1 | /*****************************************************************************\ |
---|
2 | * Computer Algebra System SINGULAR |
---|
3 | \*****************************************************************************/ |
---|
4 | /** @file facFqBivar.cc |
---|
5 | * |
---|
6 | * This file provides functions for factorizing a bivariate polynomial over |
---|
7 | * \f$ F_{p} \f$ , \f$ F_{p}(\alpha ) \f$ or GF, based on "Modern Computer |
---|
8 | * Algebra, Chapter 15" by J. von zur Gathen & J. Gerhard and "Factoring |
---|
9 | * multivariate polynomials over a finite field" by L. Bernardin. |
---|
10 | * Factor Recombination is described in "Factoring polynomials over global |
---|
11 | * fields" by K. Belabas, M. van Hoeij, J. Klueners, A. Steel |
---|
12 | * |
---|
13 | * |
---|
14 | * @author Martin Lee |
---|
15 | * |
---|
16 | **/ |
---|
17 | /*****************************************************************************/ |
---|
18 | |
---|
19 | #include "config.h" |
---|
20 | |
---|
21 | #include "cf_assert.h" |
---|
22 | #include "debug.h" |
---|
23 | #include "timing.h" |
---|
24 | |
---|
25 | #include "canonicalform.h" |
---|
26 | #include "cf_defs.h" |
---|
27 | #include "cf_map_ext.h" |
---|
28 | #include "cf_random.h" |
---|
29 | #include "facHensel.h" |
---|
30 | #include "facMul.h" |
---|
31 | #include "cf_map.h" |
---|
32 | #include "cf_gcd_smallp.h" |
---|
33 | #include "facFqBivarUtil.h" |
---|
34 | #include "facFqBivar.h" |
---|
35 | #include "cfNewtonPolygon.h" |
---|
36 | #include "algext.h" |
---|
37 | |
---|
38 | #ifdef HAVE_NTL |
---|
39 | #include "NTLconvert.h" |
---|
40 | |
---|
41 | #ifdef HAVE_FLINT |
---|
42 | #include "FLINTconvert.h" |
---|
43 | #endif |
---|
44 | |
---|
45 | TIMING_DEFINE_PRINT(fac_fq_uni_factorizer) |
---|
46 | TIMING_DEFINE_PRINT(fac_fq_bi_hensel_lift) |
---|
47 | TIMING_DEFINE_PRINT(fac_fq_bi_factor_recombination) |
---|
48 | TIMING_DEFINE_PRINT(fac_fq_bi_evaluation) |
---|
49 | TIMING_DEFINE_PRINT(fac_fq_bi_shift_to_zero) |
---|
50 | |
---|
51 | CanonicalForm prodMod0 (const CFList& L, const CanonicalForm& M, const modpk& b) |
---|
52 | { |
---|
53 | if (L.isEmpty()) |
---|
54 | return 1; |
---|
55 | else if (L.length() == 1) |
---|
56 | return mod (L.getFirst()(0, 1) , M); |
---|
57 | else if (L.length() == 2) |
---|
58 | return mod (mulNTL (L.getFirst()(0, 1),L.getLast()(0, 1), b), M); |
---|
59 | else |
---|
60 | { |
---|
61 | int l= L.length()/2; |
---|
62 | CFListIterator i= L; |
---|
63 | CFList tmp1, tmp2; |
---|
64 | CanonicalForm buf1, buf2; |
---|
65 | for (int j= 1; j <= l; j++, i++) |
---|
66 | tmp1.append (i.getItem()); |
---|
67 | tmp2= Difference (L, tmp1); |
---|
68 | buf1= prodMod0 (tmp1, M, b); |
---|
69 | buf2= prodMod0 (tmp2, M, b); |
---|
70 | return mod (mulNTL (buf1,buf2, b), M); |
---|
71 | } |
---|
72 | } |
---|
73 | |
---|
74 | CanonicalForm evalPoint (const CanonicalForm& F, CanonicalForm & eval, |
---|
75 | const Variable& alpha, CFList& list, const bool& GF, |
---|
76 | bool& fail) |
---|
77 | { |
---|
78 | fail= false; |
---|
79 | Variable x= Variable(2); |
---|
80 | Variable y= Variable(1); |
---|
81 | FFRandom genFF; |
---|
82 | GFRandom genGF; |
---|
83 | CanonicalForm random, mipo; |
---|
84 | double bound; |
---|
85 | int p= getCharacteristic (); |
---|
86 | if (alpha.level() != 1) |
---|
87 | { |
---|
88 | mipo= getMipo (alpha); |
---|
89 | int d= degree (mipo); |
---|
90 | bound= ipower (p, d); |
---|
91 | } |
---|
92 | else if (GF) |
---|
93 | { |
---|
94 | int d= getGFDegree(); |
---|
95 | bound= ipower (p, d); |
---|
96 | } |
---|
97 | else |
---|
98 | bound= p; |
---|
99 | |
---|
100 | random= 0; |
---|
101 | do |
---|
102 | { |
---|
103 | if (list.length() >= bound) |
---|
104 | { |
---|
105 | fail= true; |
---|
106 | break; |
---|
107 | } |
---|
108 | if (list.isEmpty()) |
---|
109 | random= 0; |
---|
110 | else if (GF) |
---|
111 | { |
---|
112 | if (list.length() == 1) |
---|
113 | random= getGFGenerator(); |
---|
114 | else |
---|
115 | random= genGF.generate(); |
---|
116 | } |
---|
117 | else if (list.length() < p || alpha.level() == 1) |
---|
118 | random= genFF.generate(); |
---|
119 | else if (alpha != x && list.length() >= p) |
---|
120 | { |
---|
121 | if (list.length() == p) |
---|
122 | random= alpha; |
---|
123 | else |
---|
124 | { |
---|
125 | AlgExtRandomF genAlgExt (alpha); |
---|
126 | random= genAlgExt.generate(); |
---|
127 | } |
---|
128 | } |
---|
129 | if (find (list, random)) continue; |
---|
130 | eval= F (random, x); |
---|
131 | if (degree (eval) != degree (F, y)) |
---|
132 | { //leading coeff vanishes |
---|
133 | if (!find (list, random)) |
---|
134 | list.append (random); |
---|
135 | continue; |
---|
136 | } |
---|
137 | if (degree (gcd (deriv (eval, eval.mvar()), eval), eval.mvar()) > 0) |
---|
138 | { //evaluated polynomial is not squarefree |
---|
139 | if (!find (list, random)) |
---|
140 | list.append (random); |
---|
141 | continue; |
---|
142 | } |
---|
143 | } while (find (list, random)); |
---|
144 | |
---|
145 | return random; |
---|
146 | } |
---|
147 | |
---|
148 | CFList |
---|
149 | uniFactorizer (const CanonicalForm& A, const Variable& alpha, const bool& GF) |
---|
150 | { |
---|
151 | Variable x= A.mvar(); |
---|
152 | if (A.inCoeffDomain()) |
---|
153 | return CFList(); |
---|
154 | ASSERT (A.isUnivariate(), |
---|
155 | "univariate polynomial expected or constant expected"); |
---|
156 | CFFList factorsA; |
---|
157 | if (fac_NTL_char != getCharacteristic()) |
---|
158 | { |
---|
159 | fac_NTL_char= getCharacteristic(); |
---|
160 | zz_p::init (getCharacteristic()); |
---|
161 | } |
---|
162 | if (GF) |
---|
163 | { |
---|
164 | int k= getGFDegree(); |
---|
165 | char cGFName= gf_name; |
---|
166 | CanonicalForm mipo= gf_mipo; |
---|
167 | setCharacteristic (getCharacteristic()); |
---|
168 | Variable beta= rootOf (mipo.mapinto()); |
---|
169 | CanonicalForm buf= GF2FalphaRep (A, beta); |
---|
170 | if (getCharacteristic() > 2) |
---|
171 | { |
---|
172 | zz_pX NTLMipo= convertFacCF2NTLzzpX (mipo.mapinto()); |
---|
173 | zz_pE::init (NTLMipo); |
---|
174 | zz_pEX NTLA= convertFacCF2NTLzz_pEX (buf, NTLMipo); |
---|
175 | MakeMonic (NTLA); |
---|
176 | vec_pair_zz_pEX_long NTLFactorsA= CanZass (NTLA); |
---|
177 | zz_pE multi= to_zz_pE (1); |
---|
178 | factorsA= convertNTLvec_pair_zzpEX_long2FacCFFList (NTLFactorsA, multi, |
---|
179 | x, beta); |
---|
180 | } |
---|
181 | else |
---|
182 | { |
---|
183 | GF2X NTLMipo= convertFacCF2NTLGF2X (mipo.mapinto()); |
---|
184 | GF2E::init (NTLMipo); |
---|
185 | GF2EX NTLA= convertFacCF2NTLGF2EX (buf, NTLMipo); |
---|
186 | MakeMonic (NTLA); |
---|
187 | vec_pair_GF2EX_long NTLFactorsA= CanZass (NTLA); |
---|
188 | GF2E multi= to_GF2E (1); |
---|
189 | factorsA= convertNTLvec_pair_GF2EX_long2FacCFFList (NTLFactorsA, multi, |
---|
190 | x, beta); |
---|
191 | } |
---|
192 | setCharacteristic (getCharacteristic(), k, cGFName); |
---|
193 | for (CFFListIterator i= factorsA; i.hasItem(); i++) |
---|
194 | { |
---|
195 | buf= i.getItem().factor(); |
---|
196 | buf= Falpha2GFRep (buf); |
---|
197 | i.getItem()= CFFactor (buf, i.getItem().exp()); |
---|
198 | } |
---|
199 | } |
---|
200 | else if (alpha.level() != 1) |
---|
201 | { |
---|
202 | if (getCharacteristic() > 2) |
---|
203 | { |
---|
204 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
205 | zz_pE::init (NTLMipo); |
---|
206 | zz_pEX NTLA= convertFacCF2NTLzz_pEX (A, NTLMipo); |
---|
207 | MakeMonic (NTLA); |
---|
208 | vec_pair_zz_pEX_long NTLFactorsA= CanZass (NTLA); |
---|
209 | zz_pE multi= to_zz_pE (1); |
---|
210 | factorsA= convertNTLvec_pair_zzpEX_long2FacCFFList (NTLFactorsA, multi, |
---|
211 | x, alpha); |
---|
212 | } |
---|
213 | else |
---|
214 | { |
---|
215 | GF2X NTLMipo= convertFacCF2NTLGF2X (getMipo (alpha)); |
---|
216 | GF2E::init (NTLMipo); |
---|
217 | GF2EX NTLA= convertFacCF2NTLGF2EX (A, NTLMipo); |
---|
218 | MakeMonic (NTLA); |
---|
219 | vec_pair_GF2EX_long NTLFactorsA= CanZass (NTLA); |
---|
220 | GF2E multi= to_GF2E (1); |
---|
221 | factorsA= convertNTLvec_pair_GF2EX_long2FacCFFList (NTLFactorsA, multi, |
---|
222 | x, alpha); |
---|
223 | } |
---|
224 | } |
---|
225 | else |
---|
226 | { |
---|
227 | #ifdef HAVE_FLINT |
---|
228 | nmod_poly_t FLINTA; |
---|
229 | convertFacCF2nmod_poly_t (FLINTA, A); |
---|
230 | nmod_poly_factor_t result; |
---|
231 | nmod_poly_factor_init (result); |
---|
232 | mp_limb_t leadingCoeff= nmod_poly_factor (result, FLINTA); |
---|
233 | factorsA= convertFLINTnmod_poly_factor2FacCFFList (result, leadingCoeff, x); |
---|
234 | if (factorsA.getFirst().factor().inCoeffDomain()) |
---|
235 | factorsA.removeFirst(); |
---|
236 | nmod_poly_factor_clear (result); |
---|
237 | nmod_poly_clear (FLINTA); |
---|
238 | #else |
---|
239 | if (getCharacteristic() > 2) |
---|
240 | { |
---|
241 | zz_pX NTLA= convertFacCF2NTLzzpX (A); |
---|
242 | MakeMonic (NTLA); |
---|
243 | vec_pair_zz_pX_long NTLFactorsA= CanZass (NTLA); |
---|
244 | zz_p multi= to_zz_p (1); |
---|
245 | factorsA= convertNTLvec_pair_zzpX_long2FacCFFList (NTLFactorsA, multi, |
---|
246 | x); |
---|
247 | } |
---|
248 | else |
---|
249 | { |
---|
250 | GF2X NTLA= convertFacCF2NTLGF2X (A); |
---|
251 | vec_pair_GF2X_long NTLFactorsA= CanZass (NTLA); |
---|
252 | GF2 multi= to_GF2 (1); |
---|
253 | factorsA= convertNTLvec_pair_GF2X_long2FacCFFList (NTLFactorsA, multi, |
---|
254 | x); |
---|
255 | } |
---|
256 | #endif |
---|
257 | } |
---|
258 | CFList uniFactors; |
---|
259 | for (CFFListIterator i= factorsA; i.hasItem(); i++) |
---|
260 | uniFactors.append (i.getItem().factor()); |
---|
261 | return uniFactors; |
---|
262 | } |
---|
263 | |
---|
264 | /// naive factor recombination as decribed in "Factoring |
---|
265 | /// multivariate polynomials over a finite field" by L Bernardin. |
---|
266 | CFList |
---|
267 | extFactorRecombination (CFList& factors, CanonicalForm& F, |
---|
268 | const CanonicalForm& N, const ExtensionInfo& info, |
---|
269 | DegreePattern& degs, const CanonicalForm& eval, int s, |
---|
270 | int thres) |
---|
271 | { |
---|
272 | if (factors.length() == 0) |
---|
273 | { |
---|
274 | F= 1; |
---|
275 | return CFList(); |
---|
276 | } |
---|
277 | if (F.inCoeffDomain()) |
---|
278 | return CFList(); |
---|
279 | |
---|
280 | Variable alpha= info.getAlpha(); |
---|
281 | Variable beta= info.getBeta(); |
---|
282 | CanonicalForm gamma= info.getGamma(); |
---|
283 | CanonicalForm delta= info.getDelta(); |
---|
284 | int k= info.getGFDegree(); |
---|
285 | |
---|
286 | CanonicalForm M= N; |
---|
287 | int l= degree (N); |
---|
288 | Variable y= F.mvar(); |
---|
289 | Variable x= Variable (1); |
---|
290 | CFList source, dest; |
---|
291 | if (degs.getLength() <= 1 || factors.length() == 1) |
---|
292 | { |
---|
293 | CFList result= CFList(mapDown (F(y-eval, y), info, source, dest)); |
---|
294 | F= 1; |
---|
295 | return result; |
---|
296 | } |
---|
297 | |
---|
298 | DEBOUTLN (cerr, "LC (F, 1)*prodMod (factors, M) == F " << |
---|
299 | (mod (LC (F, 1)*prodMod (factors, M), M)/Lc (mod (LC (F, 1)*prodMod (factors, M), M)) == F/Lc (F))); |
---|
300 | int degMipoBeta= 1; |
---|
301 | if (!k && beta.level() != 1) |
---|
302 | degMipoBeta= degree (getMipo (beta)); |
---|
303 | |
---|
304 | CFList T, S, Diff; |
---|
305 | T= factors; |
---|
306 | |
---|
307 | CFList result; |
---|
308 | CanonicalForm buf, buf2, quot; |
---|
309 | |
---|
310 | buf= F; |
---|
311 | |
---|
312 | CanonicalForm g, LCBuf= LC (buf, x); |
---|
313 | int * v= new int [T.length()]; |
---|
314 | for (int i= 0; i < T.length(); i++) |
---|
315 | v[i]= 0; |
---|
316 | |
---|
317 | CFArray TT; |
---|
318 | DegreePattern bufDegs1, bufDegs2; |
---|
319 | bufDegs1= degs; |
---|
320 | int subsetDeg; |
---|
321 | TT= copy (factors); |
---|
322 | bool nosubset= false; |
---|
323 | bool recombination= false; |
---|
324 | bool trueFactor= false; |
---|
325 | CanonicalForm test; |
---|
326 | CanonicalForm buf0= buf (0, x)*LCBuf; |
---|
327 | while (T.length() >= 2*s && s <= thres) |
---|
328 | { |
---|
329 | while (nosubset == false) |
---|
330 | { |
---|
331 | if (T.length() == s) |
---|
332 | { |
---|
333 | delete [] v; |
---|
334 | if (recombination) |
---|
335 | { |
---|
336 | T.insert (LCBuf); |
---|
337 | g= prodMod (T, M); |
---|
338 | T.removeFirst(); |
---|
339 | g /= content(g); |
---|
340 | g= g (y - eval, y); |
---|
341 | g /= Lc (g); |
---|
342 | appendTestMapDown (result, g, info, source, dest); |
---|
343 | F= 1; |
---|
344 | return result; |
---|
345 | } |
---|
346 | else |
---|
347 | { |
---|
348 | appendMapDown (result, F (y - eval, y), info, source, dest); |
---|
349 | F= 1; |
---|
350 | return result; |
---|
351 | } |
---|
352 | } |
---|
353 | S= subset (v, s, TT, nosubset); |
---|
354 | if (nosubset) break; |
---|
355 | subsetDeg= subsetDegree (S); |
---|
356 | // skip those combinations that are not possible |
---|
357 | if (!degs.find (subsetDeg)) |
---|
358 | continue; |
---|
359 | else |
---|
360 | { |
---|
361 | test= prodMod0 (S, M); |
---|
362 | test *= LCBuf; |
---|
363 | test = mod (test, M); |
---|
364 | if (fdivides (test, buf0)) |
---|
365 | { |
---|
366 | S.insert (LCBuf); |
---|
367 | g= prodMod (S, M); |
---|
368 | S.removeFirst(); |
---|
369 | g /= content (g, x); |
---|
370 | if (fdivides (g, buf, quot)) |
---|
371 | { |
---|
372 | buf2= g (y - eval, y); |
---|
373 | buf2 /= Lc (buf2); |
---|
374 | |
---|
375 | if (!k && beta.level() == 1) |
---|
376 | { |
---|
377 | if (degree (buf2, alpha) < degMipoBeta) |
---|
378 | { |
---|
379 | buf= quot; |
---|
380 | LCBuf= LC (buf, x); |
---|
381 | recombination= true; |
---|
382 | appendTestMapDown (result, buf2, info, source, dest); |
---|
383 | trueFactor= true; |
---|
384 | } |
---|
385 | } |
---|
386 | else |
---|
387 | { |
---|
388 | if (!isInExtension (buf2, gamma, k, delta, source, dest)) |
---|
389 | { |
---|
390 | buf= quot; |
---|
391 | LCBuf= LC (buf, x); |
---|
392 | recombination= true; |
---|
393 | appendTestMapDown (result, buf2, info, source, dest); |
---|
394 | trueFactor= true; |
---|
395 | } |
---|
396 | } |
---|
397 | if (trueFactor) |
---|
398 | { |
---|
399 | T= Difference (T, S); |
---|
400 | l -= degree (g); |
---|
401 | M= power (y, l); |
---|
402 | buf0= buf (0, x)*LCBuf; |
---|
403 | |
---|
404 | // compute new possible degree pattern |
---|
405 | bufDegs2= DegreePattern (T); |
---|
406 | bufDegs1.intersect (bufDegs2); |
---|
407 | bufDegs1.refine (); |
---|
408 | if (T.length() < 2*s || T.length() == s || |
---|
409 | bufDegs1.getLength() == 1) |
---|
410 | { |
---|
411 | delete [] v; |
---|
412 | if (recombination) |
---|
413 | { |
---|
414 | appendTestMapDown (result, buf (y - eval, y), info, source, |
---|
415 | dest); |
---|
416 | F= 1; |
---|
417 | return result; |
---|
418 | } |
---|
419 | else |
---|
420 | { |
---|
421 | appendMapDown (result, F (y - eval, y), info, source, dest); |
---|
422 | F= 1; |
---|
423 | return result; |
---|
424 | } |
---|
425 | } |
---|
426 | trueFactor= false; |
---|
427 | TT= copy (T); |
---|
428 | indexUpdate (v, s, T.length(), nosubset); |
---|
429 | if (nosubset) break; |
---|
430 | } |
---|
431 | } |
---|
432 | } |
---|
433 | } |
---|
434 | } |
---|
435 | s++; |
---|
436 | if (T.length() < 2*s || T.length() == s) |
---|
437 | { |
---|
438 | delete [] v; |
---|
439 | if (recombination) |
---|
440 | { |
---|
441 | appendTestMapDown (result, buf (y - eval, y), info, source, dest); |
---|
442 | F= 1; |
---|
443 | return result; |
---|
444 | } |
---|
445 | else |
---|
446 | { |
---|
447 | appendMapDown (result, F (y - eval, y), info, source, dest); |
---|
448 | F= 1; |
---|
449 | return result; |
---|
450 | } |
---|
451 | } |
---|
452 | for (int i= 0; i < T.length(); i++) |
---|
453 | v[i]= 0; |
---|
454 | nosubset= false; |
---|
455 | } |
---|
456 | if (T.length() < 2*s) |
---|
457 | { |
---|
458 | appendMapDown (result, F (y - eval, y), info, source, dest); |
---|
459 | F= 1; |
---|
460 | delete [] v; |
---|
461 | return result; |
---|
462 | } |
---|
463 | |
---|
464 | if (s > thres) |
---|
465 | { |
---|
466 | factors= T; |
---|
467 | F= buf; |
---|
468 | degs= bufDegs1; |
---|
469 | } |
---|
470 | |
---|
471 | delete [] v; |
---|
472 | return result; |
---|
473 | } |
---|
474 | |
---|
475 | /// naive factor recombination as decribed in "Factoring |
---|
476 | /// multivariate polynomials over a finite field" by L Bernardin. |
---|
477 | CFList |
---|
478 | factorRecombination (CFList& factors, CanonicalForm& F, |
---|
479 | const CanonicalForm& N, DegreePattern& degs, int s, |
---|
480 | int thres, const modpk& b |
---|
481 | ) |
---|
482 | { |
---|
483 | if (factors.length() == 0) |
---|
484 | { |
---|
485 | F= 1; |
---|
486 | return CFList (); |
---|
487 | } |
---|
488 | if (F.inCoeffDomain()) |
---|
489 | return CFList(); |
---|
490 | if (degs.getLength() <= 1 || factors.length() == 1) |
---|
491 | { |
---|
492 | CFList result= CFList (F); |
---|
493 | F= 1; |
---|
494 | return result; |
---|
495 | } |
---|
496 | #ifdef DEBUGOUTPUT |
---|
497 | if (b.getp() == 0) |
---|
498 | DEBOUTLN (cerr, "LC (F, 1)*prodMod (factors, N) == F " << |
---|
499 | (mod (LC (F, 1)*prodMod (factors, N),N)/Lc (mod (LC (F, 1)*prodMod (factors, N),N)) == F/Lc(F))); |
---|
500 | else |
---|
501 | DEBOUTLN (cerr, "LC (F, 1)*prodMod (factors, N) == F " << |
---|
502 | (mod (b(LC (F, 1)*prodMod (factors, N)),N)/Lc (mod (b(LC (F, 1)*prodMod (factors, N)),N)) == F/Lc(F))); |
---|
503 | #endif |
---|
504 | |
---|
505 | CFList T, S; |
---|
506 | |
---|
507 | CanonicalForm M= N; |
---|
508 | int l= degree (N); |
---|
509 | T= factors; |
---|
510 | CFList result; |
---|
511 | Variable y= Variable (2); |
---|
512 | Variable x= Variable (1); |
---|
513 | CanonicalForm LCBuf= LC (F, x); |
---|
514 | CanonicalForm g, quot, buf= F; |
---|
515 | int * v= new int [T.length()]; |
---|
516 | for (int i= 0; i < T.length(); i++) |
---|
517 | v[i]= 0; |
---|
518 | bool nosubset= false; |
---|
519 | CFArray TT; |
---|
520 | DegreePattern bufDegs1, bufDegs2; |
---|
521 | bufDegs1= degs; |
---|
522 | int subsetDeg; |
---|
523 | TT= copy (factors); |
---|
524 | bool recombination= false; |
---|
525 | CanonicalForm test; |
---|
526 | bool isRat= (isOn (SW_RATIONAL) && getCharacteristic() == 0) || |
---|
527 | getCharacteristic() > 0; |
---|
528 | if (!isRat) |
---|
529 | On (SW_RATIONAL); |
---|
530 | CanonicalForm buf0= mulNTL (buf (0, x), LCBuf); |
---|
531 | if (!isRat) |
---|
532 | Off (SW_RATIONAL); |
---|
533 | while (T.length() >= 2*s && s <= thres) |
---|
534 | { |
---|
535 | while (nosubset == false) |
---|
536 | { |
---|
537 | if (T.length() == s) |
---|
538 | { |
---|
539 | delete [] v; |
---|
540 | if (recombination) |
---|
541 | { |
---|
542 | T.insert (LCBuf); |
---|
543 | g= prodMod (T, M); |
---|
544 | if (b.getp() != 0) |
---|
545 | g= b(g); |
---|
546 | T.removeFirst(); |
---|
547 | result.append (g/content (g, x)); |
---|
548 | F= 1; |
---|
549 | return result; |
---|
550 | } |
---|
551 | else |
---|
552 | { |
---|
553 | result= CFList (F); |
---|
554 | F= 1; |
---|
555 | return result; |
---|
556 | } |
---|
557 | } |
---|
558 | S= subset (v, s, TT, nosubset); |
---|
559 | if (nosubset) break; |
---|
560 | subsetDeg= subsetDegree (S); |
---|
561 | // skip those combinations that are not possible |
---|
562 | if (!degs.find (subsetDeg)) |
---|
563 | continue; |
---|
564 | else |
---|
565 | { |
---|
566 | if (!isRat) |
---|
567 | On (SW_RATIONAL); |
---|
568 | test= prodMod0 (S, M); |
---|
569 | if (!isRat) |
---|
570 | { |
---|
571 | test *= bCommonDen (test); |
---|
572 | Off (SW_RATIONAL); |
---|
573 | } |
---|
574 | test= mulNTL (test, LCBuf, b); |
---|
575 | test= mod (test, M); |
---|
576 | if (uniFdivides (test, buf0)) |
---|
577 | { |
---|
578 | if (!isRat) |
---|
579 | On (SW_RATIONAL); |
---|
580 | S.insert (LCBuf); |
---|
581 | g= prodMod (S, M); |
---|
582 | S.removeFirst(); |
---|
583 | if (!isRat) |
---|
584 | { |
---|
585 | g *= bCommonDen(g); |
---|
586 | Off (SW_RATIONAL); |
---|
587 | } |
---|
588 | if (b.getp() != 0) |
---|
589 | g= b(g); |
---|
590 | if (!isRat) |
---|
591 | On (SW_RATIONAL); |
---|
592 | g /= content (g, x); |
---|
593 | if (fdivides (g, buf, quot)) |
---|
594 | { |
---|
595 | recombination= true; |
---|
596 | result.append (g); |
---|
597 | if (b.getp() != 0) |
---|
598 | buf= quot*bCommonDen (quot); |
---|
599 | else |
---|
600 | buf= quot; |
---|
601 | LCBuf= LC (buf, x); |
---|
602 | T= Difference (T, S); |
---|
603 | l -= degree (g); |
---|
604 | M= power (y, l); |
---|
605 | buf0= mulNTL (buf (0, x), LCBuf); |
---|
606 | if (!isRat) |
---|
607 | Off (SW_RATIONAL); |
---|
608 | // compute new possible degree pattern |
---|
609 | bufDegs2= DegreePattern (T); |
---|
610 | bufDegs1.intersect (bufDegs2); |
---|
611 | bufDegs1.refine (); |
---|
612 | if (T.length() < 2*s || T.length() == s || |
---|
613 | bufDegs1.getLength() == 1) |
---|
614 | { |
---|
615 | delete [] v; |
---|
616 | if (recombination) |
---|
617 | { |
---|
618 | result.append (buf); |
---|
619 | F= 1; |
---|
620 | return result; |
---|
621 | } |
---|
622 | else |
---|
623 | { |
---|
624 | result= CFList (F); |
---|
625 | F= 1; |
---|
626 | return result; |
---|
627 | } |
---|
628 | } |
---|
629 | TT= copy (T); |
---|
630 | indexUpdate (v, s, T.length(), nosubset); |
---|
631 | if (nosubset) break; |
---|
632 | } |
---|
633 | if (!isRat) |
---|
634 | Off (SW_RATIONAL); |
---|
635 | } |
---|
636 | } |
---|
637 | } |
---|
638 | s++; |
---|
639 | if (T.length() < 2*s || T.length() == s) |
---|
640 | { |
---|
641 | delete [] v; |
---|
642 | if (recombination) |
---|
643 | { |
---|
644 | result.append (buf); |
---|
645 | F= 1; |
---|
646 | return result; |
---|
647 | } |
---|
648 | else |
---|
649 | { |
---|
650 | result= CFList (F); |
---|
651 | F= 1; |
---|
652 | return result; |
---|
653 | } |
---|
654 | } |
---|
655 | for (int i= 0; i < T.length(); i++) |
---|
656 | v[i]= 0; |
---|
657 | nosubset= false; |
---|
658 | } |
---|
659 | delete [] v; |
---|
660 | if (T.length() < 2*s) |
---|
661 | { |
---|
662 | result.append (F); |
---|
663 | F= 1; |
---|
664 | return result; |
---|
665 | } |
---|
666 | |
---|
667 | if (s > thres) |
---|
668 | { |
---|
669 | factors= T; |
---|
670 | F= buf; |
---|
671 | degs= bufDegs1; |
---|
672 | } |
---|
673 | |
---|
674 | return result; |
---|
675 | } |
---|
676 | |
---|
677 | Variable chooseExtension (const Variable & alpha, const Variable& beta, int k) |
---|
678 | { |
---|
679 | if (fac_NTL_char != getCharacteristic()) |
---|
680 | { |
---|
681 | fac_NTL_char= getCharacteristic(); |
---|
682 | zz_p::init (getCharacteristic()); |
---|
683 | } |
---|
684 | zz_pX NTLIrredpoly; |
---|
685 | int i=1, m= 2; |
---|
686 | // extension of F_p needed |
---|
687 | if (alpha.level() == 1 && beta.level() == 1 && k == 1) |
---|
688 | { |
---|
689 | i= 1; |
---|
690 | m= 2; |
---|
691 | } //extension of F_p(alpha) needed but want to factorize over F_p |
---|
692 | else if (alpha.level() != 1 && beta.level() == 1 && k == 1) |
---|
693 | { |
---|
694 | i= 1; |
---|
695 | m= degree (getMipo (alpha)) + 1; |
---|
696 | } //extension of F_p(alpha) needed for first time |
---|
697 | else if (alpha.level() != 1 && beta.level() == 1 && k != 1) |
---|
698 | { |
---|
699 | i= 2; |
---|
700 | m= degree (getMipo (alpha)); |
---|
701 | } |
---|
702 | else if (alpha.level() != 1 && beta.level() != 1 && k != 1) |
---|
703 | { |
---|
704 | m= degree (getMipo (beta)); |
---|
705 | i= degree (getMipo (alpha))/m + 1; |
---|
706 | } |
---|
707 | BuildIrred (NTLIrredpoly, i*m); |
---|
708 | CanonicalForm newMipo= convertNTLzzpX2CF (NTLIrredpoly, Variable (1)); |
---|
709 | return rootOf (newMipo); |
---|
710 | } |
---|
711 | |
---|
712 | void |
---|
713 | earlyFactorDetection (CFList& reconstructedFactors, CanonicalForm& F, CFList& |
---|
714 | factors, int& adaptedLiftBound, int*& factorsFoundIndex, |
---|
715 | DegreePattern& degs, bool& success, int deg, |
---|
716 | const modpk& b) |
---|
717 | { |
---|
718 | DegreePattern bufDegs1= degs; |
---|
719 | DegreePattern bufDegs2; |
---|
720 | CFList T= factors; |
---|
721 | CanonicalForm buf= F; |
---|
722 | Variable x= Variable (1); |
---|
723 | CanonicalForm g, quot; |
---|
724 | CanonicalForm M= power (F.mvar(), deg); |
---|
725 | adaptedLiftBound= 0; |
---|
726 | int d= degree (F), l= 0; |
---|
727 | bool isRat= (isOn (SW_RATIONAL) && getCharacteristic() == 0) || getCharacteristic() > 0; |
---|
728 | if (!isRat) |
---|
729 | On (SW_RATIONAL); |
---|
730 | if (b.getp() != 0) |
---|
731 | buf *= bCommonDen (buf); |
---|
732 | CanonicalForm LCBuf= LC (buf, x); |
---|
733 | CanonicalForm buf0= mulNTL (buf (0,x), LCBuf); |
---|
734 | CanonicalForm buf1= mulNTL (buf (1,x), LCBuf); |
---|
735 | if (!isRat) |
---|
736 | Off (SW_RATIONAL); |
---|
737 | CanonicalForm test0, test1; |
---|
738 | |
---|
739 | for (CFListIterator i= factors; i.hasItem(); i++, l++) |
---|
740 | { |
---|
741 | if (!bufDegs1.find (degree (i.getItem(), 1)) || factorsFoundIndex[l] == 1) |
---|
742 | continue; |
---|
743 | else |
---|
744 | { |
---|
745 | test1= mod (mulNTL (i.getItem() (1,x), LCBuf, b), M); |
---|
746 | if (uniFdivides (test1, buf1)) |
---|
747 | { |
---|
748 | test0= mod (mulNTL (i.getItem() (0,x), LCBuf, b), M); |
---|
749 | if (uniFdivides (test0, buf0)) |
---|
750 | { |
---|
751 | if (!isRat) |
---|
752 | On (SW_RATIONAL); |
---|
753 | g= mulMod2 (i.getItem(), LCBuf, M); |
---|
754 | if (!isRat) |
---|
755 | { |
---|
756 | g *= bCommonDen(g); |
---|
757 | Off (SW_RATIONAL); |
---|
758 | } |
---|
759 | if (b.getp() != 0) |
---|
760 | g= b(g); |
---|
761 | if (!isRat) |
---|
762 | On (SW_RATIONAL); |
---|
763 | g /= content (g, x); |
---|
764 | if (fdivides (g, buf, quot)) |
---|
765 | { |
---|
766 | reconstructedFactors.append (g); |
---|
767 | factorsFoundIndex[l]= 1; |
---|
768 | if (b.getp() != 0) |
---|
769 | buf= quot*bCommonDen(quot); |
---|
770 | else |
---|
771 | buf= quot; |
---|
772 | d -= degree (g); |
---|
773 | LCBuf= LC (buf, x); |
---|
774 | buf0= mulNTL (buf (0,x), LCBuf); |
---|
775 | buf1= mulNTL (buf (1,x), LCBuf); |
---|
776 | if (!isRat) |
---|
777 | Off (SW_RATIONAL); |
---|
778 | T= Difference (T, CFList (i.getItem())); |
---|
779 | F= buf; |
---|
780 | |
---|
781 | // compute new possible degree pattern |
---|
782 | bufDegs2= DegreePattern (T); |
---|
783 | bufDegs1.intersect (bufDegs2); |
---|
784 | bufDegs1.refine (); |
---|
785 | if (bufDegs1.getLength() <= 1) |
---|
786 | { |
---|
787 | if (!buf.inCoeffDomain()) |
---|
788 | { |
---|
789 | reconstructedFactors.append (buf); |
---|
790 | F= 1; |
---|
791 | } |
---|
792 | break; |
---|
793 | } |
---|
794 | } |
---|
795 | if (!isRat) |
---|
796 | Off (SW_RATIONAL); |
---|
797 | } |
---|
798 | } |
---|
799 | } |
---|
800 | } |
---|
801 | adaptedLiftBound= d + 1; |
---|
802 | if (adaptedLiftBound < deg) |
---|
803 | { |
---|
804 | degs= bufDegs1; |
---|
805 | success= true; |
---|
806 | } |
---|
807 | if (bufDegs1.getLength() <= 1) |
---|
808 | degs= bufDegs1; |
---|
809 | } |
---|
810 | |
---|
811 | void |
---|
812 | extEarlyFactorDetection (CFList& reconstructedFactors, CanonicalForm& F, CFList& |
---|
813 | factors,int& adaptedLiftBound, int*& factorsFoundIndex, |
---|
814 | DegreePattern& degs, bool& success, const |
---|
815 | ExtensionInfo& info, const CanonicalForm& eval, int deg |
---|
816 | ) |
---|
817 | { |
---|
818 | Variable alpha= info.getAlpha(); |
---|
819 | Variable beta= info.getBeta(); |
---|
820 | CanonicalForm gamma= info.getGamma(); |
---|
821 | CanonicalForm delta= info.getDelta(); |
---|
822 | int k= info.getGFDegree(); |
---|
823 | DegreePattern bufDegs1= degs, bufDegs2; |
---|
824 | CFList result; |
---|
825 | CFList T= factors; |
---|
826 | Variable y= F.mvar(); |
---|
827 | Variable x= Variable (1); |
---|
828 | CanonicalForm buf= F, LCBuf= LC (buf, x), g, buf2; |
---|
829 | CanonicalForm M= power (y, deg); |
---|
830 | adaptedLiftBound= 0; |
---|
831 | bool trueFactor= false; |
---|
832 | int d= degree (F), l= 0; |
---|
833 | CFList source, dest; |
---|
834 | int degMipoBeta= 1; |
---|
835 | if (!k && beta.level() != 1) |
---|
836 | degMipoBeta= degree (getMipo (beta)); |
---|
837 | CanonicalForm quot; |
---|
838 | for (CFListIterator i= factors; i.hasItem(); i++, l++) |
---|
839 | { |
---|
840 | if (!bufDegs1.find (degree (i.getItem(), 1)) || factorsFoundIndex[l] == 1) |
---|
841 | continue; |
---|
842 | else |
---|
843 | { |
---|
844 | g= mulMod2 (i.getItem(), LCBuf, M); |
---|
845 | g /= content (g, x); |
---|
846 | if (fdivides (g, buf, quot)) |
---|
847 | { |
---|
848 | buf2= g (y - eval, y); |
---|
849 | buf2 /= Lc (buf2); |
---|
850 | |
---|
851 | if (!k && beta == x) |
---|
852 | { |
---|
853 | if (degree (buf2, alpha) < degMipoBeta) |
---|
854 | { |
---|
855 | appendTestMapDown (reconstructedFactors, buf2, info, source, dest); |
---|
856 | factorsFoundIndex[l]= 1; |
---|
857 | buf= quot; |
---|
858 | d -= degree (g); |
---|
859 | LCBuf= LC (buf, x); |
---|
860 | trueFactor= true; |
---|
861 | } |
---|
862 | } |
---|
863 | else |
---|
864 | { |
---|
865 | if (!isInExtension (buf2, gamma, k, delta, source, dest)) |
---|
866 | { |
---|
867 | appendTestMapDown (reconstructedFactors, buf2, info, source, dest); |
---|
868 | factorsFoundIndex[l]= 1; |
---|
869 | buf= quot; |
---|
870 | d -= degree (g); |
---|
871 | LCBuf= LC (buf, x); |
---|
872 | trueFactor= true; |
---|
873 | } |
---|
874 | } |
---|
875 | if (trueFactor) |
---|
876 | { |
---|
877 | T= Difference (T, CFList (i.getItem())); |
---|
878 | F= buf; |
---|
879 | |
---|
880 | // compute new possible degree pattern |
---|
881 | bufDegs2= DegreePattern (T); |
---|
882 | bufDegs1.intersect (bufDegs2); |
---|
883 | bufDegs1.refine (); |
---|
884 | trueFactor= false; |
---|
885 | if (bufDegs1.getLength() <= 1) |
---|
886 | { |
---|
887 | if (!buf.inCoeffDomain()) |
---|
888 | { |
---|
889 | buf= buf (y - eval, y); |
---|
890 | buf /= Lc (buf); |
---|
891 | appendMapDown (reconstructedFactors, buf, info, source, dest); |
---|
892 | F= 1; |
---|
893 | } |
---|
894 | break; |
---|
895 | } |
---|
896 | } |
---|
897 | } |
---|
898 | } |
---|
899 | } |
---|
900 | adaptedLiftBound= d + 1; |
---|
901 | if (adaptedLiftBound < deg) |
---|
902 | { |
---|
903 | degs= bufDegs1; |
---|
904 | success= true; |
---|
905 | } |
---|
906 | if (bufDegs1.getLength() <= 1) |
---|
907 | degs= bufDegs1; |
---|
908 | } |
---|
909 | |
---|
910 | int* |
---|
911 | getCombinations (int * rightSide, int sizeOfRightSide, int& sizeOfOutput, |
---|
912 | int degreeLC) |
---|
913 | { |
---|
914 | Variable x= Variable (1); |
---|
915 | int p= getCharacteristic(); |
---|
916 | int d= getGFDegree(); |
---|
917 | char cGFName= gf_name; |
---|
918 | setCharacteristic(0); |
---|
919 | CanonicalForm buf= 1; |
---|
920 | for (int i= 0; i < sizeOfRightSide; i++) |
---|
921 | buf *= (power (x, rightSide [i]) + 1); |
---|
922 | |
---|
923 | int j= 0; |
---|
924 | for (CFIterator i= buf; i.hasTerms(); i++, j++) |
---|
925 | { |
---|
926 | if (i.exp() < degreeLC) |
---|
927 | { |
---|
928 | j++; |
---|
929 | break; |
---|
930 | } |
---|
931 | } |
---|
932 | |
---|
933 | ASSERT ( j > 1, "j > 1 expected" ); |
---|
934 | |
---|
935 | int* result = new int [j - 1]; |
---|
936 | sizeOfOutput= j - 1; |
---|
937 | |
---|
938 | int i= 0; |
---|
939 | for (CFIterator m = buf; i < j - 1; i++, m++) |
---|
940 | result [i]= m.exp(); |
---|
941 | |
---|
942 | if (d > 1) |
---|
943 | setCharacteristic (p, d, cGFName); |
---|
944 | else |
---|
945 | setCharacteristic (p); |
---|
946 | return result; |
---|
947 | } |
---|
948 | |
---|
949 | int * |
---|
950 | getLiftPrecisions (const CanonicalForm& F, int& sizeOfOutput, int degreeLC) |
---|
951 | { |
---|
952 | int sizeOfNewtonPoly; |
---|
953 | int ** newtonPolyg= newtonPolygon (F, sizeOfNewtonPoly); |
---|
954 | int sizeOfRightSide; |
---|
955 | int * rightSide= getRightSide(newtonPolyg, sizeOfNewtonPoly, sizeOfRightSide); |
---|
956 | int * result= getCombinations(rightSide, sizeOfRightSide, sizeOfOutput, |
---|
957 | degreeLC); |
---|
958 | delete [] rightSide; |
---|
959 | for (int i= 0; i < sizeOfNewtonPoly; i++) |
---|
960 | delete [] newtonPolyg[i]; |
---|
961 | delete [] newtonPolyg; |
---|
962 | return result; |
---|
963 | } |
---|
964 | |
---|
965 | void |
---|
966 | deleteFactors (CFList& factors, int* factorsFoundIndex) |
---|
967 | { |
---|
968 | CFList result; |
---|
969 | int i= 0; |
---|
970 | for (CFListIterator iter= factors; iter.hasItem(); iter++, i++) |
---|
971 | { |
---|
972 | if (factorsFoundIndex[i] == 1) |
---|
973 | continue; |
---|
974 | else |
---|
975 | result.append (iter.getItem()); |
---|
976 | } |
---|
977 | factors= result; |
---|
978 | } |
---|
979 | |
---|
980 | CFList |
---|
981 | henselLiftAndEarly (CanonicalForm& A, bool& earlySuccess, CFList& |
---|
982 | earlyFactors, DegreePattern& degs, int& liftBound, |
---|
983 | const CFList& uniFactors, const ExtensionInfo& info, |
---|
984 | const CanonicalForm& eval, modpk& b) |
---|
985 | { |
---|
986 | Variable alpha= info.getAlpha(); |
---|
987 | Variable beta= info.getBeta(); |
---|
988 | CanonicalForm gamma= info.getGamma(); |
---|
989 | CanonicalForm delta= info.getDelta(); |
---|
990 | bool extension= info.isInExtension(); |
---|
991 | |
---|
992 | int sizeOfLiftPre; |
---|
993 | int * liftPre= getLiftPrecisions (A, sizeOfLiftPre, degree (LC (A, 1), 2)); |
---|
994 | |
---|
995 | Variable x= Variable (1); |
---|
996 | Variable y= Variable (2); |
---|
997 | CFArray Pi; |
---|
998 | CFList diophant; |
---|
999 | CFList bufUniFactors= uniFactors; |
---|
1000 | CanonicalForm bufA= A; |
---|
1001 | CanonicalForm lcA0= 0; |
---|
1002 | bool mipoHasDen= false; |
---|
1003 | if (getCharacteristic() == 0 && b.getp() != 0) |
---|
1004 | { |
---|
1005 | if (alpha.level() == 1) |
---|
1006 | { |
---|
1007 | lcA0= lc (A (0, 2)); |
---|
1008 | A *= b.inverse (lcA0); |
---|
1009 | A= b (A); |
---|
1010 | for (CFListIterator i= bufUniFactors; i.hasItem(); i++) |
---|
1011 | i.getItem()= b (i.getItem()*b.inverse (lc (i.getItem()))); |
---|
1012 | } |
---|
1013 | else |
---|
1014 | { |
---|
1015 | lcA0= Lc (A (0,2)); |
---|
1016 | On (SW_RATIONAL); |
---|
1017 | mipoHasDen= !bCommonDen(getMipo(alpha)).isOne(); |
---|
1018 | Off (SW_RATIONAL); |
---|
1019 | CanonicalForm lcA0inverse= b.inverse (lcA0); |
---|
1020 | A *= lcA0inverse; |
---|
1021 | A= b (A); |
---|
1022 | // Lc of bufUniFactors is in Z |
---|
1023 | for (CFListIterator i= bufUniFactors; i.hasItem(); i++) |
---|
1024 | i.getItem()= b (i.getItem()*b.inverse (lc (i.getItem()))); |
---|
1025 | } |
---|
1026 | } |
---|
1027 | bufUniFactors.insert (LC (A, x)); |
---|
1028 | CFMatrix M= CFMatrix (liftBound, bufUniFactors.length() - 1); |
---|
1029 | earlySuccess= false; |
---|
1030 | int newLiftBound= 0; |
---|
1031 | |
---|
1032 | int smallFactorDeg= tmin (11, liftPre [sizeOfLiftPre- 1] + 1);//this is a tunable parameter |
---|
1033 | int dummy; |
---|
1034 | int * factorsFoundIndex= new int [uniFactors.length()]; |
---|
1035 | for (int i= 0; i < uniFactors.length(); i++) |
---|
1036 | factorsFoundIndex [i]= 0; |
---|
1037 | |
---|
1038 | CFList bufBufUniFactors; |
---|
1039 | Variable v= alpha; |
---|
1040 | if (smallFactorDeg >= liftBound || degree (A,y) <= 4) |
---|
1041 | henselLift12 (A, bufUniFactors, liftBound, Pi, diophant, M, b, true); |
---|
1042 | else if (sizeOfLiftPre > 1 && sizeOfLiftPre < 30) |
---|
1043 | { |
---|
1044 | henselLift12 (A, bufUniFactors, smallFactorDeg, Pi, diophant, M, b, true); |
---|
1045 | if (mipoHasDen) |
---|
1046 | { |
---|
1047 | for (CFListIterator iter= bufUniFactors; iter.hasItem(); iter++) |
---|
1048 | if (hasFirstAlgVar (iter.getItem(), v)) |
---|
1049 | break; |
---|
1050 | if (v != alpha) |
---|
1051 | { |
---|
1052 | bufBufUniFactors= bufUniFactors; |
---|
1053 | for (CFListIterator iter= bufBufUniFactors; iter.hasItem(); iter++) |
---|
1054 | iter.getItem()= replacevar (iter.getItem(), v, alpha); |
---|
1055 | A= replacevar (A, alpha, v); |
---|
1056 | } |
---|
1057 | } |
---|
1058 | |
---|
1059 | if (!extension) |
---|
1060 | { |
---|
1061 | if (v==alpha) |
---|
1062 | earlyFactorDetection (earlyFactors, bufA, bufUniFactors, newLiftBound, |
---|
1063 | factorsFoundIndex, degs, earlySuccess, |
---|
1064 | smallFactorDeg, b); |
---|
1065 | else |
---|
1066 | earlyFactorDetection(earlyFactors, bufA, bufBufUniFactors, newLiftBound, |
---|
1067 | factorsFoundIndex, degs, earlySuccess, |
---|
1068 | smallFactorDeg, b); |
---|
1069 | } |
---|
1070 | else |
---|
1071 | extEarlyFactorDetection (earlyFactors, bufA, bufUniFactors, newLiftBound, |
---|
1072 | factorsFoundIndex, degs, earlySuccess, info, |
---|
1073 | eval, smallFactorDeg); |
---|
1074 | if (degs.getLength() > 1 && !earlySuccess && |
---|
1075 | smallFactorDeg != liftPre [sizeOfLiftPre-1] + 1) |
---|
1076 | { |
---|
1077 | if (newLiftBound >= liftPre[sizeOfLiftPre-1]+1) |
---|
1078 | { |
---|
1079 | bufUniFactors.insert (LC (A, x)); |
---|
1080 | henselLiftResume12 (A, bufUniFactors, smallFactorDeg, |
---|
1081 | liftPre[sizeOfLiftPre-1] + 1, Pi, diophant, M, b); |
---|
1082 | if (v!=alpha) |
---|
1083 | { |
---|
1084 | bufBufUniFactors= bufUniFactors; |
---|
1085 | for (CFListIterator iter= bufBufUniFactors; iter.hasItem(); iter++) |
---|
1086 | iter.getItem()= replacevar (iter.getItem(), v, alpha); |
---|
1087 | } |
---|
1088 | if (!extension) |
---|
1089 | { |
---|
1090 | if (v==alpha) |
---|
1091 | earlyFactorDetection (earlyFactors, bufA, bufUniFactors, newLiftBound, |
---|
1092 | factorsFoundIndex, degs, earlySuccess, |
---|
1093 | liftPre[sizeOfLiftPre-1] + 1, b); |
---|
1094 | else |
---|
1095 | earlyFactorDetection (earlyFactors,bufA,bufBufUniFactors,newLiftBound, |
---|
1096 | factorsFoundIndex, degs, earlySuccess, |
---|
1097 | liftPre[sizeOfLiftPre-1] + 1, b); |
---|
1098 | } |
---|
1099 | else |
---|
1100 | extEarlyFactorDetection (earlyFactors,bufA,bufUniFactors,newLiftBound, |
---|
1101 | factorsFoundIndex, degs, earlySuccess, info, |
---|
1102 | eval, liftPre[sizeOfLiftPre-1] + 1); |
---|
1103 | } |
---|
1104 | } |
---|
1105 | else if (earlySuccess) |
---|
1106 | liftBound= newLiftBound; |
---|
1107 | |
---|
1108 | int i= sizeOfLiftPre - 1; |
---|
1109 | while (degs.getLength() > 1 && !earlySuccess && i - 1 >= 0) |
---|
1110 | { |
---|
1111 | if (newLiftBound >= liftPre[i] + 1) |
---|
1112 | { |
---|
1113 | bufUniFactors.insert (LC (A, x)); |
---|
1114 | henselLiftResume12 (A, bufUniFactors, liftPre[i] + 1, |
---|
1115 | liftPre[i-1] + 1, Pi, diophant, M, b); |
---|
1116 | if (v!=alpha) |
---|
1117 | { |
---|
1118 | bufBufUniFactors= bufUniFactors; |
---|
1119 | for (CFListIterator iter= bufBufUniFactors; iter.hasItem(); iter++) |
---|
1120 | iter.getItem()= replacevar (iter.getItem(), v, alpha); |
---|
1121 | } |
---|
1122 | if (!extension) |
---|
1123 | { |
---|
1124 | if (v==alpha) |
---|
1125 | earlyFactorDetection (earlyFactors, bufA, bufUniFactors, newLiftBound, |
---|
1126 | factorsFoundIndex, degs, earlySuccess, |
---|
1127 | liftPre[i-1] + 1, b); |
---|
1128 | else |
---|
1129 | earlyFactorDetection (earlyFactors,bufA,bufBufUniFactors,newLiftBound, |
---|
1130 | factorsFoundIndex, degs, earlySuccess, |
---|
1131 | liftPre[i-1] + 1, b); |
---|
1132 | } |
---|
1133 | else |
---|
1134 | extEarlyFactorDetection (earlyFactors,bufA,bufUniFactors,newLiftBound, |
---|
1135 | factorsFoundIndex, degs, earlySuccess, info, |
---|
1136 | eval, liftPre[i-1] + 1); |
---|
1137 | } |
---|
1138 | else |
---|
1139 | { |
---|
1140 | liftBound= newLiftBound; |
---|
1141 | break; |
---|
1142 | } |
---|
1143 | i--; |
---|
1144 | } |
---|
1145 | if (earlySuccess) |
---|
1146 | liftBound= newLiftBound; |
---|
1147 | //after here all factors are lifted to liftPre[sizeOfLiftPre-1] |
---|
1148 | } |
---|
1149 | else |
---|
1150 | { |
---|
1151 | henselLift12 (A, bufUniFactors, smallFactorDeg, Pi, diophant, M, b, true); |
---|
1152 | if (mipoHasDen) |
---|
1153 | { |
---|
1154 | for (CFListIterator iter= bufUniFactors; iter.hasItem(); iter++) |
---|
1155 | if (hasFirstAlgVar (iter.getItem(), v)) |
---|
1156 | break; |
---|
1157 | if (v != alpha) |
---|
1158 | { |
---|
1159 | bufBufUniFactors= bufUniFactors; |
---|
1160 | for (CFListIterator iter= bufBufUniFactors; iter.hasItem(); iter++) |
---|
1161 | iter.getItem()= replacevar (iter.getItem(), v, alpha); |
---|
1162 | A= replacevar (A, alpha, v); |
---|
1163 | } |
---|
1164 | } |
---|
1165 | if (!extension) |
---|
1166 | { |
---|
1167 | if (v==alpha) |
---|
1168 | earlyFactorDetection (earlyFactors, bufA, bufUniFactors, newLiftBound, |
---|
1169 | factorsFoundIndex, degs, earlySuccess, |
---|
1170 | smallFactorDeg, b); |
---|
1171 | else |
---|
1172 | earlyFactorDetection (earlyFactors, bufA, bufBufUniFactors, newLiftBound, |
---|
1173 | factorsFoundIndex, degs, earlySuccess, |
---|
1174 | smallFactorDeg, b); |
---|
1175 | } |
---|
1176 | else |
---|
1177 | extEarlyFactorDetection (earlyFactors, bufA, bufUniFactors, newLiftBound, |
---|
1178 | factorsFoundIndex, degs, earlySuccess, info, |
---|
1179 | eval, smallFactorDeg); |
---|
1180 | int i= 1; |
---|
1181 | while ((degree (A,y)/4)*i + 4 <= smallFactorDeg) |
---|
1182 | i++; |
---|
1183 | dummy= tmin (degree (A,y)+1, (degree (A,y)/4)*i+4); |
---|
1184 | if (degs.getLength() > 1 && !earlySuccess && dummy > smallFactorDeg) |
---|
1185 | { |
---|
1186 | bufUniFactors.insert (LC (A, x)); |
---|
1187 | henselLiftResume12 (A, bufUniFactors, smallFactorDeg, |
---|
1188 | dummy, Pi, diophant, M, b); |
---|
1189 | if (v!=alpha) |
---|
1190 | { |
---|
1191 | bufBufUniFactors= bufUniFactors; |
---|
1192 | for (CFListIterator iter= bufBufUniFactors; iter.hasItem(); iter++) |
---|
1193 | iter.getItem()= replacevar (iter.getItem(), v, alpha); |
---|
1194 | } |
---|
1195 | if (!extension) |
---|
1196 | { |
---|
1197 | if (v==alpha) |
---|
1198 | earlyFactorDetection (earlyFactors, bufA, bufUniFactors, newLiftBound, |
---|
1199 | factorsFoundIndex, degs, earlySuccess, dummy, b); |
---|
1200 | else |
---|
1201 | earlyFactorDetection (earlyFactors, bufA,bufBufUniFactors, newLiftBound, |
---|
1202 | factorsFoundIndex, degs, earlySuccess, dummy, b); |
---|
1203 | } |
---|
1204 | else |
---|
1205 | extEarlyFactorDetection (earlyFactors, bufA,bufUniFactors, newLiftBound, |
---|
1206 | factorsFoundIndex, degs, earlySuccess, info, |
---|
1207 | eval, dummy); |
---|
1208 | } |
---|
1209 | while (degs.getLength() > 1 && !earlySuccess && i < 4) |
---|
1210 | { |
---|
1211 | if (newLiftBound >= dummy) |
---|
1212 | { |
---|
1213 | bufUniFactors.insert (LC (A, x)); |
---|
1214 | dummy= tmin (degree (A,y)+1, (degree (A,y)/4)*(i+1)+4); |
---|
1215 | henselLiftResume12 (A, bufUniFactors, (degree (A,y)/4)*i + 4, |
---|
1216 | dummy, Pi, diophant, M, b); |
---|
1217 | if (v!=alpha) |
---|
1218 | { |
---|
1219 | bufBufUniFactors= bufUniFactors; |
---|
1220 | for (CFListIterator iter= bufBufUniFactors; iter.hasItem(); iter++) |
---|
1221 | iter.getItem()= replacevar (iter.getItem(), v, alpha); |
---|
1222 | } |
---|
1223 | if (!extension) |
---|
1224 | { |
---|
1225 | if (v==alpha) |
---|
1226 | earlyFactorDetection (earlyFactors, bufA, bufUniFactors, newLiftBound, |
---|
1227 | factorsFoundIndex, degs, earlySuccess, dummy,b); |
---|
1228 | else |
---|
1229 | earlyFactorDetection (earlyFactors,bufA,bufBufUniFactors,newLiftBound, |
---|
1230 | factorsFoundIndex, degs, earlySuccess, dummy,b); |
---|
1231 | } |
---|
1232 | else |
---|
1233 | extEarlyFactorDetection (earlyFactors,bufA,bufUniFactors,newLiftBound, |
---|
1234 | factorsFoundIndex, degs, earlySuccess, info, |
---|
1235 | eval, dummy); |
---|
1236 | } |
---|
1237 | else |
---|
1238 | { |
---|
1239 | liftBound= newLiftBound; |
---|
1240 | break; |
---|
1241 | } |
---|
1242 | i++; |
---|
1243 | } |
---|
1244 | if (earlySuccess) |
---|
1245 | liftBound= newLiftBound; |
---|
1246 | } |
---|
1247 | |
---|
1248 | A= bufA; |
---|
1249 | if (earlyFactors.length() > 0 && degs.getLength() > 1) |
---|
1250 | { |
---|
1251 | liftBound= degree (A,y) + 1; |
---|
1252 | earlySuccess= true; |
---|
1253 | deleteFactors (bufUniFactors, factorsFoundIndex); |
---|
1254 | } |
---|
1255 | |
---|
1256 | delete [] factorsFoundIndex; |
---|
1257 | delete [] liftPre; |
---|
1258 | |
---|
1259 | return bufUniFactors; |
---|
1260 | } |
---|
1261 | |
---|
1262 | CFList |
---|
1263 | henselLiftAndEarly (CanonicalForm& A, bool& earlySuccess, CFList& |
---|
1264 | earlyFactors, DegreePattern& degs, int& liftBound, |
---|
1265 | const CFList& uniFactors, const ExtensionInfo& info, |
---|
1266 | const CanonicalForm& eval) |
---|
1267 | { |
---|
1268 | modpk dummy= modpk(); |
---|
1269 | return henselLiftAndEarly (A, earlySuccess, earlyFactors, degs, liftBound, |
---|
1270 | uniFactors, info, eval, dummy); |
---|
1271 | } |
---|
1272 | |
---|
1273 | long isReduced (const mat_zz_p& M) |
---|
1274 | { |
---|
1275 | long i, j, nonZero; |
---|
1276 | for (i = 1; i <= M.NumRows(); i++) |
---|
1277 | { |
---|
1278 | nonZero= 0; |
---|
1279 | for (j = 1; j <= M.NumCols(); j++) |
---|
1280 | { |
---|
1281 | if (!IsZero (M (i,j))) |
---|
1282 | nonZero++; |
---|
1283 | } |
---|
1284 | if (nonZero != 1) |
---|
1285 | return 0; |
---|
1286 | } |
---|
1287 | return 1; |
---|
1288 | } |
---|
1289 | |
---|
1290 | #ifdef HAVE_FLINT |
---|
1291 | long isReduced (const nmod_mat_t M) |
---|
1292 | { |
---|
1293 | long i, j, nonZero; |
---|
1294 | for (i = 1; i <= nmod_mat_nrows(M); i++) |
---|
1295 | { |
---|
1296 | nonZero= 0; |
---|
1297 | for (j = 1; j <= nmod_mat_ncols (M); j++) |
---|
1298 | { |
---|
1299 | if (!(nmod_mat_entry (M, i-1, j-1)==0)) |
---|
1300 | nonZero++; |
---|
1301 | } |
---|
1302 | if (nonZero != 1) |
---|
1303 | return 0; |
---|
1304 | } |
---|
1305 | return 1; |
---|
1306 | } |
---|
1307 | #endif |
---|
1308 | |
---|
1309 | long isReduced (const mat_zz_pE& M) |
---|
1310 | { |
---|
1311 | long i, j, nonZero; |
---|
1312 | for (i = 1; i <= M.NumRows(); i++) |
---|
1313 | { |
---|
1314 | nonZero= 0; |
---|
1315 | for (j = 1; j <= M.NumCols(); j++) |
---|
1316 | { |
---|
1317 | if (!IsZero (M (i,j))) |
---|
1318 | nonZero++; |
---|
1319 | } |
---|
1320 | if (nonZero != 1) |
---|
1321 | return 0; |
---|
1322 | } |
---|
1323 | return 1; |
---|
1324 | } |
---|
1325 | |
---|
1326 | int * extractZeroOneVecs (const mat_zz_p& M) |
---|
1327 | { |
---|
1328 | long i, j; |
---|
1329 | bool nonZeroOne= false; |
---|
1330 | int * result= new int [M.NumCols()]; |
---|
1331 | for (i = 1; i <= M.NumCols(); i++) |
---|
1332 | { |
---|
1333 | for (j = 1; j <= M.NumRows(); j++) |
---|
1334 | { |
---|
1335 | if (!(IsOne (M (j,i)) || IsZero (M (j,i)))) |
---|
1336 | { |
---|
1337 | nonZeroOne= true; |
---|
1338 | break; |
---|
1339 | } |
---|
1340 | } |
---|
1341 | if (!nonZeroOne) |
---|
1342 | result [i - 1]= 1; |
---|
1343 | else |
---|
1344 | result [i - 1]= 0; |
---|
1345 | nonZeroOne= false; |
---|
1346 | } |
---|
1347 | return result; |
---|
1348 | } |
---|
1349 | |
---|
1350 | #ifdef HAVE_FLINT |
---|
1351 | int * extractZeroOneVecs (const nmod_mat_t M) |
---|
1352 | { |
---|
1353 | long i, j; |
---|
1354 | bool nonZeroOne= false; |
---|
1355 | int * result= new int [nmod_mat_ncols (M)]; |
---|
1356 | for (i = 0; i < nmod_mat_ncols (M); i++) |
---|
1357 | { |
---|
1358 | for (j = 0; j < nmod_mat_nrows (M); j++) |
---|
1359 | { |
---|
1360 | if (!((nmod_mat_entry (M, j, i) == 1) || (nmod_mat_entry (M, j,i) == 0))) |
---|
1361 | { |
---|
1362 | nonZeroOne= true; |
---|
1363 | break; |
---|
1364 | } |
---|
1365 | } |
---|
1366 | if (!nonZeroOne) |
---|
1367 | result [i]= 1; |
---|
1368 | else |
---|
1369 | result [i]= 0; |
---|
1370 | nonZeroOne= false; |
---|
1371 | } |
---|
1372 | return result; |
---|
1373 | } |
---|
1374 | #endif |
---|
1375 | |
---|
1376 | int * extractZeroOneVecs (const mat_zz_pE& M) |
---|
1377 | { |
---|
1378 | long i, j; |
---|
1379 | bool nonZeroOne= false; |
---|
1380 | int * result= new int [M.NumCols()]; |
---|
1381 | for (i = 1; i <= M.NumCols(); i++) |
---|
1382 | { |
---|
1383 | for (j = 1; j <= M.NumRows(); j++) |
---|
1384 | { |
---|
1385 | if (!(IsOne (M (j,i)) || IsZero (M (j,i)))) |
---|
1386 | { |
---|
1387 | nonZeroOne= true; |
---|
1388 | break; |
---|
1389 | } |
---|
1390 | } |
---|
1391 | if (!nonZeroOne) |
---|
1392 | result [i - 1]= 1; |
---|
1393 | else |
---|
1394 | result [i - 1]= 0; |
---|
1395 | nonZeroOne= false; |
---|
1396 | } |
---|
1397 | return result; |
---|
1398 | } |
---|
1399 | |
---|
1400 | void |
---|
1401 | reconstructionTry (CFList& reconstructedFactors, CanonicalForm& F, const CFList& |
---|
1402 | factors, const int liftBound, int& factorsFound, int*& |
---|
1403 | factorsFoundIndex, mat_zz_pE& N, bool beenInThres |
---|
1404 | ) |
---|
1405 | { |
---|
1406 | Variable y= Variable (2); |
---|
1407 | Variable x= Variable (1); |
---|
1408 | CanonicalForm yToL= power (y, liftBound); |
---|
1409 | if (factors.length() == 2) |
---|
1410 | { |
---|
1411 | CanonicalForm tmp1, tmp2, tmp3; |
---|
1412 | tmp1= factors.getFirst(); |
---|
1413 | tmp2= factors.getLast(); |
---|
1414 | tmp1 *= LC (F, x); |
---|
1415 | tmp1= mod (tmp1, yToL); |
---|
1416 | tmp1 /= content (tmp1, x); |
---|
1417 | tmp2 *= LC (F, x); |
---|
1418 | tmp2= mod (tmp2, yToL); |
---|
1419 | tmp2 /= content (tmp2, x); |
---|
1420 | tmp3 = tmp1*tmp2; |
---|
1421 | if (tmp3/Lc (tmp3) == F/Lc (F)) |
---|
1422 | { |
---|
1423 | factorsFound++; |
---|
1424 | F= 1; |
---|
1425 | reconstructedFactors.append (tmp1); |
---|
1426 | reconstructedFactors.append (tmp2); |
---|
1427 | return; |
---|
1428 | } |
---|
1429 | } |
---|
1430 | CanonicalForm quot, buf; |
---|
1431 | CFListIterator iter; |
---|
1432 | for (long i= 1; i <= N.NumCols(); i++) |
---|
1433 | { |
---|
1434 | if (factorsFoundIndex [i - 1] == 1) |
---|
1435 | continue; |
---|
1436 | iter= factors; |
---|
1437 | if (beenInThres) |
---|
1438 | { |
---|
1439 | int count= 1; |
---|
1440 | while (count < i) |
---|
1441 | { |
---|
1442 | count++; |
---|
1443 | iter++; |
---|
1444 | } |
---|
1445 | buf= iter.getItem(); |
---|
1446 | } |
---|
1447 | else |
---|
1448 | { |
---|
1449 | buf= 1; |
---|
1450 | for (long j= 1; j <= N.NumRows(); j++, iter++) |
---|
1451 | { |
---|
1452 | if (!IsZero (N (j,i))) |
---|
1453 | buf= mulMod2 (buf, iter.getItem(), yToL); |
---|
1454 | } |
---|
1455 | } |
---|
1456 | buf *= LC (F, x); |
---|
1457 | buf= mod (buf, yToL); |
---|
1458 | buf /= content (buf, x); |
---|
1459 | if (fdivides (buf, F, quot)) |
---|
1460 | { |
---|
1461 | factorsFoundIndex[i - 1]= 1; |
---|
1462 | factorsFound++; |
---|
1463 | F= quot; |
---|
1464 | F /= Lc (F); |
---|
1465 | reconstructedFactors.append (buf); |
---|
1466 | } |
---|
1467 | if (degree (F) <= 0) |
---|
1468 | return; |
---|
1469 | if (factorsFound + 1 == N.NumCols()) |
---|
1470 | { |
---|
1471 | reconstructedFactors.append (F); |
---|
1472 | return; |
---|
1473 | } |
---|
1474 | } |
---|
1475 | } |
---|
1476 | |
---|
1477 | void |
---|
1478 | reconstructionTry (CFList& reconstructedFactors, CanonicalForm& F, const CFList& |
---|
1479 | factors, const int liftBound, int& factorsFound, int*& |
---|
1480 | factorsFoundIndex, mat_zz_p& N, bool beenInThres |
---|
1481 | ) |
---|
1482 | { |
---|
1483 | Variable y= Variable (2); |
---|
1484 | Variable x= Variable (1); |
---|
1485 | CanonicalForm yToL= power (y, liftBound); |
---|
1486 | if (factors.length() == 2) |
---|
1487 | { |
---|
1488 | CanonicalForm tmp1, tmp2, tmp3; |
---|
1489 | tmp1= factors.getFirst(); |
---|
1490 | tmp2= factors.getLast(); |
---|
1491 | tmp1 *= LC (F, x); |
---|
1492 | tmp1= mod (tmp1, yToL); |
---|
1493 | tmp1 /= content (tmp1, x); |
---|
1494 | tmp2 *= LC (F, x); |
---|
1495 | tmp2= mod (tmp2, yToL); |
---|
1496 | tmp2 /= content (tmp2, x); |
---|
1497 | tmp3 = tmp1*tmp2; |
---|
1498 | if (tmp3/Lc (tmp3) == F/Lc (F)) |
---|
1499 | { |
---|
1500 | factorsFound++; |
---|
1501 | F= 1; |
---|
1502 | reconstructedFactors.append (tmp1); |
---|
1503 | reconstructedFactors.append (tmp2); |
---|
1504 | return; |
---|
1505 | } |
---|
1506 | } |
---|
1507 | CanonicalForm quot, buf; |
---|
1508 | CFListIterator iter; |
---|
1509 | for (long i= 1; i <= N.NumCols(); i++) |
---|
1510 | { |
---|
1511 | if (factorsFoundIndex [i - 1] == 1) |
---|
1512 | continue; |
---|
1513 | iter= factors; |
---|
1514 | if (beenInThres) |
---|
1515 | { |
---|
1516 | int count= 1; |
---|
1517 | while (count < i) |
---|
1518 | { |
---|
1519 | count++; |
---|
1520 | iter++; |
---|
1521 | } |
---|
1522 | buf= iter.getItem(); |
---|
1523 | } |
---|
1524 | else |
---|
1525 | { |
---|
1526 | buf= 1; |
---|
1527 | for (long j= 1; j <= N.NumRows(); j++, iter++) |
---|
1528 | { |
---|
1529 | if (!IsZero (N (j,i))) |
---|
1530 | buf= mulMod2 (buf, iter.getItem(), yToL); |
---|
1531 | } |
---|
1532 | } |
---|
1533 | buf *= LC (F, x); |
---|
1534 | buf= mod (buf, yToL); |
---|
1535 | buf /= content (buf, x); |
---|
1536 | if (fdivides (buf, F, quot)) |
---|
1537 | { |
---|
1538 | factorsFoundIndex[i - 1]= 1; |
---|
1539 | factorsFound++; |
---|
1540 | F= quot; |
---|
1541 | F /= Lc (F); |
---|
1542 | reconstructedFactors.append (buf); |
---|
1543 | } |
---|
1544 | if (degree (F) <= 0) |
---|
1545 | return; |
---|
1546 | if (factorsFound + 1 == N.NumCols()) |
---|
1547 | { |
---|
1548 | reconstructedFactors.append (F); |
---|
1549 | return; |
---|
1550 | } |
---|
1551 | } |
---|
1552 | } |
---|
1553 | |
---|
1554 | #ifdef HAVE_FLINT |
---|
1555 | void |
---|
1556 | reconstructionTry (CFList& reconstructedFactors, CanonicalForm& F, const CFList& |
---|
1557 | factors, const int liftBound, int& factorsFound, int*& |
---|
1558 | factorsFoundIndex, nmod_mat_t N, bool beenInThres |
---|
1559 | ) |
---|
1560 | { |
---|
1561 | Variable y= Variable (2); |
---|
1562 | Variable x= Variable (1); |
---|
1563 | CanonicalForm yToL= power (y, liftBound); |
---|
1564 | if (factors.length() == 2) |
---|
1565 | { |
---|
1566 | CanonicalForm tmp1, tmp2, tmp3; |
---|
1567 | tmp1= factors.getFirst(); |
---|
1568 | tmp2= factors.getLast(); |
---|
1569 | tmp1 *= LC (F, x); |
---|
1570 | tmp1= mod (tmp1, yToL); |
---|
1571 | tmp1 /= content (tmp1, x); |
---|
1572 | tmp2 *= LC (F, x); |
---|
1573 | tmp2= mod (tmp2, yToL); |
---|
1574 | tmp2 /= content (tmp2, x); |
---|
1575 | tmp3 = tmp1*tmp2; |
---|
1576 | if (tmp3/Lc (tmp3) == F/Lc (F)) |
---|
1577 | { |
---|
1578 | factorsFound++; |
---|
1579 | F= 1; |
---|
1580 | reconstructedFactors.append (tmp1); |
---|
1581 | reconstructedFactors.append (tmp2); |
---|
1582 | return; |
---|
1583 | } |
---|
1584 | } |
---|
1585 | CanonicalForm quot, buf; |
---|
1586 | CFListIterator iter; |
---|
1587 | for (long i= 0; i < nmod_mat_ncols (N); i++) |
---|
1588 | { |
---|
1589 | if (factorsFoundIndex [i] == 1) |
---|
1590 | continue; |
---|
1591 | iter= factors; |
---|
1592 | if (beenInThres) |
---|
1593 | { |
---|
1594 | int count= 0; |
---|
1595 | while (count < i) |
---|
1596 | { |
---|
1597 | count++; |
---|
1598 | iter++; |
---|
1599 | } |
---|
1600 | buf= iter.getItem(); |
---|
1601 | } |
---|
1602 | else |
---|
1603 | { |
---|
1604 | buf= 1; |
---|
1605 | for (long j= 0; j < nmod_mat_nrows (N); j++, iter++) |
---|
1606 | { |
---|
1607 | if (!(nmod_mat_entry (N, j, i) == 0)) |
---|
1608 | buf= mulMod2 (buf, iter.getItem(), yToL); |
---|
1609 | } |
---|
1610 | } |
---|
1611 | buf *= LC (F, x); |
---|
1612 | buf= mod (buf, yToL); |
---|
1613 | buf /= content (buf, x); |
---|
1614 | if (fdivides (buf, F, quot)) |
---|
1615 | { |
---|
1616 | factorsFoundIndex[i]= 1; |
---|
1617 | factorsFound++; |
---|
1618 | F= quot; |
---|
1619 | F /= Lc (F); |
---|
1620 | reconstructedFactors.append (buf); |
---|
1621 | } |
---|
1622 | if (degree (F) <= 0) |
---|
1623 | return; |
---|
1624 | if (factorsFound + 1 == nmod_mat_ncols (N)) |
---|
1625 | { |
---|
1626 | reconstructedFactors.append (F); |
---|
1627 | return; |
---|
1628 | } |
---|
1629 | } |
---|
1630 | } |
---|
1631 | #endif |
---|
1632 | |
---|
1633 | CFList |
---|
1634 | reconstruction (CanonicalForm& G, CFList& factors, int* zeroOneVecs, int |
---|
1635 | precision, const mat_zz_pE& N |
---|
1636 | ) |
---|
1637 | { |
---|
1638 | Variable y= Variable (2); |
---|
1639 | Variable x= Variable (1); |
---|
1640 | CanonicalForm F= G; |
---|
1641 | CanonicalForm yToL= power (y, precision); |
---|
1642 | CanonicalForm quot, buf; |
---|
1643 | CFList result, factorsConsidered; |
---|
1644 | CFList bufFactors= factors; |
---|
1645 | CFListIterator iter; |
---|
1646 | for (long i= 1; i <= N.NumCols(); i++) |
---|
1647 | { |
---|
1648 | if (zeroOneVecs [i - 1] == 0) |
---|
1649 | continue; |
---|
1650 | iter= factors; |
---|
1651 | buf= 1; |
---|
1652 | factorsConsidered= CFList(); |
---|
1653 | for (long j= 1; j <= N.NumRows(); j++, iter++) |
---|
1654 | { |
---|
1655 | if (!IsZero (N (j,i))) |
---|
1656 | { |
---|
1657 | factorsConsidered.append (iter.getItem()); |
---|
1658 | buf= mulMod2 (buf, iter.getItem(), yToL); |
---|
1659 | } |
---|
1660 | } |
---|
1661 | buf *= LC (F, x); |
---|
1662 | buf= mod (buf, yToL); |
---|
1663 | buf /= content (buf, x); |
---|
1664 | if (fdivides (buf, F, quot)) |
---|
1665 | { |
---|
1666 | F= quot; |
---|
1667 | F /= Lc (F); |
---|
1668 | result.append (buf); |
---|
1669 | bufFactors= Difference (bufFactors, factorsConsidered); |
---|
1670 | } |
---|
1671 | if (degree (F) <= 0) |
---|
1672 | { |
---|
1673 | G= F; |
---|
1674 | factors= bufFactors; |
---|
1675 | return result; |
---|
1676 | } |
---|
1677 | } |
---|
1678 | G= F; |
---|
1679 | factors= bufFactors; |
---|
1680 | return result; |
---|
1681 | } |
---|
1682 | |
---|
1683 | CFList |
---|
1684 | monicReconstruction (CanonicalForm& G, CFList& factors, int* zeroOneVecs, |
---|
1685 | int precision, const mat_zz_pE& N |
---|
1686 | ) |
---|
1687 | { |
---|
1688 | Variable y= Variable (2); |
---|
1689 | Variable x= Variable (1); |
---|
1690 | CanonicalForm F= G; |
---|
1691 | CanonicalForm yToL= power (y, precision); |
---|
1692 | CanonicalForm quot, buf, buf2; |
---|
1693 | CFList result; |
---|
1694 | CFList bufFactors= factors; |
---|
1695 | CFList factorsConsidered; |
---|
1696 | CFListIterator iter; |
---|
1697 | for (long i= 1; i <= N.NumCols(); i++) |
---|
1698 | { |
---|
1699 | if (zeroOneVecs [i - 1] == 0) |
---|
1700 | continue; |
---|
1701 | iter= factors; |
---|
1702 | buf= 1; |
---|
1703 | factorsConsidered= CFList(); |
---|
1704 | for (long j= 1; j <= N.NumRows(); j++, iter++) |
---|
1705 | { |
---|
1706 | if (!IsZero (N (j,i))) |
---|
1707 | { |
---|
1708 | factorsConsidered.append (iter.getItem()); |
---|
1709 | buf= mulMod2 (buf, iter.getItem(), yToL); |
---|
1710 | } |
---|
1711 | } |
---|
1712 | buf2= buf; |
---|
1713 | buf *= LC (F, x); |
---|
1714 | buf= mod (buf, yToL); |
---|
1715 | buf /= content (buf, x); |
---|
1716 | if (fdivides (buf, F, quot)) |
---|
1717 | { |
---|
1718 | F= quot; |
---|
1719 | F /= Lc (F); |
---|
1720 | result.append (buf2); |
---|
1721 | bufFactors= Difference (bufFactors, factorsConsidered); |
---|
1722 | } |
---|
1723 | if (degree (F) <= 0) |
---|
1724 | { |
---|
1725 | G= F; |
---|
1726 | factors= bufFactors; |
---|
1727 | return result; |
---|
1728 | } |
---|
1729 | } |
---|
1730 | G= F; |
---|
1731 | factors= bufFactors; |
---|
1732 | return result; |
---|
1733 | } |
---|
1734 | |
---|
1735 | CFList |
---|
1736 | extReconstruction (CanonicalForm& G, CFList& factors, int* zeroOneVecs, int |
---|
1737 | precision, const mat_zz_p& N, const ExtensionInfo& info, |
---|
1738 | const CanonicalForm& evaluation |
---|
1739 | ) |
---|
1740 | { |
---|
1741 | Variable y= Variable (2); |
---|
1742 | Variable x= Variable (1); |
---|
1743 | Variable alpha= info.getAlpha(); |
---|
1744 | Variable beta= info.getBeta(); |
---|
1745 | int k= info.getGFDegree(); |
---|
1746 | CanonicalForm gamma= info.getGamma(); |
---|
1747 | CanonicalForm delta= info.getDelta(); |
---|
1748 | CanonicalForm F= G; |
---|
1749 | CanonicalForm yToL= power (y, precision); |
---|
1750 | CFList result; |
---|
1751 | CFList bufFactors= factors; |
---|
1752 | CFList factorsConsidered; |
---|
1753 | CanonicalForm buf2, quot, buf; |
---|
1754 | CFListIterator iter; |
---|
1755 | for (long i= 1; i <= N.NumCols(); i++) |
---|
1756 | { |
---|
1757 | if (zeroOneVecs [i - 1] == 0) |
---|
1758 | continue; |
---|
1759 | iter= factors; |
---|
1760 | buf= 1; |
---|
1761 | factorsConsidered= CFList(); |
---|
1762 | for (long j= 1; j <= N.NumRows(); j++, iter++) |
---|
1763 | { |
---|
1764 | if (!IsZero (N (j,i))) |
---|
1765 | { |
---|
1766 | factorsConsidered.append (iter.getItem()); |
---|
1767 | buf= mulMod2 (buf, iter.getItem(), yToL); |
---|
1768 | } |
---|
1769 | } |
---|
1770 | buf *= LC (F, x); |
---|
1771 | buf= mod (buf, yToL); |
---|
1772 | buf /= content (buf, x); |
---|
1773 | buf2= buf (y-evaluation, y); |
---|
1774 | if (!k && beta == x) |
---|
1775 | { |
---|
1776 | if (degree (buf2, alpha) < 1) |
---|
1777 | { |
---|
1778 | if (fdivides (buf, F, quot)) |
---|
1779 | { |
---|
1780 | F= quot; |
---|
1781 | F /= Lc (F); |
---|
1782 | result.append (buf2); |
---|
1783 | bufFactors= Difference (bufFactors, factorsConsidered); |
---|
1784 | } |
---|
1785 | } |
---|
1786 | } |
---|
1787 | else |
---|
1788 | { |
---|
1789 | CFList source, dest; |
---|
1790 | |
---|
1791 | if (!isInExtension (buf2, gamma, k, delta, source, dest)) |
---|
1792 | { |
---|
1793 | if (fdivides (buf, F, quot)) |
---|
1794 | { |
---|
1795 | F= quot; |
---|
1796 | F /= Lc (F); |
---|
1797 | result.append (buf2); |
---|
1798 | bufFactors= Difference (bufFactors, factorsConsidered); |
---|
1799 | } |
---|
1800 | } |
---|
1801 | } |
---|
1802 | if (degree (F) <= 0) |
---|
1803 | { |
---|
1804 | G= F; |
---|
1805 | factors= bufFactors; |
---|
1806 | return result; |
---|
1807 | } |
---|
1808 | } |
---|
1809 | G= F; |
---|
1810 | factors= bufFactors; |
---|
1811 | return result; |
---|
1812 | } |
---|
1813 | |
---|
1814 | #ifdef HAVE_FLINT |
---|
1815 | CFList |
---|
1816 | extReconstruction (CanonicalForm& G, CFList& factors, int* zeroOneVecs, int |
---|
1817 | precision, const nmod_mat_t N, const ExtensionInfo& info, |
---|
1818 | const CanonicalForm& evaluation |
---|
1819 | ) |
---|
1820 | { |
---|
1821 | Variable y= Variable (2); |
---|
1822 | Variable x= Variable (1); |
---|
1823 | Variable alpha= info.getAlpha(); |
---|
1824 | Variable beta= info.getBeta(); |
---|
1825 | int k= info.getGFDegree(); |
---|
1826 | CanonicalForm gamma= info.getGamma(); |
---|
1827 | CanonicalForm delta= info.getDelta(); |
---|
1828 | CanonicalForm F= G; |
---|
1829 | CanonicalForm yToL= power (y, precision); |
---|
1830 | CFList result; |
---|
1831 | CFList bufFactors= factors; |
---|
1832 | CFList factorsConsidered; |
---|
1833 | CanonicalForm buf2, quot, buf; |
---|
1834 | CFListIterator iter; |
---|
1835 | for (long i= 0; i < nmod_mat_ncols(N); i++) |
---|
1836 | { |
---|
1837 | if (zeroOneVecs [i] == 0) |
---|
1838 | continue; |
---|
1839 | iter= factors; |
---|
1840 | buf= 1; |
---|
1841 | factorsConsidered= CFList(); |
---|
1842 | for (long j= 0; j < nmod_mat_ncols(N); j++, iter++) |
---|
1843 | { |
---|
1844 | if (!(nmod_mat_entry (N, j, i) == 0)) |
---|
1845 | { |
---|
1846 | factorsConsidered.append (iter.getItem()); |
---|
1847 | buf= mulMod2 (buf, iter.getItem(), yToL); |
---|
1848 | } |
---|
1849 | } |
---|
1850 | buf *= LC (F, x); |
---|
1851 | buf= mod (buf, yToL); |
---|
1852 | buf /= content (buf, x); |
---|
1853 | buf2= buf (y-evaluation, y); |
---|
1854 | if (!k && beta == x) |
---|
1855 | { |
---|
1856 | if (degree (buf2, alpha) < 1) |
---|
1857 | { |
---|
1858 | if (fdivides (buf, F, quot)) |
---|
1859 | { |
---|
1860 | F= quot; |
---|
1861 | F /= Lc (F); |
---|
1862 | result.append (buf2); |
---|
1863 | bufFactors= Difference (bufFactors, factorsConsidered); |
---|
1864 | } |
---|
1865 | } |
---|
1866 | } |
---|
1867 | else |
---|
1868 | { |
---|
1869 | CFList source, dest; |
---|
1870 | |
---|
1871 | if (!isInExtension (buf2, gamma, k, delta, source, dest)) |
---|
1872 | { |
---|
1873 | if (fdivides (buf, F, quot)) |
---|
1874 | { |
---|
1875 | F= quot; |
---|
1876 | F /= Lc (F); |
---|
1877 | result.append (buf2); |
---|
1878 | bufFactors= Difference (bufFactors, factorsConsidered); |
---|
1879 | } |
---|
1880 | } |
---|
1881 | } |
---|
1882 | if (degree (F) <= 0) |
---|
1883 | { |
---|
1884 | G= F; |
---|
1885 | factors= bufFactors; |
---|
1886 | return result; |
---|
1887 | } |
---|
1888 | } |
---|
1889 | G= F; |
---|
1890 | factors= bufFactors; |
---|
1891 | return result; |
---|
1892 | } |
---|
1893 | #endif |
---|
1894 | |
---|
1895 | CFList |
---|
1896 | reconstruction (CanonicalForm& G, CFList& factors, int* zeroOneVecs, |
---|
1897 | int precision, const mat_zz_p& N) |
---|
1898 | { |
---|
1899 | Variable y= Variable (2); |
---|
1900 | Variable x= Variable (1); |
---|
1901 | CanonicalForm F= G; |
---|
1902 | CanonicalForm yToL= power (y, precision); |
---|
1903 | CanonicalForm quot, buf; |
---|
1904 | CFList result; |
---|
1905 | CFList bufFactors= factors; |
---|
1906 | CFList factorsConsidered; |
---|
1907 | CFListIterator iter; |
---|
1908 | for (long i= 1; i <= N.NumCols(); i++) |
---|
1909 | { |
---|
1910 | if (zeroOneVecs [i - 1] == 0) |
---|
1911 | continue; |
---|
1912 | iter= factors; |
---|
1913 | buf= 1; |
---|
1914 | factorsConsidered= CFList(); |
---|
1915 | for (long j= 1; j <= N.NumRows(); j++, iter++) |
---|
1916 | { |
---|
1917 | if (!IsZero (N (j,i))) |
---|
1918 | { |
---|
1919 | factorsConsidered.append (iter.getItem()); |
---|
1920 | buf= mulMod2 (buf, iter.getItem(), yToL); |
---|
1921 | } |
---|
1922 | } |
---|
1923 | buf *= LC (F, x); |
---|
1924 | buf= mod (buf, yToL); |
---|
1925 | buf /= content (buf, x); |
---|
1926 | if (fdivides (buf, F, quot)) |
---|
1927 | { |
---|
1928 | F= quot; |
---|
1929 | F /= Lc (F); |
---|
1930 | result.append (buf); |
---|
1931 | bufFactors= Difference (bufFactors, factorsConsidered); |
---|
1932 | } |
---|
1933 | if (degree (F) <= 0) |
---|
1934 | { |
---|
1935 | G= F; |
---|
1936 | factors= bufFactors; |
---|
1937 | return result; |
---|
1938 | } |
---|
1939 | } |
---|
1940 | G= F; |
---|
1941 | factors= bufFactors; |
---|
1942 | return result; |
---|
1943 | } |
---|
1944 | |
---|
1945 | #ifdef HAVE_FLINT |
---|
1946 | CFList |
---|
1947 | reconstruction (CanonicalForm& G, CFList& factors, int* zeroOneVecs, |
---|
1948 | int precision, const nmod_mat_t N) |
---|
1949 | { |
---|
1950 | Variable y= Variable (2); |
---|
1951 | Variable x= Variable (1); |
---|
1952 | CanonicalForm F= G; |
---|
1953 | CanonicalForm yToL= power (y, precision); |
---|
1954 | CanonicalForm quot, buf; |
---|
1955 | CFList result; |
---|
1956 | CFList bufFactors= factors; |
---|
1957 | CFList factorsConsidered; |
---|
1958 | CFListIterator iter; |
---|
1959 | for (long i= 0; i < nmod_mat_ncols (N); i++) |
---|
1960 | { |
---|
1961 | if (zeroOneVecs [i] == 0) |
---|
1962 | continue; |
---|
1963 | iter= factors; |
---|
1964 | buf= 1; |
---|
1965 | factorsConsidered= CFList(); |
---|
1966 | for (long j= 0; j < nmod_mat_nrows (N); j++, iter++) |
---|
1967 | { |
---|
1968 | if (!(nmod_mat_entry (N, j, i) == 0)) |
---|
1969 | { |
---|
1970 | factorsConsidered.append (iter.getItem()); |
---|
1971 | buf= mulMod2 (buf, iter.getItem(), yToL); |
---|
1972 | } |
---|
1973 | } |
---|
1974 | buf *= LC (F, x); |
---|
1975 | buf= mod (buf, yToL); |
---|
1976 | buf /= content (buf, x); |
---|
1977 | if (fdivides (buf, F, quot)) |
---|
1978 | { |
---|
1979 | F= quot; |
---|
1980 | F /= Lc (F); |
---|
1981 | result.append (buf); |
---|
1982 | bufFactors= Difference (bufFactors, factorsConsidered); |
---|
1983 | } |
---|
1984 | if (degree (F) <= 0) |
---|
1985 | { |
---|
1986 | G= F; |
---|
1987 | factors= bufFactors; |
---|
1988 | return result; |
---|
1989 | } |
---|
1990 | } |
---|
1991 | G= F; |
---|
1992 | factors= bufFactors; |
---|
1993 | return result; |
---|
1994 | } |
---|
1995 | #endif |
---|
1996 | |
---|
1997 | void |
---|
1998 | extReconstructionTry (CFList& reconstructedFactors, CanonicalForm& F, const |
---|
1999 | CFList& factors, const int liftBound, int& factorsFound, |
---|
2000 | int*& factorsFoundIndex, mat_zz_p& N, bool beenInThres, |
---|
2001 | const ExtensionInfo& info, const CanonicalForm& evaluation |
---|
2002 | ) |
---|
2003 | { |
---|
2004 | Variable y= Variable (2); |
---|
2005 | Variable x= Variable (1); |
---|
2006 | Variable alpha= info.getAlpha(); |
---|
2007 | Variable beta= info.getBeta(); |
---|
2008 | int k= info.getGFDegree(); |
---|
2009 | CanonicalForm gamma= info.getGamma(); |
---|
2010 | CanonicalForm delta= info.getDelta(); |
---|
2011 | CanonicalForm yToL= power (y, liftBound); |
---|
2012 | CFList source, dest; |
---|
2013 | if (factors.length() == 2) |
---|
2014 | { |
---|
2015 | CanonicalForm tmp1, tmp2, tmp3; |
---|
2016 | tmp1= factors.getFirst(); |
---|
2017 | tmp2= factors.getLast(); |
---|
2018 | tmp1 *= LC (F, x); |
---|
2019 | tmp1= mod (tmp1, yToL); |
---|
2020 | tmp1 /= content (tmp1, x); |
---|
2021 | tmp2 *= LC (F, x); |
---|
2022 | tmp2= mod (tmp2, yToL); |
---|
2023 | tmp2 /= content (tmp2, x); |
---|
2024 | tmp3 = tmp1*tmp2; |
---|
2025 | if (tmp3/Lc (tmp3) == F/Lc (F)) |
---|
2026 | { |
---|
2027 | tmp1= tmp1 (y - evaluation, y); |
---|
2028 | tmp2= tmp2 (y - evaluation, y); |
---|
2029 | if (!k && beta == x && degree (tmp2, alpha) < 1 && |
---|
2030 | degree (tmp1, alpha) < 1) |
---|
2031 | { |
---|
2032 | factorsFound++; |
---|
2033 | F= 1; |
---|
2034 | tmp1= mapDown (tmp1, info, source, dest); |
---|
2035 | tmp2= mapDown (tmp2, info, source, dest); |
---|
2036 | reconstructedFactors.append (tmp1); |
---|
2037 | reconstructedFactors.append (tmp2); |
---|
2038 | return; |
---|
2039 | } |
---|
2040 | else if (!isInExtension (tmp2, gamma, k, delta, source, dest) && |
---|
2041 | !isInExtension (tmp1, gamma, k, delta, source, dest)) |
---|
2042 | { |
---|
2043 | factorsFound++; |
---|
2044 | F= 1; |
---|
2045 | tmp1= mapDown (tmp1, info, source, dest); |
---|
2046 | tmp2= mapDown (tmp2, info, source, dest); |
---|
2047 | reconstructedFactors.append (tmp1); |
---|
2048 | reconstructedFactors.append (tmp2); |
---|
2049 | return; |
---|
2050 | } |
---|
2051 | } |
---|
2052 | } |
---|
2053 | CanonicalForm quot, buf, buf2; |
---|
2054 | CFListIterator iter; |
---|
2055 | for (long i= 1; i <= N.NumCols(); i++) |
---|
2056 | { |
---|
2057 | if (factorsFoundIndex [i - 1] == 1) |
---|
2058 | continue; |
---|
2059 | iter= factors; |
---|
2060 | if (beenInThres) |
---|
2061 | { |
---|
2062 | int count= 1; |
---|
2063 | while (count < i) |
---|
2064 | { |
---|
2065 | count++; |
---|
2066 | iter++; |
---|
2067 | } |
---|
2068 | buf= iter.getItem(); |
---|
2069 | } |
---|
2070 | else |
---|
2071 | { |
---|
2072 | buf= 1; |
---|
2073 | for (long j= 1; j <= N.NumRows(); j++, iter++) |
---|
2074 | { |
---|
2075 | if (!IsZero (N (j,i))) |
---|
2076 | buf= mulMod2 (buf, iter.getItem(), yToL); |
---|
2077 | } |
---|
2078 | } |
---|
2079 | buf *= LC (F, x); |
---|
2080 | buf= mod (buf, yToL); |
---|
2081 | buf /= content (buf, x); |
---|
2082 | buf2= buf (y - evaluation, y); |
---|
2083 | if (!k && beta == x) |
---|
2084 | { |
---|
2085 | if (degree (buf2, alpha) < 1) |
---|
2086 | { |
---|
2087 | if (fdivides (buf, F, quot)) |
---|
2088 | { |
---|
2089 | factorsFoundIndex[i - 1]= 1; |
---|
2090 | factorsFound++; |
---|
2091 | F= quot; |
---|
2092 | F /= Lc (F); |
---|
2093 | buf2= mapDown (buf2, info, source, dest); |
---|
2094 | reconstructedFactors.append (buf2); |
---|
2095 | } |
---|
2096 | } |
---|
2097 | } |
---|
2098 | else |
---|
2099 | { |
---|
2100 | if (!isInExtension (buf2, gamma, k, delta, source, dest)) |
---|
2101 | { |
---|
2102 | if (fdivides (buf, F, quot)) |
---|
2103 | { |
---|
2104 | factorsFoundIndex[i - 1]= 1; |
---|
2105 | factorsFound++; |
---|
2106 | F= quot; |
---|
2107 | F /= Lc (F); |
---|
2108 | buf2= mapDown (buf2, info, source, dest); |
---|
2109 | reconstructedFactors.append (buf2); |
---|
2110 | } |
---|
2111 | } |
---|
2112 | } |
---|
2113 | if (degree (F) <= 0) |
---|
2114 | return; |
---|
2115 | if (factorsFound + 1 == N.NumCols()) |
---|
2116 | { |
---|
2117 | CanonicalForm tmp= F (y - evaluation, y); |
---|
2118 | tmp= mapDown (tmp, info, source, dest); |
---|
2119 | reconstructedFactors.append (tmp); |
---|
2120 | return; |
---|
2121 | } |
---|
2122 | } |
---|
2123 | } |
---|
2124 | |
---|
2125 | #ifdef HAVE_FLINT |
---|
2126 | void |
---|
2127 | extReconstructionTry (CFList& reconstructedFactors, CanonicalForm& F, const |
---|
2128 | CFList& factors, const int liftBound, int& factorsFound, |
---|
2129 | int*& factorsFoundIndex, nmod_mat_t N, bool beenInThres, |
---|
2130 | const ExtensionInfo& info, const CanonicalForm& evaluation |
---|
2131 | ) |
---|
2132 | { |
---|
2133 | Variable y= Variable (2); |
---|
2134 | Variable x= Variable (1); |
---|
2135 | Variable alpha= info.getAlpha(); |
---|
2136 | Variable beta= info.getBeta(); |
---|
2137 | int k= info.getGFDegree(); |
---|
2138 | CanonicalForm gamma= info.getGamma(); |
---|
2139 | CanonicalForm delta= info.getDelta(); |
---|
2140 | CanonicalForm yToL= power (y, liftBound); |
---|
2141 | CFList source, dest; |
---|
2142 | if (factors.length() == 2) |
---|
2143 | { |
---|
2144 | CanonicalForm tmp1, tmp2, tmp3; |
---|
2145 | tmp1= factors.getFirst(); |
---|
2146 | tmp2= factors.getLast(); |
---|
2147 | tmp1 *= LC (F, x); |
---|
2148 | tmp1= mod (tmp1, yToL); |
---|
2149 | tmp1 /= content (tmp1, x); |
---|
2150 | tmp2 *= LC (F, x); |
---|
2151 | tmp2= mod (tmp2, yToL); |
---|
2152 | tmp2 /= content (tmp2, x); |
---|
2153 | tmp3 = tmp1*tmp2; |
---|
2154 | if (tmp3/Lc (tmp3) == F/Lc (F)) |
---|
2155 | { |
---|
2156 | tmp1= tmp1 (y - evaluation, y); |
---|
2157 | tmp2= tmp2 (y - evaluation, y); |
---|
2158 | if (!k && beta == x && degree (tmp2, alpha) < 1 && |
---|
2159 | degree (tmp1, alpha) < 1) |
---|
2160 | { |
---|
2161 | factorsFound++; |
---|
2162 | F= 1; |
---|
2163 | tmp1= mapDown (tmp1, info, source, dest); |
---|
2164 | tmp2= mapDown (tmp2, info, source, dest); |
---|
2165 | reconstructedFactors.append (tmp1); |
---|
2166 | reconstructedFactors.append (tmp2); |
---|
2167 | return; |
---|
2168 | } |
---|
2169 | else if (!isInExtension (tmp2, gamma, k, delta, source, dest) && |
---|
2170 | !isInExtension (tmp1, gamma, k, delta, source, dest)) |
---|
2171 | { |
---|
2172 | factorsFound++; |
---|
2173 | F= 1; |
---|
2174 | tmp1= mapDown (tmp1, info, source, dest); |
---|
2175 | tmp2= mapDown (tmp2, info, source, dest); |
---|
2176 | reconstructedFactors.append (tmp1); |
---|
2177 | reconstructedFactors.append (tmp2); |
---|
2178 | return; |
---|
2179 | } |
---|
2180 | } |
---|
2181 | } |
---|
2182 | CanonicalForm quot, buf, buf2; |
---|
2183 | CFListIterator iter; |
---|
2184 | for (long i= 0; i < nmod_mat_ncols (N); i++) |
---|
2185 | { |
---|
2186 | if (factorsFoundIndex [i] == 1) |
---|
2187 | continue; |
---|
2188 | iter= factors; |
---|
2189 | if (beenInThres) |
---|
2190 | { |
---|
2191 | int count= 0; |
---|
2192 | while (count < i) |
---|
2193 | { |
---|
2194 | count++; |
---|
2195 | iter++; |
---|
2196 | } |
---|
2197 | buf= iter.getItem(); |
---|
2198 | } |
---|
2199 | else |
---|
2200 | { |
---|
2201 | buf= 1; |
---|
2202 | for (long j= 0; j < nmod_mat_nrows (N); j++, iter++) |
---|
2203 | { |
---|
2204 | if (!(nmod_mat_entry (N, j, i) == 0)) |
---|
2205 | buf= mulMod2 (buf, iter.getItem(), yToL); |
---|
2206 | } |
---|
2207 | } |
---|
2208 | buf *= LC (F, x); |
---|
2209 | buf= mod (buf, yToL); |
---|
2210 | buf /= content (buf, x); |
---|
2211 | buf2= buf (y - evaluation, y); |
---|
2212 | if (!k && beta == x) |
---|
2213 | { |
---|
2214 | if (degree (buf2, alpha) < 1) |
---|
2215 | { |
---|
2216 | if (fdivides (buf, F, quot)) |
---|
2217 | { |
---|
2218 | factorsFoundIndex[i]= 1; |
---|
2219 | factorsFound++; |
---|
2220 | F= quot; |
---|
2221 | F /= Lc (F); |
---|
2222 | buf2= mapDown (buf2, info, source, dest); |
---|
2223 | reconstructedFactors.append (buf2); |
---|
2224 | } |
---|
2225 | } |
---|
2226 | } |
---|
2227 | else |
---|
2228 | { |
---|
2229 | if (!isInExtension (buf2, gamma, k, delta, source, dest)) |
---|
2230 | { |
---|
2231 | if (fdivides (buf, F, quot)) |
---|
2232 | { |
---|
2233 | factorsFoundIndex[i]= 1; |
---|
2234 | factorsFound++; |
---|
2235 | F= quot; |
---|
2236 | F /= Lc (F); |
---|
2237 | buf2= mapDown (buf2, info, source, dest); |
---|
2238 | reconstructedFactors.append (buf2); |
---|
2239 | } |
---|
2240 | } |
---|
2241 | } |
---|
2242 | if (degree (F) <= 0) |
---|
2243 | return; |
---|
2244 | if (factorsFound + 1 == nmod_mat_nrows (N)) |
---|
2245 | { |
---|
2246 | CanonicalForm tmp= F (y - evaluation, y); |
---|
2247 | tmp= mapDown (tmp, info, source, dest); |
---|
2248 | reconstructedFactors.append (tmp); |
---|
2249 | return; |
---|
2250 | } |
---|
2251 | } |
---|
2252 | } |
---|
2253 | #endif |
---|
2254 | |
---|
2255 | //over Fp |
---|
2256 | int |
---|
2257 | liftAndComputeLattice (const CanonicalForm& F, int* bounds, int sizeBounds, int |
---|
2258 | start, int liftBound, int minBound, CFList& factors, |
---|
2259 | mat_zz_p& NTLN, CFList& diophant, CFMatrix& M, CFArray& |
---|
2260 | Pi, CFArray& bufQ, bool& irreducible |
---|
2261 | ) |
---|
2262 | { |
---|
2263 | CanonicalForm LCF= LC (F, 1); |
---|
2264 | CFArray *A= new CFArray [factors.length() - 1]; |
---|
2265 | bool wasInBounds= false; |
---|
2266 | bool hitBound= false; |
---|
2267 | int l= (minBound+1)*2; |
---|
2268 | int stepSize= 2; |
---|
2269 | int oldL= l/2; |
---|
2270 | bool reduced= false; |
---|
2271 | mat_zz_p NTLK, *NTLC; |
---|
2272 | CFMatrix C; |
---|
2273 | CFArray buf; |
---|
2274 | CFListIterator j; |
---|
2275 | CanonicalForm truncF; |
---|
2276 | Variable y= F.mvar(); |
---|
2277 | while (l <= liftBound) |
---|
2278 | { |
---|
2279 | if (start) |
---|
2280 | { |
---|
2281 | henselLiftResume12 (F, factors, start, l, Pi, diophant, M); |
---|
2282 | start= 0; |
---|
2283 | } |
---|
2284 | else |
---|
2285 | { |
---|
2286 | if (wasInBounds) |
---|
2287 | henselLiftResume12 (F, factors, oldL, l, Pi, diophant, M); |
---|
2288 | else |
---|
2289 | henselLift12 (F, factors, l, Pi, diophant, M); |
---|
2290 | } |
---|
2291 | |
---|
2292 | factors.insert (LCF); |
---|
2293 | j= factors; |
---|
2294 | j++; |
---|
2295 | |
---|
2296 | truncF= mod (F, power (y, l)); |
---|
2297 | for (int i= 0; i < factors.length() - 1; i++, j++) |
---|
2298 | { |
---|
2299 | if (!wasInBounds) |
---|
2300 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, bufQ[i]); |
---|
2301 | else |
---|
2302 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, oldL, bufQ[i], |
---|
2303 | bufQ[i]); |
---|
2304 | } |
---|
2305 | |
---|
2306 | for (int i= 0; i < sizeBounds; i++) |
---|
2307 | { |
---|
2308 | if (bounds [i] + 1 <= l/2) |
---|
2309 | { |
---|
2310 | wasInBounds= true; |
---|
2311 | int k= tmin (bounds [i] + 1, l/2); |
---|
2312 | C= CFMatrix (l - k, factors.length() - 1); |
---|
2313 | for (int ii= 0; ii < factors.length() - 1; ii++) |
---|
2314 | { |
---|
2315 | if (A[ii].size() - 1 >= i) |
---|
2316 | { |
---|
2317 | buf= getCoeffs (A[ii] [i], k); |
---|
2318 | writeInMatrix (C, buf, ii + 1, 0); |
---|
2319 | } |
---|
2320 | } |
---|
2321 | NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
2322 | NTLK= (*NTLC)*NTLN; |
---|
2323 | transpose (NTLK, NTLK); |
---|
2324 | kernel (NTLK, NTLK); |
---|
2325 | transpose (NTLK, NTLK); |
---|
2326 | NTLN *= NTLK; |
---|
2327 | |
---|
2328 | if (NTLN.NumCols() == 1) |
---|
2329 | { |
---|
2330 | irreducible= true; |
---|
2331 | break; |
---|
2332 | } |
---|
2333 | if (isReduced (NTLN) && l > (minBound+1)*2) |
---|
2334 | { |
---|
2335 | reduced= true; |
---|
2336 | break; |
---|
2337 | } |
---|
2338 | } |
---|
2339 | } |
---|
2340 | |
---|
2341 | if (irreducible) |
---|
2342 | break; |
---|
2343 | if (reduced) |
---|
2344 | break; |
---|
2345 | oldL= l; |
---|
2346 | l += stepSize; |
---|
2347 | stepSize *= 2; |
---|
2348 | if (l > liftBound) |
---|
2349 | { |
---|
2350 | if (!hitBound) |
---|
2351 | { |
---|
2352 | l= liftBound; |
---|
2353 | hitBound= true; |
---|
2354 | } |
---|
2355 | else |
---|
2356 | break; |
---|
2357 | } |
---|
2358 | } |
---|
2359 | delete [] A; |
---|
2360 | if (!wasInBounds) |
---|
2361 | { |
---|
2362 | if (start) |
---|
2363 | henselLiftResume12 (F, factors, start, degree (F) + 1, Pi, diophant, M); |
---|
2364 | else |
---|
2365 | henselLift12 (F, factors, degree (F) + 1, Pi, diophant, M); |
---|
2366 | factors.insert (LCF); |
---|
2367 | } |
---|
2368 | return l; |
---|
2369 | } |
---|
2370 | |
---|
2371 | #ifdef HAVE_FLINT |
---|
2372 | int |
---|
2373 | liftAndComputeLattice (const CanonicalForm& F, int* bounds, int sizeBounds, int |
---|
2374 | start, int liftBound, int minBound, CFList& factors, |
---|
2375 | nmod_mat_t FLINTN, CFList& diophant, CFMatrix& M,CFArray& |
---|
2376 | Pi, CFArray& bufQ, bool& irreducible |
---|
2377 | ) |
---|
2378 | { |
---|
2379 | CanonicalForm LCF= LC (F, 1); |
---|
2380 | CFArray *A= new CFArray [factors.length() - 1]; |
---|
2381 | bool wasInBounds= false; |
---|
2382 | bool hitBound= false; |
---|
2383 | int l= (minBound+1)*2; |
---|
2384 | int stepSize= 2; |
---|
2385 | int oldL= l/2; |
---|
2386 | bool reduced= false; |
---|
2387 | long rank; |
---|
2388 | nmod_mat_t FLINTK, FLINTC, null; |
---|
2389 | CFMatrix C; |
---|
2390 | CFArray buf; |
---|
2391 | CFListIterator j; |
---|
2392 | CanonicalForm truncF; |
---|
2393 | Variable y= F.mvar(); |
---|
2394 | while (l <= liftBound) |
---|
2395 | { |
---|
2396 | if (start) |
---|
2397 | { |
---|
2398 | henselLiftResume12 (F, factors, start, l, Pi, diophant, M); |
---|
2399 | start= 0; |
---|
2400 | } |
---|
2401 | else |
---|
2402 | { |
---|
2403 | if (wasInBounds) |
---|
2404 | henselLiftResume12 (F, factors, oldL, l, Pi, diophant, M); |
---|
2405 | else |
---|
2406 | henselLift12 (F, factors, l, Pi, diophant, M); |
---|
2407 | } |
---|
2408 | |
---|
2409 | factors.insert (LCF); |
---|
2410 | j= factors; |
---|
2411 | j++; |
---|
2412 | |
---|
2413 | truncF= mod (F, power (y, l)); |
---|
2414 | for (int i= 0; i < factors.length() - 1; i++, j++) |
---|
2415 | { |
---|
2416 | if (!wasInBounds) |
---|
2417 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, bufQ[i]); |
---|
2418 | else |
---|
2419 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, oldL, bufQ[i], |
---|
2420 | bufQ[i]); |
---|
2421 | } |
---|
2422 | |
---|
2423 | for (int i= 0; i < sizeBounds; i++) |
---|
2424 | { |
---|
2425 | if (bounds [i] + 1 <= l/2) |
---|
2426 | { |
---|
2427 | wasInBounds= true; |
---|
2428 | int k= tmin (bounds [i] + 1, l/2); |
---|
2429 | C= CFMatrix (l - k, factors.length() - 1); |
---|
2430 | for (int ii= 0; ii < factors.length() - 1; ii++) |
---|
2431 | { |
---|
2432 | if (A[ii].size() - 1 >= i) |
---|
2433 | { |
---|
2434 | buf= getCoeffs (A[ii] [i], k); |
---|
2435 | writeInMatrix (C, buf, ii + 1, 0); |
---|
2436 | } |
---|
2437 | } |
---|
2438 | |
---|
2439 | convertFacCFMatrix2nmod_mat_t (FLINTC, C); |
---|
2440 | nmod_mat_init (FLINTK, nmod_mat_nrows (FLINTC), nmod_mat_ncols (FLINTN), |
---|
2441 | getCharacteristic()); |
---|
2442 | nmod_mat_mul (FLINTK, FLINTC, FLINTN); |
---|
2443 | nmod_mat_init (null, nmod_mat_ncols (FLINTK), nmod_mat_ncols (FLINTK), |
---|
2444 | getCharacteristic()); |
---|
2445 | rank= nmod_mat_nullspace (null, FLINTK); |
---|
2446 | nmod_mat_clear (FLINTK); |
---|
2447 | nmod_mat_window_init (FLINTK, null, 0, 0, nmod_mat_nrows(null), rank); |
---|
2448 | nmod_mat_clear (FLINTC); |
---|
2449 | nmod_mat_init_set (FLINTC, FLINTN); |
---|
2450 | nmod_mat_clear (FLINTN); |
---|
2451 | nmod_mat_init (FLINTN, nmod_mat_nrows (FLINTC), nmod_mat_ncols (FLINTK), |
---|
2452 | getCharacteristic()); |
---|
2453 | nmod_mat_mul (FLINTN, FLINTC, FLINTK); //no aliasing allowed!! |
---|
2454 | |
---|
2455 | nmod_mat_clear (FLINTC); |
---|
2456 | nmod_mat_window_clear (FLINTK); |
---|
2457 | nmod_mat_clear (null); |
---|
2458 | if (nmod_mat_ncols (FLINTN) == 1) |
---|
2459 | { |
---|
2460 | irreducible= true; |
---|
2461 | break; |
---|
2462 | } |
---|
2463 | if (isReduced (FLINTN) && l > (minBound+1)*2) |
---|
2464 | { |
---|
2465 | reduced= true; |
---|
2466 | break; |
---|
2467 | } |
---|
2468 | } |
---|
2469 | } |
---|
2470 | |
---|
2471 | if (irreducible) |
---|
2472 | break; |
---|
2473 | if (reduced) |
---|
2474 | break; |
---|
2475 | oldL= l; |
---|
2476 | l += stepSize; |
---|
2477 | stepSize *= 2; |
---|
2478 | if (l > liftBound) |
---|
2479 | { |
---|
2480 | if (!hitBound) |
---|
2481 | { |
---|
2482 | l= liftBound; |
---|
2483 | hitBound= true; |
---|
2484 | } |
---|
2485 | else |
---|
2486 | break; |
---|
2487 | } |
---|
2488 | } |
---|
2489 | delete [] A; |
---|
2490 | if (!wasInBounds) |
---|
2491 | { |
---|
2492 | if (start) |
---|
2493 | henselLiftResume12 (F, factors, start, degree (F) + 1, Pi, diophant, M); |
---|
2494 | else |
---|
2495 | henselLift12 (F, factors, degree (F) + 1, Pi, diophant, M); |
---|
2496 | factors.insert (LCF); |
---|
2497 | } |
---|
2498 | return l; |
---|
2499 | } |
---|
2500 | #endif |
---|
2501 | |
---|
2502 | //over field extension |
---|
2503 | int |
---|
2504 | extLiftAndComputeLattice (const CanonicalForm& F, int* bounds, int sizeBounds, |
---|
2505 | int liftBound, int minBound, int start, CFList& |
---|
2506 | factors, mat_zz_p& NTLN, CFList& diophant, |
---|
2507 | CFMatrix& M, CFArray& Pi, CFArray& bufQ, bool& |
---|
2508 | irreducible, const CanonicalForm& evaluation, const |
---|
2509 | ExtensionInfo& info, CFList& source, CFList& dest |
---|
2510 | ) |
---|
2511 | { |
---|
2512 | bool GF= (CFFactory::gettype()==GaloisFieldDomain); |
---|
2513 | CanonicalForm LCF= LC (F, 1); |
---|
2514 | CFArray *A= new CFArray [factors.length() - 1]; |
---|
2515 | bool wasInBounds= false; |
---|
2516 | bool hitBound= false; |
---|
2517 | int degMipo; |
---|
2518 | Variable alpha; |
---|
2519 | alpha= info.getAlpha(); |
---|
2520 | degMipo= degree (getMipo (alpha)); |
---|
2521 | |
---|
2522 | Variable gamma= info.getBeta(); |
---|
2523 | CanonicalForm primElemAlpha= info.getGamma(); |
---|
2524 | CanonicalForm imPrimElemAlpha= info.getDelta(); |
---|
2525 | |
---|
2526 | int stepSize= 2; |
---|
2527 | int l= ((minBound+1)/degMipo+1)*2; |
---|
2528 | l= tmax (l, 2); |
---|
2529 | if (start > l) |
---|
2530 | l= start; |
---|
2531 | int oldL= l/2; |
---|
2532 | bool reduced= false; |
---|
2533 | Variable y= F.mvar(); |
---|
2534 | Variable x= Variable (1); |
---|
2535 | CanonicalForm powX, imBasis, truncF; |
---|
2536 | CFMatrix Mat, C; |
---|
2537 | CFArray buf; |
---|
2538 | CFIterator iter; |
---|
2539 | mat_zz_p* NTLMat, *NTLC, NTLK; |
---|
2540 | CFListIterator j; |
---|
2541 | while (l <= liftBound) |
---|
2542 | { |
---|
2543 | if (start) |
---|
2544 | { |
---|
2545 | henselLiftResume12 (F, factors, start, l, Pi, diophant, M); |
---|
2546 | start= 0; |
---|
2547 | } |
---|
2548 | else |
---|
2549 | { |
---|
2550 | if (wasInBounds) |
---|
2551 | henselLiftResume12 (F, factors, oldL, l, Pi, diophant, M); |
---|
2552 | else |
---|
2553 | henselLift12 (F, factors, l, Pi, diophant, M); |
---|
2554 | } |
---|
2555 | |
---|
2556 | factors.insert (LCF); |
---|
2557 | |
---|
2558 | if (GF) |
---|
2559 | setCharacteristic (getCharacteristic()); |
---|
2560 | |
---|
2561 | powX= power (y-gamma, l); |
---|
2562 | Mat= CFMatrix (l*degMipo, l*degMipo); |
---|
2563 | for (int i= 0; i < l*degMipo; i++) |
---|
2564 | { |
---|
2565 | imBasis= mod (power (y, i), powX); |
---|
2566 | imBasis= imBasis (power (y, degMipo), y); |
---|
2567 | imBasis= imBasis (y, gamma); |
---|
2568 | iter= imBasis; |
---|
2569 | for (; iter.hasTerms(); iter++) |
---|
2570 | Mat (iter.exp()+ 1, i+1)= iter.coeff(); |
---|
2571 | } |
---|
2572 | |
---|
2573 | NTLMat= convertFacCFMatrix2NTLmat_zz_p (Mat); |
---|
2574 | *NTLMat= inv (*NTLMat); |
---|
2575 | |
---|
2576 | if (GF) |
---|
2577 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
2578 | |
---|
2579 | j= factors; |
---|
2580 | j++; |
---|
2581 | |
---|
2582 | truncF= mod (F, power (y, l)); |
---|
2583 | for (int i= 0; i < factors.length() - 1; i++, j++) |
---|
2584 | { |
---|
2585 | if (!wasInBounds) |
---|
2586 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, bufQ[i]); |
---|
2587 | else |
---|
2588 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, oldL, bufQ[i], |
---|
2589 | bufQ[i]); |
---|
2590 | } |
---|
2591 | |
---|
2592 | for (int i= 0; i < sizeBounds; i++) |
---|
2593 | { |
---|
2594 | if (bounds [i] + 1 <= (l/2)*degMipo) |
---|
2595 | { |
---|
2596 | wasInBounds= true; |
---|
2597 | int k= tmin (bounds [i] + 1, (l/2)*degMipo); |
---|
2598 | C= CFMatrix (l*degMipo - k, factors.length() - 1); |
---|
2599 | |
---|
2600 | for (int ii= 0; ii < factors.length() - 1; ii++) |
---|
2601 | { |
---|
2602 | if (A[ii].size() - 1 >= i) |
---|
2603 | { |
---|
2604 | if (GF) |
---|
2605 | { |
---|
2606 | A [ii] [i]= A [ii] [i] (y-evaluation, y); |
---|
2607 | setCharacteristic (getCharacteristic()); |
---|
2608 | A[ii] [i]= GF2FalphaRep (A[ii] [i], alpha); |
---|
2609 | if (alpha != gamma) |
---|
2610 | A [ii] [i]= mapDown (A[ii] [i], imPrimElemAlpha, primElemAlpha, |
---|
2611 | gamma, source, dest |
---|
2612 | ); |
---|
2613 | buf= getCoeffs (A[ii] [i], k, l, degMipo, gamma, 0, *NTLMat); |
---|
2614 | } |
---|
2615 | else |
---|
2616 | { |
---|
2617 | A [ii] [i]= A [ii] [i] (y-evaluation, y); |
---|
2618 | if (alpha != gamma) |
---|
2619 | A[ii] [i]= mapDown (A[ii] [i], imPrimElemAlpha, primElemAlpha, |
---|
2620 | gamma, source, dest |
---|
2621 | ); |
---|
2622 | buf= getCoeffs (A[ii] [i], k, l, degMipo, gamma, 0, *NTLMat); |
---|
2623 | } |
---|
2624 | writeInMatrix (C, buf, ii + 1, 0); |
---|
2625 | } |
---|
2626 | if (GF) |
---|
2627 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
2628 | } |
---|
2629 | |
---|
2630 | if (GF) |
---|
2631 | setCharacteristic(getCharacteristic()); |
---|
2632 | |
---|
2633 | NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
2634 | NTLK= (*NTLC)*NTLN; |
---|
2635 | transpose (NTLK, NTLK); |
---|
2636 | kernel (NTLK, NTLK); |
---|
2637 | transpose (NTLK, NTLK); |
---|
2638 | NTLN *= NTLK; |
---|
2639 | |
---|
2640 | if (GF) |
---|
2641 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
2642 | |
---|
2643 | if (NTLN.NumCols() == 1) |
---|
2644 | { |
---|
2645 | irreducible= true; |
---|
2646 | break; |
---|
2647 | } |
---|
2648 | if (isReduced (NTLN)) |
---|
2649 | { |
---|
2650 | reduced= true; |
---|
2651 | break; |
---|
2652 | } |
---|
2653 | } |
---|
2654 | } |
---|
2655 | |
---|
2656 | if (NTLN.NumCols() == 1) |
---|
2657 | { |
---|
2658 | irreducible= true; |
---|
2659 | break; |
---|
2660 | } |
---|
2661 | if (reduced) |
---|
2662 | break; |
---|
2663 | oldL= l; |
---|
2664 | l += stepSize; |
---|
2665 | stepSize *= 2; |
---|
2666 | if (l > liftBound) |
---|
2667 | { |
---|
2668 | if (!hitBound) |
---|
2669 | { |
---|
2670 | l= liftBound; |
---|
2671 | hitBound= true; |
---|
2672 | } |
---|
2673 | else |
---|
2674 | break; |
---|
2675 | } |
---|
2676 | } |
---|
2677 | delete [] A; |
---|
2678 | if (!wasInBounds) |
---|
2679 | { |
---|
2680 | if (start) |
---|
2681 | henselLiftResume12 (F, factors, start, degree (F) + 1, Pi, diophant, M); |
---|
2682 | else |
---|
2683 | henselLift12 (F, factors, degree (F) + 1, Pi, diophant, M); |
---|
2684 | factors.insert (LCF); |
---|
2685 | } |
---|
2686 | return l; |
---|
2687 | } |
---|
2688 | |
---|
2689 | /*#ifdef HAVE_FLINT |
---|
2690 | //over field extension |
---|
2691 | int |
---|
2692 | extLiftAndComputeLattice (const CanonicalForm& F, int* bounds, int sizeBounds, |
---|
2693 | int liftBound, int minBound, int start, CFList& |
---|
2694 | factors, nmod_mat_t FLINTN, CFList& diophant, |
---|
2695 | CFMatrix& M, CFArray& Pi, CFArray& bufQ, bool& |
---|
2696 | irreducible, const CanonicalForm& evaluation, const |
---|
2697 | ExtensionInfo& info, CFList& source, CFList& dest |
---|
2698 | ) |
---|
2699 | { |
---|
2700 | bool GF= (CFFactory::gettype()==GaloisFieldDomain); |
---|
2701 | CanonicalForm LCF= LC (F, 1); |
---|
2702 | CFArray *A= new CFArray [factors.length() - 1]; |
---|
2703 | bool wasInBounds= false; |
---|
2704 | bool hitBound= false; |
---|
2705 | int degMipo; |
---|
2706 | Variable alpha; |
---|
2707 | alpha= info.getAlpha(); |
---|
2708 | degMipo= degree (getMipo (alpha)); |
---|
2709 | |
---|
2710 | Variable gamma= info.getBeta(); |
---|
2711 | CanonicalForm primElemAlpha= info.getGamma(); |
---|
2712 | CanonicalForm imPrimElemAlpha= info.getDelta(); |
---|
2713 | |
---|
2714 | int stepSize= 2; |
---|
2715 | int l= ((minBound+1)/degMipo+1)*2; |
---|
2716 | l= tmax (l, 2); |
---|
2717 | if (start > l) |
---|
2718 | l= start; |
---|
2719 | int oldL= l/2; |
---|
2720 | bool reduced= false; |
---|
2721 | Variable y= F.mvar(); |
---|
2722 | Variable x= Variable (1); |
---|
2723 | CanonicalForm powX, imBasis, truncF; |
---|
2724 | CFMatrix Mat, C; |
---|
2725 | CFArray buf; |
---|
2726 | CFIterator iter; |
---|
2727 | long rank; |
---|
2728 | nmod_mat_t FLINTMat, FLINTMatInv, FLINTC, FLINTK, null; |
---|
2729 | CFListIterator j; |
---|
2730 | while (l <= liftBound) |
---|
2731 | { |
---|
2732 | if (start) |
---|
2733 | { |
---|
2734 | henselLiftResume12 (F, factors, start, l, Pi, diophant, M); |
---|
2735 | start= 0; |
---|
2736 | } |
---|
2737 | else |
---|
2738 | { |
---|
2739 | if (wasInBounds) |
---|
2740 | henselLiftResume12 (F, factors, oldL, l, Pi, diophant, M); |
---|
2741 | else |
---|
2742 | henselLift12 (F, factors, l, Pi, diophant, M); |
---|
2743 | } |
---|
2744 | |
---|
2745 | factors.insert (LCF); |
---|
2746 | |
---|
2747 | if (GF) |
---|
2748 | setCharacteristic (getCharacteristic()); |
---|
2749 | |
---|
2750 | powX= power (y-gamma, l); |
---|
2751 | Mat= CFMatrix (l*degMipo, l*degMipo); |
---|
2752 | for (int i= 0; i < l*degMipo; i++) |
---|
2753 | { |
---|
2754 | imBasis= mod (power (y, i), powX); |
---|
2755 | imBasis= imBasis (power (y, degMipo), y); |
---|
2756 | imBasis= imBasis (y, gamma); |
---|
2757 | iter= imBasis; |
---|
2758 | for (; iter.hasTerms(); iter++) |
---|
2759 | Mat (iter.exp()+ 1, i+1)= iter.coeff(); |
---|
2760 | } |
---|
2761 | |
---|
2762 | convertFacCFMatrix2nmod_mat_t (FLINTMat, Mat); |
---|
2763 | nmod_mat_init (FLINTMatInv, nmod_mat_nrows (FLINTMat), |
---|
2764 | nmod_mat_nrows (FLINTMat), getCharacteristic()); |
---|
2765 | nmod_mat_inv (FLINTMatInv, FLINTMat); |
---|
2766 | |
---|
2767 | if (GF) |
---|
2768 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
2769 | |
---|
2770 | j= factors; |
---|
2771 | j++; |
---|
2772 | |
---|
2773 | truncF= mod (F, power (y, l)); |
---|
2774 | for (int i= 0; i < factors.length() - 1; i++, j++) |
---|
2775 | { |
---|
2776 | if (!wasInBounds) |
---|
2777 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, bufQ[i]); |
---|
2778 | else |
---|
2779 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, oldL, bufQ[i], |
---|
2780 | bufQ[i]); |
---|
2781 | } |
---|
2782 | |
---|
2783 | for (int i= 0; i < sizeBounds; i++) |
---|
2784 | { |
---|
2785 | if (bounds [i] + 1 <= (l/2)*degMipo) |
---|
2786 | { |
---|
2787 | wasInBounds= true; |
---|
2788 | int k= tmin (bounds [i] + 1, (l/2)*degMipo); |
---|
2789 | C= CFMatrix (l*degMipo - k, factors.length() - 1); |
---|
2790 | |
---|
2791 | for (int ii= 0; ii < factors.length() - 1; ii++) |
---|
2792 | { |
---|
2793 | if (A[ii].size() - 1 >= i) |
---|
2794 | { |
---|
2795 | if (GF) |
---|
2796 | { |
---|
2797 | A [ii] [i]= A [ii] [i] (y-evaluation, y); |
---|
2798 | setCharacteristic (getCharacteristic()); |
---|
2799 | A[ii] [i]= GF2FalphaRep (A[ii] [i], alpha); |
---|
2800 | if (alpha != gamma) |
---|
2801 | A [ii] [i]= mapDown (A[ii] [i], imPrimElemAlpha, primElemAlpha, |
---|
2802 | gamma, source, dest |
---|
2803 | ); |
---|
2804 | buf= getCoeffs (A[ii] [i], k, l, degMipo, gamma, 0, FLINTMatInv); //TODO |
---|
2805 | } |
---|
2806 | else |
---|
2807 | { |
---|
2808 | A [ii] [i]= A [ii] [i] (y-evaluation, y); |
---|
2809 | if (alpha != gamma) |
---|
2810 | A[ii] [i]= mapDown (A[ii] [i], imPrimElemAlpha, primElemAlpha, |
---|
2811 | gamma, source, dest |
---|
2812 | ); |
---|
2813 | buf= getCoeffs (A[ii] [i], k, l, degMipo, gamma, 0, FLINTMatInv); //TODO |
---|
2814 | } |
---|
2815 | writeInMatrix (C, buf, ii + 1, 0); |
---|
2816 | } |
---|
2817 | if (GF) |
---|
2818 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
2819 | } |
---|
2820 | |
---|
2821 | if (GF) |
---|
2822 | setCharacteristic(getCharacteristic()); |
---|
2823 | |
---|
2824 | convertFacCFMatrix2nmod_mat_t (FLINTC, C); |
---|
2825 | nmod_mat_init (FLINTK, nmod_mat_nrows (FLINTC), nmod_mat_ncols (FLINTN), |
---|
2826 | getCharacteristic()); |
---|
2827 | nmod_mat_mul (FLINTK, FLINTC, FLINTN); |
---|
2828 | nmod_mat_init (null, nmod_mat_ncols (FLINTK), nmod_mat_ncols (FLINTK), |
---|
2829 | getCharacteristic()); |
---|
2830 | rank= nmod_mat_nullspace (null, FLINTK); |
---|
2831 | nmod_mat_clear (FLINTK); |
---|
2832 | nmod_mat_window_init (FLINTK, null, 0, 0, nmod_mat_nrows(null), rank); |
---|
2833 | nmod_mat_clear (FLINTC); |
---|
2834 | nmod_mat_init_set (FLINTC, FLINTN); |
---|
2835 | nmod_mat_clear (FLINTN); |
---|
2836 | nmod_mat_init (FLINTN, nmod_mat_nrows (FLINTC), nmod_mat_ncols (FLINTK), |
---|
2837 | getCharacteristic()); |
---|
2838 | nmod_mat_mul (FLINTN, FLINTC, FLINTK); //no aliasing allowed!! |
---|
2839 | |
---|
2840 | nmod_mat_clear (FLINTC); |
---|
2841 | nmod_mat_window_clear (FLINTK); |
---|
2842 | nmod_mat_clear (null); |
---|
2843 | |
---|
2844 | if (GF) |
---|
2845 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
2846 | |
---|
2847 | if (nmod_mat_ncols (FLINTN) == 1) |
---|
2848 | { |
---|
2849 | irreducible= true; |
---|
2850 | break; |
---|
2851 | } |
---|
2852 | if (isReduced (FLINTN)) |
---|
2853 | { |
---|
2854 | reduced= true; |
---|
2855 | break; |
---|
2856 | } |
---|
2857 | } |
---|
2858 | } |
---|
2859 | |
---|
2860 | nmod_mat_clear (FLINTMat); |
---|
2861 | nmod_mat_clear (FLINTMatInv); |
---|
2862 | |
---|
2863 | if (nmod_mat_ncols (FLINTN) == 1) |
---|
2864 | { |
---|
2865 | irreducible= true; |
---|
2866 | break; |
---|
2867 | } |
---|
2868 | if (reduced) |
---|
2869 | break; |
---|
2870 | oldL= l; |
---|
2871 | l += stepSize; |
---|
2872 | stepSize *= 2; |
---|
2873 | if (l > liftBound) |
---|
2874 | { |
---|
2875 | if (!hitBound) |
---|
2876 | { |
---|
2877 | l= liftBound; |
---|
2878 | hitBound= true; |
---|
2879 | } |
---|
2880 | else |
---|
2881 | break; |
---|
2882 | } |
---|
2883 | } |
---|
2884 | delete [] A; |
---|
2885 | if (!wasInBounds) |
---|
2886 | { |
---|
2887 | if (start) |
---|
2888 | henselLiftResume12 (F, factors, start, degree (F) + 1, Pi, diophant, M); |
---|
2889 | else |
---|
2890 | henselLift12 (F, factors, degree (F) + 1, Pi, diophant, M); |
---|
2891 | factors.insert (LCF); |
---|
2892 | } |
---|
2893 | return l; |
---|
2894 | } |
---|
2895 | #endif*/ |
---|
2896 | |
---|
2897 | // over Fq |
---|
2898 | int |
---|
2899 | liftAndComputeLattice (const CanonicalForm& F, int* bounds, int sizeBounds, |
---|
2900 | int start, int liftBound, int minBound, CFList& factors, |
---|
2901 | mat_zz_pE& NTLN, CFList& diophant, CFMatrix& M, CFArray& |
---|
2902 | Pi, CFArray& bufQ, bool& irreducible |
---|
2903 | ) |
---|
2904 | { |
---|
2905 | CanonicalForm LCF= LC (F, 1); |
---|
2906 | CFArray *A= new CFArray [factors.length() - 1]; |
---|
2907 | bool wasInBounds= false; |
---|
2908 | bool hitBound= false; |
---|
2909 | int l= (minBound+1)*2; |
---|
2910 | int stepSize= 2; |
---|
2911 | int oldL= l/2; |
---|
2912 | bool reduced= false; |
---|
2913 | CFListIterator j; |
---|
2914 | mat_zz_pE* NTLC, NTLK; |
---|
2915 | CFArray buf; |
---|
2916 | CFMatrix C; |
---|
2917 | Variable y= F.mvar(); |
---|
2918 | CanonicalForm truncF; |
---|
2919 | while (l <= liftBound) |
---|
2920 | { |
---|
2921 | if (start) |
---|
2922 | { |
---|
2923 | henselLiftResume12 (F, factors, start, l, Pi, diophant, M); |
---|
2924 | start= 0; |
---|
2925 | } |
---|
2926 | else |
---|
2927 | { |
---|
2928 | if (wasInBounds) |
---|
2929 | henselLiftResume12 (F, factors, oldL, l, Pi, diophant, M); |
---|
2930 | else |
---|
2931 | henselLift12 (F, factors, l, Pi, diophant, M); |
---|
2932 | } |
---|
2933 | |
---|
2934 | factors.insert (LCF); |
---|
2935 | j= factors; |
---|
2936 | j++; |
---|
2937 | |
---|
2938 | truncF= mod (F, power (y,l)); |
---|
2939 | for (int i= 0; i < factors.length() - 1; i++, j++) |
---|
2940 | { |
---|
2941 | if (l == (minBound+1)*2) |
---|
2942 | { |
---|
2943 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, bufQ[i]); |
---|
2944 | } |
---|
2945 | else |
---|
2946 | { |
---|
2947 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, oldL, bufQ[i], |
---|
2948 | bufQ[i] |
---|
2949 | ); |
---|
2950 | } |
---|
2951 | } |
---|
2952 | |
---|
2953 | for (int i= 0; i < sizeBounds; i++) |
---|
2954 | { |
---|
2955 | if (bounds [i] + 1 <= l/2) |
---|
2956 | { |
---|
2957 | wasInBounds= true; |
---|
2958 | int k= tmin (bounds [i] + 1, l/2); |
---|
2959 | C= CFMatrix (l - k, factors.length() - 1); |
---|
2960 | for (int ii= 0; ii < factors.length() - 1; ii++) |
---|
2961 | { |
---|
2962 | |
---|
2963 | if (A[ii].size() - 1 >= i) |
---|
2964 | { |
---|
2965 | buf= getCoeffs (A[ii] [i], k); |
---|
2966 | writeInMatrix (C, buf, ii + 1, 0); |
---|
2967 | } |
---|
2968 | } |
---|
2969 | |
---|
2970 | NTLC= convertFacCFMatrix2NTLmat_zz_pE(C); |
---|
2971 | NTLK= (*NTLC)*NTLN; |
---|
2972 | transpose (NTLK, NTLK); |
---|
2973 | kernel (NTLK, NTLK); |
---|
2974 | transpose (NTLK, NTLK); |
---|
2975 | NTLN *= NTLK; |
---|
2976 | |
---|
2977 | if (NTLN.NumCols() == 1) |
---|
2978 | { |
---|
2979 | irreducible= true; |
---|
2980 | break; |
---|
2981 | } |
---|
2982 | if (isReduced (NTLN) && l > (minBound+1)*2) |
---|
2983 | { |
---|
2984 | reduced= true; |
---|
2985 | break; |
---|
2986 | } |
---|
2987 | } |
---|
2988 | } |
---|
2989 | |
---|
2990 | if (NTLN.NumCols() == 1) |
---|
2991 | { |
---|
2992 | irreducible= true; |
---|
2993 | break; |
---|
2994 | } |
---|
2995 | if (reduced) |
---|
2996 | break; |
---|
2997 | oldL= l; |
---|
2998 | l += stepSize; |
---|
2999 | stepSize *= 2; |
---|
3000 | if (l > liftBound) |
---|
3001 | { |
---|
3002 | if (!hitBound) |
---|
3003 | { |
---|
3004 | l= liftBound; |
---|
3005 | hitBound= true; |
---|
3006 | } |
---|
3007 | else |
---|
3008 | break; |
---|
3009 | } |
---|
3010 | } |
---|
3011 | delete [] A; |
---|
3012 | if (!wasInBounds) |
---|
3013 | { |
---|
3014 | if (start) |
---|
3015 | henselLiftResume12 (F, factors, start, degree (F) + 1, Pi, diophant, M); |
---|
3016 | else |
---|
3017 | henselLift12 (F, factors, degree (F) + 1, Pi, diophant, M); |
---|
3018 | factors.insert (LCF); |
---|
3019 | } |
---|
3020 | return l; |
---|
3021 | } |
---|
3022 | |
---|
3023 | #ifdef HAVE_FLINT |
---|
3024 | int |
---|
3025 | liftAndComputeLatticeFq2Fp (const CanonicalForm& F, int* bounds, int sizeBounds, |
---|
3026 | int start, int liftBound, int minBound, CFList& |
---|
3027 | factors, nmod_mat_t FLINTN, CFList& diophant, |
---|
3028 | CFMatrix& M, CFArray& Pi, CFArray& bufQ, bool& |
---|
3029 | irreducible, const Variable& alpha |
---|
3030 | ) |
---|
3031 | #else |
---|
3032 | int |
---|
3033 | liftAndComputeLatticeFq2Fp (const CanonicalForm& F, int* bounds, int sizeBounds, |
---|
3034 | int start, int liftBound, int minBound, CFList& |
---|
3035 | factors, mat_zz_p& NTLN, CFList& diophant, CFMatrix& |
---|
3036 | M, CFArray& Pi, CFArray& bufQ, bool& irreducible, |
---|
3037 | const Variable& alpha |
---|
3038 | ) |
---|
3039 | #endif |
---|
3040 | { |
---|
3041 | CanonicalForm LCF= LC (F, 1); |
---|
3042 | CFArray *A= new CFArray [factors.length() - 1]; |
---|
3043 | bool wasInBounds= false; |
---|
3044 | int l= (minBound+1)*2; |
---|
3045 | int oldL= l/2; |
---|
3046 | int stepSize= 2; |
---|
3047 | bool hitBound= false; |
---|
3048 | int extensionDeg= degree (getMipo (alpha)); |
---|
3049 | bool reduced= false; |
---|
3050 | CFListIterator j; |
---|
3051 | CFMatrix C; |
---|
3052 | CFArray buf; |
---|
3053 | #ifdef HAVE_FLINT |
---|
3054 | long rank; |
---|
3055 | nmod_mat_t FLINTC, FLINTK, null; |
---|
3056 | #else |
---|
3057 | mat_zz_p* NTLC, NTLK; |
---|
3058 | #endif |
---|
3059 | Variable y= F.mvar(); |
---|
3060 | CanonicalForm truncF; |
---|
3061 | while (l <= liftBound) |
---|
3062 | { |
---|
3063 | if (start) |
---|
3064 | { |
---|
3065 | henselLiftResume12 (F, factors, start, l, Pi, diophant, M); |
---|
3066 | start= 0; |
---|
3067 | } |
---|
3068 | else |
---|
3069 | { |
---|
3070 | if (wasInBounds) |
---|
3071 | henselLiftResume12 (F, factors, oldL, l, Pi, diophant, M); |
---|
3072 | else |
---|
3073 | henselLift12 (F, factors, l, Pi, diophant, M); |
---|
3074 | } |
---|
3075 | |
---|
3076 | factors.insert (LCF); |
---|
3077 | j= factors; |
---|
3078 | j++; |
---|
3079 | |
---|
3080 | truncF= mod (F, power (y,l)); |
---|
3081 | for (int i= 0; i < factors.length() - 1; i++, j++) |
---|
3082 | { |
---|
3083 | if (l == (minBound+1)*2) |
---|
3084 | { |
---|
3085 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, bufQ[i]); |
---|
3086 | } |
---|
3087 | else |
---|
3088 | { |
---|
3089 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, oldL, bufQ[i], |
---|
3090 | bufQ[i] |
---|
3091 | ); |
---|
3092 | } |
---|
3093 | } |
---|
3094 | |
---|
3095 | for (int i= 0; i < sizeBounds; i++) |
---|
3096 | { |
---|
3097 | if (bounds [i] + 1 <= l/2) |
---|
3098 | { |
---|
3099 | wasInBounds= true; |
---|
3100 | int k= tmin (bounds [i] + 1, l/2); |
---|
3101 | C= CFMatrix ((l - k)*extensionDeg, factors.length() - 1); |
---|
3102 | for (int ii= 0; ii < factors.length() - 1; ii++) |
---|
3103 | { |
---|
3104 | if (A[ii].size() - 1 >= i) |
---|
3105 | { |
---|
3106 | buf= getCoeffs (A[ii] [i], k, alpha); |
---|
3107 | writeInMatrix (C, buf, ii + 1, 0); |
---|
3108 | } |
---|
3109 | } |
---|
3110 | |
---|
3111 | #ifdef HAVE_FLINT |
---|
3112 | convertFacCFMatrix2nmod_mat_t (FLINTC, C); |
---|
3113 | nmod_mat_init (FLINTK, nmod_mat_nrows (FLINTC), nmod_mat_ncols (FLINTN), |
---|
3114 | getCharacteristic()); |
---|
3115 | nmod_mat_mul (FLINTK, FLINTC, FLINTN); |
---|
3116 | nmod_mat_init (null, nmod_mat_ncols (FLINTK), nmod_mat_ncols (FLINTK), |
---|
3117 | getCharacteristic()); |
---|
3118 | rank= nmod_mat_nullspace (null, FLINTK); |
---|
3119 | nmod_mat_clear (FLINTK); |
---|
3120 | nmod_mat_window_init (FLINTK, null, 0, 0, nmod_mat_nrows(null), rank); |
---|
3121 | nmod_mat_clear (FLINTC); |
---|
3122 | nmod_mat_init_set (FLINTC, FLINTN); |
---|
3123 | nmod_mat_clear (FLINTN); |
---|
3124 | nmod_mat_init (FLINTN, nmod_mat_nrows (FLINTC), nmod_mat_ncols (FLINTK), |
---|
3125 | getCharacteristic()); |
---|
3126 | nmod_mat_mul (FLINTN, FLINTC, FLINTK); //no aliasing allowed!! |
---|
3127 | |
---|
3128 | nmod_mat_clear (FLINTC); |
---|
3129 | nmod_mat_window_clear (FLINTK); |
---|
3130 | nmod_mat_clear (null); |
---|
3131 | #else |
---|
3132 | NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
3133 | NTLK= (*NTLC)*NTLN; |
---|
3134 | transpose (NTLK, NTLK); |
---|
3135 | kernel (NTLK, NTLK); |
---|
3136 | transpose (NTLK, NTLK); |
---|
3137 | NTLN *= NTLK; |
---|
3138 | #endif |
---|
3139 | |
---|
3140 | #ifdef HAVE_FLINT |
---|
3141 | if (nmod_mat_nrows (FLINTN) == 1) |
---|
3142 | #else |
---|
3143 | if (NTLN.NumCols() == 1) |
---|
3144 | #endif |
---|
3145 | { |
---|
3146 | irreducible= true; |
---|
3147 | break; |
---|
3148 | } |
---|
3149 | #ifdef HAVE_FLINT |
---|
3150 | if (isReduced (FLINTN) && l > (minBound+1)*2) |
---|
3151 | #else |
---|
3152 | if (isReduced (NTLN) && l > (minBound+1)*2) |
---|
3153 | #endif |
---|
3154 | { |
---|
3155 | reduced= true; |
---|
3156 | break; |
---|
3157 | } |
---|
3158 | } |
---|
3159 | } |
---|
3160 | |
---|
3161 | #ifdef HAVE_FLINT |
---|
3162 | if (nmod_mat_ncols (FLINTN) == 1) |
---|
3163 | #else |
---|
3164 | if (NTLN.NumCols() == 1) |
---|
3165 | #endif |
---|
3166 | { |
---|
3167 | irreducible= true; |
---|
3168 | break; |
---|
3169 | } |
---|
3170 | if (reduced) |
---|
3171 | break; |
---|
3172 | oldL= l; |
---|
3173 | l += stepSize; |
---|
3174 | stepSize *= 2; |
---|
3175 | if (l > liftBound) |
---|
3176 | { |
---|
3177 | if (!hitBound) |
---|
3178 | { |
---|
3179 | l= liftBound; |
---|
3180 | hitBound= true; |
---|
3181 | } |
---|
3182 | else |
---|
3183 | break; |
---|
3184 | } |
---|
3185 | } |
---|
3186 | delete [] A; |
---|
3187 | if (!wasInBounds) |
---|
3188 | { |
---|
3189 | if (start) |
---|
3190 | henselLiftResume12 (F, factors, start, degree (F) + 1, Pi, diophant, M); |
---|
3191 | else |
---|
3192 | henselLift12 (F, factors, degree (F) + 1, Pi, diophant, M); |
---|
3193 | factors.insert (LCF); |
---|
3194 | } |
---|
3195 | return l; |
---|
3196 | } |
---|
3197 | |
---|
3198 | CFList |
---|
3199 | increasePrecision (CanonicalForm& F, CFList& factors, int factorsFound, |
---|
3200 | int oldNumCols, int oldL, int precision |
---|
3201 | ) |
---|
3202 | { |
---|
3203 | int d; |
---|
3204 | bool isIrreducible= false; |
---|
3205 | int* bounds= computeBounds (F, d, isIrreducible); |
---|
3206 | if (isIrreducible) |
---|
3207 | { |
---|
3208 | delete [] bounds; |
---|
3209 | CanonicalForm G= F; |
---|
3210 | F= 1; |
---|
3211 | return CFList (G); |
---|
3212 | } |
---|
3213 | CFArray * A= new CFArray [factors.length()]; |
---|
3214 | CFArray bufQ= CFArray (factors.length()); |
---|
3215 | #ifdef HAVE_FLINT |
---|
3216 | nmod_mat_t FLINTN; |
---|
3217 | nmod_mat_init (FLINTN,factors.length(),factors.length(), getCharacteristic()); |
---|
3218 | for (long i=factors.length()-1; i >= 0; i--) |
---|
3219 | nmod_mat_entry (FLINTN, i, i)= 1; |
---|
3220 | #else |
---|
3221 | mat_zz_p NTLN; |
---|
3222 | ident (NTLN, factors.length()); |
---|
3223 | #endif |
---|
3224 | int minBound= bounds[0]; |
---|
3225 | for (int i= 1; i < d; i++) |
---|
3226 | { |
---|
3227 | if (bounds[i] != 0) |
---|
3228 | minBound= tmin (minBound, bounds[i]); |
---|
3229 | } |
---|
3230 | int l= tmax (2*(minBound + 1), oldL); |
---|
3231 | int oldL2= l/2; |
---|
3232 | int stepSize= 2; |
---|
3233 | bool useOldQs= false; |
---|
3234 | bool hitBound= false; |
---|
3235 | CFListIterator j; |
---|
3236 | CFMatrix C; |
---|
3237 | CFArray buf; |
---|
3238 | #ifdef HAVE_FLINT |
---|
3239 | long rank; |
---|
3240 | nmod_mat_t FLINTC, FLINTK, null; |
---|
3241 | #else |
---|
3242 | mat_zz_p* NTLC, NTLK; |
---|
3243 | #endif |
---|
3244 | Variable y= F.mvar(); |
---|
3245 | CanonicalForm truncF; |
---|
3246 | while (l <= precision) |
---|
3247 | { |
---|
3248 | j= factors; |
---|
3249 | truncF= mod (F, power (y,l)); |
---|
3250 | if (useOldQs) |
---|
3251 | { |
---|
3252 | for (int i= 0; i < factors.length(); i++, j++) |
---|
3253 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, oldL2, bufQ[i], |
---|
3254 | bufQ[i] |
---|
3255 | ); |
---|
3256 | } |
---|
3257 | else |
---|
3258 | { |
---|
3259 | for (int i= 0; i < factors.length(); i++, j++) |
---|
3260 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, bufQ [i]); |
---|
3261 | } |
---|
3262 | useOldQs= true; |
---|
3263 | for (int i= 0; i < d; i++) |
---|
3264 | { |
---|
3265 | if (bounds [i] + 1 <= l/2) |
---|
3266 | { |
---|
3267 | int k= tmin (bounds [i] + 1, l/2); |
---|
3268 | C= CFMatrix (l - k, factors.length()); |
---|
3269 | for (int ii= 0; ii < factors.length(); ii++) |
---|
3270 | { |
---|
3271 | if (A[ii].size() - 1 >= i) |
---|
3272 | { |
---|
3273 | buf= getCoeffs (A[ii] [i], k); |
---|
3274 | writeInMatrix (C, buf, ii + 1, 0); |
---|
3275 | } |
---|
3276 | } |
---|
3277 | #ifdef HAVE_FLINT |
---|
3278 | convertFacCFMatrix2nmod_mat_t (FLINTC, C); |
---|
3279 | nmod_mat_init (FLINTK, nmod_mat_nrows (FLINTC), nmod_mat_ncols (FLINTN), |
---|
3280 | getCharacteristic()); |
---|
3281 | nmod_mat_mul (FLINTK, FLINTC, FLINTN); |
---|
3282 | nmod_mat_init (null, nmod_mat_ncols (FLINTK), nmod_mat_ncols (FLINTK), |
---|
3283 | getCharacteristic()); |
---|
3284 | rank= nmod_mat_nullspace (null, FLINTK); |
---|
3285 | nmod_mat_clear (FLINTK); |
---|
3286 | nmod_mat_window_init (FLINTK, null, 0, 0, nmod_mat_nrows(null), rank); |
---|
3287 | nmod_mat_clear (FLINTC); |
---|
3288 | nmod_mat_init_set (FLINTC, FLINTN); |
---|
3289 | nmod_mat_clear (FLINTN); |
---|
3290 | nmod_mat_init (FLINTN, nmod_mat_nrows (FLINTC), nmod_mat_ncols (FLINTK), |
---|
3291 | getCharacteristic()); |
---|
3292 | nmod_mat_mul (FLINTN, FLINTC, FLINTK); //no aliasing allowed!! |
---|
3293 | |
---|
3294 | nmod_mat_clear (FLINTC); |
---|
3295 | nmod_mat_window_clear (FLINTK); |
---|
3296 | nmod_mat_clear (null); |
---|
3297 | #else |
---|
3298 | NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
3299 | NTLK= (*NTLC)*NTLN; |
---|
3300 | transpose (NTLK, NTLK); |
---|
3301 | kernel (NTLK, NTLK); |
---|
3302 | transpose (NTLK, NTLK); |
---|
3303 | NTLN *= NTLK; |
---|
3304 | #endif |
---|
3305 | #ifdef HAVE_FLINT |
---|
3306 | if (nmod_mat_ncols (FLINTN) == 1) |
---|
3307 | { |
---|
3308 | nmod_mat_clear (FLINTN); |
---|
3309 | #else |
---|
3310 | if (NTLN.NumCols() == 1) |
---|
3311 | { |
---|
3312 | #endif |
---|
3313 | delete [] A; |
---|
3314 | delete [] bounds; |
---|
3315 | CanonicalForm G= F; |
---|
3316 | F= 1; |
---|
3317 | return CFList (G); |
---|
3318 | } |
---|
3319 | } |
---|
3320 | } |
---|
3321 | |
---|
3322 | #ifdef HAVE_FLINT |
---|
3323 | if (nmod_mat_ncols (FLINTN) < oldNumCols - factorsFound) |
---|
3324 | { |
---|
3325 | if (isReduced (FLINTN)) |
---|
3326 | { |
---|
3327 | int * factorsFoundIndex= new int [nmod_mat_ncols (FLINTN)]; |
---|
3328 | for (long i= 0; i < nmod_mat_ncols (FLINTN); i++) |
---|
3329 | #else |
---|
3330 | if (NTLN.NumCols() < oldNumCols - factorsFound) |
---|
3331 | { |
---|
3332 | if (isReduced (NTLN)) |
---|
3333 | { |
---|
3334 | int * factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
3335 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
3336 | #endif |
---|
3337 | factorsFoundIndex[i]= 0; |
---|
3338 | int factorsFound2= 0; |
---|
3339 | CFList result; |
---|
3340 | CanonicalForm bufF= F; |
---|
3341 | #ifdef HAVE_FLINT |
---|
3342 | reconstructionTry (result, bufF, factors, degree (F) + 1, factorsFound2, |
---|
3343 | factorsFoundIndex, FLINTN, false |
---|
3344 | ); |
---|
3345 | if (result.length() == nmod_mat_ncols (FLINTN)) |
---|
3346 | { |
---|
3347 | nmod_mat_clear (FLINTN); |
---|
3348 | #else |
---|
3349 | reconstructionTry (result, bufF, factors, degree (F) + 1, factorsFound2, |
---|
3350 | factorsFoundIndex, NTLN, false |
---|
3351 | ); |
---|
3352 | if (result.length() == NTLN.NumCols()) |
---|
3353 | { |
---|
3354 | #endif |
---|
3355 | delete [] factorsFoundIndex; |
---|
3356 | delete [] A; |
---|
3357 | delete [] bounds; |
---|
3358 | F= 1; |
---|
3359 | return result; |
---|
3360 | } |
---|
3361 | delete [] factorsFoundIndex; |
---|
3362 | } |
---|
3363 | else if (l == precision) |
---|
3364 | { |
---|
3365 | CanonicalForm bufF= F; |
---|
3366 | #ifdef HAVE_FLINT |
---|
3367 | int * zeroOne= extractZeroOneVecs (FLINTN); |
---|
3368 | CFList result= reconstruction (bufF,factors,zeroOne,precision,FLINTN); |
---|
3369 | nmod_mat_clear (FLINTN); |
---|
3370 | #else |
---|
3371 | int * zeroOne= extractZeroOneVecs (NTLN); |
---|
3372 | CFList result= reconstruction (bufF, factors, zeroOne, precision, NTLN); |
---|
3373 | #endif |
---|
3374 | F= bufF; |
---|
3375 | delete [] zeroOne; |
---|
3376 | delete [] A; |
---|
3377 | delete [] bounds; |
---|
3378 | return result; |
---|
3379 | } |
---|
3380 | } |
---|
3381 | oldL2= l; |
---|
3382 | l += stepSize; |
---|
3383 | stepSize *= 2; |
---|
3384 | if (l > precision) |
---|
3385 | { |
---|
3386 | if (!hitBound) |
---|
3387 | { |
---|
3388 | l= precision; |
---|
3389 | hitBound= true; |
---|
3390 | } |
---|
3391 | else |
---|
3392 | break; |
---|
3393 | } |
---|
3394 | } |
---|
3395 | #ifdef HAVE_FLINT |
---|
3396 | nmod_mat_clear (FLINTN); |
---|
3397 | #endif |
---|
3398 | delete [] bounds; |
---|
3399 | delete [] A; |
---|
3400 | return CFList(); |
---|
3401 | } |
---|
3402 | |
---|
3403 | CFList |
---|
3404 | increasePrecision (CanonicalForm& F, CFList& factors, int factorsFound, |
---|
3405 | int oldNumCols, int oldL, const Variable&, |
---|
3406 | int precision |
---|
3407 | ) |
---|
3408 | { |
---|
3409 | int d; |
---|
3410 | bool isIrreducible= false; |
---|
3411 | int* bounds= computeBounds (F, d, isIrreducible); |
---|
3412 | if (isIrreducible) |
---|
3413 | { |
---|
3414 | delete [] bounds; |
---|
3415 | CanonicalForm G= F; |
---|
3416 | F= 1; |
---|
3417 | return CFList (G); |
---|
3418 | } |
---|
3419 | CFArray * A= new CFArray [factors.length()]; |
---|
3420 | CFArray bufQ= CFArray (factors.length()); |
---|
3421 | mat_zz_pE NTLN; |
---|
3422 | ident (NTLN, factors.length()); |
---|
3423 | int minBound= bounds[0]; |
---|
3424 | for (int i= 1; i < d; i++) |
---|
3425 | { |
---|
3426 | if (bounds[i] != 0) |
---|
3427 | minBound= tmin (minBound, bounds[i]); |
---|
3428 | } |
---|
3429 | int l= tmax (2*(minBound + 1), oldL); |
---|
3430 | int oldL2= l/2; |
---|
3431 | int stepSize= 2; |
---|
3432 | bool useOldQs= false; |
---|
3433 | bool hitBound= false; |
---|
3434 | CFListIterator j; |
---|
3435 | CFMatrix C; |
---|
3436 | mat_zz_pE* NTLC, NTLK; |
---|
3437 | CFArray buf; |
---|
3438 | Variable y= F.mvar(); |
---|
3439 | CanonicalForm truncF; |
---|
3440 | while (l <= precision) |
---|
3441 | { |
---|
3442 | j= factors; |
---|
3443 | truncF= mod (F, power (y,l)); |
---|
3444 | if (useOldQs) |
---|
3445 | { |
---|
3446 | for (int i= 0; i < factors.length(); i++, j++) |
---|
3447 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, oldL2, bufQ[i], |
---|
3448 | bufQ[i] |
---|
3449 | ); |
---|
3450 | } |
---|
3451 | else |
---|
3452 | { |
---|
3453 | for (int i= 0; i < factors.length(); i++, j++) |
---|
3454 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, bufQ [i]); |
---|
3455 | } |
---|
3456 | useOldQs= true; |
---|
3457 | for (int i= 0; i < d; i++) |
---|
3458 | { |
---|
3459 | if (bounds [i] + 1 <= l/2) |
---|
3460 | { |
---|
3461 | int k= tmin (bounds [i] + 1, l/2); |
---|
3462 | C= CFMatrix (l - k, factors.length()); |
---|
3463 | for (int ii= 0; ii < factors.length(); ii++) |
---|
3464 | { |
---|
3465 | if (A[ii].size() - 1 >= i) |
---|
3466 | { |
---|
3467 | buf= getCoeffs (A[ii] [i], k); |
---|
3468 | writeInMatrix (C, buf, ii + 1, 0); |
---|
3469 | } |
---|
3470 | } |
---|
3471 | NTLC= convertFacCFMatrix2NTLmat_zz_pE(C); |
---|
3472 | NTLK= (*NTLC)*NTLN; |
---|
3473 | transpose (NTLK, NTLK); |
---|
3474 | kernel (NTLK, NTLK); |
---|
3475 | transpose (NTLK, NTLK); |
---|
3476 | NTLN *= NTLK; |
---|
3477 | if (NTLN.NumCols() == 1) |
---|
3478 | { |
---|
3479 | delete [] A; |
---|
3480 | delete [] bounds; |
---|
3481 | CanonicalForm G= F; |
---|
3482 | F= 1; |
---|
3483 | return CFList (G); |
---|
3484 | } |
---|
3485 | } |
---|
3486 | } |
---|
3487 | |
---|
3488 | if (NTLN.NumCols() < oldNumCols - factorsFound) |
---|
3489 | { |
---|
3490 | if (isReduced (NTLN)) |
---|
3491 | { |
---|
3492 | int * factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
3493 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
3494 | factorsFoundIndex[i]= 0; |
---|
3495 | int factorsFound2= 0; |
---|
3496 | CFList result; |
---|
3497 | CanonicalForm bufF= F; |
---|
3498 | reconstructionTry (result, bufF, factors, degree (F) + 1, factorsFound2, |
---|
3499 | factorsFoundIndex, NTLN, false); |
---|
3500 | if (result.length() == NTLN.NumCols()) |
---|
3501 | { |
---|
3502 | delete [] factorsFoundIndex; |
---|
3503 | delete [] A; |
---|
3504 | delete [] bounds; |
---|
3505 | F= 1; |
---|
3506 | return result; |
---|
3507 | } |
---|
3508 | delete [] factorsFoundIndex; |
---|
3509 | } |
---|
3510 | else if (l == precision) |
---|
3511 | { |
---|
3512 | CanonicalForm bufF= F; |
---|
3513 | int * zeroOne= extractZeroOneVecs (NTLN); |
---|
3514 | CFList result= reconstruction (bufF, factors, zeroOne, precision, NTLN); |
---|
3515 | F= bufF; |
---|
3516 | delete [] zeroOne; |
---|
3517 | delete [] A; |
---|
3518 | delete [] bounds; |
---|
3519 | return result; |
---|
3520 | } |
---|
3521 | } |
---|
3522 | oldL2= l; |
---|
3523 | l += stepSize; |
---|
3524 | stepSize *= 2; |
---|
3525 | if (l > precision) |
---|
3526 | { |
---|
3527 | if (!hitBound) |
---|
3528 | { |
---|
3529 | l= precision; |
---|
3530 | hitBound= true; |
---|
3531 | } |
---|
3532 | else |
---|
3533 | break; |
---|
3534 | } |
---|
3535 | } |
---|
3536 | delete [] bounds; |
---|
3537 | delete [] A; |
---|
3538 | return CFList(); |
---|
3539 | } |
---|
3540 | |
---|
3541 | //over field extension |
---|
3542 | CFList |
---|
3543 | extIncreasePrecision (CanonicalForm& F, CFList& factors, int factorsFound, |
---|
3544 | int oldNumCols, int oldL, const CanonicalForm& evaluation, |
---|
3545 | const ExtensionInfo& info, CFList& source, CFList& dest, |
---|
3546 | int precision |
---|
3547 | ) |
---|
3548 | { |
---|
3549 | bool GF= (CFFactory::gettype()==GaloisFieldDomain); |
---|
3550 | int degMipo= degree (getMipo (info.getAlpha())); |
---|
3551 | Variable alpha= info.getAlpha(); |
---|
3552 | int d; |
---|
3553 | bool isIrreducible= false; |
---|
3554 | int* bounds= computeBounds (F, d, isIrreducible); |
---|
3555 | if (isIrreducible) |
---|
3556 | { |
---|
3557 | delete [] bounds; |
---|
3558 | CanonicalForm G= F; |
---|
3559 | F= 1; |
---|
3560 | return CFList (G); |
---|
3561 | } |
---|
3562 | |
---|
3563 | CFArray * A= new CFArray [factors.length()]; |
---|
3564 | CFArray bufQ= CFArray (factors.length()); |
---|
3565 | if (fac_NTL_char != getCharacteristic()) |
---|
3566 | { |
---|
3567 | fac_NTL_char= getCharacteristic(); |
---|
3568 | zz_p::init (getCharacteristic()); |
---|
3569 | } |
---|
3570 | mat_zz_p NTLN; |
---|
3571 | ident (NTLN, factors.length()); |
---|
3572 | int minBound= bounds[0]; |
---|
3573 | for (int i= 1; i < d; i++) |
---|
3574 | { |
---|
3575 | if (bounds[i] != 0) |
---|
3576 | minBound= tmin (minBound, bounds[i]); |
---|
3577 | } |
---|
3578 | int l= tmax (oldL, 2*((minBound+1)/degMipo+1)); |
---|
3579 | int oldL2= l/2; |
---|
3580 | int stepSize= 2; |
---|
3581 | bool useOldQs= false; |
---|
3582 | bool hitBound= false; |
---|
3583 | Variable gamma= info.getBeta(); |
---|
3584 | CanonicalForm primElemAlpha= info.getGamma(); |
---|
3585 | CanonicalForm imPrimElemAlpha= info.getDelta(); |
---|
3586 | CFListIterator j; |
---|
3587 | Variable y= F.mvar(); |
---|
3588 | CanonicalForm powX, imBasis, truncF; |
---|
3589 | CFMatrix Mat, C; |
---|
3590 | CFIterator iter; |
---|
3591 | mat_zz_p* NTLMat,*NTLC, NTLK; |
---|
3592 | CFArray buf; |
---|
3593 | while (l <= precision) |
---|
3594 | { |
---|
3595 | j= factors; |
---|
3596 | if (GF) |
---|
3597 | setCharacteristic (getCharacteristic()); |
---|
3598 | powX= power (y-gamma, l); |
---|
3599 | Mat= CFMatrix (l*degMipo, l*degMipo); |
---|
3600 | for (int i= 0; i < l*degMipo; i++) |
---|
3601 | { |
---|
3602 | imBasis= mod (power (y, i), powX); |
---|
3603 | imBasis= imBasis (power (y, degMipo), y); |
---|
3604 | imBasis= imBasis (y, gamma); |
---|
3605 | iter= imBasis; |
---|
3606 | for (; iter.hasTerms(); iter++) |
---|
3607 | Mat (iter.exp()+ 1, i+1)= iter.coeff(); |
---|
3608 | } |
---|
3609 | |
---|
3610 | NTLMat= convertFacCFMatrix2NTLmat_zz_p (Mat); |
---|
3611 | *NTLMat= inv (*NTLMat); |
---|
3612 | if (GF) |
---|
3613 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
3614 | |
---|
3615 | truncF= mod (F, power (y, l)); |
---|
3616 | if (useOldQs) |
---|
3617 | { |
---|
3618 | for (int i= 0; i < factors.length(); i++, j++) |
---|
3619 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, oldL2, bufQ[i], |
---|
3620 | bufQ[i] |
---|
3621 | ); |
---|
3622 | } |
---|
3623 | else |
---|
3624 | { |
---|
3625 | for (int i= 0; i < factors.length(); i++, j++) |
---|
3626 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, bufQ [i]); |
---|
3627 | } |
---|
3628 | useOldQs= true; |
---|
3629 | for (int i= 0; i < d; i++) |
---|
3630 | { |
---|
3631 | if (bounds [i] + 1 <= (l/2)*degMipo) |
---|
3632 | { |
---|
3633 | int k= tmin (bounds [i] + 1, (l/2)*degMipo); |
---|
3634 | C= CFMatrix (l*degMipo - k, factors.length()); |
---|
3635 | for (int ii= 0; ii < factors.length(); ii++) |
---|
3636 | { |
---|
3637 | if (A[ii].size() - 1 >= i) |
---|
3638 | { |
---|
3639 | if (GF) |
---|
3640 | { |
---|
3641 | A[ii] [i]= A [ii] [i] (y-evaluation, y); |
---|
3642 | setCharacteristic (getCharacteristic()); |
---|
3643 | A[ii] [i]= GF2FalphaRep (A[ii] [i], alpha); |
---|
3644 | if (alpha != gamma) |
---|
3645 | A [ii] [i]= mapDown (A[ii] [i], imPrimElemAlpha, primElemAlpha, |
---|
3646 | gamma, source, dest |
---|
3647 | ); |
---|
3648 | buf= getCoeffs (A[ii] [i], k, l, degMipo, gamma, 0, *NTLMat); |
---|
3649 | } |
---|
3650 | else |
---|
3651 | { |
---|
3652 | A [ii] [i]= A [ii] [i] (y-evaluation, y); |
---|
3653 | if (alpha != gamma) |
---|
3654 | A[ii] [i]= mapDown (A[ii] [i], imPrimElemAlpha, primElemAlpha, |
---|
3655 | gamma, source, dest |
---|
3656 | ); |
---|
3657 | buf= getCoeffs (A[ii] [i], k, l, degMipo, gamma, 0, *NTLMat); |
---|
3658 | } |
---|
3659 | writeInMatrix (C, buf, ii + 1, 0); |
---|
3660 | } |
---|
3661 | if (GF) |
---|
3662 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
3663 | } |
---|
3664 | |
---|
3665 | if (GF) |
---|
3666 | setCharacteristic(getCharacteristic()); |
---|
3667 | |
---|
3668 | NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
3669 | NTLK= (*NTLC)*NTLN; |
---|
3670 | transpose (NTLK, NTLK); |
---|
3671 | kernel (NTLK, NTLK); |
---|
3672 | transpose (NTLK, NTLK); |
---|
3673 | NTLN *= NTLK; |
---|
3674 | |
---|
3675 | if (GF) |
---|
3676 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
3677 | |
---|
3678 | if (NTLN.NumCols() == 1) |
---|
3679 | { |
---|
3680 | Variable y= Variable (2); |
---|
3681 | CanonicalForm tmp= F (y - evaluation, y); |
---|
3682 | CFList source, dest; |
---|
3683 | tmp= mapDown (tmp, info, source, dest); |
---|
3684 | delete [] A; |
---|
3685 | delete [] bounds; |
---|
3686 | F= 1; |
---|
3687 | return CFList (tmp); |
---|
3688 | } |
---|
3689 | } |
---|
3690 | } |
---|
3691 | |
---|
3692 | if (NTLN.NumCols() < oldNumCols - factorsFound) |
---|
3693 | { |
---|
3694 | if (isReduced (NTLN)) |
---|
3695 | { |
---|
3696 | int * factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
3697 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
3698 | factorsFoundIndex[i]= 0; |
---|
3699 | int factorsFound2= 0; |
---|
3700 | CFList result; |
---|
3701 | CanonicalForm bufF= F; |
---|
3702 | extReconstructionTry (result, bufF, factors,degree (F)+1, factorsFound2, |
---|
3703 | factorsFoundIndex, NTLN, false, info, evaluation |
---|
3704 | ); |
---|
3705 | if (result.length() == NTLN.NumCols()) |
---|
3706 | { |
---|
3707 | delete [] factorsFoundIndex; |
---|
3708 | delete [] A; |
---|
3709 | delete [] bounds; |
---|
3710 | F= 1; |
---|
3711 | return result; |
---|
3712 | } |
---|
3713 | delete [] factorsFoundIndex; |
---|
3714 | } |
---|
3715 | else if (l == precision) |
---|
3716 | { |
---|
3717 | CanonicalForm bufF= F; |
---|
3718 | int * zeroOne= extractZeroOneVecs (NTLN); |
---|
3719 | CFList result= extReconstruction (bufF, factors, zeroOne, precision, |
---|
3720 | NTLN, info, evaluation |
---|
3721 | ); |
---|
3722 | F= bufF; |
---|
3723 | delete [] zeroOne; |
---|
3724 | delete [] A; |
---|
3725 | delete [] bounds; |
---|
3726 | return result; |
---|
3727 | } |
---|
3728 | } |
---|
3729 | oldL2= l; |
---|
3730 | l += stepSize; |
---|
3731 | stepSize *= 2; |
---|
3732 | if (l > precision) |
---|
3733 | { |
---|
3734 | if (!hitBound) |
---|
3735 | { |
---|
3736 | hitBound= true; |
---|
3737 | l= precision; |
---|
3738 | } |
---|
3739 | else |
---|
3740 | break; |
---|
3741 | } |
---|
3742 | } |
---|
3743 | delete [] bounds; |
---|
3744 | delete [] A; |
---|
3745 | return CFList(); |
---|
3746 | } |
---|
3747 | |
---|
3748 | CFList |
---|
3749 | increasePrecision2 (const CanonicalForm& F, CFList& factors, |
---|
3750 | const Variable& alpha, int precision) |
---|
3751 | { |
---|
3752 | int d; |
---|
3753 | bool isIrreducible= false; |
---|
3754 | int* bounds= computeBounds (F, d, isIrreducible); |
---|
3755 | if (isIrreducible) |
---|
3756 | { |
---|
3757 | delete [] bounds; |
---|
3758 | return CFList (F); |
---|
3759 | } |
---|
3760 | CFArray * A= new CFArray [factors.length()]; |
---|
3761 | CFArray bufQ= CFArray (factors.length()); |
---|
3762 | if (fac_NTL_char != getCharacteristic()) |
---|
3763 | { |
---|
3764 | fac_NTL_char= getCharacteristic(); |
---|
3765 | zz_p::init (getCharacteristic()); |
---|
3766 | } |
---|
3767 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
3768 | zz_pE::init (NTLMipo); |
---|
3769 | mat_zz_pE NTLN; |
---|
3770 | ident (NTLN, factors.length()); |
---|
3771 | int minBound= bounds[0]; |
---|
3772 | for (int i= 1; i < d; i++) |
---|
3773 | { |
---|
3774 | if (bounds[i] != 0) |
---|
3775 | minBound= tmin (minBound, bounds[i]); |
---|
3776 | } |
---|
3777 | int l= tmin (2*(minBound + 1), precision); |
---|
3778 | int oldL= l/2; |
---|
3779 | int stepSize= 2; |
---|
3780 | bool useOldQs= false; |
---|
3781 | bool hitBound= false; |
---|
3782 | CFListIterator j; |
---|
3783 | CFMatrix C; |
---|
3784 | CFArray buf; |
---|
3785 | mat_zz_pE* NTLC, NTLK; |
---|
3786 | Variable y= F.mvar(); |
---|
3787 | CanonicalForm truncF; |
---|
3788 | while (l <= precision) |
---|
3789 | { |
---|
3790 | j= factors; |
---|
3791 | truncF= mod (F, power (y, l)); |
---|
3792 | if (useOldQs) |
---|
3793 | { |
---|
3794 | for (int i= 0; i < factors.length(); i++, j++) |
---|
3795 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, oldL, bufQ[i], bufQ[i]); |
---|
3796 | } |
---|
3797 | else |
---|
3798 | { |
---|
3799 | for (int i= 0; i < factors.length(); i++, j++) |
---|
3800 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, bufQ [i]); |
---|
3801 | } |
---|
3802 | useOldQs= true; |
---|
3803 | for (int i= 0; i < d; i++) |
---|
3804 | { |
---|
3805 | if (bounds [i] + 1 <= l/2) |
---|
3806 | { |
---|
3807 | int k= tmin (bounds [i] + 1, l/2); |
---|
3808 | C= CFMatrix (l - k, factors.length()); |
---|
3809 | for (int ii= 0; ii < factors.length(); ii++) |
---|
3810 | { |
---|
3811 | if (A[ii].size() - 1 >= i) |
---|
3812 | { |
---|
3813 | buf= getCoeffs (A[ii] [i], k); |
---|
3814 | writeInMatrix (C, buf, ii + 1, 0); |
---|
3815 | } |
---|
3816 | } |
---|
3817 | NTLC= convertFacCFMatrix2NTLmat_zz_pE(C); |
---|
3818 | NTLK= (*NTLC)*NTLN; |
---|
3819 | transpose (NTLK, NTLK); |
---|
3820 | kernel (NTLK, NTLK); |
---|
3821 | transpose (NTLK, NTLK); |
---|
3822 | NTLN *= NTLK; |
---|
3823 | if (NTLN.NumCols() == 1) |
---|
3824 | { |
---|
3825 | delete [] A; |
---|
3826 | delete [] bounds; |
---|
3827 | return CFList (F); |
---|
3828 | } |
---|
3829 | } |
---|
3830 | } |
---|
3831 | |
---|
3832 | if (isReduced (NTLN) || l == precision) |
---|
3833 | { |
---|
3834 | CanonicalForm bufF= F; |
---|
3835 | int * zeroOne= extractZeroOneVecs (NTLN); |
---|
3836 | CFList bufFactors= factors; |
---|
3837 | CFList result= monicReconstruction (bufF, factors, zeroOne, precision, |
---|
3838 | NTLN |
---|
3839 | ); |
---|
3840 | if (result.length() != NTLN.NumCols() && l != precision) |
---|
3841 | factors= bufFactors; |
---|
3842 | if (result.length() == NTLN.NumCols()) |
---|
3843 | { |
---|
3844 | delete [] zeroOne; |
---|
3845 | delete [] A; |
---|
3846 | delete [] bounds; |
---|
3847 | return result; |
---|
3848 | } |
---|
3849 | if (l == precision) |
---|
3850 | { |
---|
3851 | delete [] zeroOne; |
---|
3852 | delete [] A; |
---|
3853 | delete [] bounds; |
---|
3854 | return Union (result, factors); |
---|
3855 | } |
---|
3856 | } |
---|
3857 | oldL= l; |
---|
3858 | l += stepSize; |
---|
3859 | stepSize *= 2; |
---|
3860 | if (l > precision) |
---|
3861 | { |
---|
3862 | if (!hitBound) |
---|
3863 | { |
---|
3864 | l= precision; |
---|
3865 | hitBound= true; |
---|
3866 | } |
---|
3867 | else |
---|
3868 | break; |
---|
3869 | } |
---|
3870 | } |
---|
3871 | delete [] bounds; |
---|
3872 | delete [] A; |
---|
3873 | return CFList(); |
---|
3874 | } |
---|
3875 | |
---|
3876 | CFList |
---|
3877 | increasePrecisionFq2Fp (CanonicalForm& F, CFList& factors, int factorsFound, |
---|
3878 | int oldNumCols, int oldL, const Variable& alpha, |
---|
3879 | int precision |
---|
3880 | ) |
---|
3881 | { |
---|
3882 | int d; |
---|
3883 | bool isIrreducible= false; |
---|
3884 | int* bounds= computeBounds (F, d, isIrreducible); |
---|
3885 | if (isIrreducible) |
---|
3886 | { |
---|
3887 | delete [] bounds; |
---|
3888 | CanonicalForm G= F; |
---|
3889 | F= 1; |
---|
3890 | return CFList (G); |
---|
3891 | } |
---|
3892 | int extensionDeg= degree (getMipo (alpha)); |
---|
3893 | CFArray * A= new CFArray [factors.length()]; |
---|
3894 | CFArray bufQ= CFArray (factors.length()); |
---|
3895 | #ifdef HAVE_FLINT |
---|
3896 | nmod_mat_t FLINTN; |
---|
3897 | nmod_mat_init (FLINTN,factors.length(),factors.length(), getCharacteristic()); |
---|
3898 | for (long i=factors.length()-1; i >= 0; i--) |
---|
3899 | nmod_mat_entry (FLINTN, i, i)= 1; |
---|
3900 | #else |
---|
3901 | mat_zz_p NTLN; |
---|
3902 | ident (NTLN, factors.length()); |
---|
3903 | #endif |
---|
3904 | int minBound= bounds[0]; |
---|
3905 | for (int i= 1; i < d; i++) |
---|
3906 | { |
---|
3907 | if (bounds[i] != 0) |
---|
3908 | minBound= tmin (minBound, bounds[i]); |
---|
3909 | } |
---|
3910 | int l= tmax (2*(minBound + 1), oldL); |
---|
3911 | int oldL2= l/2; |
---|
3912 | int stepSize= 2; |
---|
3913 | bool useOldQs= false; |
---|
3914 | bool hitBound= false; |
---|
3915 | CFListIterator j; |
---|
3916 | CFMatrix C; |
---|
3917 | #ifdef HAVE_FLINT |
---|
3918 | long rank; |
---|
3919 | nmod_mat_t FLINTC, FLINTK, null; |
---|
3920 | #else |
---|
3921 | mat_zz_p* NTLC, NTLK; |
---|
3922 | #endif |
---|
3923 | CFArray buf; |
---|
3924 | Variable y= F.mvar(); |
---|
3925 | CanonicalForm truncF; |
---|
3926 | while (l <= precision) |
---|
3927 | { |
---|
3928 | j= factors; |
---|
3929 | truncF= mod (F, power (y, l)); |
---|
3930 | if (useOldQs) |
---|
3931 | { |
---|
3932 | for (int i= 0; i < factors.length(); i++, j++) |
---|
3933 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, oldL2, bufQ[i], |
---|
3934 | bufQ[i] |
---|
3935 | ); |
---|
3936 | } |
---|
3937 | else |
---|
3938 | { |
---|
3939 | for (int i= 0; i < factors.length(); i++, j++) |
---|
3940 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, bufQ [i]); |
---|
3941 | } |
---|
3942 | useOldQs= true; |
---|
3943 | for (int i= 0; i < d; i++) |
---|
3944 | { |
---|
3945 | if (bounds [i] + 1 <= l/2) |
---|
3946 | { |
---|
3947 | int k= tmin (bounds [i] + 1, l/2); |
---|
3948 | C= CFMatrix ((l - k)*extensionDeg, factors.length()); |
---|
3949 | for (int ii= 0; ii < factors.length(); ii++) |
---|
3950 | { |
---|
3951 | if (A[ii].size() - 1 >= i) |
---|
3952 | { |
---|
3953 | buf= getCoeffs (A[ii] [i], k, alpha); |
---|
3954 | writeInMatrix (C, buf, ii + 1, 0); |
---|
3955 | } |
---|
3956 | } |
---|
3957 | #ifdef HAVE_FLINT |
---|
3958 | convertFacCFMatrix2nmod_mat_t (FLINTC, C); |
---|
3959 | nmod_mat_init (FLINTK, nmod_mat_nrows (FLINTC), nmod_mat_ncols (FLINTN), |
---|
3960 | getCharacteristic()); |
---|
3961 | nmod_mat_mul (FLINTK, FLINTC, FLINTN); |
---|
3962 | nmod_mat_init (null, nmod_mat_ncols (FLINTK), nmod_mat_ncols (FLINTK), |
---|
3963 | getCharacteristic()); |
---|
3964 | rank= nmod_mat_nullspace (null, FLINTK); |
---|
3965 | nmod_mat_clear (FLINTK); |
---|
3966 | nmod_mat_window_init (FLINTK, null, 0, 0, nmod_mat_nrows(null), rank); |
---|
3967 | nmod_mat_clear (FLINTC); |
---|
3968 | nmod_mat_init_set (FLINTC, FLINTN); |
---|
3969 | nmod_mat_clear (FLINTN); |
---|
3970 | nmod_mat_init (FLINTN, nmod_mat_nrows (FLINTC), nmod_mat_ncols (FLINTK), |
---|
3971 | getCharacteristic()); |
---|
3972 | nmod_mat_mul (FLINTN, FLINTC, FLINTK); //no aliasing allowed!! |
---|
3973 | |
---|
3974 | nmod_mat_clear (FLINTC); |
---|
3975 | nmod_mat_window_clear (FLINTK); |
---|
3976 | nmod_mat_clear (null); |
---|
3977 | #else |
---|
3978 | NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
3979 | NTLK= (*NTLC)*NTLN; |
---|
3980 | transpose (NTLK, NTLK); |
---|
3981 | kernel (NTLK, NTLK); |
---|
3982 | transpose (NTLK, NTLK); |
---|
3983 | NTLN *= NTLK; |
---|
3984 | #endif |
---|
3985 | #ifdef HAVE_FLINT |
---|
3986 | if (nmod_mat_ncols (FLINTN) == 1) |
---|
3987 | { |
---|
3988 | nmod_mat_clear (FLINTN); |
---|
3989 | #else |
---|
3990 | if (NTLN.NumCols() == 1) |
---|
3991 | { |
---|
3992 | #endif |
---|
3993 | delete [] A; |
---|
3994 | delete [] bounds; |
---|
3995 | CanonicalForm G= F; |
---|
3996 | F= 1; |
---|
3997 | return CFList (G); |
---|
3998 | } |
---|
3999 | } |
---|
4000 | } |
---|
4001 | |
---|
4002 | #ifdef HAVE_FLINT |
---|
4003 | if (nmod_mat_ncols (FLINTN) < oldNumCols - factorsFound) |
---|
4004 | { |
---|
4005 | if (isReduced (FLINTN)) |
---|
4006 | { |
---|
4007 | int * factorsFoundIndex= new int [nmod_mat_ncols (FLINTN)]; |
---|
4008 | for (long i= 0; i < nmod_mat_ncols (FLINTN); i++) |
---|
4009 | #else |
---|
4010 | if (NTLN.NumCols() < oldNumCols - factorsFound) |
---|
4011 | { |
---|
4012 | if (isReduced (NTLN)) |
---|
4013 | { |
---|
4014 | int * factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
4015 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
4016 | #endif |
---|
4017 | factorsFoundIndex[i]= 0; |
---|
4018 | int factorsFound2= 0; |
---|
4019 | CFList result; |
---|
4020 | CanonicalForm bufF= F; |
---|
4021 | #ifdef HAVE_FLINT |
---|
4022 | reconstructionTry (result, bufF, factors, degree (F) + 1, factorsFound2, |
---|
4023 | factorsFoundIndex, FLINTN, false |
---|
4024 | ); |
---|
4025 | if (result.length() == nmod_mat_ncols (FLINTN)) |
---|
4026 | { |
---|
4027 | nmod_mat_clear (FLINTN); |
---|
4028 | #else |
---|
4029 | reconstructionTry (result, bufF, factors, degree (F) + 1, factorsFound2, |
---|
4030 | factorsFoundIndex, NTLN, false |
---|
4031 | ); |
---|
4032 | if (result.length() == NTLN.NumCols()) |
---|
4033 | { |
---|
4034 | #endif |
---|
4035 | delete [] factorsFoundIndex; |
---|
4036 | delete [] A; |
---|
4037 | delete [] bounds; |
---|
4038 | F= 1; |
---|
4039 | return result; |
---|
4040 | } |
---|
4041 | delete [] factorsFoundIndex; |
---|
4042 | } |
---|
4043 | else if (l == precision) |
---|
4044 | { |
---|
4045 | CanonicalForm bufF= F; |
---|
4046 | #ifdef HAVE_FLINT |
---|
4047 | int * zeroOne= extractZeroOneVecs (FLINTN); |
---|
4048 | CFList result= reconstruction (bufF,factors,zeroOne,precision,FLINTN); |
---|
4049 | nmod_mat_clear (FLINTN); |
---|
4050 | #else |
---|
4051 | int * zeroOne= extractZeroOneVecs (NTLN); |
---|
4052 | CFList result= reconstruction (bufF, factors, zeroOne, precision, NTLN); |
---|
4053 | #endif |
---|
4054 | F= bufF; |
---|
4055 | delete [] zeroOne; |
---|
4056 | delete [] A; |
---|
4057 | delete [] bounds; |
---|
4058 | return result; |
---|
4059 | } |
---|
4060 | } |
---|
4061 | oldL2= l; |
---|
4062 | l += stepSize; |
---|
4063 | stepSize *= 2; |
---|
4064 | if (l > precision) |
---|
4065 | { |
---|
4066 | if (!hitBound) |
---|
4067 | { |
---|
4068 | hitBound= true; |
---|
4069 | l= precision; |
---|
4070 | } |
---|
4071 | else |
---|
4072 | break; |
---|
4073 | } |
---|
4074 | } |
---|
4075 | #ifdef HAVE_FLINT |
---|
4076 | nmod_mat_clear (FLINTN); |
---|
4077 | #endif |
---|
4078 | delete [] bounds; |
---|
4079 | delete [] A; |
---|
4080 | return CFList(); |
---|
4081 | } |
---|
4082 | |
---|
4083 | #ifdef HAVE_FLINT |
---|
4084 | CFList |
---|
4085 | increasePrecision (CanonicalForm& F, CFList& factors, int oldL, int |
---|
4086 | l, int d, int* bounds, CFArray& bufQ, nmod_mat_t FLINTN |
---|
4087 | ) |
---|
4088 | #else |
---|
4089 | CFList |
---|
4090 | increasePrecision (CanonicalForm& F, CFList& factors, int oldL, int |
---|
4091 | l, int d, int* bounds, CFArray& bufQ, mat_zz_p& NTLN |
---|
4092 | ) |
---|
4093 | #endif |
---|
4094 | { |
---|
4095 | CFList result= CFList(); |
---|
4096 | CFArray * A= new CFArray [factors.length()]; |
---|
4097 | int oldL2= oldL/2; |
---|
4098 | bool hitBound= false; |
---|
4099 | #ifdef HAVE_FLINT |
---|
4100 | if (nmod_mat_nrows (FLINTN) != factors.length()) //refined factors |
---|
4101 | { |
---|
4102 | nmod_mat_clear (FLINTN); |
---|
4103 | nmod_mat_init(FLINTN,factors.length(),factors.length(),getCharacteristic()); |
---|
4104 | for (long i=factors.length()-1; i >= 0; i--) |
---|
4105 | nmod_mat_entry (FLINTN, i, i)= 1; |
---|
4106 | bufQ= CFArray (factors.length()); |
---|
4107 | } |
---|
4108 | #else |
---|
4109 | if (NTLN.NumRows() != factors.length()) //refined factors |
---|
4110 | { |
---|
4111 | ident (NTLN, factors.length()); |
---|
4112 | bufQ= CFArray (factors.length()); |
---|
4113 | } |
---|
4114 | #endif |
---|
4115 | bool useOldQs= false; |
---|
4116 | CFListIterator j; |
---|
4117 | CFMatrix C; |
---|
4118 | CFArray buf; |
---|
4119 | #ifdef HAVE_FLINT |
---|
4120 | long rank; |
---|
4121 | nmod_mat_t FLINTC, FLINTK, null; |
---|
4122 | #else |
---|
4123 | mat_zz_p* NTLC, NTLK; |
---|
4124 | #endif |
---|
4125 | CanonicalForm bufF, truncF; |
---|
4126 | CFList bufUniFactors; |
---|
4127 | Variable y= F.mvar(); |
---|
4128 | while (oldL <= l) |
---|
4129 | { |
---|
4130 | j= factors; |
---|
4131 | truncF= mod (F, power (y, oldL)); |
---|
4132 | if (useOldQs) |
---|
4133 | { |
---|
4134 | for (int i= 0; i < factors.length(); i++, j++) |
---|
4135 | A[i]= logarithmicDerivative (truncF, j.getItem(), oldL, oldL2, bufQ[i], |
---|
4136 | bufQ[i] |
---|
4137 | ); |
---|
4138 | } |
---|
4139 | else |
---|
4140 | { |
---|
4141 | for (int i= 0; i < factors.length(); i++, j++) |
---|
4142 | A[i]= logarithmicDerivative (truncF, j.getItem(), oldL, bufQ [i]); |
---|
4143 | } |
---|
4144 | useOldQs= true; |
---|
4145 | |
---|
4146 | for (int i= 0; i < d; i++) |
---|
4147 | { |
---|
4148 | if (bounds [i] + 1 <= oldL/2) |
---|
4149 | { |
---|
4150 | int k= tmin (bounds [i] + 1, oldL/2); |
---|
4151 | C= CFMatrix (oldL - k, factors.length()); |
---|
4152 | for (int ii= 0; ii < factors.length(); ii++) |
---|
4153 | { |
---|
4154 | if (A[ii].size() - 1 >= i) |
---|
4155 | { |
---|
4156 | buf= getCoeffs (A[ii] [i], k); |
---|
4157 | writeInMatrix (C, buf, ii + 1, 0); |
---|
4158 | } |
---|
4159 | } |
---|
4160 | #ifdef HAVE_FLINT |
---|
4161 | convertFacCFMatrix2nmod_mat_t (FLINTC, C); |
---|
4162 | nmod_mat_init (FLINTK, nmod_mat_nrows (FLINTC), nmod_mat_ncols (FLINTN), |
---|
4163 | getCharacteristic()); |
---|
4164 | nmod_mat_mul (FLINTK, FLINTC, FLINTN); |
---|
4165 | nmod_mat_init (null, nmod_mat_ncols (FLINTK), nmod_mat_ncols (FLINTK), |
---|
4166 | getCharacteristic()); |
---|
4167 | rank= nmod_mat_nullspace (null, FLINTK); |
---|
4168 | nmod_mat_clear (FLINTK); |
---|
4169 | nmod_mat_window_init (FLINTK, null, 0, 0, nmod_mat_nrows(null), rank); |
---|
4170 | nmod_mat_clear (FLINTC); |
---|
4171 | nmod_mat_init_set (FLINTC, FLINTN); |
---|
4172 | nmod_mat_clear (FLINTN); |
---|
4173 | nmod_mat_init (FLINTN, nmod_mat_nrows (FLINTC), nmod_mat_ncols (FLINTK), |
---|
4174 | getCharacteristic()); |
---|
4175 | nmod_mat_mul (FLINTN, FLINTC, FLINTK); //no aliasing allowed!! |
---|
4176 | |
---|
4177 | nmod_mat_clear (FLINTC); |
---|
4178 | nmod_mat_window_clear (FLINTK); |
---|
4179 | nmod_mat_clear (null); |
---|
4180 | #else |
---|
4181 | NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
4182 | NTLK= (*NTLC)*NTLN; |
---|
4183 | transpose (NTLK, NTLK); |
---|
4184 | kernel (NTLK, NTLK); |
---|
4185 | transpose (NTLK, NTLK); |
---|
4186 | NTLN *= NTLK; |
---|
4187 | #endif |
---|
4188 | #ifdef HAVE_FLINT |
---|
4189 | if (nmod_mat_ncols (FLINTN) == 1) |
---|
4190 | #else |
---|
4191 | if (NTLN.NumCols() == 1) |
---|
4192 | #endif |
---|
4193 | { |
---|
4194 | delete [] A; |
---|
4195 | return CFList (F); |
---|
4196 | } |
---|
4197 | } |
---|
4198 | } |
---|
4199 | #ifdef HAVE_FLINT |
---|
4200 | if (nmod_mat_ncols (FLINTN) == 1) |
---|
4201 | #else |
---|
4202 | if (NTLN.NumCols() == 1) |
---|
4203 | #endif |
---|
4204 | { |
---|
4205 | delete [] A; |
---|
4206 | return CFList (F); |
---|
4207 | } |
---|
4208 | int * zeroOneVecs; |
---|
4209 | #ifdef HAVE_FLINT |
---|
4210 | zeroOneVecs= extractZeroOneVecs (FLINTN); |
---|
4211 | #else |
---|
4212 | zeroOneVecs= extractZeroOneVecs (NTLN); |
---|
4213 | #endif |
---|
4214 | bufF= F; |
---|
4215 | bufUniFactors= factors; |
---|
4216 | #ifdef HAVE_FLINT |
---|
4217 | result= reconstruction (bufF, bufUniFactors, zeroOneVecs, oldL, FLINTN); |
---|
4218 | #else |
---|
4219 | result= reconstruction (bufF, bufUniFactors, zeroOneVecs, oldL, NTLN); |
---|
4220 | #endif |
---|
4221 | delete [] zeroOneVecs; |
---|
4222 | if (degree (bufF) + 1 + degree (LC (bufF, 1)) < oldL && result.length() > 0) |
---|
4223 | { |
---|
4224 | F= bufF; |
---|
4225 | factors= bufUniFactors; |
---|
4226 | delete [] A; |
---|
4227 | return result; |
---|
4228 | } |
---|
4229 | |
---|
4230 | result= CFList(); |
---|
4231 | oldL2= oldL; |
---|
4232 | oldL *= 2; |
---|
4233 | if (oldL > l) |
---|
4234 | { |
---|
4235 | if (!hitBound) |
---|
4236 | { |
---|
4237 | oldL= l; |
---|
4238 | hitBound= true; |
---|
4239 | } |
---|
4240 | else |
---|
4241 | break; |
---|
4242 | } |
---|
4243 | } |
---|
4244 | delete [] A; |
---|
4245 | return result; |
---|
4246 | } |
---|
4247 | |
---|
4248 | CFList |
---|
4249 | increasePrecision (CanonicalForm& F, CFList& factors, int oldL, int |
---|
4250 | l, int d, int* bounds, CFArray& bufQ, mat_zz_pE& NTLN |
---|
4251 | ) |
---|
4252 | { |
---|
4253 | CFList result= CFList(); |
---|
4254 | CFArray * A= new CFArray [factors.length()]; |
---|
4255 | int oldL2= oldL/2; |
---|
4256 | bool hitBound= false; |
---|
4257 | bool useOldQs= false; |
---|
4258 | if (NTLN.NumRows() != factors.length()) //refined factors |
---|
4259 | ident (NTLN, factors.length()); |
---|
4260 | CFListIterator j; |
---|
4261 | CFMatrix C; |
---|
4262 | CFArray buf; |
---|
4263 | mat_zz_pE* NTLC, NTLK; |
---|
4264 | CanonicalForm bufF, truncF; |
---|
4265 | CFList bufUniFactors; |
---|
4266 | Variable y= F.mvar(); |
---|
4267 | while (oldL <= l) |
---|
4268 | { |
---|
4269 | j= factors; |
---|
4270 | truncF= mod (F, power (y, oldL)); |
---|
4271 | if (useOldQs) |
---|
4272 | { |
---|
4273 | for (int i= 0; i < factors.length(); i++, j++) |
---|
4274 | A[i]= logarithmicDerivative (truncF, j.getItem(), oldL, oldL2, bufQ[i], |
---|
4275 | bufQ[i] |
---|
4276 | ); |
---|
4277 | } |
---|
4278 | else |
---|
4279 | { |
---|
4280 | for (int i= 0; i < factors.length(); i++, j++) |
---|
4281 | A[i]= logarithmicDerivative (truncF, j.getItem(), oldL, bufQ [i]); |
---|
4282 | } |
---|
4283 | useOldQs= true; |
---|
4284 | |
---|
4285 | for (int i= 0; i < d; i++) |
---|
4286 | { |
---|
4287 | if (bounds [i] + 1 <= oldL/2) |
---|
4288 | { |
---|
4289 | int k= tmin (bounds [i] + 1, oldL/2); |
---|
4290 | C= CFMatrix (oldL - k, factors.length()); |
---|
4291 | for (int ii= 0; ii < factors.length(); ii++) |
---|
4292 | { |
---|
4293 | if (A[ii].size() - 1 >= i) |
---|
4294 | { |
---|
4295 | buf= getCoeffs (A[ii] [i], k); |
---|
4296 | writeInMatrix (C, buf, ii + 1, 0); |
---|
4297 | } |
---|
4298 | } |
---|
4299 | NTLC= convertFacCFMatrix2NTLmat_zz_pE(C); |
---|
4300 | NTLK= (*NTLC)*NTLN; |
---|
4301 | transpose (NTLK, NTLK); |
---|
4302 | kernel (NTLK, NTLK); |
---|
4303 | transpose (NTLK, NTLK); |
---|
4304 | NTLN *= NTLK; |
---|
4305 | if (NTLN.NumCols() == 1) |
---|
4306 | { |
---|
4307 | delete [] A; |
---|
4308 | return CFList (F); |
---|
4309 | } |
---|
4310 | } |
---|
4311 | } |
---|
4312 | if (NTLN.NumCols() == 1) |
---|
4313 | { |
---|
4314 | delete [] A; |
---|
4315 | return CFList (F); |
---|
4316 | } |
---|
4317 | |
---|
4318 | int * zeroOneVecs; |
---|
4319 | zeroOneVecs= extractZeroOneVecs (NTLN); |
---|
4320 | bufF= F; |
---|
4321 | bufUniFactors= factors; |
---|
4322 | result= reconstruction (bufF, bufUniFactors, zeroOneVecs, oldL, NTLN); |
---|
4323 | delete [] zeroOneVecs; |
---|
4324 | if (degree (bufF) + 1 + degree (LC (bufF, 1)) < l && result.length() > 0) |
---|
4325 | { |
---|
4326 | F= bufF; |
---|
4327 | factors= bufUniFactors; |
---|
4328 | delete [] A; |
---|
4329 | return result; |
---|
4330 | } |
---|
4331 | |
---|
4332 | result= CFList(); |
---|
4333 | oldL2= oldL; |
---|
4334 | oldL *= 2; |
---|
4335 | if (oldL > l) |
---|
4336 | { |
---|
4337 | if (!hitBound) |
---|
4338 | { |
---|
4339 | oldL= l; |
---|
4340 | hitBound= true; |
---|
4341 | } |
---|
4342 | else |
---|
4343 | break; |
---|
4344 | } |
---|
4345 | } |
---|
4346 | delete [] A; |
---|
4347 | return result; |
---|
4348 | } |
---|
4349 | |
---|
4350 | //over field extension |
---|
4351 | CFList |
---|
4352 | extIncreasePrecision (CanonicalForm& F, CFList& factors, int oldL, int l, int d, |
---|
4353 | int* bounds, CFArray& bufQ, mat_zz_p& NTLN, const |
---|
4354 | CanonicalForm& evaluation, const ExtensionInfo& info, |
---|
4355 | CFList& source, CFList& dest |
---|
4356 | ) |
---|
4357 | { |
---|
4358 | CFList result= CFList(); |
---|
4359 | CFArray * A= new CFArray [factors.length()]; |
---|
4360 | int oldL2= oldL/2; //be careful |
---|
4361 | bool hitBound= false; |
---|
4362 | bool useOldQs= false; |
---|
4363 | bool GF= (CFFactory::gettype()==GaloisFieldDomain); |
---|
4364 | int degMipo= degree (getMipo (info.getAlpha())); |
---|
4365 | Variable alpha= info.getAlpha(); |
---|
4366 | |
---|
4367 | Variable gamma= info.getBeta(); |
---|
4368 | CanonicalForm primElemAlpha= info.getGamma(); |
---|
4369 | CanonicalForm imPrimElemAlpha= info.getDelta(); |
---|
4370 | if (NTLN.NumRows() != factors.length()) //refined factors |
---|
4371 | ident (NTLN, factors.length()); |
---|
4372 | Variable y= F.mvar(); |
---|
4373 | CFListIterator j; |
---|
4374 | CanonicalForm powX, imBasis, bufF, truncF; |
---|
4375 | CFMatrix Mat, C; |
---|
4376 | CFIterator iter; |
---|
4377 | mat_zz_p* NTLMat; |
---|
4378 | CFArray buf; |
---|
4379 | mat_zz_p* NTLC, NTLK; |
---|
4380 | CFList bufUniFactors; |
---|
4381 | while (oldL <= l) |
---|
4382 | { |
---|
4383 | j= factors; |
---|
4384 | if (GF) |
---|
4385 | setCharacteristic (getCharacteristic()); |
---|
4386 | |
---|
4387 | powX= power (y-gamma, oldL); |
---|
4388 | Mat= CFMatrix (oldL*degMipo, oldL*degMipo); |
---|
4389 | for (int i= 0; i < oldL*degMipo; i++) |
---|
4390 | { |
---|
4391 | imBasis= mod (power (y, i), powX); |
---|
4392 | imBasis= imBasis (power (y, degMipo), y); |
---|
4393 | imBasis= imBasis (y, gamma); |
---|
4394 | iter= imBasis; |
---|
4395 | for (; iter.hasTerms(); iter++) |
---|
4396 | Mat (iter.exp()+ 1, i+1)= iter.coeff(); |
---|
4397 | } |
---|
4398 | |
---|
4399 | NTLMat= convertFacCFMatrix2NTLmat_zz_p (Mat); |
---|
4400 | *NTLMat= inv (*NTLMat); |
---|
4401 | if (GF) |
---|
4402 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
4403 | |
---|
4404 | truncF= mod (F, power (y, oldL)); |
---|
4405 | if (useOldQs) |
---|
4406 | { |
---|
4407 | for (int i= 0; i < factors.length(); i++, j++) |
---|
4408 | A[i]= logarithmicDerivative (truncF, j.getItem(), oldL, oldL2, bufQ[i], |
---|
4409 | bufQ[i]); |
---|
4410 | } |
---|
4411 | else |
---|
4412 | { |
---|
4413 | for (int i= 0; i < factors.length(); i++, j++) |
---|
4414 | A[i]= logarithmicDerivative (truncF, j.getItem(), oldL, bufQ [i]); |
---|
4415 | } |
---|
4416 | useOldQs= true; |
---|
4417 | |
---|
4418 | for (int i= 0; i < d; i++) |
---|
4419 | { |
---|
4420 | if (bounds [i] + 1 <= oldL/2) |
---|
4421 | { |
---|
4422 | int k= tmin (bounds [i] + 1, oldL/2); |
---|
4423 | C= CFMatrix (oldL*degMipo - k, factors.length()); |
---|
4424 | for (int ii= 0; ii < factors.length(); ii++) |
---|
4425 | { |
---|
4426 | if (A[ii].size() - 1 >= i) |
---|
4427 | { |
---|
4428 | if (GF) |
---|
4429 | { |
---|
4430 | A [ii] [i]= A [ii] [i] (y-evaluation, y); |
---|
4431 | setCharacteristic (getCharacteristic()); |
---|
4432 | A[ii] [i]= GF2FalphaRep (A[ii] [i], alpha); |
---|
4433 | if (alpha != gamma) |
---|
4434 | A [ii] [i]= mapDown (A[ii] [i], imPrimElemAlpha, primElemAlpha, |
---|
4435 | gamma, source, dest |
---|
4436 | ); |
---|
4437 | buf= getCoeffs (A[ii] [i], k, oldL, degMipo, gamma, 0, *NTLMat); |
---|
4438 | } |
---|
4439 | else |
---|
4440 | { |
---|
4441 | A [ii] [i]= A [ii] [i] (y-evaluation, y); |
---|
4442 | if (alpha != gamma) |
---|
4443 | A[ii] [i]= mapDown (A[ii] [i], imPrimElemAlpha, primElemAlpha, |
---|
4444 | gamma, source, dest |
---|
4445 | ); |
---|
4446 | buf= getCoeffs (A[ii] [i], k, oldL, degMipo, gamma, 0, *NTLMat); |
---|
4447 | } |
---|
4448 | writeInMatrix (C, buf, ii + 1, 0); |
---|
4449 | } |
---|
4450 | if (GF) |
---|
4451 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
4452 | } |
---|
4453 | |
---|
4454 | if (GF) |
---|
4455 | setCharacteristic(getCharacteristic()); |
---|
4456 | |
---|
4457 | NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
4458 | NTLK= (*NTLC)*NTLN; |
---|
4459 | transpose (NTLK, NTLK); |
---|
4460 | kernel (NTLK, NTLK); |
---|
4461 | transpose (NTLK, NTLK); |
---|
4462 | NTLN *= NTLK; |
---|
4463 | |
---|
4464 | if (GF) |
---|
4465 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
4466 | |
---|
4467 | if (NTLN.NumCols() == 1) |
---|
4468 | { |
---|
4469 | Variable y= Variable (2); |
---|
4470 | CanonicalForm tmp= F (y - evaluation, y); |
---|
4471 | CFList source, dest; |
---|
4472 | tmp= mapDown (tmp, info, source, dest); |
---|
4473 | delete [] A; |
---|
4474 | return CFList (tmp); |
---|
4475 | } |
---|
4476 | } |
---|
4477 | } |
---|
4478 | if (NTLN.NumCols() == 1) |
---|
4479 | { |
---|
4480 | Variable y= Variable (2); |
---|
4481 | CanonicalForm tmp= F (y - evaluation, y); |
---|
4482 | CFList source, dest; |
---|
4483 | tmp= mapDown (tmp, info, source, dest); |
---|
4484 | delete [] A; |
---|
4485 | return CFList (tmp); |
---|
4486 | } |
---|
4487 | |
---|
4488 | int * zeroOneVecs; |
---|
4489 | zeroOneVecs= extractZeroOneVecs (NTLN); |
---|
4490 | bufF= F; |
---|
4491 | bufUniFactors= factors; |
---|
4492 | result= extReconstruction (bufF, bufUniFactors, zeroOneVecs, oldL, NTLN, |
---|
4493 | info, evaluation |
---|
4494 | ); |
---|
4495 | delete [] zeroOneVecs; |
---|
4496 | if (degree (bufF) + 1 + degree (LC (bufF, 1)) < l && result.length() > 0) |
---|
4497 | { |
---|
4498 | F= bufF; |
---|
4499 | factors= bufUniFactors; |
---|
4500 | return result; |
---|
4501 | } |
---|
4502 | |
---|
4503 | result= CFList(); |
---|
4504 | oldL2= oldL; |
---|
4505 | oldL *= 2; |
---|
4506 | if (oldL > l) |
---|
4507 | { |
---|
4508 | if (!hitBound) |
---|
4509 | { |
---|
4510 | oldL= l; |
---|
4511 | hitBound= true; |
---|
4512 | } |
---|
4513 | else |
---|
4514 | break; |
---|
4515 | } |
---|
4516 | } |
---|
4517 | delete [] A; |
---|
4518 | return result; |
---|
4519 | } |
---|
4520 | |
---|
4521 | #ifdef HAVE_FLINT |
---|
4522 | CFList |
---|
4523 | increasePrecisionFq2Fp (CanonicalForm& F, CFList& factors, int oldL, int l, |
---|
4524 | int d, int* bounds, CFArray& bufQ, nmod_mat_t FLINTN, |
---|
4525 | const Variable& alpha |
---|
4526 | ) |
---|
4527 | #else |
---|
4528 | CFList |
---|
4529 | increasePrecisionFq2Fp (CanonicalForm& F, CFList& factors, int oldL, int l, |
---|
4530 | int d, int* bounds, CFArray& bufQ, mat_zz_p& NTLN, |
---|
4531 | const Variable& alpha |
---|
4532 | ) |
---|
4533 | #endif |
---|
4534 | { |
---|
4535 | CFList result= CFList(); |
---|
4536 | CFArray * A= new CFArray [factors.length()]; |
---|
4537 | int extensionDeg= degree (getMipo (alpha)); |
---|
4538 | int oldL2= oldL/2; |
---|
4539 | bool hitBound= false; |
---|
4540 | bool useOldQs= false; |
---|
4541 | #ifdef HAVE_FLINT |
---|
4542 | if (nmod_mat_nrows (FLINTN) != factors.length()) //refined factors |
---|
4543 | { |
---|
4544 | nmod_mat_clear (FLINTN); |
---|
4545 | nmod_mat_init(FLINTN,factors.length(),factors.length(),getCharacteristic()); |
---|
4546 | for (long i=factors.length()-1; i >= 0; i--) |
---|
4547 | nmod_mat_entry (FLINTN, i, i)= 1; |
---|
4548 | } |
---|
4549 | #else |
---|
4550 | if (NTLN.NumRows() != factors.length()) //refined factors |
---|
4551 | ident (NTLN, factors.length()); |
---|
4552 | #endif |
---|
4553 | CFListIterator j; |
---|
4554 | CFMatrix C; |
---|
4555 | CFArray buf; |
---|
4556 | #ifdef HAVE_FLINT |
---|
4557 | long rank; |
---|
4558 | nmod_mat_t FLINTC, FLINTK, null; |
---|
4559 | #else |
---|
4560 | mat_zz_p* NTLC, NTLK; |
---|
4561 | #endif |
---|
4562 | CanonicalForm bufF, truncF; |
---|
4563 | CFList bufUniFactors; |
---|
4564 | Variable y= F.mvar(); |
---|
4565 | while (oldL <= l) |
---|
4566 | { |
---|
4567 | j= factors; |
---|
4568 | truncF= mod (F, power (y, oldL)); |
---|
4569 | if (useOldQs) |
---|
4570 | { |
---|
4571 | for (int i= 0; i < factors.length(); i++, j++) |
---|
4572 | A[i]= logarithmicDerivative (truncF, j.getItem(), oldL, oldL2, bufQ[i], |
---|
4573 | bufQ[i] |
---|
4574 | ); |
---|
4575 | } |
---|
4576 | else |
---|
4577 | { |
---|
4578 | for (int i= 0; i < factors.length(); i++, j++) |
---|
4579 | A[i]= logarithmicDerivative (truncF, j.getItem(), oldL, bufQ [i]); |
---|
4580 | } |
---|
4581 | useOldQs= true; |
---|
4582 | |
---|
4583 | for (int i= 0; i < d; i++) |
---|
4584 | { |
---|
4585 | if (bounds [i] + 1 <= oldL/2) |
---|
4586 | { |
---|
4587 | int k= tmin (bounds [i] + 1, oldL/2); |
---|
4588 | C= CFMatrix ((oldL - k)*extensionDeg, factors.length()); |
---|
4589 | for (int ii= 0; ii < factors.length(); ii++) |
---|
4590 | { |
---|
4591 | if (A[ii].size() - 1 >= i) |
---|
4592 | { |
---|
4593 | buf= getCoeffs (A[ii] [i], k, alpha); |
---|
4594 | writeInMatrix (C, buf, ii + 1, 0); |
---|
4595 | } |
---|
4596 | } |
---|
4597 | #ifdef HAVE_FLINT |
---|
4598 | convertFacCFMatrix2nmod_mat_t (FLINTC, C); |
---|
4599 | nmod_mat_init (FLINTK, nmod_mat_nrows (FLINTC), nmod_mat_ncols (FLINTN), |
---|
4600 | getCharacteristic()); |
---|
4601 | nmod_mat_mul (FLINTK, FLINTC, FLINTN); |
---|
4602 | nmod_mat_init (null, nmod_mat_ncols (FLINTK), nmod_mat_ncols (FLINTK), |
---|
4603 | getCharacteristic()); |
---|
4604 | rank= nmod_mat_nullspace (null, FLINTK); |
---|
4605 | nmod_mat_clear (FLINTK); |
---|
4606 | nmod_mat_window_init (FLINTK, null, 0, 0, nmod_mat_nrows(null), rank); |
---|
4607 | nmod_mat_clear (FLINTC); |
---|
4608 | nmod_mat_init_set (FLINTC, FLINTN); |
---|
4609 | nmod_mat_clear (FLINTN); |
---|
4610 | nmod_mat_init (FLINTN, nmod_mat_nrows (FLINTC), nmod_mat_ncols (FLINTK), |
---|
4611 | getCharacteristic()); |
---|
4612 | nmod_mat_mul (FLINTN, FLINTC, FLINTK); //no aliasing allowed!! |
---|
4613 | |
---|
4614 | nmod_mat_clear (FLINTC); |
---|
4615 | nmod_mat_window_clear (FLINTK); |
---|
4616 | nmod_mat_clear (null); |
---|
4617 | #else |
---|
4618 | NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
4619 | NTLK= (*NTLC)*NTLN; |
---|
4620 | transpose (NTLK, NTLK); |
---|
4621 | kernel (NTLK, NTLK); |
---|
4622 | transpose (NTLK, NTLK); |
---|
4623 | NTLN *= NTLK; |
---|
4624 | #endif |
---|
4625 | #ifdef HAVE_FLINT |
---|
4626 | if (nmod_mat_ncols (FLINTN) == 1) |
---|
4627 | #else |
---|
4628 | if (NTLN.NumCols() == 1) |
---|
4629 | #endif |
---|
4630 | { |
---|
4631 | delete [] A; |
---|
4632 | return CFList (F); |
---|
4633 | } |
---|
4634 | } |
---|
4635 | } |
---|
4636 | |
---|
4637 | int * zeroOneVecs; |
---|
4638 | #ifdef HAVE_FLINT |
---|
4639 | zeroOneVecs= extractZeroOneVecs (FLINTN); |
---|
4640 | #else |
---|
4641 | zeroOneVecs= extractZeroOneVecs (NTLN); |
---|
4642 | #endif |
---|
4643 | |
---|
4644 | bufF= F; |
---|
4645 | bufUniFactors= factors; |
---|
4646 | #ifdef HAVE_FLINT |
---|
4647 | result= reconstruction (bufF, bufUniFactors, zeroOneVecs, oldL, FLINTN); |
---|
4648 | #else |
---|
4649 | result= reconstruction (bufF, bufUniFactors, zeroOneVecs, oldL, NTLN); |
---|
4650 | #endif |
---|
4651 | delete [] zeroOneVecs; |
---|
4652 | if (degree (bufF) + 1 + degree (LC (bufF, 1)) < l && result.length() > 0) |
---|
4653 | { |
---|
4654 | F= bufF; |
---|
4655 | factors= bufUniFactors; |
---|
4656 | delete [] A; |
---|
4657 | return result; |
---|
4658 | } |
---|
4659 | |
---|
4660 | result= CFList(); |
---|
4661 | oldL2= oldL; |
---|
4662 | oldL *= 2; |
---|
4663 | if (oldL > l) |
---|
4664 | { |
---|
4665 | if (!hitBound) |
---|
4666 | { |
---|
4667 | oldL= l; |
---|
4668 | hitBound= true; |
---|
4669 | } |
---|
4670 | else |
---|
4671 | break; |
---|
4672 | } |
---|
4673 | } |
---|
4674 | delete [] A; |
---|
4675 | return result; |
---|
4676 | } |
---|
4677 | |
---|
4678 | #ifdef HAVE_FLINT |
---|
4679 | CFList |
---|
4680 | furtherLiftingAndIncreasePrecision (CanonicalForm& F, CFList& |
---|
4681 | factors, int l, int liftBound, int d, int* |
---|
4682 | bounds, nmod_mat_t FLINTN, CFList& diophant, |
---|
4683 | CFMatrix& M, CFArray& Pi, CFArray& bufQ |
---|
4684 | ) |
---|
4685 | #else |
---|
4686 | CFList |
---|
4687 | furtherLiftingAndIncreasePrecision (CanonicalForm& F, CFList& |
---|
4688 | factors, int l, int liftBound, int d, int* |
---|
4689 | bounds, mat_zz_p& NTLN, CFList& diophant, |
---|
4690 | CFMatrix& M, CFArray& Pi, CFArray& bufQ |
---|
4691 | ) |
---|
4692 | #endif |
---|
4693 | { |
---|
4694 | CanonicalForm LCF= LC (F, 1); |
---|
4695 | CFList result; |
---|
4696 | bool irreducible= false; |
---|
4697 | CFList bufFactors= factors; |
---|
4698 | CFArray *A = new CFArray [bufFactors.length()]; |
---|
4699 | bool useOldQs= false; |
---|
4700 | bool hitBound= false; |
---|
4701 | int oldL= l; |
---|
4702 | int stepSize= 8; //TODO choose better step size? |
---|
4703 | l += tmax (tmin (8, degree (F) + 1 + degree (LC (F, 1))-l), 2); |
---|
4704 | #ifdef HAVE_FLINT |
---|
4705 | if (nmod_mat_nrows (FLINTN) != factors.length()) //refined factors |
---|
4706 | { |
---|
4707 | nmod_mat_clear (FLINTN); |
---|
4708 | nmod_mat_init(FLINTN,factors.length(),factors.length(),getCharacteristic()); |
---|
4709 | for (long i=factors.length()-1; i >= 0; i--) |
---|
4710 | nmod_mat_entry (FLINTN, i, i)= 1; |
---|
4711 | } |
---|
4712 | #else |
---|
4713 | if (NTLN.NumRows() != factors.length()) //refined factors |
---|
4714 | ident (NTLN, factors.length()); |
---|
4715 | #endif |
---|
4716 | CFListIterator j; |
---|
4717 | CFMatrix C; |
---|
4718 | CFArray buf; |
---|
4719 | #ifdef HAVE_FLINT |
---|
4720 | long rank; |
---|
4721 | nmod_mat_t FLINTC, FLINTK, null; |
---|
4722 | #else |
---|
4723 | mat_zz_p* NTLC, NTLK; |
---|
4724 | #endif |
---|
4725 | CanonicalForm bufF, truncF; |
---|
4726 | Variable y= F.mvar(); |
---|
4727 | while (l <= liftBound) |
---|
4728 | { |
---|
4729 | bufFactors.insert (LCF); |
---|
4730 | henselLiftResume12 (F, bufFactors, oldL, l, Pi, diophant, M); |
---|
4731 | bufFactors.insert (LCF); |
---|
4732 | bufFactors.removeFirst(); |
---|
4733 | j= bufFactors; |
---|
4734 | truncF= mod (F, power (y, l)); |
---|
4735 | if (useOldQs) |
---|
4736 | { |
---|
4737 | for (int i= 0; i < bufFactors.length(); i++, j++) |
---|
4738 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, oldL, bufQ[i], |
---|
4739 | bufQ[i]); |
---|
4740 | } |
---|
4741 | else |
---|
4742 | { |
---|
4743 | for (int i= 0; i < bufFactors.length(); i++, j++) |
---|
4744 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, bufQ [i]); |
---|
4745 | } |
---|
4746 | for (int i= 0; i < d; i++) |
---|
4747 | { |
---|
4748 | if (bounds [i] + 1 <= l/2) |
---|
4749 | { |
---|
4750 | int k= tmin (bounds [i] + 1, l/2); |
---|
4751 | C= CFMatrix (l - k, bufFactors.length()); |
---|
4752 | for (int ii= 0; ii < bufFactors.length(); ii++) |
---|
4753 | { |
---|
4754 | if (A[ii].size() - 1 >= i) |
---|
4755 | { |
---|
4756 | buf= getCoeffs (A[ii] [i], k); |
---|
4757 | writeInMatrix (C, buf, ii + 1, 0); |
---|
4758 | } |
---|
4759 | } |
---|
4760 | #ifdef HAVE_FLINT |
---|
4761 | convertFacCFMatrix2nmod_mat_t (FLINTC, C); |
---|
4762 | nmod_mat_init (FLINTK, nmod_mat_nrows (FLINTC), nmod_mat_ncols (FLINTN), |
---|
4763 | getCharacteristic()); |
---|
4764 | nmod_mat_mul (FLINTK, FLINTC, FLINTN); |
---|
4765 | nmod_mat_init (null, nmod_mat_ncols (FLINTK), nmod_mat_ncols (FLINTK), |
---|
4766 | getCharacteristic()); |
---|
4767 | rank= nmod_mat_nullspace (null, FLINTK); |
---|
4768 | nmod_mat_clear (FLINTK); |
---|
4769 | nmod_mat_window_init (FLINTK, null, 0, 0, nmod_mat_nrows(null), rank); |
---|
4770 | nmod_mat_clear (FLINTC); |
---|
4771 | nmod_mat_init_set (FLINTC, FLINTN); |
---|
4772 | nmod_mat_clear (FLINTN); |
---|
4773 | nmod_mat_init (FLINTN, nmod_mat_nrows (FLINTC), nmod_mat_ncols (FLINTK), |
---|
4774 | getCharacteristic()); |
---|
4775 | nmod_mat_mul (FLINTN, FLINTC, FLINTK); //no aliasing allowed!! |
---|
4776 | |
---|
4777 | nmod_mat_clear (FLINTC); |
---|
4778 | nmod_mat_window_clear (FLINTK); |
---|
4779 | nmod_mat_clear (null); |
---|
4780 | #else |
---|
4781 | NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
4782 | NTLK= (*NTLC)*NTLN; |
---|
4783 | transpose (NTLK, NTLK); |
---|
4784 | kernel (NTLK, NTLK); |
---|
4785 | transpose (NTLK, NTLK); |
---|
4786 | NTLN *= NTLK; |
---|
4787 | #endif |
---|
4788 | #ifdef HAVE_FLINT |
---|
4789 | if (nmod_mat_ncols (FLINTN) == 1) |
---|
4790 | #else |
---|
4791 | if (NTLN.NumCols() == 1) |
---|
4792 | #endif |
---|
4793 | { |
---|
4794 | irreducible= true; |
---|
4795 | break; |
---|
4796 | } |
---|
4797 | } |
---|
4798 | } |
---|
4799 | |
---|
4800 | #ifdef HAVE_FLINT |
---|
4801 | if (nmod_mat_ncols (FLINTN) == 1) |
---|
4802 | #else |
---|
4803 | if (NTLN.NumCols() == 1) |
---|
4804 | #endif |
---|
4805 | { |
---|
4806 | irreducible= true; |
---|
4807 | break; |
---|
4808 | } |
---|
4809 | |
---|
4810 | #ifdef HAVE_FLINT |
---|
4811 | int * zeroOneVecs= extractZeroOneVecs (FLINTN); |
---|
4812 | #else |
---|
4813 | int * zeroOneVecs= extractZeroOneVecs (NTLN); |
---|
4814 | #endif |
---|
4815 | bufF= F; |
---|
4816 | #ifdef HAVE_FLINT |
---|
4817 | result= reconstruction (bufF, bufFactors, zeroOneVecs, l, FLINTN); |
---|
4818 | #else |
---|
4819 | result= reconstruction (bufF, bufFactors, zeroOneVecs, l, NTLN); |
---|
4820 | #endif |
---|
4821 | delete [] zeroOneVecs; |
---|
4822 | if (result.length() > 0 && degree (bufF) + 1 + degree (LC (bufF, 1)) <= l) |
---|
4823 | { |
---|
4824 | F= bufF; |
---|
4825 | factors= bufFactors; |
---|
4826 | delete [] A; |
---|
4827 | return result; |
---|
4828 | } |
---|
4829 | |
---|
4830 | #ifdef HAVE_FLINT |
---|
4831 | if (isReduced (FLINTN)) |
---|
4832 | #else |
---|
4833 | if (isReduced (NTLN)) |
---|
4834 | #endif |
---|
4835 | { |
---|
4836 | int factorsFound= 0; |
---|
4837 | bufF= F; |
---|
4838 | #ifdef HAVE_FLINT |
---|
4839 | int* factorsFoundIndex= new int [nmod_mat_ncols (FLINTN)]; |
---|
4840 | for (long i= 0; i < nmod_mat_ncols (FLINTN); i++) |
---|
4841 | #else |
---|
4842 | int* factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
4843 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
4844 | #endif |
---|
4845 | factorsFoundIndex[i]= 0; |
---|
4846 | #ifdef HAVE_FLINT |
---|
4847 | if (l < liftBound) |
---|
4848 | reconstructionTry (result, bufF, bufFactors, l, factorsFound, |
---|
4849 | factorsFoundIndex, FLINTN, false |
---|
4850 | ); |
---|
4851 | else |
---|
4852 | reconstructionTry (result, bufF, bufFactors, degree (bufF) + 1 + |
---|
4853 | degree (LCF), factorsFound, factorsFoundIndex, |
---|
4854 | FLINTN, false |
---|
4855 | ); |
---|
4856 | |
---|
4857 | if (nmod_mat_ncols (FLINTN) == result.length()) |
---|
4858 | #else |
---|
4859 | if (l < liftBound) |
---|
4860 | reconstructionTry (result, bufF, bufFactors, l, factorsFound, |
---|
4861 | factorsFoundIndex, NTLN, false |
---|
4862 | ); |
---|
4863 | else |
---|
4864 | reconstructionTry (result, bufF, bufFactors, degree (bufF) + 1 + |
---|
4865 | degree (LCF), factorsFound, factorsFoundIndex, |
---|
4866 | NTLN, false |
---|
4867 | ); |
---|
4868 | |
---|
4869 | if (NTLN.NumCols() == result.length()) |
---|
4870 | #endif |
---|
4871 | { |
---|
4872 | delete [] A; |
---|
4873 | delete [] factorsFoundIndex; |
---|
4874 | return result; |
---|
4875 | } |
---|
4876 | delete [] factorsFoundIndex; |
---|
4877 | } |
---|
4878 | result= CFList(); |
---|
4879 | oldL= l; |
---|
4880 | stepSize *= 2; |
---|
4881 | l += stepSize; |
---|
4882 | if (l > liftBound) |
---|
4883 | { |
---|
4884 | if (!hitBound) |
---|
4885 | { |
---|
4886 | l= liftBound; |
---|
4887 | hitBound= true; |
---|
4888 | } |
---|
4889 | else |
---|
4890 | break; |
---|
4891 | } |
---|
4892 | } |
---|
4893 | if (irreducible) |
---|
4894 | { |
---|
4895 | delete [] A; |
---|
4896 | return CFList (F); |
---|
4897 | } |
---|
4898 | delete [] A; |
---|
4899 | factors= bufFactors; |
---|
4900 | return CFList(); |
---|
4901 | } |
---|
4902 | |
---|
4903 | //Fq |
---|
4904 | CFList |
---|
4905 | furtherLiftingAndIncreasePrecision (CanonicalForm& F, CFList& |
---|
4906 | factors, int l, int liftBound, int d, int* |
---|
4907 | bounds, mat_zz_pE& NTLN, CFList& diophant, |
---|
4908 | CFMatrix& M, CFArray& Pi, CFArray& bufQ |
---|
4909 | ) |
---|
4910 | { |
---|
4911 | CanonicalForm LCF= LC (F, 1); |
---|
4912 | CFList result; |
---|
4913 | bool irreducible= false; |
---|
4914 | CFList bufFactors= factors; |
---|
4915 | CFArray *A = new CFArray [bufFactors.length()]; |
---|
4916 | bool useOldQs= false; |
---|
4917 | bool hitBound= false; |
---|
4918 | int oldL= l; |
---|
4919 | int stepSize= 8; //TODO choose better step size? |
---|
4920 | l += tmax (tmin (8, degree (F) + 1 + degree (LC (F, 1))-l), 2); |
---|
4921 | if (NTLN.NumRows() != factors.length()) //refined factors |
---|
4922 | ident (NTLN, factors.length()); |
---|
4923 | CFListIterator j; |
---|
4924 | CFArray buf; |
---|
4925 | mat_zz_pE* NTLC, NTLK; |
---|
4926 | CanonicalForm bufF, truncF; |
---|
4927 | Variable y= F.mvar(); |
---|
4928 | while (l <= liftBound) |
---|
4929 | { |
---|
4930 | bufFactors.insert (LCF); |
---|
4931 | henselLiftResume12 (F, bufFactors, oldL, l, Pi, diophant, M); |
---|
4932 | j= bufFactors; |
---|
4933 | truncF= mod (F, power (y, l)); |
---|
4934 | if (useOldQs) |
---|
4935 | { |
---|
4936 | for (int i= 0; i < bufFactors.length(); i++, j++) |
---|
4937 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, oldL, bufQ[i], |
---|
4938 | bufQ[i]); |
---|
4939 | } |
---|
4940 | else |
---|
4941 | { |
---|
4942 | for (int i= 0; i < bufFactors.length(); i++, j++) |
---|
4943 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, bufQ [i]); |
---|
4944 | } |
---|
4945 | for (int i= 0; i < d; i++) |
---|
4946 | { |
---|
4947 | if (bounds [i] + 1 <= l/2) |
---|
4948 | { |
---|
4949 | int k= tmin (bounds [i] + 1, l/2); |
---|
4950 | CFMatrix C= CFMatrix (l - k, bufFactors.length()); |
---|
4951 | for (int ii= 0; ii < bufFactors.length(); ii++) |
---|
4952 | { |
---|
4953 | if (A[ii].size() - 1 >= i) |
---|
4954 | { |
---|
4955 | buf= getCoeffs (A[ii] [i], k); |
---|
4956 | writeInMatrix (C, buf, ii + 1, 0); |
---|
4957 | } |
---|
4958 | } |
---|
4959 | NTLC= convertFacCFMatrix2NTLmat_zz_pE(C); |
---|
4960 | NTLK= (*NTLC)*NTLN; |
---|
4961 | transpose (NTLK, NTLK); |
---|
4962 | kernel (NTLK, NTLK); |
---|
4963 | transpose (NTLK, NTLK); |
---|
4964 | NTLN *= NTLK; |
---|
4965 | if (NTLN.NumCols() == 1) |
---|
4966 | { |
---|
4967 | irreducible= true; |
---|
4968 | break; |
---|
4969 | } |
---|
4970 | } |
---|
4971 | } |
---|
4972 | if (NTLN.NumCols() == 1) |
---|
4973 | { |
---|
4974 | irreducible= true; |
---|
4975 | break; |
---|
4976 | } |
---|
4977 | |
---|
4978 | int * zeroOneVecs= extractZeroOneVecs (NTLN); |
---|
4979 | bufF= F; |
---|
4980 | result= reconstruction (bufF, bufFactors, zeroOneVecs, l, NTLN); |
---|
4981 | delete [] zeroOneVecs; |
---|
4982 | if (result.length() > 0 && degree (bufF) + 1 + degree (LC (bufF, 1)) <= l) |
---|
4983 | { |
---|
4984 | F= bufF; |
---|
4985 | factors= bufFactors; |
---|
4986 | delete [] A; |
---|
4987 | return result; |
---|
4988 | } |
---|
4989 | |
---|
4990 | if (isReduced (NTLN)) |
---|
4991 | { |
---|
4992 | int factorsFound= 0; |
---|
4993 | bufF= F; |
---|
4994 | int* factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
4995 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
4996 | factorsFoundIndex[i]= 0; |
---|
4997 | if (l < liftBound) |
---|
4998 | reconstructionTry (result, bufF, bufFactors, l, factorsFound, |
---|
4999 | factorsFoundIndex, NTLN, false |
---|
5000 | ); |
---|
5001 | else |
---|
5002 | reconstructionTry (result, bufF, bufFactors, degree (bufF) + 1 + |
---|
5003 | degree (LCF), factorsFound, factorsFoundIndex, |
---|
5004 | NTLN, false |
---|
5005 | ); |
---|
5006 | if (NTLN.NumCols() == result.length()) |
---|
5007 | { |
---|
5008 | delete [] A; |
---|
5009 | delete [] factorsFoundIndex; |
---|
5010 | return result; |
---|
5011 | } |
---|
5012 | delete [] factorsFoundIndex; |
---|
5013 | } |
---|
5014 | result= CFList(); |
---|
5015 | oldL= l; |
---|
5016 | stepSize *= 2; |
---|
5017 | l += stepSize; |
---|
5018 | if (l > liftBound) |
---|
5019 | { |
---|
5020 | if (!hitBound) |
---|
5021 | { |
---|
5022 | l= liftBound; |
---|
5023 | hitBound= true; |
---|
5024 | } |
---|
5025 | else |
---|
5026 | break; |
---|
5027 | } |
---|
5028 | } |
---|
5029 | if (irreducible) |
---|
5030 | { |
---|
5031 | delete [] A; |
---|
5032 | return CFList (F); |
---|
5033 | } |
---|
5034 | delete [] A; |
---|
5035 | factors= bufFactors; |
---|
5036 | return CFList(); |
---|
5037 | } |
---|
5038 | |
---|
5039 | //over field extension |
---|
5040 | CFList |
---|
5041 | extFurtherLiftingAndIncreasePrecision (CanonicalForm& F, CFList& factors, int l, |
---|
5042 | int liftBound, int d, int* bounds, |
---|
5043 | mat_zz_p& NTLN, CFList& diophant, |
---|
5044 | CFMatrix& M, CFArray& Pi, CFArray& bufQ, |
---|
5045 | const CanonicalForm& evaluation, const |
---|
5046 | ExtensionInfo& info, CFList& source, |
---|
5047 | CFList& dest |
---|
5048 | ) |
---|
5049 | { |
---|
5050 | CanonicalForm LCF= LC (F, 1); |
---|
5051 | CFList result; |
---|
5052 | bool irreducible= false; |
---|
5053 | CFList bufFactors= factors; |
---|
5054 | CFArray *A = new CFArray [bufFactors.length()]; |
---|
5055 | bool useOldQs= false; |
---|
5056 | bool hitBound= false; |
---|
5057 | bool GF= (CFFactory::gettype()==GaloisFieldDomain); |
---|
5058 | int degMipo= degree (getMipo (info.getAlpha())); |
---|
5059 | Variable alpha= info.getAlpha(); |
---|
5060 | int oldL= l; //be careful |
---|
5061 | int stepSize= 8; |
---|
5062 | l += tmax (tmin (8, degree (F) + 1 + degree (LC (F, 1))-l),2); |
---|
5063 | Variable gamma= info.getBeta(); |
---|
5064 | CanonicalForm primElemAlpha= info.getGamma(); |
---|
5065 | CanonicalForm imPrimElemAlpha= info.getDelta(); |
---|
5066 | if (NTLN.NumRows() != factors.length()) //refined factors |
---|
5067 | ident (NTLN, factors.length()); |
---|
5068 | Variable y= F.mvar(); |
---|
5069 | CanonicalForm powX, imBasis, bufF, truncF; |
---|
5070 | CFMatrix Mat, C; |
---|
5071 | CFIterator iter; |
---|
5072 | mat_zz_p* NTLMat,*NTLC, NTLK; |
---|
5073 | CFListIterator j; |
---|
5074 | CFArray buf; |
---|
5075 | while (l <= liftBound) |
---|
5076 | { |
---|
5077 | bufFactors.insert (LCF); |
---|
5078 | henselLiftResume12 (F, bufFactors, oldL, l, Pi, diophant, M); |
---|
5079 | |
---|
5080 | if (GF) |
---|
5081 | setCharacteristic (getCharacteristic()); |
---|
5082 | |
---|
5083 | powX= power (y-gamma, l); |
---|
5084 | Mat= CFMatrix (l*degMipo, l*degMipo); |
---|
5085 | for (int i= 0; i < l*degMipo; i++) |
---|
5086 | { |
---|
5087 | |
---|
5088 | imBasis= mod (power (y, i), powX); |
---|
5089 | imBasis= imBasis (power (y, degMipo), y); |
---|
5090 | imBasis= imBasis (y, gamma); |
---|
5091 | iter= imBasis; |
---|
5092 | for (; iter.hasTerms(); iter++) |
---|
5093 | Mat (iter.exp()+ 1, i+1)= iter.coeff(); |
---|
5094 | } |
---|
5095 | |
---|
5096 | NTLMat= convertFacCFMatrix2NTLmat_zz_p (Mat); |
---|
5097 | *NTLMat= inv (*NTLMat); |
---|
5098 | |
---|
5099 | if (GF) |
---|
5100 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
5101 | |
---|
5102 | j= bufFactors; |
---|
5103 | truncF= mod (F, power (y, l)); |
---|
5104 | if (useOldQs) |
---|
5105 | { |
---|
5106 | for (int i= 0; i < bufFactors.length(); i++, j++) |
---|
5107 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, oldL, bufQ[i], |
---|
5108 | bufQ[i]); |
---|
5109 | } |
---|
5110 | else |
---|
5111 | { |
---|
5112 | for (int i= 0; i < bufFactors.length(); i++, j++) |
---|
5113 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, bufQ [i]); |
---|
5114 | } |
---|
5115 | for (int i= 0; i < d; i++) |
---|
5116 | { |
---|
5117 | if (bounds [i] + 1 <= l/2) |
---|
5118 | { |
---|
5119 | int k= tmin (bounds [i] + 1, l/2); |
---|
5120 | C= CFMatrix (l*degMipo - k, bufFactors.length()); |
---|
5121 | for (int ii= 0; ii < bufFactors.length(); ii++) |
---|
5122 | { |
---|
5123 | if (A[ii].size() - 1 >= i) |
---|
5124 | { |
---|
5125 | if (GF) |
---|
5126 | { |
---|
5127 | A [ii] [i]= A [ii] [i] (y-evaluation, y); |
---|
5128 | setCharacteristic (getCharacteristic()); |
---|
5129 | A[ii] [i]= GF2FalphaRep (A[ii] [i], alpha); |
---|
5130 | if (alpha != gamma) |
---|
5131 | A [ii] [i]= mapDown (A[ii] [i], imPrimElemAlpha, primElemAlpha, |
---|
5132 | gamma, source, dest |
---|
5133 | ); |
---|
5134 | buf= getCoeffs (A[ii] [i], k, l, degMipo, gamma, 0, *NTLMat); |
---|
5135 | } |
---|
5136 | else |
---|
5137 | { |
---|
5138 | A [ii] [i]= A [ii] [i] (y-evaluation, y); |
---|
5139 | if (alpha != gamma) |
---|
5140 | A[ii] [i]= mapDown (A[ii] [i], imPrimElemAlpha, primElemAlpha, |
---|
5141 | gamma, source, dest |
---|
5142 | ); |
---|
5143 | buf= getCoeffs (A[ii] [i], k, l, degMipo, gamma, 0, *NTLMat); |
---|
5144 | } |
---|
5145 | writeInMatrix (C, buf, ii + 1, 0); |
---|
5146 | } |
---|
5147 | if (GF) |
---|
5148 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
5149 | } |
---|
5150 | |
---|
5151 | if (GF) |
---|
5152 | setCharacteristic(getCharacteristic()); |
---|
5153 | NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
5154 | NTLK= (*NTLC)*NTLN; |
---|
5155 | transpose (NTLK, NTLK); |
---|
5156 | kernel (NTLK, NTLK); |
---|
5157 | transpose (NTLK, NTLK); |
---|
5158 | NTLN *= NTLK; |
---|
5159 | if (GF) |
---|
5160 | setCharacteristic (getCharacteristic(), degMipo, info.getGFName()); |
---|
5161 | |
---|
5162 | if (NTLN.NumCols() == 1) |
---|
5163 | { |
---|
5164 | irreducible= true; |
---|
5165 | break; |
---|
5166 | } |
---|
5167 | } |
---|
5168 | } |
---|
5169 | if (NTLN.NumCols() == 1) |
---|
5170 | { |
---|
5171 | irreducible= true; |
---|
5172 | break; |
---|
5173 | } |
---|
5174 | |
---|
5175 | int * zeroOneVecs= extractZeroOneVecs (NTLN); |
---|
5176 | bufF= F; |
---|
5177 | result= extReconstruction (bufF, bufFactors, zeroOneVecs, l, NTLN, info, |
---|
5178 | evaluation |
---|
5179 | ); |
---|
5180 | delete [] zeroOneVecs; |
---|
5181 | if (result.length() > 0 && degree (bufF) + 1 + degree (LC (bufF, 1)) <= l) |
---|
5182 | { |
---|
5183 | F= bufF; |
---|
5184 | factors= bufFactors; |
---|
5185 | delete [] A; |
---|
5186 | return result; |
---|
5187 | } |
---|
5188 | |
---|
5189 | if (isReduced (NTLN)) |
---|
5190 | { |
---|
5191 | int factorsFound= 0; |
---|
5192 | bufF= F; |
---|
5193 | int* factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
5194 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
5195 | factorsFoundIndex[i]= 0; |
---|
5196 | if (l < degree (bufF) + 1 + degree (LCF)) |
---|
5197 | extReconstructionTry (result, bufF, bufFactors, l, factorsFound, |
---|
5198 | factorsFoundIndex, NTLN, false, info, evaluation |
---|
5199 | ); |
---|
5200 | else |
---|
5201 | extReconstructionTry (result, bufF, bufFactors, degree (bufF) + 1 + |
---|
5202 | degree (LCF), factorsFound, factorsFoundIndex, |
---|
5203 | NTLN, false, info, evaluation |
---|
5204 | ); |
---|
5205 | if (NTLN.NumCols() == result.length()) |
---|
5206 | { |
---|
5207 | delete [] A; |
---|
5208 | delete [] factorsFoundIndex; |
---|
5209 | return result; |
---|
5210 | } |
---|
5211 | delete [] factorsFoundIndex; |
---|
5212 | } |
---|
5213 | result= CFList(); |
---|
5214 | oldL= l; |
---|
5215 | stepSize *= 2; |
---|
5216 | l += stepSize; |
---|
5217 | if (l > liftBound) |
---|
5218 | { |
---|
5219 | if (!hitBound) |
---|
5220 | { |
---|
5221 | l= liftBound; |
---|
5222 | hitBound= true; |
---|
5223 | } |
---|
5224 | else |
---|
5225 | break; |
---|
5226 | } |
---|
5227 | } |
---|
5228 | if (irreducible) |
---|
5229 | { |
---|
5230 | delete [] A; |
---|
5231 | Variable y= Variable (2); |
---|
5232 | CanonicalForm tmp= F (y - evaluation, y); |
---|
5233 | CFList source, dest; |
---|
5234 | tmp= mapDown (tmp, info, source, dest); |
---|
5235 | return CFList (tmp); |
---|
5236 | } |
---|
5237 | delete [] A; |
---|
5238 | factors= bufFactors; |
---|
5239 | return CFList(); |
---|
5240 | } |
---|
5241 | |
---|
5242 | #ifdef HAVE_FLINT |
---|
5243 | CFList |
---|
5244 | furtherLiftingAndIncreasePrecisionFq2Fp (CanonicalForm& F, CFList& factors, int |
---|
5245 | l, int liftBound, int d, int* bounds, |
---|
5246 | nmod_mat_t FLINTN, CFList& diophant, |
---|
5247 | CFMatrix& M, CFArray& Pi, CFArray& bufQ, |
---|
5248 | const Variable& alpha |
---|
5249 | ) |
---|
5250 | #else |
---|
5251 | CFList |
---|
5252 | furtherLiftingAndIncreasePrecisionFq2Fp (CanonicalForm& F, CFList& factors, int |
---|
5253 | l, int liftBound, int d, int* bounds, |
---|
5254 | mat_zz_p& NTLN, CFList& diophant, |
---|
5255 | CFMatrix& M, CFArray& Pi, CFArray& bufQ, |
---|
5256 | const Variable& alpha |
---|
5257 | ) |
---|
5258 | #endif |
---|
5259 | { |
---|
5260 | CanonicalForm LCF= LC (F, 1); |
---|
5261 | CFList result; |
---|
5262 | bool irreducible= false; |
---|
5263 | CFList bufFactors= factors; |
---|
5264 | CFArray *A = new CFArray [bufFactors.length()]; |
---|
5265 | bool useOldQs= false; |
---|
5266 | int extensionDeg= degree (getMipo (alpha)); |
---|
5267 | bool hitBound= false; |
---|
5268 | int oldL= l; |
---|
5269 | int stepSize= 8; //TODO choose better step size? |
---|
5270 | l += tmax (tmin (8, degree (F) + 1 + degree (LC (F, 1))-l), 2); |
---|
5271 | #ifdef HAVE_FLINT |
---|
5272 | if (nmod_mat_nrows (FLINTN) != factors.length()) //refined factors |
---|
5273 | { |
---|
5274 | nmod_mat_clear (FLINTN); |
---|
5275 | nmod_mat_init(FLINTN,factors.length(),factors.length(),getCharacteristic()); |
---|
5276 | for (long i=factors.length()-1; i >= 0; i--) |
---|
5277 | nmod_mat_entry (FLINTN, i, i)= 1; |
---|
5278 | } |
---|
5279 | #else |
---|
5280 | if (NTLN.NumRows() != factors.length()) //refined factors |
---|
5281 | ident (NTLN, factors.length()); |
---|
5282 | #endif |
---|
5283 | CFListIterator j; |
---|
5284 | CFMatrix C; |
---|
5285 | #ifdef HAVE_FLINT |
---|
5286 | long rank; |
---|
5287 | nmod_mat_t FLINTC, FLINTK, null; |
---|
5288 | #else |
---|
5289 | mat_zz_p* NTLC, NTLK; |
---|
5290 | #endif |
---|
5291 | CanonicalForm bufF, truncF; |
---|
5292 | Variable y= F.mvar(); |
---|
5293 | while (l <= liftBound) |
---|
5294 | { |
---|
5295 | bufFactors.insert (LCF); |
---|
5296 | henselLiftResume12 (F, bufFactors, oldL, l, Pi, diophant, M); |
---|
5297 | j= bufFactors; |
---|
5298 | truncF= mod (F, power (y, l)); |
---|
5299 | if (useOldQs) |
---|
5300 | { |
---|
5301 | for (int i= 0; i < bufFactors.length(); i++, j++) |
---|
5302 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, oldL, bufQ[i], |
---|
5303 | bufQ[i]); |
---|
5304 | } |
---|
5305 | else |
---|
5306 | { |
---|
5307 | for (int i= 0; i < bufFactors.length(); i++, j++) |
---|
5308 | A[i]= logarithmicDerivative (truncF, j.getItem(), l, bufQ [i]); |
---|
5309 | } |
---|
5310 | for (int i= 0; i < d; i++) |
---|
5311 | { |
---|
5312 | if (bounds [i] + 1 <= l/2) |
---|
5313 | { |
---|
5314 | int k= tmin (bounds [i] + 1, l/2); |
---|
5315 | C= CFMatrix ((l - k)*extensionDeg, bufFactors.length()); |
---|
5316 | for (int ii= 0; ii < bufFactors.length(); ii++) |
---|
5317 | { |
---|
5318 | CFArray buf; |
---|
5319 | if (A[ii].size() - 1 >= i) |
---|
5320 | { |
---|
5321 | buf= getCoeffs (A[ii] [i], k, alpha); |
---|
5322 | writeInMatrix (C, buf, ii + 1, 0); |
---|
5323 | } |
---|
5324 | } |
---|
5325 | #ifdef HAVE_FLINT |
---|
5326 | convertFacCFMatrix2nmod_mat_t (FLINTC, C); |
---|
5327 | nmod_mat_init (FLINTK, nmod_mat_nrows (FLINTC), nmod_mat_ncols (FLINTN), |
---|
5328 | getCharacteristic()); |
---|
5329 | nmod_mat_mul (FLINTK, FLINTC, FLINTN); |
---|
5330 | nmod_mat_init (null, nmod_mat_ncols (FLINTK), nmod_mat_ncols (FLINTK), |
---|
5331 | getCharacteristic()); |
---|
5332 | rank= nmod_mat_nullspace (null, FLINTK); |
---|
5333 | nmod_mat_clear (FLINTK); |
---|
5334 | nmod_mat_window_init (FLINTK, null, 0, 0, nmod_mat_nrows(null), rank); |
---|
5335 | nmod_mat_clear (FLINTC); |
---|
5336 | nmod_mat_init_set (FLINTC, FLINTN); |
---|
5337 | nmod_mat_clear (FLINTN); |
---|
5338 | nmod_mat_init (FLINTN, nmod_mat_nrows (FLINTC), nmod_mat_ncols (FLINTK), |
---|
5339 | getCharacteristic()); |
---|
5340 | nmod_mat_mul (FLINTN, FLINTC, FLINTK); //no aliasing allowed!! |
---|
5341 | |
---|
5342 | nmod_mat_clear (FLINTC); |
---|
5343 | nmod_mat_window_clear (FLINTK); |
---|
5344 | nmod_mat_clear (null); |
---|
5345 | #else |
---|
5346 | NTLC= convertFacCFMatrix2NTLmat_zz_p(C); |
---|
5347 | NTLK= (*NTLC)*NTLN; |
---|
5348 | transpose (NTLK, NTLK); |
---|
5349 | kernel (NTLK, NTLK); |
---|
5350 | transpose (NTLK, NTLK); |
---|
5351 | NTLN *= NTLK; |
---|
5352 | #endif |
---|
5353 | #ifdef HAVE_FLINT |
---|
5354 | if (nmod_mat_ncols (FLINTN) == 1) |
---|
5355 | #else |
---|
5356 | if (NTLN.NumCols() == 1) |
---|
5357 | #endif |
---|
5358 | { |
---|
5359 | irreducible= true; |
---|
5360 | break; |
---|
5361 | } |
---|
5362 | } |
---|
5363 | } |
---|
5364 | #ifdef HAVE_FLINT |
---|
5365 | if (nmod_mat_ncols (FLINTN) == 1) |
---|
5366 | #else |
---|
5367 | if (NTLN.NumCols() == 1) |
---|
5368 | #endif |
---|
5369 | { |
---|
5370 | irreducible= true; |
---|
5371 | break; |
---|
5372 | } |
---|
5373 | |
---|
5374 | #ifdef HAVE_FLINT |
---|
5375 | int * zeroOneVecs= extractZeroOneVecs (FLINTN); |
---|
5376 | #else |
---|
5377 | int * zeroOneVecs= extractZeroOneVecs (NTLN); |
---|
5378 | #endif |
---|
5379 | CanonicalForm bufF= F; |
---|
5380 | #ifdef HAVE_FLINT |
---|
5381 | result= reconstruction (bufF, bufFactors, zeroOneVecs, l, FLINTN); |
---|
5382 | #else |
---|
5383 | result= reconstruction (bufF, bufFactors, zeroOneVecs, l, NTLN); |
---|
5384 | #endif |
---|
5385 | delete [] zeroOneVecs; |
---|
5386 | if (result.length() > 0 && degree (bufF) + 1 + degree (LC (bufF, 1)) <= l) |
---|
5387 | { |
---|
5388 | F= bufF; |
---|
5389 | factors= bufFactors; |
---|
5390 | delete [] A; |
---|
5391 | return result; |
---|
5392 | } |
---|
5393 | |
---|
5394 | #ifdef HAVE_FLINT |
---|
5395 | if (isReduced (FLINTN)) |
---|
5396 | #else |
---|
5397 | if (isReduced (NTLN)) |
---|
5398 | #endif |
---|
5399 | { |
---|
5400 | int factorsFound= 0; |
---|
5401 | bufF= F; |
---|
5402 | #ifdef HAVE_FLINT |
---|
5403 | int* factorsFoundIndex= new int [nmod_mat_ncols (FLINTN)]; |
---|
5404 | for (long i= 0; i < nmod_mat_ncols (FLINTN); i++) |
---|
5405 | #else |
---|
5406 | int* factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
5407 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
5408 | #endif |
---|
5409 | factorsFoundIndex[i]= 0; |
---|
5410 | #ifdef HAVE_FLINT |
---|
5411 | if (l < degree (bufF) + 1 + degree (LCF)) |
---|
5412 | reconstructionTry (result, bufF, bufFactors, l, factorsFound, |
---|
5413 | factorsFoundIndex, FLINTN, false |
---|
5414 | ); |
---|
5415 | else |
---|
5416 | reconstructionTry (result, bufF, bufFactors, degree (bufF) + 1 + |
---|
5417 | degree (LCF), factorsFound, factorsFoundIndex, |
---|
5418 | FLINTN, false |
---|
5419 | ); |
---|
5420 | if (nmod_mat_ncols (FLINTN) == result.length()) |
---|
5421 | #else |
---|
5422 | if (l < degree (bufF) + 1 + degree (LCF)) |
---|
5423 | reconstructionTry (result, bufF, bufFactors, l, factorsFound, |
---|
5424 | factorsFoundIndex, NTLN, false |
---|
5425 | ); |
---|
5426 | else |
---|
5427 | reconstructionTry (result, bufF, bufFactors, degree (bufF) + 1 + |
---|
5428 | degree (LCF), factorsFound, factorsFoundIndex, |
---|
5429 | NTLN, false |
---|
5430 | ); |
---|
5431 | if (NTLN.NumCols() == result.length()) |
---|
5432 | #endif |
---|
5433 | { |
---|
5434 | delete [] A; |
---|
5435 | delete [] factorsFoundIndex; |
---|
5436 | return result; |
---|
5437 | } |
---|
5438 | delete [] factorsFoundIndex; |
---|
5439 | } |
---|
5440 | result= CFList(); |
---|
5441 | oldL= l; |
---|
5442 | stepSize *= 2; |
---|
5443 | l += stepSize; |
---|
5444 | if (l > liftBound) |
---|
5445 | { |
---|
5446 | if (!hitBound) |
---|
5447 | { |
---|
5448 | l= liftBound; |
---|
5449 | hitBound= true; |
---|
5450 | } |
---|
5451 | else |
---|
5452 | break; |
---|
5453 | } |
---|
5454 | } |
---|
5455 | if (irreducible) |
---|
5456 | { |
---|
5457 | delete [] A; |
---|
5458 | return CFList (F); |
---|
5459 | } |
---|
5460 | delete [] A; |
---|
5461 | factors= bufFactors; |
---|
5462 | return CFList(); |
---|
5463 | } |
---|
5464 | |
---|
5465 | void |
---|
5466 | refineAndRestartLift (const CanonicalForm& F, const mat_zz_p& NTLN, int |
---|
5467 | liftBound, int l, CFList& factors, CFMatrix& M, CFArray& |
---|
5468 | Pi, CFList& diophant |
---|
5469 | ) |
---|
5470 | { |
---|
5471 | CFList bufFactors; |
---|
5472 | Variable y= Variable (2); |
---|
5473 | CanonicalForm LCF= LC (F, 1); |
---|
5474 | CFListIterator iter; |
---|
5475 | CanonicalForm buf; |
---|
5476 | for (long i= 1; i <= NTLN.NumCols(); i++) |
---|
5477 | { |
---|
5478 | iter= factors; |
---|
5479 | buf= 1; |
---|
5480 | for (long j= 1; j <= NTLN.NumRows(); j++, iter++) |
---|
5481 | { |
---|
5482 | if (!IsZero (NTLN (j,i))) |
---|
5483 | buf= mulNTL (buf, mod (iter.getItem(), y)); |
---|
5484 | } |
---|
5485 | bufFactors.append (buf); |
---|
5486 | } |
---|
5487 | factors= bufFactors; |
---|
5488 | M= CFMatrix (liftBound, factors.length()); |
---|
5489 | Pi= CFArray(); |
---|
5490 | diophant= CFList(); |
---|
5491 | factors.insert (LCF); |
---|
5492 | henselLift12 (F, factors, l, Pi, diophant, M); |
---|
5493 | } |
---|
5494 | |
---|
5495 | #ifdef HAVE_FLINT |
---|
5496 | void |
---|
5497 | refineAndRestartLift (const CanonicalForm& F, const nmod_mat_t FLINTN, int |
---|
5498 | liftBound, int l, CFList& factors, CFMatrix& M, CFArray& |
---|
5499 | Pi, CFList& diophant |
---|
5500 | ) |
---|
5501 | { |
---|
5502 | CFList bufFactors; |
---|
5503 | Variable y= Variable (2); |
---|
5504 | CanonicalForm LCF= LC (F, 1); |
---|
5505 | CFListIterator iter; |
---|
5506 | CanonicalForm buf; |
---|
5507 | for (long i= 0; i < nmod_mat_ncols (FLINTN); i++) |
---|
5508 | { |
---|
5509 | iter= factors; |
---|
5510 | buf= 1; |
---|
5511 | for (long j= 0; j < nmod_mat_nrows (FLINTN); j++, iter++) |
---|
5512 | { |
---|
5513 | if (!(nmod_mat_entry (FLINTN,j,i) == 0)) |
---|
5514 | buf= mulNTL (buf, mod (iter.getItem(), y)); |
---|
5515 | } |
---|
5516 | bufFactors.append (buf); |
---|
5517 | } |
---|
5518 | factors= bufFactors; |
---|
5519 | M= CFMatrix (liftBound, factors.length()); |
---|
5520 | Pi= CFArray(); |
---|
5521 | diophant= CFList(); |
---|
5522 | factors.insert (LCF); |
---|
5523 | henselLift12 (F, factors, l, Pi, diophant, M); |
---|
5524 | } |
---|
5525 | #endif |
---|
5526 | |
---|
5527 | void |
---|
5528 | refineAndRestartLift (const CanonicalForm& F, const mat_zz_pE& NTLN, int |
---|
5529 | liftBound, int l, CFList& factors, CFMatrix& M, CFArray& |
---|
5530 | Pi, CFList& diophant |
---|
5531 | ) |
---|
5532 | { |
---|
5533 | CFList bufFactors; |
---|
5534 | Variable y= Variable (2); |
---|
5535 | CanonicalForm LCF= LC (F, 1); |
---|
5536 | CFListIterator iter; |
---|
5537 | CanonicalForm buf; |
---|
5538 | for (long i= 1; i <= NTLN.NumCols(); i++) |
---|
5539 | { |
---|
5540 | iter= factors; |
---|
5541 | buf= 1; |
---|
5542 | for (long j= 1; j <= NTLN.NumRows(); j++, iter++) |
---|
5543 | { |
---|
5544 | if (!IsZero (NTLN (j,i))) |
---|
5545 | buf= mulNTL (buf, mod (iter.getItem(), y)); |
---|
5546 | } |
---|
5547 | bufFactors.append (buf); |
---|
5548 | } |
---|
5549 | factors= bufFactors; |
---|
5550 | M= CFMatrix (liftBound, factors.length()); |
---|
5551 | Pi= CFArray(); |
---|
5552 | diophant= CFList(); |
---|
5553 | factors.insert (LCF); |
---|
5554 | henselLift12 (F, factors, l, Pi, diophant, M); |
---|
5555 | } |
---|
5556 | |
---|
5557 | #ifdef HAVE_FLINT |
---|
5558 | CFList |
---|
5559 | earlyReconstructionAndLifting (const CanonicalForm& F, const nmod_mat_t N, |
---|
5560 | CanonicalForm& bufF, CFList& factors, int& l, |
---|
5561 | int& factorsFound, bool beenInThres, CFMatrix& M, |
---|
5562 | CFArray& Pi, CFList& diophant, bool symmetric, |
---|
5563 | const CanonicalForm& evaluation |
---|
5564 | ) |
---|
5565 | #else |
---|
5566 | CFList |
---|
5567 | earlyReconstructionAndLifting (const CanonicalForm& F, const mat_zz_p& N, |
---|
5568 | CanonicalForm& bufF, CFList& factors, int& l, |
---|
5569 | int& factorsFound, bool beenInThres, CFMatrix& M, |
---|
5570 | CFArray& Pi, CFList& diophant, bool symmetric, |
---|
5571 | const CanonicalForm& evaluation |
---|
5572 | ) |
---|
5573 | #endif |
---|
5574 | { |
---|
5575 | int sizeOfLiftPre; |
---|
5576 | int * liftPre= getLiftPrecisions (F, sizeOfLiftPre, degree (LC (F, 1), 2)); |
---|
5577 | |
---|
5578 | Variable y= F.mvar(); |
---|
5579 | factorsFound= 0; |
---|
5580 | CanonicalForm LCF= LC (F, 1); |
---|
5581 | CFList result; |
---|
5582 | int smallFactorDeg= tmin (11, liftPre [sizeOfLiftPre- 1] + 1); |
---|
5583 | #ifdef HAVE_FLINT |
---|
5584 | nmod_mat_t FLINTN; |
---|
5585 | nmod_mat_init_set (FLINTN, N); |
---|
5586 | int * factorsFoundIndex= new int [nmod_mat_ncols (FLINTN)]; |
---|
5587 | for (long i= 0; i < nmod_mat_ncols (FLINTN); i++) |
---|
5588 | #else |
---|
5589 | mat_zz_p NTLN= N; |
---|
5590 | int * factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
5591 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
5592 | #endif |
---|
5593 | factorsFoundIndex [i]= 0; |
---|
5594 | |
---|
5595 | if (degree (F) + 1 > smallFactorDeg) |
---|
5596 | { |
---|
5597 | if (l < smallFactorDeg) |
---|
5598 | { |
---|
5599 | factors.insert (LCF); |
---|
5600 | henselLiftResume12 (F, factors, l, smallFactorDeg, Pi, diophant, M); |
---|
5601 | l= smallFactorDeg; |
---|
5602 | } |
---|
5603 | #ifdef HAVE_FLINT |
---|
5604 | reconstructionTry (result, bufF, factors, smallFactorDeg, factorsFound, |
---|
5605 | factorsFoundIndex, FLINTN, beenInThres |
---|
5606 | ); |
---|
5607 | if (result.length() == nmod_mat_ncols (FLINTN)) |
---|
5608 | { |
---|
5609 | nmod_mat_clear (FLINTN); |
---|
5610 | #else |
---|
5611 | reconstructionTry (result, bufF, factors, smallFactorDeg, factorsFound, |
---|
5612 | factorsFoundIndex, NTLN, beenInThres |
---|
5613 | ); |
---|
5614 | if (result.length() == NTLN.NumCols()) |
---|
5615 | { |
---|
5616 | #endif |
---|
5617 | delete [] liftPre; |
---|
5618 | delete [] factorsFoundIndex; |
---|
5619 | return result; |
---|
5620 | } |
---|
5621 | } |
---|
5622 | |
---|
5623 | int i= sizeOfLiftPre - 1; |
---|
5624 | int dummy= 1; |
---|
5625 | if (sizeOfLiftPre > 1 && sizeOfLiftPre < 30) |
---|
5626 | { |
---|
5627 | while (i > 0) |
---|
5628 | { |
---|
5629 | if (l < liftPre[i-1] + 1) |
---|
5630 | { |
---|
5631 | factors.insert (LCF); |
---|
5632 | henselLiftResume12 (F, factors, l, liftPre[i-1] + 1, Pi, diophant, M); |
---|
5633 | l= liftPre[i-1] + 1; |
---|
5634 | } |
---|
5635 | else |
---|
5636 | { |
---|
5637 | i--; |
---|
5638 | if (i != 0) |
---|
5639 | continue; |
---|
5640 | } |
---|
5641 | #ifdef HAVE_FLINT |
---|
5642 | reconstructionTry (result, bufF, factors, l, factorsFound, |
---|
5643 | factorsFoundIndex, FLINTN, beenInThres |
---|
5644 | ); |
---|
5645 | if (result.length() == nmod_mat_ncols (FLINTN)) |
---|
5646 | { |
---|
5647 | nmod_mat_clear (FLINTN); |
---|
5648 | #else |
---|
5649 | reconstructionTry (result, bufF, factors, l, factorsFound, |
---|
5650 | factorsFoundIndex, NTLN, beenInThres |
---|
5651 | ); |
---|
5652 | if (result.length() == NTLN.NumCols()) |
---|
5653 | { |
---|
5654 | #endif |
---|
5655 | delete [] liftPre; |
---|
5656 | delete [] factorsFoundIndex; |
---|
5657 | return result; |
---|
5658 | } |
---|
5659 | i--; |
---|
5660 | } |
---|
5661 | } |
---|
5662 | else |
---|
5663 | { |
---|
5664 | i= 1; |
---|
5665 | while ((degree (F,y)/4)*i + 4 <= smallFactorDeg) |
---|
5666 | i++; |
---|
5667 | while (i < 5) |
---|
5668 | { |
---|
5669 | dummy= tmin (degree (F,y)+1, (degree (F,y)/4)*i+4); |
---|
5670 | if (l < dummy) |
---|
5671 | { |
---|
5672 | factors.insert (LCF); |
---|
5673 | henselLiftResume12 (F, factors, l, dummy, Pi, diophant, M); |
---|
5674 | l= dummy; |
---|
5675 | if (i == 1 && degree (F)%4==0 && symmetric && factors.length() == 2 && |
---|
5676 | LC (F,1).inCoeffDomain() && |
---|
5677 | (degree (factors.getFirst(), 1) == degree (factors.getLast(),1))) |
---|
5678 | { |
---|
5679 | Variable x= Variable (1); |
---|
5680 | CanonicalForm g, h, gg, hh, multiplier1, multiplier2, check1, check2; |
---|
5681 | int m= degree (F)/4+1; |
---|
5682 | g= factors.getFirst(); |
---|
5683 | h= factors.getLast(); |
---|
5684 | g= mod (g, power (y,m)); |
---|
5685 | h= mod (h, power (y,m)); |
---|
5686 | g= g (y-evaluation, y); |
---|
5687 | h= h (y-evaluation, y); |
---|
5688 | gg= mod (swapvar (g,x,y),power (x,m)); |
---|
5689 | gg= gg (y + evaluation, y); |
---|
5690 | multiplier1= factors.getLast()[m-1][0]/gg[m-1][0]; |
---|
5691 | gg= div (gg, power (y,m)); |
---|
5692 | gg= gg*power (y,m); |
---|
5693 | hh= mod (swapvar (h,x,y),power (x,m)); |
---|
5694 | hh= hh (y + evaluation, y); |
---|
5695 | multiplier2= factors.getFirst()[m-1][0]/hh[m-1][0]; |
---|
5696 | hh= div (hh, power (y,m)); |
---|
5697 | hh= hh*power (y,m); |
---|
5698 | gg= multiplier1*gg+mod (factors.getLast(), power (y,m)); |
---|
5699 | hh= multiplier2*hh+mod (factors.getFirst(), power (y,m)); |
---|
5700 | check1= gg (y-evaluation,y); |
---|
5701 | check2= hh (y-evaluation,y); |
---|
5702 | check1= swapvar (check1, x, y); |
---|
5703 | if (check1/Lc (check1) == check2/Lc (check2)) |
---|
5704 | { |
---|
5705 | #ifdef HAVE_FLINT |
---|
5706 | nmod_mat_clear (FLINTN); |
---|
5707 | #endif |
---|
5708 | result.append (gg); |
---|
5709 | result.append (hh); |
---|
5710 | delete [] liftPre; |
---|
5711 | delete [] factorsFoundIndex; |
---|
5712 | return result; |
---|
5713 | } |
---|
5714 | } |
---|
5715 | } |
---|
5716 | else |
---|
5717 | { |
---|
5718 | i++; |
---|
5719 | if (i < 5) |
---|
5720 | continue; |
---|
5721 | } |
---|
5722 | #ifdef HAVE_FLINT |
---|
5723 | reconstructionTry (result, bufF, factors, l, factorsFound, |
---|
5724 | factorsFoundIndex, FLINTN, beenInThres |
---|
5725 | ); |
---|
5726 | if (result.length() == nmod_mat_ncols (FLINTN)) |
---|
5727 | { |
---|
5728 | nmod_mat_clear (FLINTN); |
---|
5729 | #else |
---|
5730 | reconstructionTry (result, bufF, factors, l, factorsFound, |
---|
5731 | factorsFoundIndex, NTLN, beenInThres |
---|
5732 | ); |
---|
5733 | if (result.length() == NTLN.NumCols()) |
---|
5734 | { |
---|
5735 | #endif |
---|
5736 | delete [] liftPre; |
---|
5737 | delete [] factorsFoundIndex; |
---|
5738 | return result; |
---|
5739 | } |
---|
5740 | i++; |
---|
5741 | } |
---|
5742 | } |
---|
5743 | |
---|
5744 | #ifdef HAVE_FLINT |
---|
5745 | nmod_mat_clear (FLINTN); |
---|
5746 | #endif |
---|
5747 | delete [] liftPre; |
---|
5748 | delete [] factorsFoundIndex; |
---|
5749 | return result; |
---|
5750 | } |
---|
5751 | |
---|
5752 | CFList |
---|
5753 | earlyReconstructionAndLifting (const CanonicalForm& F, const mat_zz_pE& N, |
---|
5754 | CanonicalForm& bufF, CFList& factors, int& l, |
---|
5755 | int& factorsFound, bool beenInThres, CFMatrix& M, |
---|
5756 | CFArray& Pi, CFList& diophant, bool symmetric, |
---|
5757 | const CanonicalForm& evaluation |
---|
5758 | ) |
---|
5759 | { |
---|
5760 | int sizeOfLiftPre; |
---|
5761 | int * liftPre= getLiftPrecisions (F, sizeOfLiftPre, degree (LC (F, 1), 2)); |
---|
5762 | Variable y= F.mvar(); |
---|
5763 | factorsFound= 0; |
---|
5764 | CanonicalForm LCF= LC (F, 1); |
---|
5765 | CFList result; |
---|
5766 | int smallFactorDeg= 11; |
---|
5767 | mat_zz_pE NTLN= N; |
---|
5768 | int * factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
5769 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
5770 | factorsFoundIndex [i]= 0; |
---|
5771 | |
---|
5772 | if (degree (F) + 1 > smallFactorDeg) |
---|
5773 | { |
---|
5774 | if (l < smallFactorDeg) |
---|
5775 | { |
---|
5776 | factors.insert (LCF); |
---|
5777 | henselLiftResume12 (F, factors, l, smallFactorDeg, Pi, diophant, M); |
---|
5778 | l= smallFactorDeg; |
---|
5779 | } |
---|
5780 | reconstructionTry (result, bufF, factors, smallFactorDeg, factorsFound, |
---|
5781 | factorsFoundIndex, NTLN, beenInThres |
---|
5782 | ); |
---|
5783 | if (result.length() == NTLN.NumCols()) |
---|
5784 | { |
---|
5785 | delete [] liftPre; |
---|
5786 | delete [] factorsFoundIndex; |
---|
5787 | return result; |
---|
5788 | } |
---|
5789 | } |
---|
5790 | |
---|
5791 | int i= sizeOfLiftPre - 1; |
---|
5792 | int dummy= 1; |
---|
5793 | if (sizeOfLiftPre > 1 && sizeOfLiftPre < 30) |
---|
5794 | { |
---|
5795 | while (i > 0) |
---|
5796 | { |
---|
5797 | if (l < liftPre[i-1] + 1) |
---|
5798 | { |
---|
5799 | factors.insert (LCF); |
---|
5800 | henselLiftResume12 (F, factors, l, liftPre[i-1] + 1, Pi, diophant, M); |
---|
5801 | l= liftPre[i-1] + 1; |
---|
5802 | } |
---|
5803 | else |
---|
5804 | { |
---|
5805 | i--; |
---|
5806 | if (i != 0) |
---|
5807 | continue; |
---|
5808 | } |
---|
5809 | reconstructionTry (result, bufF, factors, l, factorsFound, |
---|
5810 | factorsFoundIndex, NTLN, beenInThres |
---|
5811 | ); |
---|
5812 | if (result.length() == NTLN.NumCols()) |
---|
5813 | { |
---|
5814 | delete [] liftPre; |
---|
5815 | delete [] factorsFoundIndex; |
---|
5816 | return result; |
---|
5817 | } |
---|
5818 | i--; |
---|
5819 | } |
---|
5820 | } |
---|
5821 | else |
---|
5822 | { |
---|
5823 | i= 1; |
---|
5824 | while ((degree (F,y)/4)*i + 4 <= smallFactorDeg) |
---|
5825 | i++; |
---|
5826 | while (i < 5) |
---|
5827 | { |
---|
5828 | dummy= tmin (degree (F,y)+1, (degree (F,y)/4)*i+4); |
---|
5829 | if (l < dummy) |
---|
5830 | { |
---|
5831 | factors.insert (LCF); |
---|
5832 | henselLiftResume12 (F, factors, l, dummy, Pi, diophant, M); |
---|
5833 | l= dummy; |
---|
5834 | if (i == 1 && degree (F)%4==0 && symmetric && factors.length() == 2 && |
---|
5835 | LC (F,1).inCoeffDomain() && |
---|
5836 | (degree (factors.getFirst(), 1) == degree (factors.getLast(),1))) |
---|
5837 | { |
---|
5838 | Variable x= Variable (1); |
---|
5839 | CanonicalForm g, h, gg, hh, multiplier1, multiplier2, check1, check2; |
---|
5840 | int m= degree (F)/4+1; |
---|
5841 | g= factors.getFirst(); |
---|
5842 | h= factors.getLast(); |
---|
5843 | g= mod (g, power (y,m)); |
---|
5844 | h= mod (h, power (y,m)); |
---|
5845 | g= g (y-evaluation, y); |
---|
5846 | h= h (y-evaluation, y); |
---|
5847 | gg= mod (swapvar (g,x,y),power (x,m)); |
---|
5848 | gg= gg (y + evaluation, y); |
---|
5849 | multiplier1= factors.getLast()[m-1][0]/gg[m-1][0]; |
---|
5850 | gg= div (gg, power (y,m)); |
---|
5851 | gg= gg*power (y,m); |
---|
5852 | hh= mod (swapvar (h,x,y),power (x,m)); |
---|
5853 | hh= hh (y + evaluation, y); |
---|
5854 | multiplier2= factors.getFirst()[m-1][0]/hh[m-1][0]; |
---|
5855 | hh= div (hh, power (y,m)); |
---|
5856 | hh= hh*power (y,m); |
---|
5857 | gg= multiplier1*gg+mod (factors.getLast(), power (y,m)); |
---|
5858 | hh= multiplier2*hh+mod (factors.getFirst(), power (y,m)); |
---|
5859 | check1= gg (y-evaluation,y); |
---|
5860 | check2= hh (y-evaluation,y); |
---|
5861 | check1= swapvar (check1, x, y); |
---|
5862 | if (check1/Lc (check1) == check2/Lc (check2)) |
---|
5863 | { |
---|
5864 | result.append (gg); |
---|
5865 | result.append (hh); |
---|
5866 | delete [] liftPre; |
---|
5867 | delete [] factorsFoundIndex; |
---|
5868 | return result; |
---|
5869 | } |
---|
5870 | } |
---|
5871 | } |
---|
5872 | else |
---|
5873 | { |
---|
5874 | i++; |
---|
5875 | if (i < 5) |
---|
5876 | continue; |
---|
5877 | } |
---|
5878 | reconstructionTry (result, bufF, factors, l, factorsFound, |
---|
5879 | factorsFoundIndex, NTLN, beenInThres |
---|
5880 | ); |
---|
5881 | if (result.length() == NTLN.NumCols()) |
---|
5882 | { |
---|
5883 | delete [] liftPre; |
---|
5884 | delete [] factorsFoundIndex; |
---|
5885 | return result; |
---|
5886 | } |
---|
5887 | i++; |
---|
5888 | } |
---|
5889 | } |
---|
5890 | |
---|
5891 | delete [] liftPre; |
---|
5892 | delete [] factorsFoundIndex; |
---|
5893 | return result; |
---|
5894 | } |
---|
5895 | |
---|
5896 | //over field extension |
---|
5897 | CFList |
---|
5898 | extEarlyReconstructionAndLifting (const CanonicalForm& F, const mat_zz_p& N, |
---|
5899 | CanonicalForm& bufF, CFList& factors, int& l, |
---|
5900 | int& factorsFound, bool beenInThres, CFMatrix& |
---|
5901 | M, CFArray& Pi, CFList& diophant, const |
---|
5902 | ExtensionInfo& info, const CanonicalForm& |
---|
5903 | evaluation |
---|
5904 | ) |
---|
5905 | { |
---|
5906 | int sizeOfLiftPre; |
---|
5907 | int * liftPre= getLiftPrecisions (F, sizeOfLiftPre, degree (LC (F, 1), 2)); |
---|
5908 | Variable y= F.mvar(); |
---|
5909 | factorsFound= 0; |
---|
5910 | CanonicalForm LCF= LC (F, 1); |
---|
5911 | CFList result; |
---|
5912 | int smallFactorDeg= 11; |
---|
5913 | mat_zz_p NTLN= N; |
---|
5914 | int * factorsFoundIndex= new int [NTLN.NumCols()]; |
---|
5915 | for (long i= 0; i < NTLN.NumCols(); i++) |
---|
5916 | factorsFoundIndex [i]= 0; |
---|
5917 | |
---|
5918 | if (degree (F) + 1 > smallFactorDeg) |
---|
5919 | { |
---|
5920 | if (l < smallFactorDeg) |
---|
5921 | { |
---|
5922 | factors.insert (LCF); |
---|
5923 | henselLiftResume12 (F, factors, l, smallFactorDeg, Pi, diophant, M); |
---|
5924 | l= smallFactorDeg; |
---|
5925 | } |
---|
5926 | extReconstructionTry (result, bufF, factors, smallFactorDeg, factorsFound, |
---|
5927 | factorsFoundIndex, NTLN, beenInThres, info, |
---|
5928 | evaluation |
---|
5929 | ); |
---|
5930 | if (result.length() == NTLN.NumCols()) |
---|
5931 | { |
---|
5932 | delete [] liftPre; |
---|
5933 | delete [] factorsFoundIndex; |
---|
5934 | return result; |
---|
5935 | } |
---|
5936 | } |
---|
5937 | |
---|
5938 | int i= sizeOfLiftPre - 1; |
---|
5939 | int dummy= 1; |
---|
5940 | if (sizeOfLiftPre > 1 && sizeOfLiftPre < 30) |
---|
5941 | { |
---|
5942 | while (i > 0) |
---|
5943 | { |
---|
5944 | if (l < liftPre[i-1] + 1) |
---|
5945 | { |
---|
5946 | factors.insert (LCF); |
---|
5947 | henselLiftResume12 (F, factors, l, liftPre[i-1] + 1, Pi, diophant, M); |
---|
5948 | l= liftPre[i-1] + 1; |
---|
5949 | } |
---|
5950 | else |
---|
5951 | { |
---|
5952 | i--; |
---|
5953 | if (i != 0) |
---|
5954 | continue; |
---|
5955 | } |
---|
5956 | extReconstructionTry (result, bufF, factors, l, factorsFound, |
---|
5957 | factorsFoundIndex, NTLN, beenInThres, info, |
---|
5958 | evaluation |
---|
5959 | ); |
---|
5960 | if (result.length() == NTLN.NumCols()) |
---|
5961 | { |
---|
5962 | delete [] liftPre; |
---|
5963 | delete [] factorsFoundIndex; |
---|
5964 | return result; |
---|
5965 | } |
---|
5966 | i--; |
---|
5967 | } |
---|
5968 | } |
---|
5969 | else |
---|
5970 | { |
---|
5971 | i= 1; |
---|
5972 | while ((degree (F,y)/4)*i + 4 <= smallFactorDeg) |
---|
5973 | i++; |
---|
5974 | while (i < 5) |
---|
5975 | { |
---|
5976 | dummy= tmin (degree (F,y)+1, (degree (F,y)/4)*i+4); |
---|
5977 | if (l < dummy) |
---|
5978 | { |
---|
5979 | factors.insert (LCF); |
---|
5980 | henselLiftResume12 (F, factors, l, dummy, Pi, diophant, M); |
---|
5981 | l= dummy; |
---|
5982 | } |
---|
5983 | else |
---|
5984 | { |
---|
5985 | i++; |
---|
5986 | if (i < 5) |
---|
5987 | continue; |
---|
5988 | } |
---|
5989 | extReconstructionTry (result, bufF, factors, l, factorsFound, |
---|
5990 | factorsFoundIndex, NTLN, beenInThres, info, |
---|
5991 | evaluation |
---|
5992 | ); |
---|
5993 | if (result.length() == NTLN.NumCols()) |
---|
5994 | { |
---|
5995 | delete [] liftPre; |
---|
5996 | delete [] factorsFoundIndex; |
---|
5997 | return result; |
---|
5998 | } |
---|
5999 | i++; |
---|
6000 | } |
---|
6001 | } |
---|
6002 | |
---|
6003 | delete [] liftPre; |
---|
|
---|