1 | /*****************************************************************************\ |
---|
2 | * Computer Algebra System SINGULAR |
---|
3 | \*****************************************************************************/ |
---|
4 | /** @file facFqBivarUtil.cc |
---|
5 | * |
---|
6 | * This file provides utility functions for bivariate factorization |
---|
7 | * |
---|
8 | * @author Martin Lee |
---|
9 | * |
---|
10 | **/ |
---|
11 | /*****************************************************************************/ |
---|
12 | |
---|
13 | #ifdef HAVE_CONFIG_H |
---|
14 | #include "config.h" |
---|
15 | #endif /* HAVE_CONFIG_H */ |
---|
16 | |
---|
17 | #include "timing.h" |
---|
18 | |
---|
19 | #include "cf_map.h" |
---|
20 | #include "algext.h" |
---|
21 | #include "cf_map_ext.h" |
---|
22 | #include "templates/ftmpl_functions.h" |
---|
23 | #include "ExtensionInfo.h" |
---|
24 | #include "cf_algorithm.h" |
---|
25 | #include "cf_factory.h" |
---|
26 | #include "cf_util.h" |
---|
27 | #include "imm.h" |
---|
28 | #include "cf_iter.h" |
---|
29 | #include "facFqBivarUtil.h" |
---|
30 | #include "cfNewtonPolygon.h" |
---|
31 | #include "facHensel.h" |
---|
32 | #include "facMul.h" |
---|
33 | |
---|
34 | TIMING_DEFINE_PRINT(fac_log_deriv_div) |
---|
35 | TIMING_DEFINE_PRINT(fac_log_deriv_mul) |
---|
36 | TIMING_DEFINE_PRINT(fac_log_deriv_pre) |
---|
37 | |
---|
38 | void append (CFList& factors1, const CFList& factors2) |
---|
39 | { |
---|
40 | for (CFListIterator i= factors2; i.hasItem(); i++) |
---|
41 | { |
---|
42 | if (!i.getItem().inCoeffDomain()) |
---|
43 | factors1.append (i.getItem()); |
---|
44 | } |
---|
45 | return; |
---|
46 | } |
---|
47 | |
---|
48 | void decompress (CFList& factors, const CFMap& N) |
---|
49 | { |
---|
50 | for (CFListIterator i= factors; i.hasItem(); i++) |
---|
51 | i.getItem()= N (i.getItem()); |
---|
52 | } |
---|
53 | |
---|
54 | void decompress (CFFList& factors, const CFMap& N) |
---|
55 | { |
---|
56 | for (CFFListIterator i= factors; i.hasItem(); i++) |
---|
57 | i.getItem()= CFFactor (N (i.getItem().factor()), i.getItem().exp()); |
---|
58 | } |
---|
59 | |
---|
60 | void decompress (CFAFList& factors, const CFMap& N) |
---|
61 | { |
---|
62 | for (CFAFListIterator i= factors; i.hasItem(); i++) |
---|
63 | i.getItem()= CFAFactor (N (i.getItem().factor()), i.getItem().minpoly(), |
---|
64 | i.getItem().exp()); |
---|
65 | } |
---|
66 | |
---|
67 | void appendSwapDecompress (CFList& factors1, const CFList& factors2, |
---|
68 | const CFList& factors3, const bool swap1, |
---|
69 | const bool swap2, const CFMap& N) |
---|
70 | { |
---|
71 | Variable x= Variable (1); |
---|
72 | Variable y= Variable (2); |
---|
73 | for (CFListIterator i= factors1; i.hasItem(); i++) |
---|
74 | { |
---|
75 | if (swap1) |
---|
76 | { |
---|
77 | if (!swap2) |
---|
78 | i.getItem()= swapvar (i.getItem(), x, y); |
---|
79 | } |
---|
80 | else |
---|
81 | { |
---|
82 | if (swap2) |
---|
83 | i.getItem()= swapvar (i.getItem(), y, x); |
---|
84 | } |
---|
85 | i.getItem()= N (i.getItem()); |
---|
86 | } |
---|
87 | for (CFListIterator i= factors2; i.hasItem(); i++) |
---|
88 | factors1.append (N (i.getItem())); |
---|
89 | for (CFListIterator i= factors3; i.hasItem(); i++) |
---|
90 | factors1.append (N (i.getItem())); |
---|
91 | return; |
---|
92 | } |
---|
93 | |
---|
94 | void swapDecompress (CFList& factors, const bool swap, const CFMap& N) |
---|
95 | { |
---|
96 | Variable x= Variable (1); |
---|
97 | Variable y= Variable (2); |
---|
98 | for (CFListIterator i= factors; i.hasItem(); i++) |
---|
99 | { |
---|
100 | if (swap) |
---|
101 | i.getItem()= swapvar (i.getItem(), x, y); |
---|
102 | i.getItem()= N (i.getItem()); |
---|
103 | } |
---|
104 | return; |
---|
105 | } |
---|
106 | |
---|
107 | static inline |
---|
108 | bool GFInExtensionHelper (const CanonicalForm& F, const int number) |
---|
109 | { |
---|
110 | if (F.isOne()) return false; |
---|
111 | InternalCF* buf; |
---|
112 | int exp; |
---|
113 | bool result= false; |
---|
114 | if (F.inBaseDomain()) |
---|
115 | { |
---|
116 | buf= F.getval(); |
---|
117 | exp= imm2int (buf); |
---|
118 | if (exp%number != 0) |
---|
119 | return true; |
---|
120 | else |
---|
121 | return result; |
---|
122 | } |
---|
123 | else |
---|
124 | { |
---|
125 | for (CFIterator i= F; i.hasTerms(); i++) |
---|
126 | { |
---|
127 | result= GFInExtensionHelper (i.coeff(), number); |
---|
128 | if (result == true) |
---|
129 | return result; |
---|
130 | } |
---|
131 | } |
---|
132 | return result; |
---|
133 | } |
---|
134 | |
---|
135 | static inline |
---|
136 | bool FqInExtensionHelper (const CanonicalForm& F, const CanonicalForm& gamma, |
---|
137 | const CanonicalForm& delta, CFList& source, |
---|
138 | CFList& dest) |
---|
139 | { |
---|
140 | bool result= false; |
---|
141 | if (F.inBaseDomain()) |
---|
142 | return result; |
---|
143 | else if (F.inCoeffDomain()) |
---|
144 | { |
---|
145 | if (!fdivides (gamma, F)) |
---|
146 | return true; |
---|
147 | else |
---|
148 | { |
---|
149 | int pos= findItem (source, F); |
---|
150 | if (pos > 0) |
---|
151 | return false; |
---|
152 | Variable a; |
---|
153 | hasFirstAlgVar (F, a); |
---|
154 | int bound= ipower (getCharacteristic(), degree (getMipo (a))); |
---|
155 | CanonicalForm buf= 1; |
---|
156 | for (int i= 1; i < bound; i++) |
---|
157 | { |
---|
158 | buf *= gamma; |
---|
159 | if (buf == F) |
---|
160 | { |
---|
161 | source.append (buf); |
---|
162 | dest.append (power (delta, i)); |
---|
163 | return false; |
---|
164 | } |
---|
165 | } |
---|
166 | return true; |
---|
167 | } |
---|
168 | } |
---|
169 | else |
---|
170 | { |
---|
171 | for (CFIterator i= F; i.hasTerms(); i++) |
---|
172 | { |
---|
173 | result= FqInExtensionHelper (i.coeff(), gamma, delta, source, dest); |
---|
174 | if (result == true) |
---|
175 | return result; |
---|
176 | } |
---|
177 | } |
---|
178 | return result; |
---|
179 | } |
---|
180 | |
---|
181 | bool isInExtension (const CanonicalForm& F, const CanonicalForm& gamma, |
---|
182 | const int k, const CanonicalForm& delta, |
---|
183 | CFList& source, CFList& dest) |
---|
184 | { |
---|
185 | bool result; |
---|
186 | if (CFFactory::gettype() == GaloisFieldDomain) |
---|
187 | { |
---|
188 | int p= getCharacteristic(); |
---|
189 | int orderFieldExtension= ipower (p, getGFDegree()) - 1; |
---|
190 | int order= ipower (p, k) - 1; |
---|
191 | int number= orderFieldExtension/order; |
---|
192 | result= GFInExtensionHelper (F, number); |
---|
193 | return result; |
---|
194 | } |
---|
195 | else |
---|
196 | { |
---|
197 | result= FqInExtensionHelper (F, gamma, delta, source, dest); |
---|
198 | return result; |
---|
199 | } |
---|
200 | } |
---|
201 | |
---|
202 | CanonicalForm |
---|
203 | mapDown (const CanonicalForm& F, const ExtensionInfo& info, CFList& source, |
---|
204 | CFList& dest) |
---|
205 | { |
---|
206 | int k= info.getGFDegree(); |
---|
207 | Variable beta= info.getAlpha(); |
---|
208 | CanonicalForm primElem= info.getGamma(); |
---|
209 | CanonicalForm imPrimElem= info.getDelta(); |
---|
210 | if (k > 1) |
---|
211 | return GFMapDown (F, k); |
---|
212 | else if (k == 1) |
---|
213 | return F; |
---|
214 | if (/*k==0 &&*/ beta == Variable (1)) |
---|
215 | return F; |
---|
216 | else /*if (k==0 && beta != Variable (1))*/ |
---|
217 | return mapDown (F, imPrimElem, primElem, beta, source, dest); |
---|
218 | } |
---|
219 | |
---|
220 | void appendTestMapDown (CFList& factors, const CanonicalForm& f, |
---|
221 | const ExtensionInfo& info, CFList& source, CFList& dest) |
---|
222 | { |
---|
223 | int k= info.getGFDegree(); |
---|
224 | Variable beta= info.getBeta(); |
---|
225 | Variable alpha= info.getAlpha(); |
---|
226 | CanonicalForm delta= info.getDelta(); |
---|
227 | CanonicalForm gamma= info.getGamma(); |
---|
228 | CanonicalForm g= f; |
---|
229 | int degMipoBeta; |
---|
230 | if (!k && beta.level() == 1) |
---|
231 | degMipoBeta= 1; |
---|
232 | else if (!k && beta.level() != 1) |
---|
233 | degMipoBeta= degree (getMipo (beta)); |
---|
234 | if (k > 1) |
---|
235 | { |
---|
236 | if (!isInExtension (g, gamma, k, delta, source, dest)) |
---|
237 | { |
---|
238 | g= GFMapDown (g, k); |
---|
239 | factors.append (g); |
---|
240 | } |
---|
241 | } |
---|
242 | else if (k == 1) |
---|
243 | { |
---|
244 | if (!isInExtension (g, gamma, k, delta, source, dest)) |
---|
245 | factors.append (g); |
---|
246 | } |
---|
247 | else if (!k && beta == Variable (1)) |
---|
248 | { |
---|
249 | if (degree (g, alpha) < degMipoBeta) |
---|
250 | factors.append (g); |
---|
251 | } |
---|
252 | else if (!k && beta != Variable (1)) |
---|
253 | { |
---|
254 | if (!isInExtension (g, gamma, k, delta, source, dest)) |
---|
255 | { |
---|
256 | g= mapDown (g, delta, gamma, alpha, source, dest); |
---|
257 | factors.append (g); |
---|
258 | } |
---|
259 | } |
---|
260 | return; |
---|
261 | } |
---|
262 | |
---|
263 | void |
---|
264 | appendMapDown (CFList& factors, const CanonicalForm& g, |
---|
265 | const ExtensionInfo& info, CFList& source, CFList& dest) |
---|
266 | { |
---|
267 | int k= info.getGFDegree(); |
---|
268 | Variable beta= info.getBeta(); |
---|
269 | Variable alpha= info.getAlpha(); |
---|
270 | CanonicalForm gamma= info.getGamma(); |
---|
271 | CanonicalForm delta= info.getDelta(); |
---|
272 | if (k > 1) |
---|
273 | factors.append (GFMapDown (g, k)); |
---|
274 | else if (k == 1) |
---|
275 | factors.append (g); |
---|
276 | else if (!k && beta == Variable (1)) |
---|
277 | factors.append (g); |
---|
278 | else if (!k && beta != Variable (1)) |
---|
279 | factors.append (mapDown (g, delta, gamma, alpha, source, dest)); |
---|
280 | return; |
---|
281 | } |
---|
282 | |
---|
283 | void normalize (CFList& factors) |
---|
284 | { |
---|
285 | CanonicalForm lcinv; |
---|
286 | for (CFListIterator i= factors; i.hasItem(); i++) |
---|
287 | { |
---|
288 | lcinv= 1/Lc (i.getItem()); |
---|
289 | i.getItem() *= lcinv; |
---|
290 | } |
---|
291 | return; |
---|
292 | } |
---|
293 | |
---|
294 | void normalize (CFFList& factors) |
---|
295 | { |
---|
296 | CanonicalForm lcinv; |
---|
297 | for (CFFListIterator i= factors; i.hasItem(); i++) |
---|
298 | { |
---|
299 | lcinv= 1/ Lc (i.getItem().factor()); |
---|
300 | i.getItem()= CFFactor (i.getItem().factor()*lcinv, |
---|
301 | i.getItem().exp()); |
---|
302 | } |
---|
303 | return; |
---|
304 | } |
---|
305 | |
---|
306 | CFList subset (int index [], const int& s, const CFArray& elements, |
---|
307 | bool& noSubset) |
---|
308 | { |
---|
309 | int r= elements.size(); |
---|
310 | int i= 0; |
---|
311 | CFList result; |
---|
312 | noSubset= false; |
---|
313 | if (index[s - 1] == 0) |
---|
314 | { |
---|
315 | while (i < s) |
---|
316 | { |
---|
317 | index[i]= i + 1; |
---|
318 | result.append (elements[i]); |
---|
319 | i++; |
---|
320 | } |
---|
321 | return result; |
---|
322 | } |
---|
323 | int buf; |
---|
324 | int k; |
---|
325 | bool found= false; |
---|
326 | if (index[s - 1] == r) |
---|
327 | { |
---|
328 | if (index[0] == r - s + 1) |
---|
329 | { |
---|
330 | noSubset= true; |
---|
331 | return result; |
---|
332 | } |
---|
333 | else { |
---|
334 | while (found == false) |
---|
335 | { |
---|
336 | if (index[s - 2 - i] < r - i - 1) |
---|
337 | found= true; |
---|
338 | i++; |
---|
339 | } |
---|
340 | buf= index[s - i - 1]; |
---|
341 | k= 0; |
---|
342 | while (s - i - 1 + k < s) |
---|
343 | { |
---|
344 | index[s - i - 1 + k]= buf + k + 1; |
---|
345 | k++; |
---|
346 | } |
---|
347 | } |
---|
348 | for (int j= 0; j < s; j++) |
---|
349 | result.append (elements[index[j] - 1]); |
---|
350 | return result; |
---|
351 | } |
---|
352 | else |
---|
353 | { |
---|
354 | index[s - 1] += 1; |
---|
355 | for (int j= 0; j < s; j++) |
---|
356 | result.append (elements[index[j] - 1]); |
---|
357 | return result; |
---|
358 | } |
---|
359 | } |
---|
360 | |
---|
361 | CFArray copy (const CFList& list) |
---|
362 | { |
---|
363 | CFArray array= CFArray (list.length()); |
---|
364 | int j= 0; |
---|
365 | for (CFListIterator i= list; i.hasItem(); i++, j++) |
---|
366 | array[j]= i.getItem(); |
---|
367 | return array; |
---|
368 | } |
---|
369 | |
---|
370 | void indexUpdate (int index [], const int& subsetSize, const int& setSize, |
---|
371 | bool& noSubset) |
---|
372 | { |
---|
373 | noSubset= false; |
---|
374 | if (subsetSize > setSize) |
---|
375 | { |
---|
376 | noSubset= true; |
---|
377 | return; |
---|
378 | } |
---|
379 | int * v= new int [setSize]; |
---|
380 | for (int i= 0; i < setSize; i++) |
---|
381 | v[i]= index[i]; |
---|
382 | if (subsetSize == 1) |
---|
383 | { |
---|
384 | v[0]= v[0] - 1; |
---|
385 | if (v[0] >= setSize) |
---|
386 | { |
---|
387 | noSubset= true; |
---|
388 | delete [] v; |
---|
389 | return; |
---|
390 | } |
---|
391 | } |
---|
392 | else |
---|
393 | { |
---|
394 | if (v[subsetSize - 1] - v[0] + 1 == subsetSize && v[0] > 1) |
---|
395 | { |
---|
396 | if (v[0] + subsetSize - 1 > setSize) |
---|
397 | { |
---|
398 | noSubset= true; |
---|
399 | delete [] v; |
---|
400 | return; |
---|
401 | } |
---|
402 | v[0]= v[0] - 1; |
---|
403 | for (int i= 1; i < subsetSize - 1; i++) |
---|
404 | v[i]= v[i - 1] + 1; |
---|
405 | v[subsetSize - 1]= v[subsetSize - 2]; |
---|
406 | } |
---|
407 | else |
---|
408 | { |
---|
409 | if (v[0] + subsetSize - 1 > setSize) |
---|
410 | { |
---|
411 | noSubset= true; |
---|
412 | delete [] v; |
---|
413 | return; |
---|
414 | } |
---|
415 | for (int i= 1; i < subsetSize - 1; i++) |
---|
416 | v[i]= v[i - 1] + 1; |
---|
417 | v[subsetSize - 1]= v[subsetSize - 2]; |
---|
418 | } |
---|
419 | } |
---|
420 | for (int i= 0; i < setSize; i++) |
---|
421 | index[i]= v[i]; |
---|
422 | delete [] v; |
---|
423 | } |
---|
424 | |
---|
425 | int subsetDegree (const CFList& S) |
---|
426 | { |
---|
427 | int result= 0; |
---|
428 | for (CFListIterator i= S; i.hasItem(); i++) |
---|
429 | result += degree (i.getItem(), Variable (1)); |
---|
430 | return result; |
---|
431 | } |
---|
432 | |
---|
433 | CFFList multiplicity (CanonicalForm& F, const CFList& factors) |
---|
434 | { |
---|
435 | if (F.inCoeffDomain()) |
---|
436 | return CFFList (CFFactor (F, 1)); |
---|
437 | CFFList result; |
---|
438 | int multi= 0; |
---|
439 | CanonicalForm quot; |
---|
440 | for (CFListIterator i= factors; i.hasItem(); i++) |
---|
441 | { |
---|
442 | while (fdivides (i.getItem(), F, quot)) |
---|
443 | { |
---|
444 | multi++; |
---|
445 | F= quot; |
---|
446 | } |
---|
447 | if (multi > 0) |
---|
448 | result.append (CFFactor (i.getItem(), multi)); |
---|
449 | multi= 0; |
---|
450 | } |
---|
451 | return result; |
---|
452 | } |
---|
453 | |
---|
454 | #ifdef HAVE_NTL |
---|
455 | CFArray |
---|
456 | logarithmicDerivative (const CanonicalForm& F, const CanonicalForm& G, int l, |
---|
457 | CanonicalForm& Q |
---|
458 | ) |
---|
459 | { |
---|
460 | Variable x= Variable (2); |
---|
461 | Variable y= Variable (1); |
---|
462 | CanonicalForm xToL= power (x, l); |
---|
463 | CanonicalForm q,r; |
---|
464 | CanonicalForm logDeriv; |
---|
465 | |
---|
466 | TIMING_START (fac_log_deriv_div); |
---|
467 | q= newtonDiv (F, G, xToL); |
---|
468 | TIMING_END_AND_PRINT (fac_log_deriv_div, "time for division in logderiv1: "); |
---|
469 | |
---|
470 | TIMING_START (fac_log_deriv_mul); |
---|
471 | logDeriv= mulMod2 (q, deriv (G, y), xToL); |
---|
472 | TIMING_END_AND_PRINT (fac_log_deriv_mul, "time to multiply in logderiv1: "); |
---|
473 | |
---|
474 | if (degree (logDeriv, x) == 0) |
---|
475 | { |
---|
476 | Q= q; |
---|
477 | return CFArray(); |
---|
478 | } |
---|
479 | |
---|
480 | int j= degree (logDeriv, y) + 1; |
---|
481 | CFArray result= CFArray (j); |
---|
482 | CFIterator ii; |
---|
483 | for (CFIterator i= logDeriv; i.hasTerms() && !logDeriv.isZero(); i++) |
---|
484 | { |
---|
485 | if (i.coeff().inCoeffDomain()) |
---|
486 | result[0] += i.coeff()*power (x,i.exp()); |
---|
487 | else |
---|
488 | { |
---|
489 | for (ii= i.coeff(); ii.hasTerms(); ii++) |
---|
490 | result[ii.exp()] += ii.coeff()*power (x,i.exp()); |
---|
491 | } |
---|
492 | } |
---|
493 | Q= q; |
---|
494 | return result; |
---|
495 | } |
---|
496 | |
---|
497 | CFArray |
---|
498 | logarithmicDerivative (const CanonicalForm& F, const CanonicalForm& G, int l, |
---|
499 | int oldL, const CanonicalForm& oldQ, CanonicalForm& Q |
---|
500 | ) |
---|
501 | { |
---|
502 | Variable x= Variable (2); |
---|
503 | Variable y= Variable (1); |
---|
504 | CanonicalForm xToL= power (x, l); |
---|
505 | CanonicalForm xToOldL= power (x, oldL); |
---|
506 | CanonicalForm xToLOldL= power (x, l-oldL); |
---|
507 | CanonicalForm q,r; |
---|
508 | CanonicalForm logDeriv; |
---|
509 | |
---|
510 | CanonicalForm bufF; |
---|
511 | TIMING_START (fac_log_deriv_pre); |
---|
512 | if ((oldL > 100 && l - oldL < 50) || (oldL < 100 && l - oldL < 30)) |
---|
513 | { |
---|
514 | bufF= F; |
---|
515 | CanonicalForm oldF= mulMod2 (G, oldQ, xToL); |
---|
516 | bufF -= oldF; |
---|
517 | bufF= div (bufF, xToOldL); |
---|
518 | } |
---|
519 | else |
---|
520 | { |
---|
521 | //middle product style computation of [G*oldQ]^{l}_{oldL} |
---|
522 | CanonicalForm G3= div (G, xToOldL); |
---|
523 | CanonicalForm Up= mulMod2 (G3, oldQ, xToLOldL); |
---|
524 | CanonicalForm xToOldL2= power (x, (oldL+1)/2); |
---|
525 | CanonicalForm G2= mod (G, xToOldL); |
---|
526 | CanonicalForm G1= div (G2, xToOldL2); |
---|
527 | CanonicalForm G0= mod (G2, xToOldL2); |
---|
528 | CanonicalForm oldQ1= div (oldQ, xToOldL2); |
---|
529 | CanonicalForm oldQ0= mod (oldQ, xToOldL2); |
---|
530 | CanonicalForm Mid; |
---|
531 | if (oldL % 2 == 1) |
---|
532 | Mid= mulMod2 (G1, oldQ1*x, xToLOldL); |
---|
533 | else |
---|
534 | Mid= mulMod2 (G1, oldQ1, xToLOldL); |
---|
535 | //computation of Low might be faster using a real middle product? |
---|
536 | CanonicalForm Low= mulMod2 (G0, oldQ1, xToOldL)+mulMod2 (G1, oldQ0, xToOldL); |
---|
537 | Low= div (Low, power (x, oldL/2)); |
---|
538 | Low= mod (Low, xToLOldL); |
---|
539 | Up += Mid + Low; |
---|
540 | bufF= div (F, xToOldL); |
---|
541 | bufF -= Up; |
---|
542 | } |
---|
543 | TIMING_END_AND_PRINT (fac_log_deriv_pre, "time to preprocess: "); |
---|
544 | |
---|
545 | TIMING_START (fac_log_deriv_div); |
---|
546 | if (l-oldL > 0) |
---|
547 | q= newtonDiv (bufF, G, xToLOldL); |
---|
548 | else |
---|
549 | q= 0; |
---|
550 | q *= xToOldL; |
---|
551 | q += oldQ; |
---|
552 | TIMING_END_AND_PRINT (fac_log_deriv_div, "time for div in logderiv2: "); |
---|
553 | |
---|
554 | TIMING_START (fac_log_deriv_mul); |
---|
555 | logDeriv= mulMod2 (q, deriv (G, y), xToL); |
---|
556 | TIMING_END_AND_PRINT (fac_log_deriv_mul, "time for mul in logderiv2: "); |
---|
557 | |
---|
558 | if (degree (logDeriv, x) == 0) |
---|
559 | { |
---|
560 | Q= q; |
---|
561 | return CFArray(); |
---|
562 | } |
---|
563 | |
---|
564 | int j= degree (logDeriv,y) + 1; |
---|
565 | CFArray result= CFArray (j); |
---|
566 | CFIterator ii; |
---|
567 | for (CFIterator i= logDeriv; i.hasTerms() && !logDeriv.isZero(); i++) |
---|
568 | { |
---|
569 | if (i.coeff().inCoeffDomain()) |
---|
570 | result[0] += i.coeff()*power (x,i.exp()); |
---|
571 | else |
---|
572 | { |
---|
573 | for (ii= i.coeff(); ii.hasTerms(); ii++) |
---|
574 | result[ii.exp()] += ii.coeff()*power (x,i.exp()); |
---|
575 | } |
---|
576 | } |
---|
577 | Q= q; |
---|
578 | return result; |
---|
579 | } |
---|
580 | #endif |
---|
581 | |
---|
582 | void |
---|
583 | writeInMatrix (CFMatrix& M, const CFArray& A, const int column, |
---|
584 | const int startIndex |
---|
585 | ) |
---|
586 | { |
---|
587 | ASSERT (A.size () - startIndex >= 0, "wrong starting index"); |
---|
588 | ASSERT (A.size () - startIndex <= M.rows(), "wrong starting index"); |
---|
589 | ASSERT (column > 0 && column <= M.columns(), "wrong column"); |
---|
590 | if (A.size() - startIndex <= 0) return; |
---|
591 | int j= 1; |
---|
592 | for (int i= startIndex; i < A.size(); i++, j++) |
---|
593 | M (j, column)= A [i]; |
---|
594 | } |
---|
595 | |
---|
596 | CFArray getCoeffs (const CanonicalForm& F, const int k) |
---|
597 | { |
---|
598 | ASSERT (F.isUnivariate() || F.inCoeffDomain(), "univariate input expected"); |
---|
599 | if (degree (F, 2) < k) |
---|
600 | return CFArray(); |
---|
601 | |
---|
602 | CFArray result= CFArray (degree (F) - k + 1); |
---|
603 | CFIterator j= F; |
---|
604 | for (int i= degree (F); i >= k; i--) |
---|
605 | { |
---|
606 | if (j.exp() == i) |
---|
607 | { |
---|
608 | result [i - k]= j.coeff(); |
---|
609 | j++; |
---|
610 | if (!j.hasTerms()) |
---|
611 | return result; |
---|
612 | } |
---|
613 | else |
---|
614 | result[i - k]= 0; |
---|
615 | } |
---|
616 | return result; |
---|
617 | } |
---|
618 | |
---|
619 | CFArray getCoeffs (const CanonicalForm& F, const int k, const Variable& alpha) |
---|
620 | { |
---|
621 | ASSERT (F.isUnivariate() || F.inCoeffDomain(), "univariate input expected"); |
---|
622 | if (degree (F, 2) < k) |
---|
623 | return CFArray (); |
---|
624 | |
---|
625 | int d= degree (getMipo (alpha)); |
---|
626 | CFArray result= CFArray ((degree (F) - k + 1)*d); |
---|
627 | CFIterator j= F; |
---|
628 | CanonicalForm buf; |
---|
629 | CFIterator iter; |
---|
630 | for (int i= degree (F); i >= k; i--) |
---|
631 | { |
---|
632 | if (j.exp() == i) |
---|
633 | { |
---|
634 | iter= j.coeff(); |
---|
635 | for (int l= degree (j.coeff(), alpha); l >= 0; l--) |
---|
636 | { |
---|
637 | if (iter.exp() == l) |
---|
638 | { |
---|
639 | result [(i - k)*d + l]= iter.coeff(); |
---|
640 | iter++; |
---|
641 | if (!iter.hasTerms()) |
---|
642 | break; |
---|
643 | } |
---|
644 | } |
---|
645 | j++; |
---|
646 | if (!j.hasTerms()) |
---|
647 | return result; |
---|
648 | } |
---|
649 | else |
---|
650 | { |
---|
651 | for (int l= 0; l < d; l++) |
---|
652 | result[(i - k)*d + l]= 0; |
---|
653 | } |
---|
654 | } |
---|
655 | return result; |
---|
656 | } |
---|
657 | |
---|
658 | #ifdef HAVE_NTL |
---|
659 | CFArray |
---|
660 | getCoeffs (const CanonicalForm& G, const int k, const int l, const int degMipo, |
---|
661 | const Variable& alpha, const CanonicalForm& evaluation, |
---|
662 | const mat_zz_p& M) |
---|
663 | { |
---|
664 | ASSERT (G.isUnivariate() || G.inCoeffDomain(), "univariate input expected"); |
---|
665 | CanonicalForm F= G (G.mvar() - evaluation, G.mvar()); |
---|
666 | if (F.isZero()) |
---|
667 | return CFArray (); |
---|
668 | |
---|
669 | Variable y= Variable (2); |
---|
670 | F= F (power (y, degMipo), y); |
---|
671 | F= F (y, alpha); |
---|
672 | zz_pX NTLF= convertFacCF2NTLzzpX (F); |
---|
673 | NTLF.rep.SetLength (l*degMipo); |
---|
674 | NTLF.rep= M*NTLF.rep; |
---|
675 | NTLF.normalize(); |
---|
676 | F= convertNTLzzpX2CF (NTLF, y); |
---|
677 | |
---|
678 | if (degree (F, 2) < k) |
---|
679 | return CFArray(); |
---|
680 | |
---|
681 | CFArray result= CFArray (degree (F) - k + 1); |
---|
682 | |
---|
683 | CFIterator j= F; |
---|
684 | for (int i= degree (F); i >= k; i--) |
---|
685 | { |
---|
686 | if (j.exp() == i) |
---|
687 | { |
---|
688 | result [i - k]= j.coeff(); |
---|
689 | j++; |
---|
690 | if (!j.hasTerms()) |
---|
691 | return result; |
---|
692 | } |
---|
693 | else |
---|
694 | result[i - k]= 0; |
---|
695 | } |
---|
696 | return result; |
---|
697 | } |
---|
698 | #endif |
---|
699 | |
---|
700 | int * computeBounds (const CanonicalForm& F, int& n, bool& isIrreducible) |
---|
701 | { |
---|
702 | n= degree (F, 1); |
---|
703 | int* result= new int [n]; |
---|
704 | int sizeOfNewtonPolygon; |
---|
705 | int** newtonPolyg= newtonPolygon (F, sizeOfNewtonPolygon); |
---|
706 | |
---|
707 | isIrreducible= false; |
---|
708 | if (sizeOfNewtonPolygon == 3) |
---|
709 | { |
---|
710 | bool check1= |
---|
711 | (newtonPolyg[0][0]==0 || newtonPolyg[1][0]==0 || newtonPolyg[2][0]==0); |
---|
712 | if (check1) |
---|
713 | { |
---|
714 | bool check2= |
---|
715 | (newtonPolyg[0][1]==0 || newtonPolyg[1][1]==0 || newtonPolyg[2][0]==0); |
---|
716 | if (check2) |
---|
717 | { |
---|
718 | int p=getCharacteristic(); |
---|
719 | int d=1; |
---|
720 | char bufGFName='Z'; |
---|
721 | bool GF= (CFFactory::gettype()==GaloisFieldDomain); |
---|
722 | if (GF) |
---|
723 | { |
---|
724 | d= getGFDegree(); |
---|
725 | bufGFName=gf_name; |
---|
726 | } |
---|
727 | setCharacteristic(0); |
---|
728 | CanonicalForm tmp= gcd (newtonPolyg[0][0],newtonPolyg[0][1]); // maybe it's better to use plain intgcd |
---|
729 | tmp= gcd (tmp, newtonPolyg[1][0]); |
---|
730 | tmp= gcd (tmp, newtonPolyg[1][1]); |
---|
731 | tmp= gcd (tmp, newtonPolyg[2][0]); |
---|
732 | tmp= gcd (tmp, newtonPolyg[2][1]); |
---|
733 | isIrreducible= (tmp==1); |
---|
734 | if (GF) |
---|
735 | setCharacteristic (p, d, bufGFName); |
---|
736 | else |
---|
737 | setCharacteristic(p); |
---|
738 | } |
---|
739 | } |
---|
740 | } |
---|
741 | |
---|
742 | int minX, minY, maxX, maxY; |
---|
743 | minX= newtonPolyg [0] [0]; |
---|
744 | minY= newtonPolyg [0] [1]; |
---|
745 | maxX= minX; |
---|
746 | maxY= minY; |
---|
747 | int indZero= 0; |
---|
748 | for (int i= 1; i < sizeOfNewtonPolygon; i++) |
---|
749 | { |
---|
750 | if (newtonPolyg[i][1] == 0) |
---|
751 | { |
---|
752 | if (newtonPolyg[indZero][1] == 0) |
---|
753 | { |
---|
754 | if (newtonPolyg[indZero][0] < newtonPolyg[i][0]) |
---|
755 | indZero= i; |
---|
756 | } |
---|
757 | else |
---|
758 | indZero= i; |
---|
759 | } |
---|
760 | if (minX > newtonPolyg [i] [0]) |
---|
761 | minX= newtonPolyg [i] [0]; |
---|
762 | if (maxX < newtonPolyg [i] [0]) |
---|
763 | maxX= newtonPolyg [i] [0]; |
---|
764 | if (minY > newtonPolyg [i] [1]) |
---|
765 | minY= newtonPolyg [i] [1]; |
---|
766 | if (maxY < newtonPolyg [i] [1]) |
---|
767 | maxY= newtonPolyg [i] [1]; |
---|
768 | } |
---|
769 | |
---|
770 | int slopeNum, slopeDen, constTerm; |
---|
771 | bool negativeSlope=false; |
---|
772 | if (indZero != sizeOfNewtonPolygon - 1) |
---|
773 | { |
---|
774 | slopeNum= newtonPolyg[indZero+1][0]-newtonPolyg[indZero][0]; |
---|
775 | slopeDen= newtonPolyg[indZero+1][1]; |
---|
776 | constTerm= newtonPolyg[indZero][0]; |
---|
777 | } |
---|
778 | else |
---|
779 | { |
---|
780 | slopeNum= newtonPolyg[0][0]-newtonPolyg[indZero][0]; |
---|
781 | slopeDen= newtonPolyg[0][1]; |
---|
782 | constTerm= newtonPolyg[indZero][0]; |
---|
783 | } |
---|
784 | if (slopeNum < 0) |
---|
785 | { |
---|
786 | slopeNum= -slopeNum; |
---|
787 | negativeSlope= true; |
---|
788 | } |
---|
789 | int k= 0; |
---|
790 | int* point= new int [2]; |
---|
791 | for (int i= 0; i < n; i++) |
---|
792 | { |
---|
793 | if (((indZero+1) < sizeOfNewtonPolygon && (i+1) > newtonPolyg[indZero+1][1]) |
---|
794 | || ((indZero+1) >= sizeOfNewtonPolygon && (i+1) > newtonPolyg[0][1])) |
---|
795 | { |
---|
796 | if (indZero + 1 != sizeOfNewtonPolygon) |
---|
797 | indZero++; |
---|
798 | else |
---|
799 | indZero= 0; |
---|
800 | if (indZero != sizeOfNewtonPolygon - 1) |
---|
801 | { |
---|
802 | slopeNum= newtonPolyg[indZero+1][0]-newtonPolyg[indZero][0]; |
---|
803 | slopeDen= newtonPolyg[indZero+1][1]-newtonPolyg[indZero][1]; |
---|
804 | constTerm= newtonPolyg[indZero][0]; |
---|
805 | } |
---|
806 | else |
---|
807 | { |
---|
808 | slopeNum= newtonPolyg[0][0]-newtonPolyg[indZero][0]; |
---|
809 | slopeDen= newtonPolyg[0][1]-newtonPolyg[indZero][1]; |
---|
810 | constTerm= newtonPolyg[indZero][0]; |
---|
811 | } |
---|
812 | if (slopeNum < 0) |
---|
813 | { |
---|
814 | negativeSlope= true; |
---|
815 | slopeNum= - slopeNum; |
---|
816 | k= (int) -(((long) slopeNum*((i+1)-newtonPolyg[indZero][1])+slopeDen-1)/ |
---|
817 | slopeDen) + constTerm; |
---|
818 | } |
---|
819 | else |
---|
820 | k= (int) (((long) slopeNum*((i+1)-newtonPolyg[indZero][1])) / slopeDen) |
---|
821 | + constTerm; |
---|
822 | } |
---|
823 | else |
---|
824 | { |
---|
825 | if (negativeSlope) |
---|
826 | k= (int) -(((long) slopeNum*((i+1)-newtonPolyg[indZero][1])+slopeDen-1)/ |
---|
827 | slopeDen) + constTerm; |
---|
828 | else |
---|
829 | k= (int) ((long) slopeNum*((i+1)-newtonPolyg[indZero][1])) / slopeDen |
---|
830 | + constTerm; |
---|
831 | } |
---|
832 | if (i + 1 > maxY || i + 1 < minY) |
---|
833 | { |
---|
834 | result [i]= 0; |
---|
835 | continue; |
---|
836 | } |
---|
837 | point [0]= k; |
---|
838 | point [1]= i + 1; |
---|
839 | if (!isInPolygon (newtonPolyg, sizeOfNewtonPolygon, point) && k > 0) |
---|
840 | k= 0; |
---|
841 | result [i]= k; |
---|
842 | } |
---|
843 | |
---|
844 | delete [] point; |
---|
845 | |
---|
846 | for (int i= 0; i < sizeOfNewtonPolygon; i++) |
---|
847 | delete [] newtonPolyg[i]; |
---|
848 | delete [] newtonPolyg; |
---|
849 | |
---|
850 | return result; |
---|
851 | } |
---|
852 | |
---|
853 | int * |
---|
854 | computeBoundsWrtDiffMainvar (const CanonicalForm& F, int& n, |
---|
855 | bool& isIrreducible) |
---|
856 | { |
---|
857 | n= degree (F, 2); |
---|
858 | int* result= new int [n]; |
---|
859 | int sizeOfNewtonPolygon; |
---|
860 | int** newtonPolyg= newtonPolygon (F, sizeOfNewtonPolygon); |
---|
861 | |
---|
862 | isIrreducible= false; |
---|
863 | if (sizeOfNewtonPolygon == 3) |
---|
864 | { |
---|
865 | bool check1= |
---|
866 | (newtonPolyg[0][0]==0 || newtonPolyg[1][0]==0 || newtonPolyg[2][0]==0); |
---|
867 | if (check1) |
---|
868 | { |
---|
869 | bool check2= |
---|
870 | (newtonPolyg[0][1]==0 || newtonPolyg[1][1]==0 || newtonPolyg[2][0]==0); |
---|
871 | if (check2) |
---|
872 | { |
---|
873 | int p=getCharacteristic(); |
---|
874 | int d=1; |
---|
875 | char bufGFName='Z'; |
---|
876 | bool GF= (CFFactory::gettype()==GaloisFieldDomain); |
---|
877 | if (GF) |
---|
878 | { |
---|
879 | d= getGFDegree(); |
---|
880 | bufGFName=gf_name; |
---|
881 | } |
---|
882 | setCharacteristic(0); |
---|
883 | CanonicalForm tmp= gcd (newtonPolyg[0][0],newtonPolyg[0][1]); |
---|
884 | tmp= gcd (tmp, newtonPolyg[1][0]); |
---|
885 | tmp= gcd (tmp, newtonPolyg[1][1]); |
---|
886 | tmp= gcd (tmp, newtonPolyg[2][0]); |
---|
887 | tmp= gcd (tmp, newtonPolyg[2][1]); |
---|
888 | isIrreducible= (tmp==1); |
---|
889 | if (GF) |
---|
890 | setCharacteristic (p, d, bufGFName); |
---|
891 | else |
---|
892 | setCharacteristic(p); |
---|
893 | } |
---|
894 | } |
---|
895 | } |
---|
896 | |
---|
897 | int swap; |
---|
898 | for (int i= 0; i < sizeOfNewtonPolygon; i++) |
---|
899 | { |
---|
900 | swap= newtonPolyg[i][1]; |
---|
901 | newtonPolyg[i][1]=newtonPolyg[i][0]; |
---|
902 | newtonPolyg[i][0]= swap; |
---|
903 | } |
---|
904 | |
---|
905 | sizeOfNewtonPolygon= polygon(newtonPolyg, sizeOfNewtonPolygon); |
---|
906 | |
---|
907 | int minX, minY, maxX, maxY; |
---|
908 | minX= newtonPolyg [0] [0]; |
---|
909 | minY= newtonPolyg [0] [1]; |
---|
910 | maxX= minX; |
---|
911 | maxY= minY; |
---|
912 | int indZero= 0; |
---|
913 | for (int i= 1; i < sizeOfNewtonPolygon; i++) |
---|
914 | { |
---|
915 | if (newtonPolyg[i][1] == 0) |
---|
916 | { |
---|
917 | if (newtonPolyg[indZero][1] == 0) |
---|
918 | { |
---|
919 | if (newtonPolyg[indZero][0] < newtonPolyg[i][0]) |
---|
920 | indZero= i; |
---|
921 | } |
---|
922 | else |
---|
923 | indZero= i; |
---|
924 | } |
---|
925 | if (minX > newtonPolyg [i] [0]) |
---|
926 | minX= newtonPolyg [i] [0]; |
---|
927 | if (maxX < newtonPolyg [i] [0]) |
---|
928 | maxX= newtonPolyg [i] [0]; |
---|
929 | if (minY > newtonPolyg [i] [1]) |
---|
930 | minY= newtonPolyg [i] [1]; |
---|
931 | if (maxY < newtonPolyg [i] [1]) |
---|
932 | maxY= newtonPolyg [i] [1]; |
---|
933 | } |
---|
934 | |
---|
935 | int slopeNum, slopeDen, constTerm; |
---|
936 | bool negativeSlope=false; |
---|
937 | if (indZero != sizeOfNewtonPolygon - 1) |
---|
938 | { |
---|
939 | slopeNum= newtonPolyg[indZero+1][0]-newtonPolyg[indZero][0]; |
---|
940 | slopeDen= newtonPolyg[indZero+1][1]; |
---|
941 | constTerm= newtonPolyg[indZero][0]; |
---|
942 | } |
---|
943 | else |
---|
944 | { |
---|
945 | slopeNum= newtonPolyg[0][0]-newtonPolyg[indZero][0]; |
---|
946 | slopeDen= newtonPolyg[0][1]; |
---|
947 | constTerm= newtonPolyg[indZero][0]; |
---|
948 | } |
---|
949 | if (slopeNum < 0) |
---|
950 | { |
---|
951 | slopeNum= -slopeNum; |
---|
952 | negativeSlope= true; |
---|
953 | } |
---|
954 | int k= 0; |
---|
955 | |
---|
956 | int* point= new int [2]; |
---|
957 | for (int i= 0; i < n; i++) |
---|
958 | { |
---|
959 | if (((indZero+1) < sizeOfNewtonPolygon && (i+1) > newtonPolyg[indZero+1][1]) |
---|
960 | || ((indZero+1) >= sizeOfNewtonPolygon && (i+1) > newtonPolyg[0][1])) |
---|
961 | { |
---|
962 | if (indZero + 1 != sizeOfNewtonPolygon) |
---|
963 | indZero++; |
---|
964 | else |
---|
965 | indZero= 0; |
---|
966 | if (indZero != sizeOfNewtonPolygon - 1) |
---|
967 | { |
---|
968 | slopeNum= newtonPolyg[indZero+1][0]-newtonPolyg[indZero][0]; |
---|
969 | slopeDen= newtonPolyg[indZero+1][1]-newtonPolyg[indZero][1]; |
---|
970 | constTerm= newtonPolyg[indZero][0]; |
---|
971 | } |
---|
972 | else |
---|
973 | { |
---|
974 | slopeNum= newtonPolyg[0][0]-newtonPolyg[indZero][0]; |
---|
975 | slopeDen= newtonPolyg[0][1]-newtonPolyg[indZero][1]; |
---|
976 | constTerm= newtonPolyg[indZero][0]; |
---|
977 | } |
---|
978 | if (slopeNum < 0) |
---|
979 | { |
---|
980 | negativeSlope= true; |
---|
981 | slopeNum= - slopeNum; |
---|
982 | k= (int) -(((long) slopeNum*((i+1)-newtonPolyg[indZero][1])+slopeDen-1)/ |
---|
983 | slopeDen) + constTerm; |
---|
984 | } |
---|
985 | else |
---|
986 | k= (int) (((long) slopeNum*((i+1)-newtonPolyg[indZero][1])) / slopeDen) |
---|
987 | + constTerm; |
---|
988 | } |
---|
989 | else |
---|
990 | { |
---|
991 | if (negativeSlope) |
---|
992 | k= (int) -(((long) slopeNum*((i+1)-newtonPolyg[indZero][1])+slopeDen-1)/ |
---|
993 | slopeDen) + constTerm; |
---|
994 | else |
---|
995 | k= (int) ((long) slopeNum*((i+1)-newtonPolyg[indZero][1])) / slopeDen |
---|
996 | + constTerm; |
---|
997 | } |
---|
998 | if (i + 1 > maxY || i + 1 < minY) |
---|
999 | { |
---|
1000 | result [i]= 0; |
---|
1001 | continue; |
---|
1002 | } |
---|
1003 | |
---|
1004 | point [0]= k; |
---|
1005 | point [1]= i + 1; |
---|
1006 | if (!isInPolygon (newtonPolyg, sizeOfNewtonPolygon, point) && k > 0) |
---|
1007 | k= 0; |
---|
1008 | result [i]= k; |
---|
1009 | } |
---|
1010 | |
---|
1011 | delete [] point; |
---|
1012 | |
---|
1013 | for (int i= 0; i < sizeOfNewtonPolygon; i++) |
---|
1014 | delete [] newtonPolyg[i]; |
---|
1015 | delete [] newtonPolyg; |
---|
1016 | |
---|
1017 | return result; |
---|
1018 | } |
---|
1019 | |
---|
1020 | int |
---|
1021 | substituteCheck (const CanonicalForm& F, const Variable& x) |
---|
1022 | { |
---|
1023 | if (F.inCoeffDomain()) |
---|
1024 | return 0; |
---|
1025 | if (degree (F, x) < 0) |
---|
1026 | return 0; |
---|
1027 | CanonicalForm f= swapvar (F, F.mvar(), x); |
---|
1028 | int sizef= 0; |
---|
1029 | for (CFIterator i= f; i.hasTerms(); i++, sizef++) |
---|
1030 | { |
---|
1031 | if (i.exp() == 1) |
---|
1032 | return 0; |
---|
1033 | } |
---|
1034 | int * expf= new int [sizef]; |
---|
1035 | int j= 0; |
---|
1036 | for (CFIterator i= f; i.hasTerms(); i++, j++) |
---|
1037 | expf [j]= i.exp(); |
---|
1038 | |
---|
1039 | int indf= sizef - 1; |
---|
1040 | if (expf[indf] == 0) |
---|
1041 | indf--; |
---|
1042 | |
---|
1043 | int result= expf[indf]; |
---|
1044 | for (int i= indf - 1; i >= 0; i--) |
---|
1045 | { |
---|
1046 | if (expf [i]%result != 0) |
---|
1047 | { |
---|
1048 | delete [] expf; |
---|
1049 | return 0; |
---|
1050 | } |
---|
1051 | } |
---|
1052 | |
---|
1053 | delete [] expf; |
---|
1054 | return result; |
---|
1055 | } |
---|
1056 | |
---|
1057 | static int |
---|
1058 | substituteCheck (const CanonicalForm& F, const CanonicalForm& G) |
---|
1059 | { |
---|
1060 | if (F.inCoeffDomain() || G.inCoeffDomain()) |
---|
1061 | return 0; |
---|
1062 | Variable x= Variable (1); |
---|
1063 | if (degree (F, x) <= 1 || degree (G, x) <= 1) |
---|
1064 | return 0; |
---|
1065 | CanonicalForm f= swapvar (F, F.mvar(), x); |
---|
1066 | CanonicalForm g= swapvar (G, G.mvar(), x); |
---|
1067 | int sizef= 0; |
---|
1068 | int sizeg= 0; |
---|
1069 | for (CFIterator i= f; i.hasTerms(); i++, sizef++) |
---|
1070 | { |
---|
1071 | if (i.exp() == 1) |
---|
1072 | return 0; |
---|
1073 | } |
---|
1074 | for (CFIterator i= g; i.hasTerms(); i++, sizeg++) |
---|
1075 | { |
---|
1076 | if (i.exp() == 1) |
---|
1077 | return 0; |
---|
1078 | } |
---|
1079 | int * expf= new int [sizef]; |
---|
1080 | int * expg= new int [sizeg]; |
---|
1081 | int j= 0; |
---|
1082 | for (CFIterator i= f; i.hasTerms(); i++, j++) |
---|
1083 | { |
---|
1084 | expf [j]= i.exp(); |
---|
1085 | } |
---|
1086 | j= 0; |
---|
1087 | for (CFIterator i= g; i.hasTerms(); i++, j++) |
---|
1088 | { |
---|
1089 | expg [j]= i.exp(); |
---|
1090 | } |
---|
1091 | |
---|
1092 | int indf= sizef - 1; |
---|
1093 | int indg= sizeg - 1; |
---|
1094 | if (expf[indf] == 0) |
---|
1095 | indf--; |
---|
1096 | if (expg[indg] == 0) |
---|
1097 | indg--; |
---|
1098 | |
---|
1099 | if ((expg[indg]%expf [indf] != 0 && expf[indf]%expg[indg] != 0) || |
---|
1100 | (expg[indg] == 1 && expf[indf] == 1)) |
---|
1101 | { |
---|
1102 | delete [] expg; |
---|
1103 | delete [] expf; |
---|
1104 | return 0; |
---|
1105 | } |
---|
1106 | |
---|
1107 | int result; |
---|
1108 | if (expg [indg]%expf [indf] == 0) |
---|
1109 | result= expf[indf]; |
---|
1110 | else |
---|
1111 | result= expg[indg]; |
---|
1112 | for (int i= indf - 1; i >= 0; i--) |
---|
1113 | { |
---|
1114 | if (expf [i]%result != 0) |
---|
1115 | { |
---|
1116 | delete [] expf; |
---|
1117 | delete [] expg; |
---|
1118 | return 0; |
---|
1119 | } |
---|
1120 | } |
---|
1121 | |
---|
1122 | for (int i= indg - 1; i >= 0; i--) |
---|
1123 | { |
---|
1124 | if (expg [i]%result != 0) |
---|
1125 | { |
---|
1126 | delete [] expf; |
---|
1127 | delete [] expg; |
---|
1128 | return 0; |
---|
1129 | } |
---|
1130 | } |
---|
1131 | |
---|
1132 | delete [] expg; |
---|
1133 | delete [] expf; |
---|
1134 | return result; |
---|
1135 | } |
---|
1136 | |
---|
1137 | int recSubstituteCheck (const CanonicalForm& F, const int d) |
---|
1138 | { |
---|
1139 | if (F.inCoeffDomain()) |
---|
1140 | return 0; |
---|
1141 | Variable x= Variable (1); |
---|
1142 | if (degree (F, x) <= 1) |
---|
1143 | return 0; |
---|
1144 | CanonicalForm f= swapvar (F, F.mvar(), x); |
---|
1145 | int sizef= 0; |
---|
1146 | for (CFIterator i= f; i.hasTerms(); i++, sizef++) |
---|
1147 | { |
---|
1148 | if (i.exp() == 1) |
---|
1149 | return 0; |
---|
1150 | } |
---|
1151 | int * expf= new int [sizef]; |
---|
1152 | int j= 0; |
---|
1153 | for (CFIterator i= f; i.hasTerms(); i++, j++) |
---|
1154 | { |
---|
1155 | expf [j]= i.exp(); |
---|
1156 | } |
---|
1157 | |
---|
1158 | int indf= sizef - 1; |
---|
1159 | if (expf[indf] == 0) |
---|
1160 | indf--; |
---|
1161 | |
---|
1162 | if ((d%expf [indf] != 0 && expf[indf]%d != 0) || (expf[indf] == 1)) |
---|
1163 | { |
---|
1164 | delete [] expf; |
---|
1165 | return 0; |
---|
1166 | } |
---|
1167 | |
---|
1168 | int result; |
---|
1169 | if (d%expf [indf] == 0) |
---|
1170 | result= expf[indf]; |
---|
1171 | else |
---|
1172 | result= d; |
---|
1173 | for (int i= indf - 1; i >= 0; i--) |
---|
1174 | { |
---|
1175 | if (expf [i]%result != 0) |
---|
1176 | { |
---|
1177 | delete [] expf; |
---|
1178 | return 0; |
---|
1179 | } |
---|
1180 | } |
---|
1181 | |
---|
1182 | delete [] expf; |
---|
1183 | return result; |
---|
1184 | } |
---|
1185 | |
---|
1186 | int substituteCheck (const CFList& L) |
---|
1187 | { |
---|
1188 | ASSERT (L.length() > 1, "expected a list of at least two elements"); |
---|
1189 | if (L.length() < 2) |
---|
1190 | return 0; |
---|
1191 | CFListIterator i= L; |
---|
1192 | i++; |
---|
1193 | int result= substituteCheck (L.getFirst(), i.getItem()); |
---|
1194 | if (result <= 1) |
---|
1195 | return result; |
---|
1196 | i++; |
---|
1197 | for (;i.hasItem(); i++) |
---|
1198 | { |
---|
1199 | result= recSubstituteCheck (i.getItem(), result); |
---|
1200 | if (result <= 1) |
---|
1201 | return result; |
---|
1202 | } |
---|
1203 | return result; |
---|
1204 | } |
---|
1205 | |
---|
1206 | void |
---|
1207 | subst (const CanonicalForm& F, CanonicalForm& A, const int d, const Variable& x) |
---|
1208 | { |
---|
1209 | if (d <= 1) |
---|
1210 | { |
---|
1211 | A= F; |
---|
1212 | return; |
---|
1213 | } |
---|
1214 | if (degree (F, x) <= 0) |
---|
1215 | { |
---|
1216 | A= F; |
---|
1217 | return; |
---|
1218 | } |
---|
1219 | CanonicalForm C= 0; |
---|
1220 | CanonicalForm f= swapvar (F, x, F.mvar()); |
---|
1221 | for (CFIterator i= f; i.hasTerms(); i++) |
---|
1222 | C += i.coeff()*power (f.mvar(), i.exp()/ d); |
---|
1223 | A= swapvar (C, x, F.mvar()); |
---|
1224 | } |
---|
1225 | |
---|
1226 | CanonicalForm |
---|
1227 | reverseSubst (const CanonicalForm& F, const int d, const Variable& x) |
---|
1228 | { |
---|
1229 | if (d <= 1) |
---|
1230 | return F; |
---|
1231 | if (degree (F, x) <= 0) |
---|
1232 | return F; |
---|
1233 | CanonicalForm f= swapvar (F, x, F.mvar()); |
---|
1234 | CanonicalForm result= 0; |
---|
1235 | for (CFIterator i= f; i.hasTerms(); i++) |
---|
1236 | result += i.coeff()*power (f.mvar(), d*i.exp()); |
---|
1237 | return swapvar (result, x, F.mvar()); |
---|
1238 | } |
---|
1239 | |
---|
1240 | void |
---|
1241 | reverseSubst (CFList& L, const int d, const Variable& x) |
---|
1242 | { |
---|
1243 | for (CFListIterator i= L; i.hasItem(); i++) |
---|
1244 | i.getItem()= reverseSubst (i.getItem(), d, x); |
---|
1245 | } |
---|
1246 | |
---|