 | { |
---|
5171 | A= swapvar (A, y, x); |
---|
5172 | swap= derivXZero; |
---|
5173 | derivXZero= derivYZero; |
---|
5174 | derivYZero= swap; |
---|
5175 | swap= true; |
---|
5176 | } |
---|
5177 | } |
---|
5178 | |
---|
5179 | bool fail= false; |
---|
5180 | CanonicalForm Aeval, evaluation, bufAeval, bufEvaluation, buf; |
---|
5181 | CFList uniFactors, list, bufUniFactors; |
---|
5182 | DegreePattern degs; |
---|
5183 | DegreePattern bufDegs; |
---|
5184 | |
---|
5185 | bool fail2= false; |
---|
5186 | CanonicalForm Aeval2, evaluation2, bufAeval2, bufEvaluation2; |
---|
5187 | CFList bufUniFactors2, list2, uniFactors2; |
---|
5188 | DegreePattern degs2; |
---|
5189 | DegreePattern bufDegs2; |
---|
5190 | bool swap2= false; |
---|
5191 | |
---|
5192 | // several univariate factorizations to obtain more information about the |
---|
5193 | // degree pattern therefore usually less combinations have to be tried during |
---|
5194 | // the recombination process |
---|
5195 | int factorNums= 3; |
---|
5196 | int subCheck1= substituteCheck (A, x); |
---|
5197 | int subCheck2= substituteCheck (A, y); |
---|
5198 | for (int i= 0; i < factorNums; i++) |
---|
5199 | { |
---|
5200 | bufAeval= A; |
---|
5201 | bufEvaluation= evalPoint (A, bufAeval, alpha, list, GF, fail); |
---|
5202 | if (!derivXZero && !fail2) |
---|
5203 | { |
---|
5204 | buf= swapvar (A, x, y); |
---|
5205 | bufAeval2= buf; |
---|
5206 | bufEvaluation2= evalPoint (buf, bufAeval2, alpha, list2, GF, fail2); |
---|
5207 | } |
---|
5208 | // first try to change main variable if there is no valid evaluation point |
---|
5209 | if (fail && (i == 0)) |
---|
5210 | { |
---|
5211 | if (!derivXZero && !fail2) |
---|
5212 | { |
---|
5213 | bufEvaluation= bufEvaluation2; |
---|
5214 | int dummy= subCheck2; |
---|
5215 | subCheck2= subCheck1; |
---|
5216 | subCheck1= dummy; |
---|
5217 | A= buf; |
---|
5218 | bufAeval= bufAeval2; |
---|
5219 | swap2= true; |
---|
5220 | fail= false; |
---|
5221 | } |
---|
5222 | else |
---|
5223 | fail= true; |
---|
5224 | } |
---|
5225 | |
---|
5226 | // if there is no valid evaluation point pass to a field extension |
---|
5227 | if (fail && (i == 0)) |
---|
5228 | { |
---|
5229 | factors= extBiFactorize (A, info); |
---|
5230 | appendSwapDecompress (factors, contentAxFactors, contentAyFactors, |
---|
5231 | swap, swap2, N); |
---|
5232 | normalize (factors); |
---|
5233 | return factors; |
---|
5234 | } |
---|
5235 | |
---|
5236 | // there is at least one valid evaluation point |
---|
5237 | // but we do not compute more univariate factorization over an extension |
---|
5238 | if (fail && (i != 0)) |
---|
5239 | break; |
---|
5240 | |
---|
5241 | // univariate factorization |
---|
5242 | TIMING_START (fac_uni_factorizer); |
---|
5243 | bufUniFactors= uniFactorizer (bufAeval, alpha, GF); |
---|
5244 | TIMING_END_AND_PRINT (fac_uni_factorizer, |
---|
5245 | "time for univariate factorization: "); |
---|
5246 | DEBOUTLN (cerr, "Lc (bufAeval)*prod (bufUniFactors)== bufAeval " << |
---|
5247 | prod (bufUniFactors)*Lc (bufAeval) == bufAeval); |
---|
5248 | |
---|
5249 | if (!derivXZero && !fail2) |
---|
5250 | { |
---|
5251 | TIMING_START (fac_uni_factorizer); |
---|
5252 | bufUniFactors2= uniFactorizer (bufAeval2, alpha, GF); |
---|
5253 | TIMING_END_AND_PRINT (fac_uni_factorizer, |
---|
5254 | "time for univariate factorization in y: "); |
---|
5255 | DEBOUTLN (cerr, "Lc (Aeval2)*prod (uniFactors2)== Aeval2 " << |
---|
5256 | prod (bufUniFactors2)*Lc (bufAeval2) == bufAeval2); |
---|
5257 | } |
---|
5258 | |
---|
5259 | if (bufUniFactors.length() == 1 || |
---|
5260 | (!fail2 && !derivXZero && (bufUniFactors2.length() == 1))) |
---|
5261 | { |
---|
5262 | if (extension) |
---|
5263 | { |
---|
5264 | CFList source, dest; |
---|
5265 | ExtensionInfo info2= ExtensionInfo (beta, alpha, delta, gamma, k, |
---|
5266 | info.getGFName(), info.isInExtension()); |
---|
5267 | appendMapDown (factors, A, info2, source, dest); |
---|
5268 | } |
---|
5269 | else |
---|
5270 | factors.append (A); |
---|
5271 | |
---|
5272 | appendSwapDecompress (factors, contentAxFactors, contentAyFactors, |
---|
5273 | swap, swap2, N); |
---|
5274 | |
---|
5275 | normalize (factors); |
---|
5276 | return factors; |
---|
5277 | } |
---|
5278 | |
---|
5279 | if (i == 0) |
---|
5280 | { |
---|
5281 | if (subCheck1 > 0) |
---|
5282 | { |
---|
5283 | int subCheck= substituteCheck (bufUniFactors); |
---|
5284 | |
---|
5285 | if (subCheck > 1 && (subCheck1%subCheck == 0)) |
---|
5286 | { |
---|
5287 | CanonicalForm bufA= A; |
---|
5288 | subst (bufA, bufA, subCheck, x); |
---|
5289 | factors= biFactorize (bufA, info); |
---|
5290 | reverseSubst (factors, subCheck, x); |
---|
5291 | appendSwapDecompress (factors, contentAxFactors, contentAyFactors, |
---|
5292 | swap, swap2, N); |
---|
5293 | normalize (factors); |
---|
5294 | return factors; |
---|
5295 | } |
---|
5296 | } |
---|
5297 | |
---|
5298 | if (!derivXZero && !fail2 && subCheck2 > 0) |
---|
5299 | { |
---|
5300 | int subCheck= substituteCheck (bufUniFactors2); |
---|
5301 | |
---|
5302 | if (subCheck > 1 && (subCheck2%subCheck == 0)) |
---|
5303 | { |
---|
5304 | CanonicalForm bufA= A; |
---|
5305 | subst (bufA, bufA, subCheck, y); |
---|
5306 | factors= biFactorize (bufA, info); |
---|
5307 | reverseSubst (factors, subCheck, y); |
---|
5308 | appendSwapDecompress (factors, contentAxFactors, contentAyFactors, |
---|
5309 | swap, swap2, N); |
---|
5310 | normalize (factors); |
---|
5311 | return factors; |
---|
5312 | } |
---|
5313 | } |
---|
5314 | } |
---|
5315 | |
---|
5316 | // degree analysis |
---|
5317 | bufDegs = DegreePattern (bufUniFactors); |
---|
5318 | if (!derivXZero && !fail2) |
---|
5319 | bufDegs2= DegreePattern (bufUniFactors2); |
---|
5320 | |
---|
5321 | if (i == 0) |
---|
5322 | { |
---|
5323 | Aeval= bufAeval; |
---|
5324 | evaluation= bufEvaluation; |
---|
5325 | uniFactors= bufUniFactors; |
---|
5326 | degs= bufDegs; |
---|
5327 | if (!derivXZero && !fail2) |
---|
5328 | { |
---|
5329 | Aeval2= bufAeval2; |
---|
5330 | evaluation2= bufEvaluation2; |
---|
5331 | uniFactors2= bufUniFactors2; |
---|
5332 | degs2= bufDegs2; |
---|
5333 | } |
---|
5334 | } |
---|
5335 | else |
---|
5336 | { |
---|
5337 | degs.intersect (bufDegs); |
---|
5338 | if (!derivXZero && !fail2) |
---|
5339 | { |
---|
5340 | degs2.intersect (bufDegs2); |
---|
5341 | if (bufUniFactors2.length() < uniFactors2.length()) |
---|
5342 | { |
---|
5343 | uniFactors2= bufUniFactors2; |
---|
5344 | Aeval2= bufAeval2; |
---|
5345 | evaluation2= bufEvaluation2; |
---|
5346 | } |
---|
5347 | } |
---|
5348 | if (bufUniFactors.length() < uniFactors.length()) |
---|
5349 | { |
---|
5350 | if (!evaluation.isZero()) |
---|
5351 | { |
---|
5352 | uniFactors= bufUniFactors; |
---|
5353 | Aeval= bufAeval; |
---|
5354 | evaluation= bufEvaluation; |
---|
5355 | } |
---|
5356 | } |
---|
5357 | } |
---|
5358 | list.append (bufEvaluation); |
---|
5359 | if (!derivXZero && !fail2) |
---|
5360 | list2.append (bufEvaluation2); |
---|
5361 | } |
---|
5362 | |
---|
5363 | if (!derivXZero && !fail2) |
---|
5364 | { |
---|
5365 | if (!evaluation.isZero() && (uniFactors.length() > uniFactors2.length() || |
---|
5366 | (uniFactors.length() == uniFactors2.length() |
---|
5367 | && degs.getLength() > degs2.getLength()))) |
---|
5368 | { |
---|
5369 | degs= degs2; |
---|
5370 | uniFactors= uniFactors2; |
---|
5371 | evaluation= evaluation2; |
---|
5372 | Aeval= Aeval2; |
---|
5373 | A= buf; |
---|
5374 | swap2= true; |
---|
5375 | } |
---|
5376 | } |
---|
5377 | |
---|
5378 | if (degs.getLength() == 1) // A is irreducible |
---|
5379 | { |
---|
5380 | if (extension) |
---|
5381 | { |
---|
5382 | CFList source, dest; |
---|
5383 | appendMapDown (factors, A, info, source, dest); |
---|
5384 | } |
---|
5385 | else |
---|
5386 | factors.append (A); |
---|
5387 | appendSwapDecompress (factors, contentAxFactors, contentAyFactors, |
---|
5388 | swap, swap2, N); |
---|
5389 | normalize (factors); |
---|
5390 | return factors; |
---|
5391 | } |
---|
5392 | |
---|
5393 | A= A (y + evaluation, y); |
---|
5394 | |
---|
5395 | int liftBound= liftBound= degree (A, y) + 1 + degree (LC(A, x)); |
---|
5396 | |
---|
5397 | int boundsLength; |
---|
5398 | int * bounds= computeBounds (A (y - evaluation, y), boundsLength); |
---|
5399 | int minBound= bounds[0]; |
---|
5400 | for (int i= 1; i < boundsLength; i++) |
---|
5401 | { |
---|
5402 | if (bounds[i] != 0) |
---|
5403 | minBound= tmin (minBound, bounds[i]); |
---|
5404 | } |
---|
5405 | |
---|
5406 | int degMipo= 1; |
---|
5407 | if (extension && alpha.level() != 1 && k==1) |
---|
5408 | degMipo= degree (getMipo (alpha)); |
---|
5409 | |
---|
5410 | DEBOUTLN (cerr, "uniFactors= " << uniFactors); |
---|
5411 | |
---|
5412 | if (GF && !extension || (GF && extension && k != 1)) |
---|
5413 | { |
---|
5414 | bool earlySuccess= false; |
---|
5415 | CFList earlyFactors; |
---|
5416 | TIMING_START (fac_hensel_lift); |
---|
5417 | uniFactors= henselLiftAndEarly |
---|
5418 | (A, earlySuccess, earlyFactors, degs, liftBound, |
---|
5419 | uniFactors, info, evaluation); |
---|
5420 | TIMING_END_AND_PRINT (fac_hensel_lift, "time for hensel lifting: "); |
---|
5421 | DEBOUTLN (cerr, "lifted factors= " << uniFactors); |
---|
5422 | |
---|
5423 | CanonicalForm MODl= power (y, liftBound); |
---|
5424 | |
---|
5425 | if (extension) |
---|
5426 | factors= extFactorRecombination (uniFactors, A, MODl, info, degs, |
---|
5427 | evaluation, 1, uniFactors.length()/2); |
---|
5428 | else |
---|
5429 | factors= factorRecombination (uniFactors, A, MODl, degs, 1, |
---|
5430 | uniFactors.length()/2); |
---|
5431 | |
---|
5432 | if (earlySuccess) |
---|
5433 | factors= Union (earlyFactors, factors); |
---|
5434 | else if (!earlySuccess && degs.getLength() == 1) |
---|
5435 | factors= earlyFactors; |
---|
5436 | } |
---|
5437 | else if (degree (A) > 4 && beta.level() == 1 && (2*minBound)/degMipo < 32) |
---|
5438 | { |
---|
5439 | TIMING_START (fac_hensel_lift); |
---|
5440 | if (extension) |
---|
5441 | { |
---|
5442 | CFList lll= extHenselLiftAndLatticeRecombi (A, uniFactors, info, degs, |
---|
5443 | evaluation |
---|
5444 | ); |
---|
5445 | factors= Union (lll, factors); |
---|
5446 | } |
---|
5447 | else if (alpha.level() == 1 && !GF) |
---|
5448 | { |
---|
5449 | CFList lll= henselLiftAndLatticeRecombi (A, uniFactors, alpha, degs); |
---|
5450 | factors= Union (lll, factors); |
---|
5451 | } |
---|
5452 | else if (!extension && (alpha != Variable (1) || GF)) |
---|
5453 | { |
---|
5454 | CFList lll= henselLiftAndLatticeRecombi (A, uniFactors, alpha, degs); |
---|
5455 | factors= Union (lll, factors); |
---|
5456 | } |
---|
5457 | TIMING_END_AND_PRINT (fac_hensel_lift, "time for hensel lifting: "); |
---|
5458 | DEBOUTLN (cerr, "lifted factors= " << uniFactors); |
---|
5459 | } |
---|
5460 | else |
---|
5461 | { |
---|
5462 | bool earlySuccess= false; |
---|
5463 | CFList earlyFactors; |
---|
5464 | TIMING_START (fac_hensel_lift); |
---|
5465 | uniFactors= henselLiftAndEarly |
---|
5466 | (A, earlySuccess, earlyFactors, degs, liftBound, |
---|
5467 | uniFactors, info, evaluation); |
---|
5468 | TIMING_END_AND_PRINT (fac_hensel_lift, "time for hensel lifting: "); |
---|
5469 | DEBOUTLN (cerr, "lifted factors= " << uniFactors); |
---|
5470 | |
---|
5471 | CanonicalForm MODl= power (y, liftBound); |
---|
5472 | if (!extension) |
---|
5473 | { |
---|
5474 | factors= factorRecombination (uniFactors, A, MODl, degs, 1, 3); |
---|
5475 | |
---|
5476 | int oldUniFactorsLength= uniFactors.length(); |
---|
5477 | if (degree (A) > 0) |
---|
5478 | { |
---|
5479 | CFList tmp; |
---|
5480 | if (alpha.level() == 1) |
---|
5481 | tmp= increasePrecision (A, uniFactors, 0, uniFactors.length(), 1, |
---|
5482 | liftBound |
---|
5483 | ); |
---|
5484 | else |
---|
5485 | { |
---|
5486 | if (degree (A) > getCharacteristic()) |
---|
5487 | tmp= increasePrecisionFq2Fp (A, uniFactors, 0, uniFactors.length(), |
---|
5488 | 1, alpha, liftBound |
---|
5489 | ); |
---|
5490 | else |
---|
5491 | tmp= increasePrecision (A, uniFactors, 0, uniFactors.length(), 1, |
---|
5492 | alpha, liftBound |
---|
5493 | ); |
---|
5494 | } |
---|
5495 | factors= Union (factors, tmp); |
---|
5496 | if (tmp.length() == 0 || (tmp.length() > 0 && uniFactors.length() != 0 |
---|
5497 | && uniFactors.length() != oldUniFactorsLength) |
---|
5498 | ) |
---|
5499 | { |
---|
5500 | DegreePattern bufDegs= DegreePattern (uniFactors); |
---|
5501 | degs.intersect (bufDegs); |
---|
5502 | degs.refine (); |
---|
5503 | factors= Union (factors, factorRecombination (uniFactors, A, MODl, |
---|
5504 | degs, 4, |
---|
5505 | uniFactors.length()/2 |
---|
5506 | ) |
---|
5507 | ); |
---|
5508 | } |
---|
5509 | } |
---|
5510 | } |
---|
5511 | else |
---|
5512 | { |
---|
5513 | if (beta.level() != 1 || k > 1) |
---|
5514 | { |
---|
5515 | if (k > 1) |
---|
5516 | { |
---|
5517 | factors= extFactorRecombination (uniFactors, A, MODl, info, degs, |
---|
5518 | evaluation, 1, uniFactors.length()/2 |
---|
5519 | ); |
---|
5520 | } |
---|
5521 | else |
---|
5522 | { |
---|
5523 | factors= extFactorRecombination (uniFactors, A, MODl, info, degs, |
---|
5524 | evaluation, 1, 3 |
---|
5525 | ); |
---|
5526 | if (degree (A) > 0) |
---|
5527 | { |
---|
5528 | CFList tmp= increasePrecision2 (A, uniFactors, alpha, liftBound); |
---|
5529 | DegreePattern bufDegs= DegreePattern (tmp); |
---|
5530 | degs.intersect (bufDegs); |
---|
5531 | degs.refine (); |
---|
5532 | factors= Union (factors, extFactorRecombination (tmp, A, MODl, info, |
---|
5533 | degs, evaluation, |
---|
5534 | 1, tmp.length()/2 |
---|
5535 | ) |
---|
5536 | ); |
---|
5537 | } |
---|
5538 | } |
---|
5539 | } |
---|
5540 | else |
---|
5541 | { |
---|
5542 | factors= extFactorRecombination (uniFactors, A, MODl, info, degs, |
---|
5543 | evaluation, 1, 3 |
---|
5544 | ); |
---|
5545 | int oldUniFactorsLength= uniFactors.length(); |
---|
5546 | if (degree (A) > 0) |
---|
5547 | { |
---|
5548 | int degMipo; |
---|
5549 | ExtensionInfo info2= init4ext (info, evaluation, degMipo); |
---|
5550 | |
---|
5551 | CFList source, dest; |
---|
5552 | CFList tmp= extIncreasePrecision (A, uniFactors, 0, |
---|
5553 | uniFactors.length(), 1, evaluation, |
---|
5554 | info2, source, dest, liftBound |
---|
5555 | ); |
---|
5556 | factors= Union (factors, tmp); |
---|
5557 | if (tmp.length() == 0 || (tmp.length() > 0 && uniFactors.length() != 0 |
---|
5558 | && uniFactors.length() != oldUniFactorsLength) |
---|
5559 | ) |
---|
5560 | { |
---|
5561 | DegreePattern bufDegs= DegreePattern (uniFactors); |
---|
5562 | degs.intersect (bufDegs); |
---|
5563 | degs.refine (); |
---|
5564 | factors= Union (factors,extFactorRecombination (uniFactors, A, MODl, |
---|
5565 | info, degs, evaluation, |
---|
5566 | 4, uniFactors.length()/2 |
---|
5567 | ) |
---|
5568 | ); |
---|
5569 | } |
---|
5570 | } |
---|
5571 | } |
---|
5572 | } |
---|
5573 | |
---|
5574 | if (earlySuccess) |
---|
5575 | factors= Union (earlyFactors, factors); |
---|
5576 | else if (!earlySuccess && degs.getLength() == 1) |
---|
5577 | factors= earlyFactors; |
---|
5578 | } |
---|
5579 | delete [] bounds; |
---|
5580 | if (!extension) |
---|
5581 | { |
---|
5582 | for (CFListIterator i= factors; i.hasItem(); i++) |
---|
5583 | i.getItem()= i.getItem() (y - evaluation, y); |
---|
5584 | } |
---|
5585 | |
---|
5586 | appendSwapDecompress (factors, contentAxFactors, contentAyFactors, |
---|
5587 | swap, swap2, N); |
---|
5588 | normalize (factors); |
---|
5589 | |
---|
5590 | return factors; |
---|
5591 | } |
---|
5592 | |
---|
5593 | CFList |
---|
5594 | extBiFactorize (const CanonicalForm& F, const ExtensionInfo& info) |
---|
5595 | { |
---|
5596 | |
---|
5597 | CanonicalForm A= F; |
---|
5598 | Variable alpha= info.getAlpha(); |
---|
5599 | Variable beta= info.getBeta(); |
---|
5600 | int k= info.getGFDegree(); |
---|
5601 | char cGFName= info.getGFName(); |
---|
5602 | CanonicalForm delta= info.getDelta(); |
---|
5603 | |
---|
5604 | bool GF= (CFFactory::gettype() == GaloisFieldDomain); |
---|
5605 | Variable x= Variable (1); |
---|
5606 | CFList factors; |
---|
5607 | if (!GF && alpha == x) // we are in F_p |
---|
5608 | { |
---|
5609 | bool extension= true; |
---|
5610 | int p= getCharacteristic(); |
---|
5611 | if (p*p < (1<<16)) // pass to GF if possible |
---|
5612 | { |
---|
5613 | setCharacteristic (getCharacteristic(), 2, 'Z'); |
---|
5614 | A= A.mapinto(); |
---|
5615 | ExtensionInfo info2= ExtensionInfo (extension); |
---|
5616 | factors= biFactorize (A, info2); |
---|
5617 | |
---|
5618 | Variable vBuf= rootOf (gf_mipo); |
---|
5619 | setCharacteristic (getCharacteristic()); |
---|
5620 | for (CFListIterator j= factors; j.hasItem(); j++) |
---|
5621 | j.getItem()= GF2FalphaRep (j.getItem(), vBuf); |
---|
5622 | } |
---|
5623 | else // not able to pass to GF, pass to F_p(\alpha) |
---|
5624 | { |
---|
5625 | CanonicalForm mipo= randomIrredpoly (2, Variable (1)); |
---|
5626 | Variable v= rootOf (mipo); |
---|
5627 | ExtensionInfo info2= ExtensionInfo (v); |
---|
5628 | factors= biFactorize (A, info2); |
---|
5629 | } |
---|
5630 | return factors; |
---|
5631 | } |
---|
5632 | else if (!GF && (alpha != x)) // we are in F_p(\alpha) |
---|
5633 | { |
---|
5634 | if (k == 1) // need factorization over F_p |
---|
5635 | { |
---|
5636 | int extDeg= degree (getMipo (alpha)); |
---|
5637 | extDeg++; |
---|
5638 | CanonicalForm mipo= randomIrredpoly (extDeg + 1, Variable (1)); |
---|
5639 | Variable v= rootOf (mipo); |
---|
5640 | ExtensionInfo info2= ExtensionInfo (v); |
---|
5641 | factors= biFactorize (A, info2); |
---|
5642 | } |
---|
5643 | else |
---|
5644 | { |
---|
5645 | if (beta == Variable (1)) |
---|
5646 | { |
---|
5647 | Variable v= chooseExtension (alpha, beta, k); |
---|
5648 | CanonicalForm primElem, imPrimElem; |
---|
5649 | bool primFail= false; |
---|
5650 | Variable vBuf; |
---|
5651 | primElem= primitiveElement (alpha, vBuf, primFail); |
---|
5652 | ASSERT (!primFail, "failure in integer factorizer"); |
---|
5653 | if (primFail) |
---|
5654 | ; //ERROR |
---|
5655 | else |
---|
5656 | imPrimElem= mapPrimElem (primElem, alpha, v); |
---|
5657 | |
---|
5658 | CFList source, dest; |
---|
5659 | CanonicalForm bufA= mapUp (A, alpha, v, primElem, imPrimElem, |
---|
5660 | source, dest); |
---|
5661 | ExtensionInfo info2= ExtensionInfo (v, alpha, imPrimElem, primElem); |
---|
5662 | factors= biFactorize (bufA, info2); |
---|
5663 | } |
---|
5664 | else |
---|
5665 | { |
---|
5666 | Variable v= chooseExtension (alpha, beta, k); |
---|
5667 | CanonicalForm primElem, imPrimElem; |
---|
5668 | bool primFail= false; |
---|
5669 | Variable vBuf; |
---|
5670 | ASSERT (!primFail, "failure in integer factorizer"); |
---|
5671 | if (primFail) |
---|
5672 | ; //ERROR |
---|
5673 | else |
---|
5674 | imPrimElem= mapPrimElem (delta, beta, v); |
---|
5675 | |
---|
5676 | CFList source, dest; |
---|
5677 | CanonicalForm bufA= mapDown (A, info, source, dest); |
---|
5678 | source= CFList(); |
---|
5679 | dest= CFList(); |
---|
5680 | bufA= mapUp (bufA, beta, v, delta, imPrimElem, source, dest); |
---|
5681 | ExtensionInfo info2= ExtensionInfo (v, beta, imPrimElem, delta); |
---|
5682 | factors= biFactorize (bufA, info2); |
---|
5683 | } |
---|
5684 | } |
---|
5685 | return factors; |
---|
5686 | } |
---|
5687 | else // we are in GF (p^k) |
---|
5688 | { |
---|
5689 | int p= getCharacteristic(); |
---|
5690 | int extensionDeg= getGFDegree(); |
---|
5691 | bool extension= true; |
---|
5692 | if (k == 1) // need factorization over F_p |
---|
5693 | { |
---|
5694 | extensionDeg++; |
---|
5695 | if (ipower (p, extensionDeg) < (1<<16)) |
---|
5696 | // pass to GF(p^k+1) |
---|
5697 | { |
---|
5698 | setCharacteristic (p); |
---|
5699 | Variable vBuf= rootOf (gf_mipo); |
---|
5700 | A= GF2FalphaRep (A, vBuf); |
---|
5701 | setCharacteristic (p, extensionDeg, 'Z'); |
---|
5702 | ExtensionInfo info2= ExtensionInfo (extension); |
---|
5703 | factors= biFactorize (A.mapinto(), info2); |
---|
5704 | } |
---|
5705 | else // not able to pass to another GF, pass to F_p(\alpha) |
---|
5706 | { |
---|
5707 | setCharacteristic (p); |
---|
5708 | Variable vBuf= rootOf (gf_mipo); |
---|
5709 | A= GF2FalphaRep (A, vBuf); |
---|
5710 | Variable v= chooseExtension (vBuf, beta, k); |
---|
5711 | ExtensionInfo info2= ExtensionInfo (v, extension); |
---|
5712 | factors= biFactorize (A, info2); |
---|
5713 | } |
---|
5714 | } |
---|
5715 | else // need factorization over GF (p^k) |
---|
5716 | { |
---|
5717 | if (ipower (p, 2*extensionDeg) < (1<<16)) |
---|
5718 | // pass to GF (p^2k) |
---|
5719 | { |
---|
5720 | setCharacteristic (p, 2*extensionDeg, 'Z'); |
---|
5721 | ExtensionInfo info2= ExtensionInfo (k, cGFName, extension); |
---|
5722 | factors= biFactorize (GFMapUp (A, extensionDeg), info2); |
---|
5723 | setCharacteristic (p, extensionDeg, cGFName); |
---|
5724 | } |
---|
5725 | else // not able to pass to GF (p^2k), pass to F_p (\alpha) |
---|
5726 | { |
---|
5727 | setCharacteristic (p); |
---|
5728 | Variable v1= rootOf (gf_mipo); |
---|
5729 | A= GF2FalphaRep (A, v1); |
---|
5730 | Variable v2= chooseExtension (v1, v1, k); |
---|
5731 | CanonicalForm primElem, imPrimElem; |
---|
5732 | bool primFail= false; |
---|
5733 | Variable vBuf; |
---|
5734 | primElem= primitiveElement (v1, vBuf, primFail); |
---|
5735 | ASSERT (!primFail, "failure in integer factorizer"); |
---|
5736 | if (primFail) |
---|
5737 | ; //ERROR |
---|
5738 | else |
---|
5739 | imPrimElem= mapPrimElem (primElem, v1, v2); |
---|
5740 | |
---|
5741 | CFList source, dest; |
---|
5742 | CanonicalForm bufA= mapUp (A, v1, v2, primElem, imPrimElem, |
---|
5743 | source, dest); |
---|
5744 | ExtensionInfo info2= ExtensionInfo (v2, v1, imPrimElem, primElem); |
---|
5745 | factors= biFactorize (bufA, info2); |
---|
5746 | setCharacteristic (p, k, cGFName); |
---|
5747 | for (CFListIterator i= factors; i.hasItem(); i++) |
---|
5748 | i.getItem()= Falpha2GFRep (i.getItem()); |
---|
5749 | } |
---|
5750 | } |
---|
5751 | return factors; |
---|
5752 | } |
---|
5753 | } |
---|
5754 | |
---|
5755 | #endif |
---|
5756 | /* HAVE_NTL */ |
---|
5757 | |
---|
5758 | |
---|