1 | /*****************************************************************************\ |
---|
2 | * Computer Algebra System SINGULAR |
---|
3 | \*****************************************************************************/ |
---|
4 | /** @file facHensel.cc |
---|
5 | * |
---|
6 | * This file implements functions to lift factors via Hensel lifting. |
---|
7 | * |
---|
8 | * ABSTRACT: Hensel lifting is described in "Efficient Multivariate |
---|
9 | * Factorization over Finite Fields" by L. Bernardin & M. Monagon. Division with |
---|
10 | * remainder is described in "Fast Recursive Division" by C. Burnikel and |
---|
11 | * J. Ziegler. Karatsuba multiplication is described in "Modern Computer |
---|
12 | * Algebra" by J. von zur Gathen and J. Gerhard. |
---|
13 | * |
---|
14 | * @author Martin Lee |
---|
15 | * |
---|
16 | * @internal @version \$Id$ |
---|
17 | * |
---|
18 | **/ |
---|
19 | /*****************************************************************************/ |
---|
20 | |
---|
21 | #include "config.h" |
---|
22 | |
---|
23 | #include "cf_assert.h" |
---|
24 | #include "debug.h" |
---|
25 | #include "timing.h" |
---|
26 | |
---|
27 | #include "algext.h" |
---|
28 | #include "facHensel.h" |
---|
29 | #include "facMul.h" |
---|
30 | #include "fac_util.h" |
---|
31 | #include "cf_algorithm.h" |
---|
32 | #include "cf_primes.h" |
---|
33 | #include "facBivar.h" |
---|
34 | |
---|
35 | #ifdef HAVE_NTL |
---|
36 | #include <NTL/lzz_pEX.h> |
---|
37 | #include "NTLconvert.h" |
---|
38 | |
---|
39 | static |
---|
40 | CFList productsNTL (const CFList& factors, const CanonicalForm& M) |
---|
41 | { |
---|
42 | zz_p::init (getCharacteristic()); |
---|
43 | zz_pX NTLMipo= convertFacCF2NTLzzpX (M); |
---|
44 | zz_pE::init (NTLMipo); |
---|
45 | zz_pEX prod; |
---|
46 | vec_zz_pEX v; |
---|
47 | v.SetLength (factors.length()); |
---|
48 | int j= 0; |
---|
49 | for (CFListIterator i= factors; i.hasItem(); i++, j++) |
---|
50 | { |
---|
51 | if (i.getItem().inCoeffDomain()) |
---|
52 | v[j]= to_zz_pEX (to_zz_pE (convertFacCF2NTLzzpX (i.getItem()))); |
---|
53 | else |
---|
54 | v[j]= convertFacCF2NTLzz_pEX (i.getItem(), NTLMipo); |
---|
55 | } |
---|
56 | CFList result; |
---|
57 | Variable x= Variable (1); |
---|
58 | for (int j= 0; j < factors.length(); j++) |
---|
59 | { |
---|
60 | int k= 0; |
---|
61 | set(prod); |
---|
62 | for (int i= 0; i < factors.length(); i++, k++) |
---|
63 | { |
---|
64 | if (k == j) |
---|
65 | continue; |
---|
66 | prod *= v[i]; |
---|
67 | } |
---|
68 | result.append (convertNTLzz_pEX2CF (prod, x, M.mvar())); |
---|
69 | } |
---|
70 | return result; |
---|
71 | } |
---|
72 | |
---|
73 | static |
---|
74 | void tryDiophantine (CFList& result, const CanonicalForm& F, |
---|
75 | const CFList& factors, const CanonicalForm& M, bool& fail) |
---|
76 | { |
---|
77 | ASSERT (M.isUnivariate(), "expected univariate poly"); |
---|
78 | |
---|
79 | CFList bufFactors= factors; |
---|
80 | bufFactors.removeFirst(); |
---|
81 | bufFactors.insert (factors.getFirst () (0,2)); |
---|
82 | CanonicalForm inv, leadingCoeff= Lc (F); |
---|
83 | CFListIterator i= bufFactors; |
---|
84 | if (bufFactors.getFirst().inCoeffDomain()) |
---|
85 | { |
---|
86 | if (i.hasItem()) |
---|
87 | i++; |
---|
88 | } |
---|
89 | for (; i.hasItem(); i++) |
---|
90 | { |
---|
91 | tryInvert (Lc (i.getItem()), M, inv ,fail); |
---|
92 | if (fail) |
---|
93 | return; |
---|
94 | i.getItem()= reduce (i.getItem()*inv, M); |
---|
95 | } |
---|
96 | bufFactors= productsNTL (bufFactors, M); |
---|
97 | |
---|
98 | CanonicalForm buf1, buf2, buf3, S, T; |
---|
99 | i= bufFactors; |
---|
100 | if (i.hasItem()) |
---|
101 | i++; |
---|
102 | buf1= bufFactors.getFirst(); |
---|
103 | buf2= i.getItem(); |
---|
104 | tryExtgcd (buf1, buf2, M, buf3, S, T, fail); |
---|
105 | if (fail) |
---|
106 | return; |
---|
107 | result.append (S); |
---|
108 | result.append (T); |
---|
109 | if (i.hasItem()) |
---|
110 | i++; |
---|
111 | for (; i.hasItem(); i++) |
---|
112 | { |
---|
113 | buf1= i.getItem(); |
---|
114 | tryExtgcd (buf3, buf1, M, buf3, S, T, fail); |
---|
115 | if (fail) |
---|
116 | return; |
---|
117 | CFListIterator k= factors; |
---|
118 | for (CFListIterator j= result; j.hasItem(); j++, k++) |
---|
119 | { |
---|
120 | j.getItem() *= S; |
---|
121 | j.getItem()= mod (j.getItem(), k.getItem()); |
---|
122 | j.getItem()= reduce (j.getItem(), M); |
---|
123 | } |
---|
124 | result.append (T); |
---|
125 | } |
---|
126 | } |
---|
127 | |
---|
128 | static |
---|
129 | CFList mapinto (const CFList& L) |
---|
130 | { |
---|
131 | CFList result; |
---|
132 | for (CFListIterator i= L; i.hasItem(); i++) |
---|
133 | result.append (mapinto (i.getItem())); |
---|
134 | return result; |
---|
135 | } |
---|
136 | |
---|
137 | static |
---|
138 | int mod (const CFList& L, const CanonicalForm& p) |
---|
139 | { |
---|
140 | for (CFListIterator i= L; i.hasItem(); i++) |
---|
141 | { |
---|
142 | if (mod (i.getItem(), p) == 0) |
---|
143 | return 0; |
---|
144 | } |
---|
145 | return 1; |
---|
146 | } |
---|
147 | |
---|
148 | |
---|
149 | static void |
---|
150 | chineseRemainder (const CFList & x1, const CanonicalForm & q1, |
---|
151 | const CFList & x2, const CanonicalForm & q2, |
---|
152 | CFList & xnew, CanonicalForm & qnew) |
---|
153 | { |
---|
154 | ASSERT (x1.length() == x2.length(), "expected lists of equal length"); |
---|
155 | CanonicalForm tmp1, tmp2; |
---|
156 | CFListIterator j= x2; |
---|
157 | for (CFListIterator i= x1; i.hasItem() && j.hasItem(); i++, j++) |
---|
158 | { |
---|
159 | chineseRemainder (i.getItem(), q1, j.getItem(), q2, tmp1, tmp2); |
---|
160 | xnew.append (tmp1); |
---|
161 | } |
---|
162 | qnew= tmp2; |
---|
163 | } |
---|
164 | |
---|
165 | static |
---|
166 | CFList Farey (const CFList& L, const CanonicalForm& q) |
---|
167 | { |
---|
168 | CFList result; |
---|
169 | for (CFListIterator i= L; i.hasItem(); i++) |
---|
170 | result.append (Farey (i.getItem(), q)); |
---|
171 | return result; |
---|
172 | } |
---|
173 | |
---|
174 | static |
---|
175 | CFList replacevar (const CFList& L, const Variable& a, const Variable& b) |
---|
176 | { |
---|
177 | CFList result; |
---|
178 | for (CFListIterator i= L; i.hasItem(); i++) |
---|
179 | result.append (replacevar (i.getItem(), a, b)); |
---|
180 | return result; |
---|
181 | } |
---|
182 | |
---|
183 | CFList |
---|
184 | modularDiophant (const CanonicalForm& f, const CFList& factors, |
---|
185 | const CanonicalForm& M) |
---|
186 | { |
---|
187 | bool save_rat=!isOn (SW_RATIONAL); |
---|
188 | On (SW_RATIONAL); |
---|
189 | CanonicalForm F= f*bCommonDen (f); |
---|
190 | CFList products= factors; |
---|
191 | for (CFListIterator i= products; i.hasItem(); i++) |
---|
192 | { |
---|
193 | if (products.getFirst().level() == 1) |
---|
194 | i.getItem() /= Lc (i.getItem()); |
---|
195 | i.getItem() *= bCommonDen (i.getItem()); |
---|
196 | } |
---|
197 | if (products.getFirst().level() == 1) |
---|
198 | products.insert (Lc (F)); |
---|
199 | CanonicalForm bound= maxNorm (F); |
---|
200 | CFList leadingCoeffs; |
---|
201 | leadingCoeffs.append (lc (F)); |
---|
202 | CanonicalForm dummy; |
---|
203 | for (CFListIterator i= products; i.hasItem(); i++) |
---|
204 | { |
---|
205 | leadingCoeffs.append (lc (i.getItem())); |
---|
206 | dummy= maxNorm (i.getItem()); |
---|
207 | bound= (dummy > bound) ? dummy : bound; |
---|
208 | } |
---|
209 | bound *= maxNorm (Lc (F))*maxNorm (Lc(F))*bound; |
---|
210 | bound *= bound*bound; |
---|
211 | bound= power (bound, degree (M)); |
---|
212 | bound *= power (CanonicalForm (2),degree (f)); |
---|
213 | CanonicalForm bufBound= bound; |
---|
214 | int i = cf_getNumBigPrimes() - 1; |
---|
215 | int p; |
---|
216 | CFList resultModP, result, newResult; |
---|
217 | CanonicalForm q (0), newQ; |
---|
218 | bool fail= false; |
---|
219 | Variable a= M.mvar(); |
---|
220 | Variable b= Variable (2); |
---|
221 | setReduce (M.mvar(), false); |
---|
222 | CanonicalForm mipo= bCommonDen (M)*M; |
---|
223 | Off (SW_RATIONAL); |
---|
224 | CanonicalForm modMipo; |
---|
225 | leadingCoeffs.append (lc (mipo)); |
---|
226 | CFList tmp1, tmp2; |
---|
227 | bool equal= false; |
---|
228 | int count= 0; |
---|
229 | do |
---|
230 | { |
---|
231 | p = cf_getBigPrime( i ); |
---|
232 | i--; |
---|
233 | while ( i >= 0 && mod( leadingCoeffs, p ) == 0) |
---|
234 | { |
---|
235 | p = cf_getBigPrime( i ); |
---|
236 | i--; |
---|
237 | } |
---|
238 | |
---|
239 | ASSERT (i >= 0, "ran out of primes"); //sic |
---|
240 | |
---|
241 | setCharacteristic (p); |
---|
242 | modMipo= mapinto (mipo); |
---|
243 | modMipo /= lc (modMipo); |
---|
244 | resultModP= CFList(); |
---|
245 | tryDiophantine (resultModP, mapinto (F), mapinto (products), modMipo, fail); |
---|
246 | setCharacteristic (0); |
---|
247 | if (fail) |
---|
248 | { |
---|
249 | fail= false; |
---|
250 | continue; |
---|
251 | } |
---|
252 | |
---|
253 | if ( q.isZero() ) |
---|
254 | { |
---|
255 | result= replacevar (mapinto(resultModP), a, b); |
---|
256 | q= p; |
---|
257 | } |
---|
258 | else |
---|
259 | { |
---|
260 | result= replacevar (result, a, b); |
---|
261 | newResult= CFList(); |
---|
262 | chineseRemainder( result, q, replacevar (mapinto (resultModP), a, b), |
---|
263 | p, newResult, newQ ); |
---|
264 | q= newQ; |
---|
265 | result= newResult; |
---|
266 | if (newQ > bound) |
---|
267 | { |
---|
268 | count++; |
---|
269 | tmp1= replacevar (Farey (result, q), b, a); |
---|
270 | if (tmp2.isEmpty()) |
---|
271 | tmp2= tmp1; |
---|
272 | else |
---|
273 | { |
---|
274 | equal= true; |
---|
275 | CFListIterator k= tmp1; |
---|
276 | for (CFListIterator j= tmp2; j.hasItem(); j++, k++) |
---|
277 | { |
---|
278 | if (j.getItem() != k.getItem()) |
---|
279 | equal= false; |
---|
280 | } |
---|
281 | if (!equal) |
---|
282 | tmp2= tmp1; |
---|
283 | } |
---|
284 | if (count > 2) |
---|
285 | { |
---|
286 | bound *= bufBound; |
---|
287 | equal= false; |
---|
288 | count= 0; |
---|
289 | } |
---|
290 | } |
---|
291 | if (newQ > bound && equal) |
---|
292 | { |
---|
293 | On( SW_RATIONAL ); |
---|
294 | CFList bufResult= result; |
---|
295 | result= tmp2; |
---|
296 | setReduce (M.mvar(), true); |
---|
297 | if (factors.getFirst().level() == 1) |
---|
298 | { |
---|
299 | result.removeFirst(); |
---|
300 | CFListIterator j= factors; |
---|
301 | CanonicalForm denf= bCommonDen (f); |
---|
302 | for (CFListIterator i= result; i.hasItem(); i++, j++) |
---|
303 | i.getItem() *= Lc (j.getItem())*denf; |
---|
304 | } |
---|
305 | if (factors.getFirst().level() != 1 && |
---|
306 | !bCommonDen (factors.getFirst()).isOne()) |
---|
307 | { |
---|
308 | CanonicalForm denFirst= bCommonDen (factors.getFirst()); |
---|
309 | for (CFListIterator i= result; i.hasItem(); i++) |
---|
310 | i.getItem() *= denFirst; |
---|
311 | } |
---|
312 | |
---|
313 | CanonicalForm test= 0; |
---|
314 | CFListIterator jj= factors; |
---|
315 | for (CFListIterator ii= result; ii.hasItem(); ii++, jj++) |
---|
316 | test += ii.getItem()*(f/jj.getItem()); |
---|
317 | if (!test.isOne()) |
---|
318 | { |
---|
319 | bound *= bufBound; |
---|
320 | equal= false; |
---|
321 | count= 0; |
---|
322 | setReduce (M.mvar(), false); |
---|
323 | result= bufResult; |
---|
324 | Off (SW_RATIONAL); |
---|
325 | } |
---|
326 | else |
---|
327 | break; |
---|
328 | } |
---|
329 | } |
---|
330 | } while (1); |
---|
331 | if (save_rat) Off(SW_RATIONAL); |
---|
332 | return result; |
---|
333 | } |
---|
334 | |
---|
335 | void sortList (CFList& list, const Variable& x) |
---|
336 | { |
---|
337 | int l= 1; |
---|
338 | int k= 1; |
---|
339 | CanonicalForm buf; |
---|
340 | CFListIterator m; |
---|
341 | for (CFListIterator i= list; l <= list.length(); i++, l++) |
---|
342 | { |
---|
343 | for (CFListIterator j= list; k <= list.length() - l; k++) |
---|
344 | { |
---|
345 | m= j; |
---|
346 | m++; |
---|
347 | if (degree (j.getItem(), x) > degree (m.getItem(), x)) |
---|
348 | { |
---|
349 | buf= m.getItem(); |
---|
350 | m.getItem()= j.getItem(); |
---|
351 | j.getItem()= buf; |
---|
352 | j++; |
---|
353 | j.getItem()= m.getItem(); |
---|
354 | } |
---|
355 | else |
---|
356 | j++; |
---|
357 | } |
---|
358 | k= 1; |
---|
359 | } |
---|
360 | } |
---|
361 | |
---|
362 | CFList |
---|
363 | diophantine (const CanonicalForm& F, const CFList& factors); |
---|
364 | |
---|
365 | CFList |
---|
366 | diophantineHensel (const CanonicalForm & F, const CFList& factors, |
---|
367 | const modpk& b) |
---|
368 | { |
---|
369 | int p= b.getp(); |
---|
370 | setCharacteristic (p); |
---|
371 | CFList recResult= diophantine (mapinto (F), mapinto (factors)); |
---|
372 | setCharacteristic (0); |
---|
373 | recResult= mapinto (recResult); |
---|
374 | CanonicalForm e= 1; |
---|
375 | CFList L; |
---|
376 | CFArray bufFactors= CFArray (factors.length()); |
---|
377 | int k= 0; |
---|
378 | for (CFListIterator i= factors; i.hasItem(); i++, k++) |
---|
379 | { |
---|
380 | if (k == 0) |
---|
381 | bufFactors[k]= i.getItem() (0); |
---|
382 | else |
---|
383 | bufFactors [k]= i.getItem(); |
---|
384 | } |
---|
385 | CanonicalForm tmp, quot; |
---|
386 | for (k= 0; k < factors.length(); k++) //TODO compute b's faster |
---|
387 | { |
---|
388 | tmp= 1; |
---|
389 | for (int l= 0; l < factors.length(); l++) |
---|
390 | { |
---|
391 | if (l == k) |
---|
392 | continue; |
---|
393 | else |
---|
394 | { |
---|
395 | tmp= mulNTL (tmp, bufFactors[l]); |
---|
396 | } |
---|
397 | } |
---|
398 | L.append (tmp); |
---|
399 | } |
---|
400 | |
---|
401 | setCharacteristic (p); |
---|
402 | for (k= 0; k < factors.length(); k++) |
---|
403 | bufFactors [k]= bufFactors[k].mapinto(); |
---|
404 | setCharacteristic(0); |
---|
405 | |
---|
406 | CFListIterator j= L; |
---|
407 | for (CFListIterator i= recResult; i.hasItem(); i++, j++) |
---|
408 | e= b (e - mulNTL (i.getItem(),j.getItem(), b)); |
---|
409 | |
---|
410 | if (e.isZero()) |
---|
411 | return recResult; |
---|
412 | CanonicalForm coeffE; |
---|
413 | CFList s; |
---|
414 | CFList result= recResult; |
---|
415 | setCharacteristic (p); |
---|
416 | recResult= mapinto (recResult); |
---|
417 | setCharacteristic (0); |
---|
418 | CanonicalForm g; |
---|
419 | CanonicalForm modulus= p; |
---|
420 | int d= b.getk(); |
---|
421 | for (int i= 1; i < d; i++) |
---|
422 | { |
---|
423 | coeffE= div (e, modulus); |
---|
424 | setCharacteristic (p); |
---|
425 | coeffE= coeffE.mapinto(); |
---|
426 | setCharacteristic (0); |
---|
427 | if (!coeffE.isZero()) |
---|
428 | { |
---|
429 | CFListIterator k= result; |
---|
430 | CFListIterator l= L; |
---|
431 | int ii= 0; |
---|
432 | j= recResult; |
---|
433 | for (; j.hasItem(); j++, k++, l++, ii++) |
---|
434 | { |
---|
435 | setCharacteristic (p); |
---|
436 | g= mulNTL (coeffE, j.getItem()); |
---|
437 | g= modNTL (g, bufFactors[ii]); |
---|
438 | setCharacteristic (0); |
---|
439 | k.getItem() += g.mapinto()*modulus; |
---|
440 | e -= mulNTL (g.mapinto()*modulus, l.getItem(), b); |
---|
441 | e= b(e); |
---|
442 | DEBOUTLN (cerr, "mod (e, power (y, i + 1))= " << |
---|
443 | mod (e, power (y, i + 1))); |
---|
444 | } |
---|
445 | } |
---|
446 | modulus *= p; |
---|
447 | if (e.isZero()) |
---|
448 | break; |
---|
449 | } |
---|
450 | |
---|
451 | return result; |
---|
452 | } |
---|
453 | |
---|
454 | CFList |
---|
455 | diophantineHenselQa (const CanonicalForm & F, const CanonicalForm& G, |
---|
456 | const CFList& factors, modpk& b, const Variable& alpha) |
---|
457 | { |
---|
458 | int p= b.getp(); |
---|
459 | setCharacteristic (p); |
---|
460 | bool fail= false; |
---|
461 | CFList recResult; |
---|
462 | CanonicalForm modMipo, mipo; |
---|
463 | mipo= getMipo (alpha); |
---|
464 | setReduce (alpha, false); |
---|
465 | while (1) |
---|
466 | { |
---|
467 | setCharacteristic (p); |
---|
468 | modMipo= mapinto (mipo); |
---|
469 | modMipo /= lc (modMipo); |
---|
470 | tryDiophantine (recResult, mapinto (F), mapinto (factors), modMipo, fail); |
---|
471 | if (fail) |
---|
472 | { |
---|
473 | int i= 0; |
---|
474 | while (cf_getBigPrime (i) < p) |
---|
475 | i++; |
---|
476 | findGoodPrime (F, i); |
---|
477 | findGoodPrime (G, i); |
---|
478 | p=cf_getBigPrime(i); |
---|
479 | b = coeffBound( G, p, mipo ); |
---|
480 | modpk bb= coeffBound (F, p, mipo ); |
---|
481 | if (bb.getk() > b.getk() ) b=bb; |
---|
482 | } |
---|
483 | else |
---|
484 | break; |
---|
485 | } |
---|
486 | setCharacteristic (0); |
---|
487 | recResult= mapinto (recResult); |
---|
488 | setReduce (alpha, true); |
---|
489 | CanonicalForm e= 1; |
---|
490 | CFList L; |
---|
491 | CFArray bufFactors= CFArray (factors.length()); |
---|
492 | int k= 0; |
---|
493 | for (CFListIterator i= factors; i.hasItem(); i++, k++) |
---|
494 | { |
---|
495 | if (k == 0) |
---|
496 | bufFactors[k]= i.getItem() (0); |
---|
497 | else |
---|
498 | bufFactors [k]= i.getItem(); |
---|
499 | } |
---|
500 | CanonicalForm tmp, quot; |
---|
501 | for (k= 0; k < factors.length(); k++) //TODO compute b's faster |
---|
502 | { |
---|
503 | tmp= 1; |
---|
504 | for (int l= 0; l < factors.length(); l++) |
---|
505 | { |
---|
506 | if (l == k) |
---|
507 | continue; |
---|
508 | else |
---|
509 | { |
---|
510 | tmp= mulNTL (tmp, bufFactors[l]); |
---|
511 | } |
---|
512 | } |
---|
513 | L.append (tmp); |
---|
514 | } |
---|
515 | |
---|
516 | setCharacteristic (p); |
---|
517 | for (k= 0; k < factors.length(); k++) |
---|
518 | bufFactors [k]= bufFactors[k].mapinto(); |
---|
519 | setCharacteristic(0); |
---|
520 | |
---|
521 | CFListIterator j= L; |
---|
522 | for (CFListIterator i= recResult; i.hasItem(); i++, j++) |
---|
523 | e= b (e - mulNTL (i.getItem(),j.getItem(), b)); |
---|
524 | |
---|
525 | if (e.isZero()) |
---|
526 | return recResult; |
---|
527 | CanonicalForm coeffE; |
---|
528 | CFList s; |
---|
529 | CFList result= recResult; |
---|
530 | setCharacteristic (p); |
---|
531 | recResult= mapinto (recResult); |
---|
532 | setCharacteristic (0); |
---|
533 | CanonicalForm g; |
---|
534 | CanonicalForm modulus= p; |
---|
535 | int d= b.getk(); |
---|
536 | for (int i= 1; i < d; i++) |
---|
537 | { |
---|
538 | coeffE= div (e, modulus); |
---|
539 | setCharacteristic (p); |
---|
540 | coeffE= coeffE.mapinto(); |
---|
541 | setCharacteristic (0); |
---|
542 | if (!coeffE.isZero()) |
---|
543 | { |
---|
544 | CFListIterator k= result; |
---|
545 | CFListIterator l= L; |
---|
546 | int ii= 0; |
---|
547 | j= recResult; |
---|
548 | for (; j.hasItem(); j++, k++, l++, ii++) |
---|
549 | { |
---|
550 | setCharacteristic (p); |
---|
551 | g= mulNTL (coeffE, j.getItem()); |
---|
552 | g= modNTL (g, bufFactors[ii]); |
---|
553 | setCharacteristic (0); |
---|
554 | k.getItem() += g.mapinto()*modulus; |
---|
555 | e -= mulNTL (g.mapinto()*modulus, l.getItem(), b); |
---|
556 | e= b(e); |
---|
557 | DEBOUTLN (cerr, "mod (e, power (y, i + 1))= " << |
---|
558 | mod (e, power (y, i + 1))); |
---|
559 | } |
---|
560 | } |
---|
561 | modulus *= p; |
---|
562 | if (e.isZero()) |
---|
563 | break; |
---|
564 | } |
---|
565 | |
---|
566 | return result; |
---|
567 | } |
---|
568 | |
---|
569 | CFList |
---|
570 | diophantine (const CanonicalForm& F, const CanonicalForm& G, |
---|
571 | const CFList& factors, modpk& b) |
---|
572 | { |
---|
573 | if (getCharacteristic() == 0) |
---|
574 | { |
---|
575 | Variable v; |
---|
576 | bool hasAlgVar= hasFirstAlgVar (F, v); |
---|
577 | for (CFListIterator i= factors; i.hasItem() && !hasAlgVar; i++) |
---|
578 | hasAlgVar= hasFirstAlgVar (i.getItem(), v); |
---|
579 | if (hasAlgVar) |
---|
580 | { |
---|
581 | if (b.getp() != 0) |
---|
582 | { |
---|
583 | CFList result= diophantineHenselQa (F, G, factors, b, v); |
---|
584 | return result; |
---|
585 | } |
---|
586 | CFList result= modularDiophant (F, factors, getMipo (v)); |
---|
587 | return result; |
---|
588 | } |
---|
589 | if (b.getp() != 0) |
---|
590 | return diophantineHensel (F, factors, b); |
---|
591 | } |
---|
592 | |
---|
593 | CanonicalForm buf1, buf2, buf3, S, T; |
---|
594 | CFListIterator i= factors; |
---|
595 | CFList result; |
---|
596 | if (i.hasItem()) |
---|
597 | i++; |
---|
598 | buf1= F/factors.getFirst(); |
---|
599 | buf2= divNTL (F, i.getItem()); |
---|
600 | buf3= extgcd (buf1, buf2, S, T); |
---|
601 | result.append (S); |
---|
602 | result.append (T); |
---|
603 | if (i.hasItem()) |
---|
604 | i++; |
---|
605 | for (; i.hasItem(); i++) |
---|
606 | { |
---|
607 | buf1= divNTL (F, i.getItem()); |
---|
608 | buf3= extgcd (buf3, buf1, S, T); |
---|
609 | CFListIterator k= factors; |
---|
610 | for (CFListIterator j= result; j.hasItem(); j++, k++) |
---|
611 | { |
---|
612 | j.getItem()= mulNTL (j.getItem(), S); |
---|
613 | j.getItem()= modNTL (j.getItem(), k.getItem()); |
---|
614 | } |
---|
615 | result.append (T); |
---|
616 | } |
---|
617 | return result; |
---|
618 | } |
---|
619 | |
---|
620 | CFList |
---|
621 | diophantine (const CanonicalForm& F, const CFList& factors) |
---|
622 | { |
---|
623 | modpk b= modpk(); |
---|
624 | return diophantine (F, 1, factors, b); |
---|
625 | } |
---|
626 | |
---|
627 | void |
---|
628 | henselStep12 (const CanonicalForm& F, const CFList& factors, |
---|
629 | CFArray& bufFactors, const CFList& diophant, CFMatrix& M, |
---|
630 | CFArray& Pi, int j, const modpk& b) |
---|
631 | { |
---|
632 | CanonicalForm E; |
---|
633 | CanonicalForm xToJ= power (F.mvar(), j); |
---|
634 | Variable x= F.mvar(); |
---|
635 | // compute the error |
---|
636 | if (j == 1) |
---|
637 | E= F[j]; |
---|
638 | else |
---|
639 | { |
---|
640 | if (degree (Pi [factors.length() - 2], x) > 0) |
---|
641 | E= F[j] - Pi [factors.length() - 2] [j]; |
---|
642 | else |
---|
643 | E= F[j]; |
---|
644 | } |
---|
645 | |
---|
646 | if (b.getp() != 0) |
---|
647 | E= b(E); |
---|
648 | CFArray buf= CFArray (diophant.length()); |
---|
649 | bufFactors[0]= mod (factors.getFirst(), power (F.mvar(), j + 1)); |
---|
650 | int k= 0; |
---|
651 | CanonicalForm remainder; |
---|
652 | // actual lifting |
---|
653 | for (CFListIterator i= diophant; i.hasItem(); i++, k++) |
---|
654 | { |
---|
655 | if (degree (bufFactors[k], x) > 0) |
---|
656 | { |
---|
657 | if (k > 0) |
---|
658 | remainder= modNTL (E, bufFactors[k] [0], b); |
---|
659 | else |
---|
660 | remainder= E; |
---|
661 | } |
---|
662 | else |
---|
663 | remainder= modNTL (E, bufFactors[k], b); |
---|
664 | |
---|
665 | buf[k]= mulNTL (i.getItem(), remainder, b); |
---|
666 | if (degree (bufFactors[k], x) > 0) |
---|
667 | buf[k]= modNTL (buf[k], bufFactors[k] [0], b); |
---|
668 | else |
---|
669 | buf[k]= modNTL (buf[k], bufFactors[k], b); |
---|
670 | } |
---|
671 | for (k= 1; k < factors.length(); k++) |
---|
672 | { |
---|
673 | bufFactors[k] += xToJ*buf[k]; |
---|
674 | if (b.getp() != 0) |
---|
675 | bufFactors[k]= b(bufFactors[k]); |
---|
676 | } |
---|
677 | |
---|
678 | // update Pi [0] |
---|
679 | int degBuf0= degree (bufFactors[0], x); |
---|
680 | int degBuf1= degree (bufFactors[1], x); |
---|
681 | if (degBuf0 > 0 && degBuf1 > 0) |
---|
682 | M (j + 1, 1)= mulNTL (bufFactors[0] [j], bufFactors[1] [j], b); |
---|
683 | CanonicalForm uIZeroJ; |
---|
684 | if (j == 1) |
---|
685 | { |
---|
686 | if (degBuf0 > 0 && degBuf1 > 0) |
---|
687 | uIZeroJ= mulNTL ((bufFactors[0] [0] + bufFactors[0] [j]), |
---|
688 | (bufFactors[1] [0] + buf[1]), b) - M(1, 1) - M(j + 1, 1); |
---|
689 | else if (degBuf0 > 0) |
---|
690 | uIZeroJ= mulNTL (bufFactors[0] [j], bufFactors[1], b); |
---|
691 | else if (degBuf1 > 0) |
---|
692 | uIZeroJ= mulNTL (bufFactors[0], buf[1], b); |
---|
693 | else |
---|
694 | uIZeroJ= 0; |
---|
695 | if (b.getp() != 0) |
---|
696 | uIZeroJ= b (uIZeroJ); |
---|
697 | Pi [0] += xToJ*uIZeroJ; |
---|
698 | if (b.getp() != 0) |
---|
699 | Pi [0]= b (Pi[0]); |
---|
700 | } |
---|
701 | else |
---|
702 | { |
---|
703 | if (degBuf0 > 0 && degBuf1 > 0) |
---|
704 | uIZeroJ= mulNTL ((bufFactors[0] [0] + bufFactors[0] [j]), |
---|
705 | (bufFactors[1] [0] + buf[1]), b) - M(1, 1) - M(j + 1, 1); |
---|
706 | else if (degBuf0 > 0) |
---|
707 | uIZeroJ= mulNTL (bufFactors[0] [j], bufFactors[1], b); |
---|
708 | else if (degBuf1 > 0) |
---|
709 | uIZeroJ= mulNTL (bufFactors[0], buf[1], b); |
---|
710 | else |
---|
711 | uIZeroJ= 0; |
---|
712 | if (b.getp() != 0) |
---|
713 | uIZeroJ= b (uIZeroJ); |
---|
714 | Pi [0] += xToJ*uIZeroJ; |
---|
715 | if (b.getp() != 0) |
---|
716 | Pi [0]= b (Pi[0]); |
---|
717 | } |
---|
718 | CFArray tmp= CFArray (factors.length() - 1); |
---|
719 | for (k= 0; k < factors.length() - 1; k++) |
---|
720 | tmp[k]= 0; |
---|
721 | CFIterator one, two; |
---|
722 | one= bufFactors [0]; |
---|
723 | two= bufFactors [1]; |
---|
724 | if (degBuf0 > 0 && degBuf1 > 0) |
---|
725 | { |
---|
726 | for (k= 1; k <= (int) ceil (j/2.0); k++) |
---|
727 | { |
---|
728 | if (k != j - k + 1) |
---|
729 | { |
---|
730 | if ((one.hasTerms() && one.exp() == j - k + 1) |
---|
731 | && (two.hasTerms() && two.exp() == j - k + 1)) |
---|
732 | { |
---|
733 | tmp[0] += mulNTL ((bufFactors[0][k]+one.coeff()), (bufFactors[1][k]+ |
---|
734 | two.coeff()), b) - M (k + 1, 1) - M (j - k + 2, 1); |
---|
735 | one++; |
---|
736 | two++; |
---|
737 | } |
---|
738 | else if (one.hasTerms() && one.exp() == j - k + 1) |
---|
739 | { |
---|
740 | tmp[0] += mulNTL ((bufFactors[0][k]+one.coeff()), bufFactors[1][k], b) |
---|
741 | - M (k + 1, 1); |
---|
742 | one++; |
---|
743 | } |
---|
744 | else if (two.hasTerms() && two.exp() == j - k + 1) |
---|
745 | { |
---|
746 | tmp[0] += mulNTL (bufFactors[0][k], (bufFactors[1][k]+two.coeff()), b) |
---|
747 | - M (k + 1, 1); |
---|
748 | two++; |
---|
749 | } |
---|
750 | } |
---|
751 | else |
---|
752 | { |
---|
753 | tmp[0] += M (k + 1, 1); |
---|
754 | } |
---|
755 | } |
---|
756 | } |
---|
757 | if (b.getp() != 0) |
---|
758 | tmp[0]= b (tmp[0]); |
---|
759 | Pi [0] += tmp[0]*xToJ*F.mvar(); |
---|
760 | |
---|
761 | // update Pi [l] |
---|
762 | int degPi, degBuf; |
---|
763 | for (int l= 1; l < factors.length() - 1; l++) |
---|
764 | { |
---|
765 | degPi= degree (Pi [l - 1], x); |
---|
766 | degBuf= degree (bufFactors[l + 1], x); |
---|
767 | if (degPi > 0 && degBuf > 0) |
---|
768 | M (j + 1, l + 1)= mulNTL (Pi [l - 1] [j], bufFactors[l + 1] [j], b); |
---|
769 | if (j == 1) |
---|
770 | { |
---|
771 | if (degPi > 0 && degBuf > 0) |
---|
772 | Pi [l] += xToJ*(mulNTL (Pi [l - 1] [0] + Pi [l - 1] [j], |
---|
773 | bufFactors[l + 1] [0] + buf[l + 1], b) - M (j + 1, l +1) - |
---|
774 | M (1, l + 1)); |
---|
775 | else if (degPi > 0) |
---|
776 | Pi [l] += xToJ*(mulNTL (Pi [l - 1] [j], bufFactors[l + 1], b)); |
---|
777 | else if (degBuf > 0) |
---|
778 | Pi [l] += xToJ*(mulNTL (Pi [l - 1], buf[l + 1], b)); |
---|
779 | } |
---|
780 | else |
---|
781 | { |
---|
782 | if (degPi > 0 && degBuf > 0) |
---|
783 | { |
---|
784 | uIZeroJ= mulNTL (uIZeroJ, bufFactors [l + 1] [0], b); |
---|
785 | uIZeroJ += mulNTL (Pi [l - 1] [0], buf [l + 1], b); |
---|
786 | } |
---|
787 | else if (degPi > 0) |
---|
788 | uIZeroJ= mulNTL (uIZeroJ, bufFactors [l + 1], b); |
---|
789 | else if (degBuf > 0) |
---|
790 | { |
---|
791 | uIZeroJ= mulNTL (uIZeroJ, bufFactors [l + 1] [0], b); |
---|
792 | uIZeroJ += mulNTL (Pi [l - 1], buf[l + 1], b); |
---|
793 | } |
---|
794 | Pi[l] += xToJ*uIZeroJ; |
---|
795 | } |
---|
796 | one= bufFactors [l + 1]; |
---|
797 | two= Pi [l - 1]; |
---|
798 | if (two.hasTerms() && two.exp() == j + 1) |
---|
799 | { |
---|
800 | if (degBuf > 0 && degPi > 0) |
---|
801 | { |
---|
802 | tmp[l] += mulNTL (two.coeff(), bufFactors[l + 1][0], b); |
---|
803 | two++; |
---|
804 | } |
---|
805 | else if (degPi > 0) |
---|
806 | { |
---|
807 | tmp[l] += mulNTL (two.coeff(), bufFactors[l + 1], b); |
---|
808 | two++; |
---|
809 | } |
---|
810 | } |
---|
811 | if (degBuf > 0 && degPi > 0) |
---|
812 | { |
---|
813 | for (k= 1; k <= (int) ceil (j/2.0); k++) |
---|
814 | { |
---|
815 | if (k != j - k + 1) |
---|
816 | { |
---|
817 | if ((one.hasTerms() && one.exp() == j - k + 1) && |
---|
818 | (two.hasTerms() && two.exp() == j - k + 1)) |
---|
819 | { |
---|
820 | tmp[l] += mulNTL ((bufFactors[l+1][k] + one.coeff()), (Pi[l-1][k] + |
---|
821 | two.coeff()),b) - M (k + 1, l + 1) - M (j - k + 2, l + 1); |
---|
822 | one++; |
---|
823 | two++; |
---|
824 | } |
---|
825 | else if (one.hasTerms() && one.exp() == j - k + 1) |
---|
826 | { |
---|
827 | tmp[l] += mulNTL ((bufFactors[l+1][k]+one.coeff()), Pi[l-1][k], b) - |
---|
828 | M (k + 1, l + 1); |
---|
829 | one++; |
---|
830 | } |
---|
831 | else if (two.hasTerms() && two.exp() == j - k + 1) |
---|
832 | { |
---|
833 | tmp[l] += mulNTL (bufFactors[l+1][k], (Pi[l-1][k] + two.coeff()), b) |
---|
834 | - M (k + 1, l + 1); |
---|
835 | two++; |
---|
836 | } |
---|
837 | } |
---|
838 | else |
---|
839 | tmp[l] += M (k + 1, l + 1); |
---|
840 | } |
---|
841 | } |
---|
842 | if (b.getp() != 0) |
---|
843 | tmp[l]= b (tmp[l]); |
---|
844 | Pi[l] += tmp[l]*xToJ*F.mvar(); |
---|
845 | } |
---|
846 | return; |
---|
847 | } |
---|
848 | |
---|
849 | void |
---|
850 | henselLift12 (const CanonicalForm& F, CFList& factors, int l, CFArray& Pi, |
---|
851 | CFList& diophant, CFMatrix& M, modpk& b, bool sort) |
---|
852 | { |
---|
853 | if (sort) |
---|
854 | sortList (factors, Variable (1)); |
---|
855 | Pi= CFArray (factors.length() - 1); |
---|
856 | CFListIterator j= factors; |
---|
857 | diophant= diophantine (F[0], F, factors, b); |
---|
858 | DEBOUTLN (cerr, "diophant= " << diophant); |
---|
859 | j++; |
---|
860 | Pi [0]= mulNTL (j.getItem(), mod (factors.getFirst(), F.mvar()), b); |
---|
861 | M (1, 1)= Pi [0]; |
---|
862 | int i= 1; |
---|
863 | if (j.hasItem()) |
---|
864 | j++; |
---|
865 | for (; j.hasItem(); j++, i++) |
---|
866 | { |
---|
867 | Pi [i]= mulNTL (Pi [i - 1], j.getItem(), b); |
---|
868 | M (1, i + 1)= Pi [i]; |
---|
869 | } |
---|
870 | CFArray bufFactors= CFArray (factors.length()); |
---|
871 | i= 0; |
---|
872 | for (CFListIterator k= factors; k.hasItem(); i++, k++) |
---|
873 | { |
---|
874 | if (i == 0) |
---|
875 | bufFactors[i]= mod (k.getItem(), F.mvar()); |
---|
876 | else |
---|
877 | bufFactors[i]= k.getItem(); |
---|
878 | } |
---|
879 | for (i= 1; i < l; i++) |
---|
880 | henselStep12 (F, factors, bufFactors, diophant, M, Pi, i, b); |
---|
881 | |
---|
882 | CFListIterator k= factors; |
---|
883 | for (i= 0; i < factors.length (); i++, k++) |
---|
884 | k.getItem()= bufFactors[i]; |
---|
885 | factors.removeFirst(); |
---|
886 | } |
---|
887 | |
---|
888 | void |
---|
889 | henselLift12 (const CanonicalForm& F, CFList& factors, int l, CFArray& Pi, |
---|
890 | CFList& diophant, CFMatrix& M, bool sort) |
---|
891 | { |
---|
892 | modpk dummy= modpk(); |
---|
893 | henselLift12 (F, factors, l, Pi, diophant, M, dummy, sort); |
---|
894 | } |
---|
895 | |
---|
896 | void |
---|
897 | henselLiftResume12 (const CanonicalForm& F, CFList& factors, int start, int |
---|
898 | end, CFArray& Pi, const CFList& diophant, CFMatrix& M, |
---|
899 | const modpk& b) |
---|
900 | { |
---|
901 | CFArray bufFactors= CFArray (factors.length()); |
---|
902 | int i= 0; |
---|
903 | CanonicalForm xToStart= power (F.mvar(), start); |
---|
904 | for (CFListIterator k= factors; k.hasItem(); k++, i++) |
---|
905 | { |
---|
906 | if (i == 0) |
---|
907 | bufFactors[i]= mod (k.getItem(), xToStart); |
---|
908 | else |
---|
909 | bufFactors[i]= k.getItem(); |
---|
910 | } |
---|
911 | for (i= start; i < end; i++) |
---|
912 | henselStep12 (F, factors, bufFactors, diophant, M, Pi, i, b); |
---|
913 | |
---|
914 | CFListIterator k= factors; |
---|
915 | for (i= 0; i < factors.length(); k++, i++) |
---|
916 | k.getItem()= bufFactors [i]; |
---|
917 | factors.removeFirst(); |
---|
918 | return; |
---|
919 | } |
---|
920 | |
---|
921 | CFList |
---|
922 | biDiophantine (const CanonicalForm& F, const CFList& factors, int d) |
---|
923 | { |
---|
924 | Variable y= F.mvar(); |
---|
925 | CFList result; |
---|
926 | if (y.level() == 1) |
---|
927 | { |
---|
928 | result= diophantine (F, factors); |
---|
929 | return result; |
---|
930 | } |
---|
931 | else |
---|
932 | { |
---|
933 | CFList buf= factors; |
---|
934 | for (CFListIterator i= buf; i.hasItem(); i++) |
---|
935 | i.getItem()= mod (i.getItem(), y); |
---|
936 | CanonicalForm A= mod (F, y); |
---|
937 | int bufD= 1; |
---|
938 | CFList recResult= biDiophantine (A, buf, bufD); |
---|
939 | CanonicalForm e= 1; |
---|
940 | CFList p; |
---|
941 | CFArray bufFactors= CFArray (factors.length()); |
---|
942 | CanonicalForm yToD= power (y, d); |
---|
943 | int k= 0; |
---|
944 | for (CFListIterator i= factors; i.hasItem(); i++, k++) |
---|
945 | { |
---|
946 | bufFactors [k]= i.getItem(); |
---|
947 | } |
---|
948 | CanonicalForm b, quot; |
---|
949 | for (k= 0; k < factors.length(); k++) //TODO compute b's faster |
---|
950 | { |
---|
951 | b= 1; |
---|
952 | if (fdivides (bufFactors[k], F, quot)) |
---|
953 | b= quot; |
---|
954 | else |
---|
955 | { |
---|
956 | for (int l= 0; l < factors.length(); l++) |
---|
957 | { |
---|
958 | if (l == k) |
---|
959 | continue; |
---|
960 | else |
---|
961 | { |
---|
962 | b= mulMod2 (b, bufFactors[l], yToD); |
---|
963 | } |
---|
964 | } |
---|
965 | } |
---|
966 | p.append (b); |
---|
967 | } |
---|
968 | |
---|
969 | CFListIterator j= p; |
---|
970 | for (CFListIterator i= recResult; i.hasItem(); i++, j++) |
---|
971 | e -= i.getItem()*j.getItem(); |
---|
972 | |
---|
973 | if (e.isZero()) |
---|
974 | return recResult; |
---|
975 | CanonicalForm coeffE; |
---|
976 | CFList s; |
---|
977 | result= recResult; |
---|
978 | CanonicalForm g; |
---|
979 | for (int i= 1; i < d; i++) |
---|
980 | { |
---|
981 | if (degree (e, y) > 0) |
---|
982 | coeffE= e[i]; |
---|
983 | else |
---|
984 | coeffE= 0; |
---|
985 | if (!coeffE.isZero()) |
---|
986 | { |
---|
987 | CFListIterator k= result; |
---|
988 | CFListIterator l= p; |
---|
989 | int ii= 0; |
---|
990 | j= recResult; |
---|
991 | for (; j.hasItem(); j++, k++, l++, ii++) |
---|
992 | { |
---|
993 | g= coeffE*j.getItem(); |
---|
994 | if (degree (bufFactors[ii], y) <= 0) |
---|
995 | g= mod (g, bufFactors[ii]); |
---|
996 | else |
---|
997 | g= mod (g, bufFactors[ii][0]); |
---|
998 | k.getItem() += g*power (y, i); |
---|
999 | e -= mulMod2 (g*power(y, i), l.getItem(), yToD); |
---|
1000 | DEBOUTLN (cerr, "mod (e, power (y, i + 1))= " << |
---|
1001 | mod (e, power (y, i + 1))); |
---|
1002 | } |
---|
1003 | } |
---|
1004 | if (e.isZero()) |
---|
1005 | break; |
---|
1006 | } |
---|
1007 | |
---|
1008 | DEBOUTLN (cerr, "mod (e, y)= " << mod (e, y)); |
---|
1009 | |
---|
1010 | #ifdef DEBUGOUTPUT |
---|
1011 | CanonicalForm test= 0; |
---|
1012 | j= p; |
---|
1013 | for (CFListIterator i= result; i.hasItem(); i++, j++) |
---|
1014 | test += mod (i.getItem()*j.getItem(), power (y, d)); |
---|
1015 | DEBOUTLN (cerr, "test= " << test); |
---|
1016 | #endif |
---|
1017 | return result; |
---|
1018 | } |
---|
1019 | } |
---|
1020 | |
---|
1021 | CFList |
---|
1022 | multiRecDiophantine (const CanonicalForm& F, const CFList& factors, |
---|
1023 | const CFList& recResult, const CFList& M, int d) |
---|
1024 | { |
---|
1025 | Variable y= F.mvar(); |
---|
1026 | CFList result; |
---|
1027 | CFListIterator i; |
---|
1028 | CanonicalForm e= 1; |
---|
1029 | CFListIterator j= factors; |
---|
1030 | CFList p; |
---|
1031 | CFArray bufFactors= CFArray (factors.length()); |
---|
1032 | CanonicalForm yToD= power (y, d); |
---|
1033 | int k= 0; |
---|
1034 | for (CFListIterator i= factors; i.hasItem(); i++, k++) |
---|
1035 | bufFactors [k]= i.getItem(); |
---|
1036 | CanonicalForm b, quot; |
---|
1037 | CFList buf= M; |
---|
1038 | buf.removeLast(); |
---|
1039 | buf.append (yToD); |
---|
1040 | for (k= 0; k < factors.length(); k++) //TODO compute b's faster |
---|
1041 | { |
---|
1042 | b= 1; |
---|
1043 | if (fdivides (bufFactors[k], F, quot)) |
---|
1044 | b= quot; |
---|
1045 | else |
---|
1046 | { |
---|
1047 | for (int l= 0; l < factors.length(); l++) |
---|
1048 | { |
---|
1049 | if (l == k) |
---|
1050 | continue; |
---|
1051 | else |
---|
1052 | { |
---|
1053 | b= mulMod (b, bufFactors[l], buf); |
---|
1054 | } |
---|
1055 | } |
---|
1056 | } |
---|
1057 | p.append (b); |
---|
1058 | } |
---|
1059 | j= p; |
---|
1060 | for (CFListIterator i= recResult; i.hasItem(); i++, j++) |
---|
1061 | e -= mulMod (i.getItem(), j.getItem(), M); |
---|
1062 | |
---|
1063 | if (e.isZero()) |
---|
1064 | return recResult; |
---|
1065 | CanonicalForm coeffE; |
---|
1066 | CFList s; |
---|
1067 | result= recResult; |
---|
1068 | CanonicalForm g; |
---|
1069 | for (int i= 1; i < d; i++) |
---|
1070 | { |
---|
1071 | if (degree (e, y) > 0) |
---|
1072 | coeffE= e[i]; |
---|
1073 | else |
---|
1074 | coeffE= 0; |
---|
1075 | if (!coeffE.isZero()) |
---|
1076 | { |
---|
1077 | CFListIterator k= result; |
---|
1078 | CFListIterator l= p; |
---|
1079 | j= recResult; |
---|
1080 | int ii= 0; |
---|
1081 | CanonicalForm dummy; |
---|
1082 | for (; j.hasItem(); j++, k++, l++, ii++) |
---|
1083 | { |
---|
1084 | g= mulMod (coeffE, j.getItem(), M); |
---|
1085 | if (degree (bufFactors[ii], y) <= 0) |
---|
1086 | divrem (g, mod (bufFactors[ii], Variable (y.level() - 1)), dummy, |
---|
1087 | g, M); |
---|
1088 | else |
---|
1089 | divrem (g, bufFactors[ii][0], dummy, g, M); |
---|
1090 | k.getItem() += g*power (y, i); |
---|
1091 | e -= mulMod (g*power (y, i), l.getItem(), M); |
---|
1092 | } |
---|
1093 | } |
---|
1094 | |
---|
1095 | if (e.isZero()) |
---|
1096 | break; |
---|
1097 | } |
---|
1098 | |
---|
1099 | #ifdef DEBUGOUTPUT |
---|
1100 | CanonicalForm test= 0; |
---|
1101 | j= p; |
---|
1102 | for (CFListIterator i= result; i.hasItem(); i++, j++) |
---|
1103 | test += mod (i.getItem()*j.getItem(), power (y, d)); |
---|
1104 | DEBOUTLN (cerr, "test= " << test); |
---|
1105 | #endif |
---|
1106 | return result; |
---|
1107 | } |
---|
1108 | |
---|
1109 | static |
---|
1110 | void |
---|
1111 | henselStep (const CanonicalForm& F, const CFList& factors, CFArray& bufFactors, |
---|
1112 | const CFList& diophant, CFMatrix& M, CFArray& Pi, int j, |
---|
1113 | const CFList& MOD) |
---|
1114 | { |
---|
1115 | CanonicalForm E; |
---|
1116 | CanonicalForm xToJ= power (F.mvar(), j); |
---|
1117 | Variable x= F.mvar(); |
---|
1118 | // compute the error |
---|
1119 | if (j == 1) |
---|
1120 | { |
---|
1121 | E= F[j]; |
---|
1122 | #ifdef DEBUGOUTPUT |
---|
1123 | CanonicalForm test= 1; |
---|
1124 | for (int i= 0; i < factors.length(); i++) |
---|
1125 | { |
---|
1126 | if (i == 0) |
---|
1127 | test= mulMod (test, mod (bufFactors [i], xToJ), MOD); |
---|
1128 | else |
---|
1129 | test= mulMod (test, bufFactors[i], MOD); |
---|
1130 | } |
---|
1131 | CanonicalForm test2= mod (F-test, xToJ); |
---|
1132 | |
---|
1133 | test2= mod (test2, MOD); |
---|
1134 | DEBOUTLN (cerr, "test= " << test2); |
---|
1135 | #endif |
---|
1136 | } |
---|
1137 | else |
---|
1138 | { |
---|
1139 | #ifdef DEBUGOUTPUT |
---|
1140 | CanonicalForm test= 1; |
---|
1141 | for (int i= 0; i < factors.length(); i++) |
---|
1142 | { |
---|
1143 | if (i == 0) |
---|
1144 | test *= mod (bufFactors [i], power (x, j)); |
---|
1145 | else |
---|
1146 | test *= bufFactors[i]; |
---|
1147 | } |
---|
1148 | test= mod (test, power (x, j)); |
---|
1149 | test= mod (test, MOD); |
---|
1150 | CanonicalForm test2= mod (F, power (x, j - 1)) - mod (test, power (x, j-1)); |
---|
1151 | DEBOUTLN (cerr, "test= " << test2); |
---|
1152 | #endif |
---|
1153 | |
---|
1154 | if (degree (Pi [factors.length() - 2], x) > 0) |
---|
1155 | E= F[j] - Pi [factors.length() - 2] [j]; |
---|
1156 | else |
---|
1157 | E= F[j]; |
---|
1158 | } |
---|
1159 | |
---|
1160 | CFArray buf= CFArray (diophant.length()); |
---|
1161 | bufFactors[0]= mod (factors.getFirst(), power (F.mvar(), j + 1)); |
---|
1162 | int k= 0; |
---|
1163 | // actual lifting |
---|
1164 | CanonicalForm dummy, rest1; |
---|
1165 | for (CFListIterator i= diophant; i.hasItem(); i++, k++) |
---|
1166 | { |
---|
1167 | if (degree (bufFactors[k], x) > 0) |
---|
1168 | { |
---|
1169 | if (k > 0) |
---|
1170 | divrem (E, bufFactors[k] [0], dummy, rest1, MOD); |
---|
1171 | else |
---|
1172 | rest1= E; |
---|
1173 | } |
---|
1174 | else |
---|
1175 | divrem (E, bufFactors[k], dummy, rest1, MOD); |
---|
1176 | |
---|
1177 | buf[k]= mulMod (i.getItem(), rest1, MOD); |
---|
1178 | |
---|
1179 | if (degree (bufFactors[k], x) > 0) |
---|
1180 | divrem (buf[k], bufFactors[k] [0], dummy, buf[k], MOD); |
---|
1181 | else |
---|
1182 | divrem (buf[k], bufFactors[k], dummy, buf[k], MOD); |
---|
1183 | } |
---|
1184 | for (k= 1; k < factors.length(); k++) |
---|
1185 | bufFactors[k] += xToJ*buf[k]; |
---|
1186 | |
---|
1187 | // update Pi [0] |
---|
1188 | int degBuf0= degree (bufFactors[0], x); |
---|
1189 | int degBuf1= degree (bufFactors[1], x); |
---|
1190 | if (degBuf0 > 0 && degBuf1 > 0) |
---|
1191 | M (j + 1, 1)= mulMod (bufFactors[0] [j], bufFactors[1] [j], MOD); |
---|
1192 | CanonicalForm uIZeroJ; |
---|
1193 | if (j == 1) |
---|
1194 | { |
---|
1195 | if (degBuf0 > 0 && degBuf1 > 0) |
---|
1196 | uIZeroJ= mulMod ((bufFactors[0] [0] + bufFactors[0] [j]), |
---|
1197 | (bufFactors[1] [0] + buf[1]), MOD) - M(1, 1) - M(j + 1, 1); |
---|
1198 | else if (degBuf0 > 0) |
---|
1199 | uIZeroJ= mulMod (bufFactors[0] [j], bufFactors[1], MOD); |
---|
1200 | else if (degBuf1 > 0) |
---|
1201 | uIZeroJ= mulMod (bufFactors[0], buf[1], MOD); |
---|
1202 | else |
---|
1203 | uIZeroJ= 0; |
---|
1204 | Pi [0] += xToJ*uIZeroJ; |
---|
1205 | } |
---|
1206 | else |
---|
1207 | { |
---|
1208 | if (degBuf0 > 0 && degBuf1 > 0) |
---|
1209 | uIZeroJ= mulMod ((bufFactors[0] [0] + bufFactors[0] [j]), |
---|
1210 | (bufFactors[1] [0] + buf[1]), MOD) - M(1, 1) - M(j + 1, 1); |
---|
1211 | else if (degBuf0 > 0) |
---|
1212 | uIZeroJ= mulMod (bufFactors[0] [j], bufFactors[1], MOD); |
---|
1213 | else if (degBuf1 > 0) |
---|
1214 | uIZeroJ= mulMod (bufFactors[0], buf[1], MOD); |
---|
1215 | else |
---|
1216 | uIZeroJ= 0; |
---|
1217 | Pi [0] += xToJ*uIZeroJ; |
---|
1218 | } |
---|
1219 | |
---|
1220 | CFArray tmp= CFArray (factors.length() - 1); |
---|
1221 | for (k= 0; k < factors.length() - 1; k++) |
---|
1222 | tmp[k]= 0; |
---|
1223 | CFIterator one, two; |
---|
1224 | one= bufFactors [0]; |
---|
1225 | two= bufFactors [1]; |
---|
1226 | if (degBuf0 > 0 && degBuf1 > 0) |
---|
1227 | { |
---|
1228 | for (k= 1; k <= (int) ceil (j/2.0); k++) |
---|
1229 | { |
---|
1230 | if (k != j - k + 1) |
---|
1231 | { |
---|
1232 | if ((one.hasTerms() && one.exp() == j - k + 1) && |
---|
1233 | (two.hasTerms() && two.exp() == j - k + 1)) |
---|
1234 | { |
---|
1235 | tmp[0] += mulMod ((bufFactors[0] [k] + one.coeff()), |
---|
1236 | (bufFactors[1] [k] + two.coeff()), MOD) - M (k + 1, 1) - |
---|
1237 | M (j - k + 2, 1); |
---|
1238 | one++; |
---|
1239 | two++; |
---|
1240 | } |
---|
1241 | else if (one.hasTerms() && one.exp() == j - k + 1) |
---|
1242 | { |
---|
1243 | tmp[0] += mulMod ((bufFactors[0] [k] + one.coeff()), |
---|
1244 | bufFactors[1] [k], MOD) - M (k + 1, 1); |
---|
1245 | one++; |
---|
1246 | } |
---|
1247 | else if (two.hasTerms() && two.exp() == j - k + 1) |
---|
1248 | { |
---|
1249 | tmp[0] += mulMod (bufFactors[0] [k], (bufFactors[1] [k] + |
---|
1250 | two.coeff()), MOD) - M (k + 1, 1); |
---|
1251 | two++; |
---|
1252 | } |
---|
1253 | } |
---|
1254 | else |
---|
1255 | { |
---|
1256 | tmp[0] += M (k + 1, 1); |
---|
1257 | } |
---|
1258 | } |
---|
1259 | } |
---|
1260 | Pi [0] += tmp[0]*xToJ*F.mvar(); |
---|
1261 | |
---|
1262 | // update Pi [l] |
---|
1263 | int degPi, degBuf; |
---|
1264 | for (int l= 1; l < factors.length() - 1; l++) |
---|
1265 | { |
---|
1266 | degPi= degree (Pi [l - 1], x); |
---|
1267 | degBuf= degree (bufFactors[l + 1], x); |
---|
1268 | if (degPi > 0 && degBuf > 0) |
---|
1269 | M (j + 1, l + 1)= mulMod (Pi [l - 1] [j], bufFactors[l + 1] [j], MOD); |
---|
1270 | if (j == 1) |
---|
1271 | { |
---|
1272 | if (degPi > 0 && degBuf > 0) |
---|
1273 | Pi [l] += xToJ*(mulMod ((Pi [l - 1] [0] + Pi [l - 1] [j]), |
---|
1274 | (bufFactors[l + 1] [0] + buf[l + 1]), MOD) - M (j + 1, l +1)- |
---|
1275 | M (1, l + 1)); |
---|
1276 | else if (degPi > 0) |
---|
1277 | Pi [l] += xToJ*(mulMod (Pi [l - 1] [j], bufFactors[l + 1], MOD)); |
---|
1278 | else if (degBuf > 0) |
---|
1279 | Pi [l] += xToJ*(mulMod (Pi [l - 1], buf[l + 1], MOD)); |
---|
1280 | } |
---|
1281 | else |
---|
1282 | { |
---|
1283 | if (degPi > 0 && degBuf > 0) |
---|
1284 | { |
---|
1285 | uIZeroJ= mulMod (uIZeroJ, bufFactors [l + 1] [0], MOD); |
---|
1286 | uIZeroJ += mulMod (Pi [l - 1] [0], buf [l + 1], MOD); |
---|
1287 | } |
---|
1288 | else if (degPi > 0) |
---|
1289 | uIZeroJ= mulMod (uIZeroJ, bufFactors [l + 1], MOD); |
---|
1290 | else if (degBuf > 0) |
---|
1291 | { |
---|
1292 | uIZeroJ= mulMod (uIZeroJ, bufFactors [l + 1] [0], MOD); |
---|
1293 | uIZeroJ += mulMod (Pi [l - 1], buf[l + 1], MOD); |
---|
1294 | } |
---|
1295 | Pi[l] += xToJ*uIZeroJ; |
---|
1296 | } |
---|
1297 | one= bufFactors [l + 1]; |
---|
1298 | two= Pi [l - 1]; |
---|
1299 | if (two.hasTerms() && two.exp() == j + 1) |
---|
1300 | { |
---|
1301 | if (degBuf > 0 && degPi > 0) |
---|
1302 | { |
---|
1303 | tmp[l] += mulMod (two.coeff(), bufFactors[l + 1][0], MOD); |
---|
1304 | two++; |
---|
1305 | } |
---|
1306 | else if (degPi > 0) |
---|
1307 | { |
---|
1308 | tmp[l] += mulMod (two.coeff(), bufFactors[l + 1], MOD); |
---|
1309 | two++; |
---|
1310 | } |
---|
1311 | } |
---|
1312 | if (degBuf > 0 && degPi > 0) |
---|
1313 | { |
---|
1314 | for (k= 1; k <= (int) ceil (j/2.0); k++) |
---|
1315 | { |
---|
1316 | if (k != j - k + 1) |
---|
1317 | { |
---|
1318 | if ((one.hasTerms() && one.exp() == j - k + 1) && |
---|
1319 | (two.hasTerms() && two.exp() == j - k + 1)) |
---|
1320 | { |
---|
1321 | tmp[l] += mulMod ((bufFactors[l + 1] [k] + one.coeff()), |
---|
1322 | (Pi[l - 1] [k] + two.coeff()), MOD) - M (k + 1, l + 1) - |
---|
1323 | M (j - k + 2, l + 1); |
---|
1324 | one++; |
---|
1325 | two++; |
---|
1326 | } |
---|
1327 | else if (one.hasTerms() && one.exp() == j - k + 1) |
---|
1328 | { |
---|
1329 | tmp[l] += mulMod ((bufFactors[l + 1] [k] + one.coeff()), |
---|
1330 | Pi[l - 1] [k], MOD) - M (k + 1, l + 1); |
---|
1331 | one++; |
---|
1332 | } |
---|
1333 | else if (two.hasTerms() && two.exp() == j - k + 1) |
---|
1334 | { |
---|
1335 | tmp[l] += mulMod (bufFactors[l + 1] [k], |
---|
1336 | (Pi[l - 1] [k] + two.coeff()), MOD) - M (k + 1, l + 1); |
---|
1337 | two++; |
---|
1338 | } |
---|
1339 | } |
---|
1340 | else |
---|
1341 | tmp[l] += M (k + 1, l + 1); |
---|
1342 | } |
---|
1343 | } |
---|
1344 | Pi[l] += tmp[l]*xToJ*F.mvar(); |
---|
1345 | } |
---|
1346 | |
---|
1347 | return; |
---|
1348 | } |
---|
1349 | |
---|
1350 | CFList |
---|
1351 | henselLift23 (const CFList& eval, const CFList& factors, int* l, CFList& |
---|
1352 | diophant, CFArray& Pi, CFMatrix& M) |
---|
1353 | { |
---|
1354 | CFList buf= factors; |
---|
1355 | int k= 0; |
---|
1356 | int liftBoundBivar= l[k]; |
---|
1357 | diophant= biDiophantine (eval.getFirst(), buf, liftBoundBivar); |
---|
1358 | CFList MOD; |
---|
1359 | MOD.append (power (Variable (2), liftBoundBivar)); |
---|
1360 | CFArray bufFactors= CFArray (factors.length()); |
---|
1361 | k= 0; |
---|
1362 | CFListIterator j= eval; |
---|
1363 | j++; |
---|
1364 | buf.removeFirst(); |
---|
1365 | buf.insert (LC (j.getItem(), 1)); |
---|
1366 | for (CFListIterator i= buf; i.hasItem(); i++, k++) |
---|
1367 | bufFactors[k]= i.getItem(); |
---|
1368 | Pi= CFArray (factors.length() - 1); |
---|
1369 | CFListIterator i= buf; |
---|
1370 | i++; |
---|
1371 | Variable y= j.getItem().mvar(); |
---|
1372 | Pi [0]= mulMod (i.getItem(), mod (buf.getFirst(), y), MOD); |
---|
1373 | M (1, 1)= Pi [0]; |
---|
1374 | k= 1; |
---|
1375 | if (i.hasItem()) |
---|
1376 | i++; |
---|
1377 | for (; i.hasItem(); i++, k++) |
---|
1378 | { |
---|
1379 | Pi [k]= mulMod (Pi [k - 1], i.getItem(), MOD); |
---|
1380 | M (1, k + 1)= Pi [k]; |
---|
1381 | } |
---|
1382 | |
---|
1383 | for (int d= 1; d < l[1]; d++) |
---|
1384 | henselStep (j.getItem(), buf, bufFactors, diophant, M, Pi, d, MOD); |
---|
1385 | CFList result; |
---|
1386 | for (k= 1; k < factors.length(); k++) |
---|
1387 | result.append (bufFactors[k]); |
---|
1388 | return result; |
---|
1389 | } |
---|
1390 | |
---|
1391 | void |
---|
1392 | henselLiftResume (const CanonicalForm& F, CFList& factors, int start, int end, |
---|
1393 | CFArray& Pi, const CFList& diophant, CFMatrix& M, |
---|
1394 | const CFList& MOD) |
---|
1395 | { |
---|
1396 | CFArray bufFactors= CFArray (factors.length()); |
---|
1397 | int i= 0; |
---|
1398 | CanonicalForm xToStart= power (F.mvar(), start); |
---|
1399 | for (CFListIterator k= factors; k.hasItem(); k++, i++) |
---|
1400 | { |
---|
1401 | if (i == 0) |
---|
1402 | bufFactors[i]= mod (k.getItem(), xToStart); |
---|
1403 | else |
---|
1404 | bufFactors[i]= k.getItem(); |
---|
1405 | } |
---|
1406 | for (i= start; i < end; i++) |
---|
1407 | henselStep (F, factors, bufFactors, diophant, M, Pi, i, MOD); |
---|
1408 | |
---|
1409 | CFListIterator k= factors; |
---|
1410 | for (i= 0; i < factors.length(); k++, i++) |
---|
1411 | k.getItem()= bufFactors [i]; |
---|
1412 | factors.removeFirst(); |
---|
1413 | return; |
---|
1414 | } |
---|
1415 | |
---|
1416 | CFList |
---|
1417 | henselLift (const CFList& F, const CFList& factors, const CFList& MOD, CFList& |
---|
1418 | diophant, CFArray& Pi, CFMatrix& M, int lOld, int lNew) |
---|
1419 | { |
---|
1420 | diophant= multiRecDiophantine (F.getFirst(), factors, diophant, MOD, lOld); |
---|
1421 | int k= 0; |
---|
1422 | CFArray bufFactors= CFArray (factors.length()); |
---|
1423 | for (CFListIterator i= factors; i.hasItem(); i++, k++) |
---|
1424 | { |
---|
1425 | if (k == 0) |
---|
1426 | bufFactors[k]= LC (F.getLast(), 1); |
---|
1427 | else |
---|
1428 | bufFactors[k]= i.getItem(); |
---|
1429 | } |
---|
1430 | CFList buf= factors; |
---|
1431 | buf.removeFirst(); |
---|
1432 | buf.insert (LC (F.getLast(), 1)); |
---|
1433 | CFListIterator i= buf; |
---|
1434 | i++; |
---|
1435 | Variable y= F.getLast().mvar(); |
---|
1436 | Variable x= F.getFirst().mvar(); |
---|
1437 | CanonicalForm xToLOld= power (x, lOld); |
---|
1438 | Pi [0]= mod (Pi[0], xToLOld); |
---|
1439 | M (1, 1)= Pi [0]; |
---|
1440 | k= 1; |
---|
1441 | if (i.hasItem()) |
---|
1442 | i++; |
---|
1443 | for (; i.hasItem(); i++, k++) |
---|
1444 | { |
---|
1445 | Pi [k]= mod (Pi [k], xToLOld); |
---|
1446 | M (1, k + 1)= Pi [k]; |
---|
1447 | } |
---|
1448 | |
---|
1449 | for (int d= 1; d < lNew; d++) |
---|
1450 | henselStep (F.getLast(), buf, bufFactors, diophant, M, Pi, d, MOD); |
---|
1451 | CFList result; |
---|
1452 | for (k= 1; k < factors.length(); k++) |
---|
1453 | result.append (bufFactors[k]); |
---|
1454 | return result; |
---|
1455 | } |
---|
1456 | |
---|
1457 | CFList |
---|
1458 | henselLift (const CFList& eval, const CFList& factors, int* l, int lLength, |
---|
1459 | bool sort) |
---|
1460 | { |
---|
1461 | CFList diophant; |
---|
1462 | CFList buf= factors; |
---|
1463 | buf.insert (LC (eval.getFirst(), 1)); |
---|
1464 | if (sort) |
---|
1465 | sortList (buf, Variable (1)); |
---|
1466 | CFArray Pi; |
---|
1467 | CFMatrix M= CFMatrix (l[1], factors.length()); |
---|
1468 | CFList result= henselLift23 (eval, buf, l, diophant, Pi, M); |
---|
1469 | if (eval.length() == 2) |
---|
1470 | return result; |
---|
1471 | CFList MOD; |
---|
1472 | for (int i= 0; i < 2; i++) |
---|
1473 | MOD.append (power (Variable (i + 2), l[i])); |
---|
1474 | CFListIterator j= eval; |
---|
1475 | j++; |
---|
1476 | CFList bufEval; |
---|
1477 | bufEval.append (j.getItem()); |
---|
1478 | j++; |
---|
1479 | |
---|
1480 | for (int i= 2; i < lLength && j.hasItem(); i++, j++) |
---|
1481 | { |
---|
1482 | result.insert (LC (bufEval.getFirst(), 1)); |
---|
1483 | bufEval.append (j.getItem()); |
---|
1484 | M= CFMatrix (l[i], factors.length()); |
---|
1485 | result= henselLift (bufEval, result, MOD, diophant, Pi, M, l[i - 1], l[i]); |
---|
1486 | MOD.append (power (Variable (i + 2), l[i])); |
---|
1487 | bufEval.removeFirst(); |
---|
1488 | } |
---|
1489 | return result; |
---|
1490 | } |
---|
1491 | |
---|
1492 | // nonmonic |
---|
1493 | |
---|
1494 | void |
---|
1495 | nonMonicHenselStep12 (const CanonicalForm& F, const CFList& factors, |
---|
1496 | CFArray& bufFactors, const CFList& diophant, CFMatrix& M, |
---|
1497 | CFArray& Pi, int j, const CFArray& /*LCs*/) |
---|
1498 | { |
---|
1499 | Variable x= F.mvar(); |
---|
1500 | CanonicalForm xToJ= power (x, j); |
---|
1501 | |
---|
1502 | CanonicalForm E; |
---|
1503 | // compute the error |
---|
1504 | if (degree (Pi [factors.length() - 2], x) > 0) |
---|
1505 | E= F[j] - Pi [factors.length() - 2] [j]; |
---|
1506 | else |
---|
1507 | E= F[j]; |
---|
1508 | |
---|
1509 | CFArray buf= CFArray (diophant.length()); |
---|
1510 | |
---|
1511 | int k= 0; |
---|
1512 | CanonicalForm remainder; |
---|
1513 | // actual lifting |
---|
1514 | for (CFListIterator i= diophant; i.hasItem(); i++, k++) |
---|
1515 | { |
---|
1516 | if (degree (bufFactors[k], x) > 0) |
---|
1517 | remainder= modNTL (E, bufFactors[k] [0]); |
---|
1518 | else |
---|
1519 | remainder= modNTL (E, bufFactors[k]); |
---|
1520 | buf[k]= mulNTL (i.getItem(), remainder); |
---|
1521 | if (degree (bufFactors[k], x) > 0) |
---|
1522 | buf[k]= modNTL (buf[k], bufFactors[k] [0]); |
---|
1523 | else |
---|
1524 | buf[k]= modNTL (buf[k], bufFactors[k]); |
---|
1525 | } |
---|
1526 | |
---|
1527 | for (k= 0; k < factors.length(); k++) |
---|
1528 | bufFactors[k] += xToJ*buf[k]; |
---|
1529 | |
---|
1530 | // update Pi [0] |
---|
1531 | int degBuf0= degree (bufFactors[0], x); |
---|
1532 | int degBuf1= degree (bufFactors[1], x); |
---|
1533 | if (degBuf0 > 0 && degBuf1 > 0) |
---|
1534 | { |
---|
1535 | M (j + 1, 1)= mulNTL (bufFactors[0] [j], bufFactors[1] [j]); |
---|
1536 | if (j + 2 <= M.rows()) |
---|
1537 | M (j + 2, 1)= mulNTL (bufFactors[0] [j + 1], bufFactors[1] [j + 1]); |
---|
1538 | } |
---|
1539 | CanonicalForm uIZeroJ; |
---|
1540 | if (degBuf0 > 0 && degBuf1 > 0) |
---|
1541 | uIZeroJ= mulNTL(bufFactors[0][0],buf[1])+mulNTL (bufFactors[1][0], buf[0]); |
---|
1542 | else if (degBuf0 > 0) |
---|
1543 | uIZeroJ= mulNTL (buf[0], bufFactors[1]); |
---|
1544 | else if (degBuf1 > 0) |
---|
1545 | uIZeroJ= mulNTL (bufFactors[0], buf [1]); |
---|
1546 | else |
---|
1547 | uIZeroJ= 0; |
---|
1548 | Pi [0] += xToJ*uIZeroJ; |
---|
1549 | |
---|
1550 | CFArray tmp= CFArray (factors.length() - 1); |
---|
1551 | for (k= 0; k < factors.length() - 1; k++) |
---|
1552 | tmp[k]= 0; |
---|
1553 | CFIterator one, two; |
---|
1554 | one= bufFactors [0]; |
---|
1555 | two= bufFactors [1]; |
---|
1556 | if (degBuf0 > 0 && degBuf1 > 0) |
---|
1557 | { |
---|
1558 | while (one.hasTerms() && one.exp() > j) one++; |
---|
1559 | while (two.hasTerms() && two.exp() > j) two++; |
---|
1560 | for (k= 1; k <= (int) ceil (j/2.0); k++) |
---|
1561 | { |
---|
1562 | if (one.hasTerms() && two.hasTerms()) |
---|
1563 | { |
---|
1564 | if (k != j - k + 1) |
---|
1565 | { |
---|
1566 | if ((one.hasTerms() && one.exp() == j - k + 1) && + |
---|
1567 | (two.hasTerms() && two.exp() == j - k + 1)) |
---|
1568 | { |
---|
1569 | tmp[0] += mulNTL ((bufFactors[0][k]+one.coeff()),(bufFactors[1][k] + |
---|
1570 | two.coeff())) - M (k + 1, 1) - M (j - k + 2, 1); |
---|
1571 | one++; |
---|
1572 | two++; |
---|
1573 | } |
---|
1574 | else if (one.hasTerms() && one.exp() == j - k + 1) |
---|
1575 | { |
---|
1576 | tmp[0] += mulNTL ((bufFactors[0][k]+one.coeff()), bufFactors[1] [k]) - |
---|
1577 | M (k + 1, 1); |
---|
1578 | one++; |
---|
1579 | } |
---|
1580 | else if (two.hasTerms() && two.exp() == j - k + 1) |
---|
1581 | { |
---|
1582 | tmp[0] += mulNTL (bufFactors[0][k],(bufFactors[1][k] + two.coeff())) - |
---|
1583 | M (k + 1, 1); |
---|
1584 | two++; |
---|
1585 | } |
---|
1586 | } |
---|
1587 | else |
---|
1588 | tmp[0] += M (k + 1, 1); |
---|
1589 | } |
---|
1590 | } |
---|
1591 | } |
---|
1592 | |
---|
1593 | if (degBuf0 >= j + 1 && degBuf1 >= j + 1) |
---|
1594 | { |
---|
1595 | if (j + 2 <= M.rows()) |
---|
1596 | tmp [0] += mulNTL ((bufFactors [0] [j + 1]+ bufFactors [0] [0]), |
---|
1597 | (bufFactors [1] [j + 1] + bufFactors [1] [0])) |
---|
1598 | - M(1,1) - M (j + 2,1); |
---|
1599 | } |
---|
1600 | else if (degBuf0 >= j + 1) |
---|
1601 | { |
---|
1602 | if (degBuf1 > 0) |
---|
1603 | tmp[0] += mulNTL (bufFactors [0] [j+1], bufFactors [1] [0]); |
---|
1604 | else |
---|
1605 | tmp[0] += mulNTL (bufFactors [0] [j+1], bufFactors [1]); |
---|
1606 | } |
---|
1607 | else if (degBuf1 >= j + 1) |
---|
1608 | { |
---|
1609 | if (degBuf0 > 0) |
---|
1610 | tmp[0] += mulNTL (bufFactors [0] [0], bufFactors [1] [j + 1]); |
---|
1611 | else |
---|
1612 | tmp[0] += mulNTL (bufFactors [0], bufFactors [1] [j + 1]); |
---|
1613 | } |
---|
1614 | |
---|
1615 | Pi [0] += tmp[0]*xToJ*F.mvar(); |
---|
1616 | |
---|
1617 | int degPi, degBuf; |
---|
1618 | for (int l= 1; l < factors.length() - 1; l++) |
---|
1619 | { |
---|
1620 | degPi= degree (Pi [l - 1], x); |
---|
1621 | degBuf= degree (bufFactors[l + 1], x); |
---|
1622 | if (degPi > 0 && degBuf > 0) |
---|
1623 | { |
---|
1624 | M (j + 1, l + 1)= mulNTL (Pi [l - 1] [j], bufFactors[l + 1] [j]); |
---|
1625 | if (j + 2 <= M.rows()) |
---|
1626 | M (j + 2, l + 1)= mulNTL (Pi [l - 1][j + 1], bufFactors[l + 1] [j + 1]); |
---|
1627 | } |
---|
1628 | |
---|
1629 | if (degPi > 0 && degBuf > 0) |
---|
1630 | uIZeroJ= mulNTL (Pi[l -1] [0], buf[l + 1]) + |
---|
1631 | mulNTL (uIZeroJ, bufFactors[l+1] [0]); |
---|
1632 | else if (degPi > 0) |
---|
1633 | uIZeroJ= mulNTL (uIZeroJ, bufFactors[l + 1]); |
---|
1634 | else if (degBuf > 0) |
---|
1635 | uIZeroJ= mulNTL (Pi[l - 1], buf[1]); |
---|
1636 | else |
---|
1637 | uIZeroJ= 0; |
---|
1638 | |
---|
1639 | Pi [l] += xToJ*uIZeroJ; |
---|
1640 | |
---|
1641 | one= bufFactors [l + 1]; |
---|
1642 | two= Pi [l - 1]; |
---|
1643 | if (degBuf > 0 && degPi > 0) |
---|
1644 | { |
---|
1645 | while (one.hasTerms() && one.exp() > j) one++; |
---|
1646 | while (two.hasTerms() && two.exp() > j) two++; |
---|
1647 | for (k= 1; k <= (int) ceil (j/2.0); k++) |
---|
1648 | { |
---|
1649 | if (k != j - k + 1) |
---|
1650 | { |
---|
1651 | if ((one.hasTerms() && one.exp() == j - k + 1) && |
---|
1652 | (two.hasTerms() && two.exp() == j - k + 1)) |
---|
1653 | { |
---|
1654 | tmp[l] += mulNTL ((bufFactors[l + 1] [k] + one.coeff()), |
---|
1655 | (Pi[l - 1] [k] + two.coeff())) - M (k + 1, l + 1) - |
---|
1656 | M (j - k + 2, l + 1); |
---|
1657 | one++; |
---|
1658 | two++; |
---|
1659 | } |
---|
1660 | else if (one.hasTerms() && one.exp() == j - k + 1) |
---|
1661 | { |
---|
1662 | tmp[l] += mulNTL ((bufFactors[l + 1] [k] + one.coeff()), |
---|
1663 | Pi[l - 1] [k]) - M (k + 1, l + 1); |
---|
1664 | one++; |
---|
1665 | } |
---|
1666 | else if (two.hasTerms() && two.exp() == j - k + 1) |
---|
1667 | { |
---|
1668 | tmp[l] += mulNTL (bufFactors[l + 1] [k], |
---|
1669 | (Pi[l - 1] [k] + two.coeff())) - M (k + 1, l + 1); |
---|
1670 | two++; |
---|
1671 | } |
---|
1672 | } |
---|
1673 | else |
---|
1674 | tmp[l] += M (k + 1, l + 1); |
---|
1675 | } |
---|
1676 | } |
---|
1677 | |
---|
1678 | if (degPi >= j + 1 && degBuf >= j + 1) |
---|
1679 | { |
---|
1680 | if (j + 2 <= M.rows()) |
---|
1681 | tmp [l] += mulNTL ((Pi [l - 1] [j + 1]+ Pi [l - 1] [0]), |
---|
1682 | (bufFactors [l + 1] [j + 1] + bufFactors [l + 1] [0]) |
---|
1683 | ) - M(1,l+1) - M (j + 2,l+1); |
---|
1684 | } |
---|
1685 | else if (degPi >= j + 1) |
---|
1686 | { |
---|
1687 | if (degBuf > 0) |
---|
1688 | tmp[l] += mulNTL (Pi [l - 1] [j+1], bufFactors [l + 1] [0]); |
---|
1689 | else |
---|
1690 | tmp[l] += mulNTL (Pi [l - 1] [j+1], bufFactors [l + 1]); |
---|
1691 | } |
---|
1692 | else if (degBuf >= j + 1) |
---|
1693 | { |
---|
1694 | if (degPi > 0) |
---|
1695 | tmp[l] += mulNTL (Pi [l - 1] [0], bufFactors [l + 1] [j + 1]); |
---|
1696 | else |
---|
1697 | tmp[l] += mulNTL (Pi [l - 1], bufFactors [l + 1] [j + 1]); |
---|
1698 | } |
---|
1699 | |
---|
1700 | Pi[l] += tmp[l]*xToJ*F.mvar(); |
---|
1701 | } |
---|
1702 | return; |
---|
1703 | } |
---|
1704 | |
---|
1705 | void |
---|
1706 | nonMonicHenselLift12 (const CanonicalForm& F, CFList& factors, int l, |
---|
1707 | CFArray& Pi, CFList& diophant, CFMatrix& M, |
---|
1708 | const CFArray& LCs, bool sort) |
---|
1709 | { |
---|
1710 | if (sort) |
---|
1711 | sortList (factors, Variable (1)); |
---|
1712 | Pi= CFArray (factors.length() - 2); |
---|
1713 | CFList bufFactors2= factors; |
---|
1714 | bufFactors2.removeFirst(); |
---|
1715 | diophant= diophantine (F[0], bufFactors2); |
---|
1716 | DEBOUTLN (cerr, "diophant= " << diophant); |
---|
1717 | |
---|
1718 | CFArray bufFactors= CFArray (bufFactors2.length()); |
---|
1719 | int i= 0; |
---|
1720 | for (CFListIterator k= bufFactors2; k.hasItem(); i++, k++) |
---|
1721 | bufFactors[i]= replaceLc (k.getItem(), LCs [i]); |
---|
1722 | |
---|
1723 | Variable x= F.mvar(); |
---|
1724 | if (degree (bufFactors[0], x) > 0 && degree (bufFactors [1], x) > 0) |
---|
1725 | { |
---|
1726 | M (1, 1)= mulNTL (bufFactors [0] [0], bufFactors[1] [0]); |
---|
1727 | Pi [0]= M (1, 1) + (mulNTL (bufFactors [0] [1], bufFactors[1] [0]) + |
---|
1728 | mulNTL (bufFactors [0] [0], bufFactors [1] [1]))*x; |
---|
1729 | } |
---|
1730 | else if (degree (bufFactors[0], x) > 0) |
---|
1731 | { |
---|
1732 | M (1, 1)= mulNTL (bufFactors [0] [0], bufFactors[1]); |
---|
1733 | Pi [0]= M (1, 1) + |
---|
1734 | mulNTL (bufFactors [0] [1], bufFactors[1])*x; |
---|
1735 | } |
---|
1736 | else if (degree (bufFactors[1], x) > 0) |
---|
1737 | { |
---|
1738 | M (1, 1)= mulNTL (bufFactors [0], bufFactors[1] [0]); |
---|
1739 | Pi [0]= M (1, 1) + |
---|
1740 | mulNTL (bufFactors [0], bufFactors[1] [1])*x; |
---|
1741 | } |
---|
1742 | else |
---|
1743 | { |
---|
1744 | M (1, 1)= mulNTL (bufFactors [0], bufFactors[1]); |
---|
1745 | Pi [0]= M (1, 1); |
---|
1746 | } |
---|
1747 | |
---|
1748 | for (i= 1; i < Pi.size(); i++) |
---|
1749 | { |
---|
1750 | if (degree (Pi[i-1], x) > 0 && degree (bufFactors [i+1], x) > 0) |
---|
1751 | { |
---|
1752 | M (1,i+1)= mulNTL (Pi[i-1] [0], bufFactors[i+1] [0]); |
---|
1753 | Pi [i]= M (1,i+1) + (mulNTL (Pi[i-1] [1], bufFactors[i+1] [0]) + |
---|
1754 | mulNTL (Pi[i-1] [0], bufFactors [i+1] [1]))*x; |
---|
1755 | } |
---|
1756 | else if (degree (Pi[i-1], x) > 0) |
---|
1757 | { |
---|
1758 | M (1,i+1)= mulNTL (Pi[i-1] [0], bufFactors [i+1]); |
---|
1759 | Pi [i]= M(1,i+1) + mulNTL (Pi[i-1] [1], bufFactors[i+1])*x; |
---|
1760 | } |
---|
1761 | else if (degree (bufFactors[i+1], x) > 0) |
---|
1762 | { |
---|
1763 | M (1,i+1)= mulNTL (Pi[i-1], bufFactors [i+1] [0]); |
---|
1764 | Pi [i]= M (1,i+1) + mulNTL (Pi[i-1], bufFactors[i+1] [1])*x; |
---|
1765 | } |
---|
1766 | else |
---|
1767 | { |
---|
1768 | M (1,i+1)= mulNTL (Pi [i-1], bufFactors [i+1]); |
---|
1769 | Pi [i]= M (1,i+1); |
---|
1770 | } |
---|
1771 | } |
---|
1772 | |
---|
1773 | for (i= 1; i < l; i++) |
---|
1774 | nonMonicHenselStep12 (F, bufFactors2, bufFactors, diophant, M, Pi, i, LCs); |
---|
1775 | |
---|
1776 | factors= CFList(); |
---|
1777 | for (i= 0; i < bufFactors.size(); i++) |
---|
1778 | factors.append (bufFactors[i]); |
---|
1779 | return; |
---|
1780 | } |
---|
1781 | |
---|
1782 | |
---|
1783 | /// solve \f$ E=sum_{i= 1}^{r}{\sigma_{i}prod_{j=1, j\neq i}^{r}{f_{i}}}\f$ |
---|
1784 | /// mod M, products contains \f$ prod_{j=1, j\neq i}^{r}{f_{i}}} \f$ |
---|
1785 | CFList |
---|
1786 | diophantine (const CFList& recResult, const CFList& factors, |
---|
1787 | const CFList& products, const CFList& M, const CanonicalForm& E, |
---|
1788 | bool& bad) |
---|
1789 | { |
---|
1790 | if (M.isEmpty()) |
---|
1791 | { |
---|
1792 | CFList result; |
---|
1793 | CFListIterator j= factors; |
---|
1794 | CanonicalForm buf; |
---|
1795 | for (CFListIterator i= recResult; i.hasItem(); i++, j++) |
---|
1796 | { |
---|
1797 | ASSERT (E.isUnivariate() || E.inCoeffDomain(), |
---|
1798 | "constant or univariate poly expected"); |
---|
1799 | ASSERT (i.getItem().isUnivariate() || i.getItem().inCoeffDomain(), |
---|
1800 | "constant or univariate poly expected"); |
---|
1801 | ASSERT (j.getItem().isUnivariate() || j.getItem().inCoeffDomain(), |
---|
1802 | "constant or univariate poly expected"); |
---|
1803 | buf= mulNTL (E, i.getItem()); |
---|
1804 | result.append (modNTL (buf, j.getItem())); |
---|
1805 | } |
---|
1806 | return result; |
---|
1807 | } |
---|
1808 | Variable y= M.getLast().mvar(); |
---|
1809 | CFList bufFactors= factors; |
---|
1810 | for (CFListIterator i= bufFactors; i.hasItem(); i++) |
---|
1811 | i.getItem()= mod (i.getItem(), y); |
---|
1812 | CFList bufProducts= products; |
---|
1813 | for (CFListIterator i= bufProducts; i.hasItem(); i++) |
---|
1814 | i.getItem()= mod (i.getItem(), y); |
---|
1815 | CFList buf= M; |
---|
1816 | buf.removeLast(); |
---|
1817 | CanonicalForm bufE= mod (E, y); |
---|
1818 | CFList recDiophantine= diophantine (recResult, bufFactors, bufProducts, buf, |
---|
1819 | bufE, bad); |
---|
1820 | |
---|
1821 | if (bad) |
---|
1822 | return CFList(); |
---|
1823 | |
---|
1824 | CanonicalForm e= E; |
---|
1825 | CFListIterator j= products; |
---|
1826 | for (CFListIterator i= recDiophantine; i.hasItem(); i++, j++) |
---|
1827 | e -= i.getItem()*j.getItem(); |
---|
1828 | |
---|
1829 | CFList result= recDiophantine; |
---|
1830 | int d= degree (M.getLast()); |
---|
1831 | CanonicalForm coeffE; |
---|
1832 | for (int i= 1; i < d; i++) |
---|
1833 | { |
---|
1834 | if (degree (e, y) > 0) |
---|
1835 | coeffE= e[i]; |
---|
1836 | else |
---|
1837 | coeffE= 0; |
---|
1838 | if (!coeffE.isZero()) |
---|
1839 | { |
---|
1840 | CFListIterator k= result; |
---|
1841 | recDiophantine= diophantine (recResult, bufFactors, bufProducts, buf, |
---|
1842 | coeffE, bad); |
---|
1843 | if (bad) |
---|
1844 | return CFList(); |
---|
1845 | CFListIterator l= products; |
---|
1846 | for (j= recDiophantine; j.hasItem(); j++, k++, l++) |
---|
1847 | { |
---|
1848 | k.getItem() += j.getItem()*power (y, i); |
---|
1849 | e -= j.getItem()*power (y, i)*l.getItem(); |
---|
1850 | } |
---|
1851 | } |
---|
1852 | if (e.isZero()) |
---|
1853 | break; |
---|
1854 | } |
---|
1855 | if (!e.isZero()) |
---|
1856 | { |
---|
1857 | bad= true; |
---|
1858 | return CFList(); |
---|
1859 | } |
---|
1860 | return result; |
---|
1861 | } |
---|
1862 | |
---|
1863 | void |
---|
1864 | nonMonicHenselStep (const CanonicalForm& F, const CFList& factors, |
---|
1865 | CFArray& bufFactors, const CFList& diophant, CFMatrix& M, |
---|
1866 | CFArray& Pi, const CFList& products, int j, |
---|
1867 | const CFList& MOD, bool& noOneToOne) |
---|
1868 | { |
---|
1869 | CanonicalForm E; |
---|
1870 | CanonicalForm xToJ= power (F.mvar(), j); |
---|
1871 | Variable x= F.mvar(); |
---|
1872 | |
---|
1873 | // compute the error |
---|
1874 | #ifdef DEBUGOUTPUT |
---|
1875 | CanonicalForm test= 1; |
---|
1876 | for (int i= 0; i < factors.length(); i++) |
---|
1877 | { |
---|
1878 | if (i == 0) |
---|
1879 | test *= mod (bufFactors [i], power (x, j)); |
---|
1880 | else |
---|
1881 | test *= bufFactors[i]; |
---|
1882 | } |
---|
1883 | test= mod (test, power (x, j)); |
---|
1884 | test= mod (test, MOD); |
---|
1885 | CanonicalForm test2= mod (F, power (x, j - 1)) - mod (test, power (x, j-1)); |
---|
1886 | DEBOUTLN (cerr, "test= " << test2); |
---|
1887 | #endif |
---|
1888 | |
---|
1889 | if (degree (Pi [factors.length() - 2], x) > 0) |
---|
1890 | E= F[j] - Pi [factors.length() - 2] [j]; |
---|
1891 | else |
---|
1892 | E= F[j]; |
---|
1893 | |
---|
1894 | CFArray buf= CFArray (diophant.length()); |
---|
1895 | |
---|
1896 | // actual lifting |
---|
1897 | CFList diophantine2= diophantine (diophant, factors, products, MOD, E, |
---|
1898 | noOneToOne); |
---|
1899 | |
---|
1900 | if (noOneToOne) |
---|
1901 | return; |
---|
1902 | |
---|
1903 | int k= 0; |
---|
1904 | for (CFListIterator i= diophantine2; k < factors.length(); k++, i++) |
---|
1905 | { |
---|
1906 | buf[k]= i.getItem(); |
---|
1907 | bufFactors[k] += xToJ*i.getItem(); |
---|
1908 | } |
---|
1909 | |
---|
1910 | // update Pi [0] |
---|
1911 | int degBuf0= degree (bufFactors[0], x); |
---|
1912 | int degBuf1= degree (bufFactors[1], x); |
---|
1913 | if (degBuf0 > 0 && degBuf1 > 0) |
---|
1914 | { |
---|
1915 | M (j + 1, 1)= mulMod (bufFactors[0] [j], bufFactors[1] [j], MOD); |
---|
1916 | if (j + 2 <= M.rows()) |
---|
1917 | M (j + 2, 1)= mulMod (bufFactors[0] [j + 1], bufFactors[1] [j + 1], MOD); |
---|
1918 | } |
---|
1919 | CanonicalForm uIZeroJ; |
---|
1920 | |
---|
1921 | if (degBuf0 > 0 && degBuf1 > 0) |
---|
1922 | uIZeroJ= mulMod (bufFactors[0] [0], buf[1], MOD) + |
---|
1923 | mulMod (bufFactors[1] [0], buf[0], MOD); |
---|
1924 | else if (degBuf0 > 0) |
---|
1925 | uIZeroJ= mulMod (buf[0], bufFactors[1], MOD); |
---|
1926 | else if (degBuf1 > 0) |
---|
1927 | uIZeroJ= mulMod (bufFactors[0], buf[1], MOD); |
---|
1928 | else |
---|
1929 | uIZeroJ= 0; |
---|
1930 | Pi [0] += xToJ*uIZeroJ; |
---|
1931 | |
---|
1932 | CFArray tmp= CFArray (factors.length() - 1); |
---|
1933 | for (k= 0; k < factors.length() - 1; k++) |
---|
1934 | tmp[k]= 0; |
---|
1935 | CFIterator one, two; |
---|
1936 | one= bufFactors [0]; |
---|
1937 | two= bufFactors [1]; |
---|
1938 | if (degBuf0 > 0 && degBuf1 > 0) |
---|
1939 | { |
---|
1940 | while (one.hasTerms() && one.exp() > j) one++; |
---|
1941 | while (two.hasTerms() && two.exp() > j) two++; |
---|
1942 | for (k= 1; k <= (int) ceil (j/2.0); k++) |
---|
1943 | { |
---|
1944 | if (k != j - k + 1) |
---|
1945 | { |
---|
1946 | if ((one.hasTerms() && one.exp() == j - k + 1) && |
---|
1947 | (two.hasTerms() && two.exp() == j - k + 1)) |
---|
1948 | { |
---|
1949 | tmp[0] += mulMod ((bufFactors[0] [k] + one.coeff()), |
---|
1950 | (bufFactors[1] [k] + two.coeff()), MOD) - M (k + 1, 1) - |
---|
1951 | M (j - k + 2, 1); |
---|
1952 | one++; |
---|
1953 | two++; |
---|
1954 | } |
---|
1955 | else if (one.hasTerms() && one.exp() == j - k + 1) |
---|
1956 | { |
---|
1957 | tmp[0] += mulMod ((bufFactors[0] [k] + one.coeff()), |
---|
1958 | bufFactors[1] [k], MOD) - M (k + 1, 1); |
---|
1959 | one++; |
---|
1960 | } |
---|
1961 | else if (two.hasTerms() && two.exp() == j - k + 1) |
---|
1962 | { |
---|
1963 | tmp[0] += mulMod (bufFactors[0] [k], (bufFactors[1] [k] + |
---|
1964 | two.coeff()), MOD) - M (k + 1, 1); |
---|
1965 | two++; |
---|
1966 | } |
---|
1967 | } |
---|
1968 | else |
---|
1969 | { |
---|
1970 | tmp[0] += M (k + 1, 1); |
---|
1971 | } |
---|
1972 | } |
---|
1973 | } |
---|
1974 | |
---|
1975 | if (degBuf0 >= j + 1 && degBuf1 >= j + 1) |
---|
1976 | { |
---|
1977 | if (j + 2 <= M.rows()) |
---|
1978 | tmp [0] += mulMod ((bufFactors [0] [j + 1]+ bufFactors [0] [0]), |
---|
1979 | (bufFactors [1] [j + 1] + bufFactors [1] [0]), MOD) |
---|
1980 | - M(1,1) - M (j + 2,1); |
---|
1981 | } |
---|
1982 | else if (degBuf0 >= j + 1) |
---|
1983 | { |
---|
1984 | if (degBuf1 > 0) |
---|
1985 | tmp[0] += mulMod (bufFactors [0] [j+1], bufFactors [1] [0], MOD); |
---|
1986 | else |
---|
1987 | tmp[0] += mulMod (bufFactors [0] [j+1], bufFactors [1], MOD); |
---|
1988 | } |
---|
1989 | else if (degBuf1 >= j + 1) |
---|
1990 | { |
---|
1991 | if (degBuf0 > 0) |
---|
1992 | tmp[0] += mulMod (bufFactors [0] [0], bufFactors [1] [j + 1], MOD); |
---|
1993 | else |
---|
1994 | tmp[0] += mulMod (bufFactors [0], bufFactors [1] [j + 1], MOD); |
---|
1995 | } |
---|
1996 | Pi [0] += tmp[0]*xToJ*F.mvar(); |
---|
1997 | |
---|
1998 | // update Pi [l] |
---|
1999 | int degPi, degBuf; |
---|
2000 | for (int l= 1; l < factors.length() - 1; l++) |
---|
2001 | { |
---|
2002 | degPi= degree (Pi [l - 1], x); |
---|
2003 | degBuf= degree (bufFactors[l + 1], x); |
---|
2004 | if (degPi > 0 && degBuf > 0) |
---|
2005 | { |
---|
2006 | M (j + 1, l + 1)= mulMod (Pi [l - 1] [j], bufFactors[l + 1] [j], MOD); |
---|
2007 | if (j + 2 <= M.rows()) |
---|
2008 | M (j + 2, l + 1)= mulMod (Pi [l - 1] [j + 1], bufFactors[l + 1] [j + 1], |
---|
2009 | MOD); |
---|
2010 | } |
---|
2011 | |
---|
2012 | if (degPi > 0 && degBuf > 0) |
---|
2013 | uIZeroJ= mulMod (Pi[l -1] [0], buf[l + 1], MOD) + |
---|
2014 | mulMod (uIZeroJ, bufFactors[l+1] [0], MOD); |
---|
2015 | else if (degPi > 0) |
---|
2016 | uIZeroJ= mulMod (uIZeroJ, bufFactors[l + 1], MOD); |
---|
2017 | else if (degBuf > 0) |
---|
2018 | uIZeroJ= mulMod (Pi[l - 1], buf[1], MOD); |
---|
2019 | else |
---|
2020 | uIZeroJ= 0; |
---|
2021 | |
---|
2022 | Pi [l] += xToJ*uIZeroJ; |
---|
2023 | |
---|
2024 | one= bufFactors [l + 1]; |
---|
2025 | two= Pi [l - 1]; |
---|
2026 | if (degBuf > 0 && degPi > 0) |
---|
2027 | { |
---|
2028 | while (one.hasTerms() && one.exp() > j) one++; |
---|
2029 | while (two.hasTerms() && two.exp() > j) two++; |
---|
2030 | for (k= 1; k <= (int) ceil (j/2.0); k++) |
---|
2031 | { |
---|
2032 | if (k != j - k + 1) |
---|
2033 | { |
---|
2034 | if ((one.hasTerms() && one.exp() == j - k + 1) && |
---|
2035 | (two.hasTerms() && two.exp() == j - k + 1)) |
---|
2036 | { |
---|
2037 | tmp[l] += mulMod ((bufFactors[l + 1] [k] + one.coeff()), |
---|
2038 | (Pi[l - 1] [k] + two.coeff()), MOD) - M (k + 1, l + 1) - |
---|
2039 | M (j - k + 2, l + 1); |
---|
2040 | one++; |
---|
2041 | two++; |
---|
2042 | } |
---|
2043 | else if (one.hasTerms() && one.exp() == j - k + 1) |
---|
2044 | { |
---|
2045 | tmp[l] += mulMod ((bufFactors[l + 1] [k] + one.coeff()), |
---|
2046 | Pi[l - 1] [k], MOD) - M (k + 1, l + 1); |
---|
2047 | one++; |
---|
2048 | } |
---|
2049 | else if (two.hasTerms() && two.exp() == j - k + 1) |
---|
2050 | { |
---|
2051 | tmp[l] += mulMod (bufFactors[l + 1] [k], |
---|
2052 | (Pi[l - 1] [k] + two.coeff()), MOD) - M (k + 1, l + 1); |
---|
2053 | two++; |
---|
2054 | } |
---|
2055 | } |
---|
2056 | else |
---|
2057 | tmp[l] += M (k + 1, l + 1); |
---|
2058 | } |
---|
2059 | } |
---|
2060 | |
---|
2061 | if (degPi >= j + 1 && degBuf >= j + 1) |
---|
2062 | { |
---|
2063 | if (j + 2 <= M.rows()) |
---|
2064 | tmp [l] += mulMod ((Pi [l - 1] [j + 1]+ Pi [l - 1] [0]), |
---|
2065 | (bufFactors [l + 1] [j + 1] + bufFactors [l + 1] [0]) |
---|
2066 | , MOD) - M(1,l+1) - M (j + 2,l+1); |
---|
2067 | } |
---|
2068 | else if (degPi >= j + 1) |
---|
2069 | { |
---|
2070 | if (degBuf > 0) |
---|
2071 | tmp[l] += mulMod (Pi [l - 1] [j+1], bufFactors [l + 1] [0], MOD); |
---|
2072 | else |
---|
2073 | tmp[l] += mulMod (Pi [l - 1] [j+1], bufFactors [l + 1], MOD); |
---|
2074 | } |
---|
2075 | else if (degBuf >= j + 1) |
---|
2076 | { |
---|
2077 | if (degPi > 0) |
---|
2078 | tmp[l] += mulMod (Pi [l - 1] [0], bufFactors [l + 1] [j + 1], MOD); |
---|
2079 | else |
---|
2080 | tmp[l] += mulMod (Pi [l - 1], bufFactors [l + 1] [j + 1], MOD); |
---|
2081 | } |
---|
2082 | |
---|
2083 | Pi[l] += tmp[l]*xToJ*F.mvar(); |
---|
2084 | } |
---|
2085 | return; |
---|
2086 | } |
---|
2087 | |
---|
2088 | // wrt. Variable (1) |
---|
2089 | CanonicalForm replaceLC (const CanonicalForm& F, const CanonicalForm& c) |
---|
2090 | { |
---|
2091 | if (degree (F, 1) <= 0) |
---|
2092 | return c; |
---|
2093 | else |
---|
2094 | { |
---|
2095 | CanonicalForm result= swapvar (F, Variable (F.level() + 1), Variable (1)); |
---|
2096 | result += (swapvar (c, Variable (F.level() + 1), Variable (1)) |
---|
2097 | - LC (result))*power (result.mvar(), degree (result)); |
---|
2098 | return swapvar (result, Variable (F.level() + 1), Variable (1)); |
---|
2099 | } |
---|
2100 | } |
---|
2101 | |
---|
2102 | CFList |
---|
2103 | nonMonicHenselLift232(const CFList& eval, const CFList& factors, int* l, CFList& |
---|
2104 | diophant, CFArray& Pi, CFMatrix& M, const CFList& LCs1, |
---|
2105 | const CFList& LCs2, bool& bad) |
---|
2106 | { |
---|
2107 | CFList buf= factors; |
---|
2108 | int k= 0; |
---|
2109 | int liftBoundBivar= l[k]; |
---|
2110 | CFList bufbuf= factors; |
---|
2111 | Variable v= Variable (2); |
---|
2112 | |
---|
2113 | CFList MOD; |
---|
2114 | MOD.append (power (Variable (2), liftBoundBivar)); |
---|
2115 | CFArray bufFactors= CFArray (factors.length()); |
---|
2116 | k= 0; |
---|
2117 | CFListIterator j= eval; |
---|
2118 | j++; |
---|
2119 | CFListIterator iter1= LCs1; |
---|
2120 | CFListIterator iter2= LCs2; |
---|
2121 | iter1++; |
---|
2122 | iter2++; |
---|
2123 | bufFactors[0]= replaceLC (buf.getFirst(), iter1.getItem()); |
---|
2124 | bufFactors[1]= replaceLC (buf.getLast(), iter2.getItem()); |
---|
2125 | |
---|
2126 | CFListIterator i= buf; |
---|
2127 | i++; |
---|
2128 | Variable y= j.getItem().mvar(); |
---|
2129 | if (y.level() != 3) |
---|
2130 | y= Variable (3); |
---|
2131 | |
---|
2132 | Pi[0]= mod (Pi[0], power (v, liftBoundBivar)); |
---|
2133 | M (1, 1)= Pi[0]; |
---|
2134 | if (degree (bufFactors[0], y) > 0 && degree (bufFactors [1], y) > 0) |
---|
2135 | Pi [0] += (mulMod (bufFactors [0] [1], bufFactors[1] [0], MOD) + |
---|
2136 | mulMod (bufFactors [0] [0], bufFactors [1] [1], MOD))*y; |
---|
2137 | else if (degree (bufFactors[0], y) > 0) |
---|
2138 | Pi [0] += mulMod (bufFactors [0] [1], bufFactors[1], MOD)*y; |
---|
2139 | else if (degree (bufFactors[1], y) > 0) |
---|
2140 | Pi [0] += mulMod (bufFactors [0], bufFactors[1] [1], MOD)*y; |
---|
2141 | |
---|
2142 | CFList products; |
---|
2143 | for (int i= 0; i < bufFactors.size(); i++) |
---|
2144 | { |
---|
2145 | if (degree (bufFactors[i], y) > 0) |
---|
2146 | products.append (eval.getFirst()/bufFactors[i] [0]); |
---|
2147 | else |
---|
2148 | products.append (eval.getFirst()/bufFactors[i]); |
---|
2149 | } |
---|
2150 | |
---|
2151 | for (int d= 1; d < l[1]; d++) |
---|
2152 | { |
---|
2153 | nonMonicHenselStep (j.getItem(), buf, bufFactors, diophant, M, Pi, products, |
---|
2154 | d, MOD, bad); |
---|
2155 | if (bad) |
---|
2156 | return CFList(); |
---|
2157 | } |
---|
2158 | CFList result; |
---|
2159 | for (k= 0; k < factors.length(); k++) |
---|
2160 | result.append (bufFactors[k]); |
---|
2161 | return result; |
---|
2162 | } |
---|
2163 | |
---|
2164 | |
---|
2165 | CFList |
---|
2166 | nonMonicHenselLift2 (const CFList& F, const CFList& factors, const CFList& MOD, |
---|
2167 | CFList& diophant, CFArray& Pi, CFMatrix& M, int lOld, |
---|
2168 | int& lNew, const CFList& LCs1, const CFList& LCs2, bool& bad |
---|
2169 | ) |
---|
2170 | { |
---|
2171 | int k= 0; |
---|
2172 | CFArray bufFactors= CFArray (factors.length()); |
---|
2173 | bufFactors[0]= replaceLC (factors.getFirst(), LCs1.getLast()); |
---|
2174 | bufFactors[1]= replaceLC (factors.getLast(), LCs2.getLast()); |
---|
2175 | CFList buf= factors; |
---|
2176 | Variable y= F.getLast().mvar(); |
---|
2177 | Variable x= F.getFirst().mvar(); |
---|
2178 | CanonicalForm xToLOld= power (x, lOld); |
---|
2179 | Pi [0]= mod (Pi[0], xToLOld); |
---|
2180 | M (1, 1)= Pi [0]; |
---|
2181 | |
---|
2182 | if (degree (bufFactors[0], y) > 0 && degree (bufFactors [1], y) > 0) |
---|
2183 | Pi [0] += (mulMod (bufFactors [0] [1], bufFactors[1] [0], MOD) + |
---|
2184 | mulMod (bufFactors [0] [0], bufFactors [1] [1], MOD))*y; |
---|
2185 | else if (degree (bufFactors[0], y) > 0) |
---|
2186 | Pi [0] += mulMod (bufFactors [0] [1], bufFactors[1], MOD)*y; |
---|
2187 | else if (degree (bufFactors[1], y) > 0) |
---|
2188 | Pi [0] += mulMod (bufFactors [0], bufFactors[1] [1], MOD)*y; |
---|
2189 | |
---|
2190 | CFList products; |
---|
2191 | CanonicalForm quot; |
---|
2192 | for (int i= 0; i < bufFactors.size(); i++) |
---|
2193 | { |
---|
2194 | if (degree (bufFactors[i], y) > 0) |
---|
2195 | { |
---|
2196 | if (!fdivides (bufFactors[i] [0], F.getFirst(), quot)) |
---|
2197 | { |
---|
2198 | bad= true; |
---|
2199 | return CFList(); |
---|
2200 | } |
---|
2201 | products.append (quot); |
---|
2202 | } |
---|
2203 | else |
---|
2204 | { |
---|
2205 | if (!fdivides (bufFactors[i], F.getFirst(), quot)) |
---|
2206 | { |
---|
2207 | bad= true; |
---|
2208 | return CFList(); |
---|
2209 | } |
---|
2210 | products.append (quot); |
---|
2211 | } |
---|
2212 | } |
---|
2213 | |
---|
2214 | for (int d= 1; d < lNew; d++) |
---|
2215 | { |
---|
2216 | nonMonicHenselStep (F.getLast(), buf, bufFactors, diophant, M, Pi, products, |
---|
2217 | d, MOD, bad); |
---|
2218 | if (bad) |
---|
2219 | return CFList(); |
---|
2220 | } |
---|
2221 | |
---|
2222 | CFList result; |
---|
2223 | for (k= 0; k < factors.length(); k++) |
---|
2224 | result.append (bufFactors[k]); |
---|
2225 | return result; |
---|
2226 | } |
---|
2227 | |
---|
2228 | CFList |
---|
2229 | nonMonicHenselLift2 (const CFList& eval, const CFList& factors, int* l, int |
---|
2230 | lLength, bool sort, const CFList& LCs1, const CFList& LCs2, |
---|
2231 | const CFArray& Pi, const CFList& diophant, bool& bad) |
---|
2232 | { |
---|
2233 | CFList bufDiophant= diophant; |
---|
2234 | CFList buf= factors; |
---|
2235 | if (sort) |
---|
2236 | sortList (buf, Variable (1)); |
---|
2237 | CFArray bufPi= Pi; |
---|
2238 | CFMatrix M= CFMatrix (l[1], factors.length()); |
---|
2239 | CFList result= |
---|
2240 | nonMonicHenselLift232(eval, buf, l, bufDiophant, bufPi, M, LCs1, LCs2, bad); |
---|
2241 | if (bad) |
---|
2242 | return CFList(); |
---|
2243 | |
---|
2244 | if (eval.length() == 2) |
---|
2245 | return result; |
---|
2246 | CFList MOD; |
---|
2247 | for (int i= 0; i < 2; i++) |
---|
2248 | MOD.append (power (Variable (i + 2), l[i])); |
---|
2249 | CFListIterator j= eval; |
---|
2250 | j++; |
---|
2251 | CFList bufEval; |
---|
2252 | bufEval.append (j.getItem()); |
---|
2253 | j++; |
---|
2254 | CFListIterator jj= LCs1; |
---|
2255 | CFListIterator jjj= LCs2; |
---|
2256 | CFList bufLCs1, bufLCs2; |
---|
2257 | jj++, jjj++; |
---|
2258 | bufLCs1.append (jj.getItem()); |
---|
2259 | bufLCs2.append (jjj.getItem()); |
---|
2260 | jj++, jjj++; |
---|
2261 | |
---|
2262 | for (int i= 2; i < lLength && j.hasItem(); i++, j++, jj++, jjj++) |
---|
2263 | { |
---|
2264 | bufEval.append (j.getItem()); |
---|
2265 | bufLCs1.append (jj.getItem()); |
---|
2266 | bufLCs2.append (jjj.getItem()); |
---|
2267 | M= CFMatrix (l[i], factors.length()); |
---|
2268 | result= nonMonicHenselLift2 (bufEval, result, MOD, bufDiophant, bufPi, M, |
---|
2269 | l[i - 1], l[i], bufLCs1, bufLCs2, bad); |
---|
2270 | if (bad) |
---|
2271 | return CFList(); |
---|
2272 | MOD.append (power (Variable (i + 2), l[i])); |
---|
2273 | bufEval.removeFirst(); |
---|
2274 | bufLCs1.removeFirst(); |
---|
2275 | bufLCs2.removeFirst(); |
---|
2276 | } |
---|
2277 | return result; |
---|
2278 | } |
---|
2279 | |
---|
2280 | CFList |
---|
2281 | nonMonicHenselLift23 (const CanonicalForm& F, const CFList& factors, const |
---|
2282 | CFList& LCs, CFList& diophant, CFArray& Pi, int liftBound, |
---|
2283 | int bivarLiftBound, bool& bad) |
---|
2284 | { |
---|
2285 | CFList bufFactors2= factors; |
---|
2286 | |
---|
2287 | Variable y= Variable (2); |
---|
2288 | for (CFListIterator i= bufFactors2; i.hasItem(); i++) |
---|
2289 | i.getItem()= mod (i.getItem(), y); |
---|
2290 | |
---|
2291 | CanonicalForm bufF= F; |
---|
2292 | bufF= mod (bufF, y); |
---|
2293 | bufF= mod (bufF, Variable (3)); |
---|
2294 | |
---|
2295 | diophant= diophantine (bufF, bufFactors2); |
---|
2296 | |
---|
2297 | CFMatrix M= CFMatrix (liftBound, bufFactors2.length() - 1); |
---|
2298 | |
---|
2299 | Pi= CFArray (bufFactors2.length() - 1); |
---|
2300 | |
---|
2301 | CFArray bufFactors= CFArray (bufFactors2.length()); |
---|
2302 | CFListIterator j= LCs; |
---|
2303 | int i= 0; |
---|
2304 | for (CFListIterator k= factors; k.hasItem(); j++, k++, i++) |
---|
2305 | bufFactors[i]= replaceLC (k.getItem(), j.getItem()); |
---|
2306 | |
---|
2307 | //initialise Pi |
---|
2308 | Variable v= Variable (3); |
---|
2309 | CanonicalForm yToL= power (y, bivarLiftBound); |
---|
2310 | if (degree (bufFactors[0], v) > 0 && degree (bufFactors [1], v) > 0) |
---|
2311 | { |
---|
2312 | M (1, 1)= mulMod2 (bufFactors [0] [0], bufFactors[1] [0], yToL); |
---|
2313 | Pi [0]= M (1,1) + (mulMod2 (bufFactors [0] [1], bufFactors[1] [0], yToL) + |
---|
2314 | mulMod2 (bufFactors [0] [0], bufFactors [1] [1], yToL))*v; |
---|
2315 | } |
---|
2316 | else if (degree (bufFactors[0], v) > 0) |
---|
2317 | { |
---|
2318 | M (1,1)= mulMod2 (bufFactors [0] [0], bufFactors [1], yToL); |
---|
2319 | Pi [0]= M(1,1) + mulMod2 (bufFactors [0] [1], bufFactors[1], yToL)*v; |
---|
2320 | } |
---|
2321 | else if (degree (bufFactors[1], v) > 0) |
---|
2322 | { |
---|
2323 | M (1,1)= mulMod2 (bufFactors [0], bufFactors [1] [0], yToL); |
---|
2324 | Pi [0]= M (1,1) + mulMod2 (bufFactors [0], bufFactors[1] [1], yToL)*v; |
---|
2325 | } |
---|
2326 | else |
---|
2327 | { |
---|
2328 | M (1,1)= mulMod2 (bufFactors [0], bufFactors [1], yToL); |
---|
2329 | Pi [0]= M (1,1); |
---|
2330 | } |
---|
2331 | |
---|
2332 | for (i= 1; i < Pi.size(); i++) |
---|
2333 | { |
---|
2334 | if (degree (Pi[i-1], v) > 0 && degree (bufFactors [i+1], v) > 0) |
---|
2335 | { |
---|
2336 | M (1,i+1)= mulMod2 (Pi[i-1] [0], bufFactors[i+1] [0], yToL); |
---|
2337 | Pi [i]= M (1,i+1) + (mulMod2 (Pi[i-1] [1], bufFactors[i+1] [0], yToL) + |
---|
2338 | mulMod2 (Pi[i-1] [0], bufFactors [i+1] [1], yToL))*v; |
---|
2339 | } |
---|
2340 | else if (degree (Pi[i-1], v) > 0) |
---|
2341 | { |
---|
2342 | M (1,i+1)= mulMod2 (Pi[i-1] [0], bufFactors [i+1], yToL); |
---|
2343 | Pi [i]= M(1,i+1) + mulMod2 (Pi[i-1] [1], bufFactors[i+1], yToL)*v; |
---|
2344 | } |
---|
2345 | else if (degree (bufFactors[i+1], v) > 0) |
---|
2346 | { |
---|
2347 | M (1,i+1)= mulMod2 (Pi[i-1], bufFactors [i+1] [0], yToL); |
---|
2348 | Pi [i]= M (1,i+1) + mulMod2 (Pi[i-1], bufFactors[i+1] [1], yToL)*v; |
---|
2349 | } |
---|
2350 | else |
---|
2351 | { |
---|
2352 | M (1,i+1)= mulMod2 (Pi [i-1], bufFactors [i+1], yToL); |
---|
2353 | Pi [i]= M (1,i+1); |
---|
2354 | } |
---|
2355 | } |
---|
2356 | |
---|
2357 | CFList products; |
---|
2358 | bufF= mod (F, Variable (3)); |
---|
2359 | for (CFListIterator k= factors; k.hasItem(); k++) |
---|
2360 | products.append (bufF/k.getItem()); |
---|
2361 | |
---|
2362 | CFList MOD= CFList (power (v, liftBound)); |
---|
2363 | MOD.insert (yToL); |
---|
2364 | for (int d= 1; d < liftBound; d++) |
---|
2365 | { |
---|
2366 | nonMonicHenselStep (F, factors, bufFactors, diophant, M, Pi, products, d, |
---|
2367 | MOD, bad); |
---|
2368 | if (bad) |
---|
2369 | return CFList(); |
---|
2370 | } |
---|
2371 | |
---|
2372 | CFList result; |
---|
2373 | for (i= 0; i < factors.length(); i++) |
---|
2374 | result.append (bufFactors[i]); |
---|
2375 | return result; |
---|
2376 | } |
---|
2377 | |
---|
2378 | CFList |
---|
2379 | nonMonicHenselLift (const CFList& F, const CFList& factors, const CFList& LCs, |
---|
2380 | CFList& diophant, CFArray& Pi, CFMatrix& M, int lOld, |
---|
2381 | int& lNew, const CFList& MOD, bool& noOneToOne |
---|
2382 | ) |
---|
2383 | { |
---|
2384 | |
---|
2385 | int k= 0; |
---|
2386 | CFArray bufFactors= CFArray (factors.length()); |
---|
2387 | CFListIterator j= LCs; |
---|
2388 | for (CFListIterator i= factors; i.hasItem(); i++, j++, k++) |
---|
2389 | bufFactors [k]= replaceLC (i.getItem(), j.getItem()); |
---|
2390 | |
---|
2391 | Variable y= F.getLast().mvar(); |
---|
2392 | Variable x= F.getFirst().mvar(); |
---|
2393 | CanonicalForm xToLOld= power (x, lOld); |
---|
2394 | |
---|
2395 | Pi [0]= mod (Pi[0], xToLOld); |
---|
2396 | M (1, 1)= Pi [0]; |
---|
2397 | |
---|
2398 | if (degree (bufFactors[0], y) > 0 && degree (bufFactors [1], y) > 0) |
---|
2399 | Pi [0] += (mulMod (bufFactors [0] [1], bufFactors[1] [0], MOD) + |
---|
2400 | mulMod (bufFactors [0] [0], bufFactors [1] [1], MOD))*y; |
---|
2401 | else if (degree (bufFactors[0], y) > 0) |
---|
2402 | Pi [0] += mulMod (bufFactors [0] [1], bufFactors[1], MOD)*y; |
---|
2403 | else if (degree (bufFactors[1], y) > 0) |
---|
2404 | Pi [0] += mulMod (bufFactors [0], bufFactors[1] [1], MOD)*y; |
---|
2405 | |
---|
2406 | for (int i= 1; i < Pi.size(); i++) |
---|
2407 | { |
---|
2408 | Pi [i]= mod (Pi [i], xToLOld); |
---|
2409 | M (1, i + 1)= Pi [i]; |
---|
2410 | |
---|
2411 | if (degree (Pi[i-1], y) > 0 && degree (bufFactors [i+1], y) > 0) |
---|
2412 | Pi [i] += (mulMod (Pi[i-1] [1], bufFactors[i+1] [0], MOD) + |
---|
2413 | mulMod (Pi[i-1] [0], bufFactors [i+1] [1], MOD))*y; |
---|
2414 | else if (degree (Pi[i-1], y) > 0) |
---|
2415 | Pi [i] += mulMod (Pi[i-1] [1], bufFactors[i+1], MOD)*y; |
---|
2416 | else if (degree (bufFactors[i+1], y) > 0) |
---|
2417 | Pi [i] += mulMod (Pi[i-1], bufFactors[i+1] [1], MOD)*y; |
---|
2418 | } |
---|
2419 | |
---|
2420 | CFList products; |
---|
2421 | CanonicalForm quot, bufF= F.getFirst(); |
---|
2422 | |
---|
2423 | for (int i= 0; i < bufFactors.size(); i++) |
---|
2424 | { |
---|
2425 | if (degree (bufFactors[i], y) > 0) |
---|
2426 | { |
---|
2427 | if (!fdivides (bufFactors[i] [0], bufF, quot)) |
---|
2428 | { |
---|
2429 | noOneToOne= true; |
---|
2430 | return factors; |
---|
2431 | } |
---|
2432 | products.append (quot); |
---|
2433 | } |
---|
2434 | else |
---|
2435 | { |
---|
2436 | if (!fdivides (bufFactors[i], bufF, quot)) |
---|
2437 | { |
---|
2438 | noOneToOne= true; |
---|
2439 | return factors; |
---|
2440 | } |
---|
2441 | products.append (quot); |
---|
2442 | } |
---|
2443 | } |
---|
2444 | |
---|
2445 | for (int d= 1; d < lNew; d++) |
---|
2446 | { |
---|
2447 | nonMonicHenselStep (F.getLast(), factors, bufFactors, diophant, M, Pi, |
---|
2448 | products, d, MOD, noOneToOne); |
---|
2449 | if (noOneToOne) |
---|
2450 | return CFList(); |
---|
2451 | } |
---|
2452 | |
---|
2453 | CFList result; |
---|
2454 | for (k= 0; k < factors.length(); k++) |
---|
2455 | result.append (bufFactors[k]); |
---|
2456 | return result; |
---|
2457 | } |
---|
2458 | |
---|
2459 | CFList |
---|
2460 | nonMonicHenselLift (const CFList& eval, const CFList& factors, |
---|
2461 | CFList* const& LCs, CFList& diophant, CFArray& Pi, |
---|
2462 | int* liftBound, int length, bool& noOneToOne |
---|
2463 | ) |
---|
2464 | { |
---|
2465 | CFList bufDiophant= diophant; |
---|
2466 | CFList buf= factors; |
---|
2467 | CFArray bufPi= Pi; |
---|
2468 | CFMatrix M= CFMatrix (liftBound[1], factors.length() - 1); |
---|
2469 | int k= 0; |
---|
2470 | |
---|
2471 | CFList result= |
---|
2472 | nonMonicHenselLift23 (eval.getFirst(), factors, LCs [0], diophant, bufPi, |
---|
2473 | liftBound[1], liftBound[0], noOneToOne); |
---|
2474 | |
---|
2475 | if (noOneToOne) |
---|
2476 | return CFList(); |
---|
2477 | |
---|
2478 | if (eval.length() == 1) |
---|
2479 | return result; |
---|
2480 | |
---|
2481 | k++; |
---|
2482 | CFList MOD; |
---|
2483 | for (int i= 0; i < 2; i++) |
---|
2484 | MOD.append (power (Variable (i + 2), liftBound[i])); |
---|
2485 | |
---|
2486 | CFListIterator j= eval; |
---|
2487 | CFList bufEval; |
---|
2488 | bufEval.append (j.getItem()); |
---|
2489 | j++; |
---|
2490 | |
---|
2491 | for (int i= 2; i <= length && j.hasItem(); i++, j++, k++) |
---|
2492 | { |
---|
2493 | bufEval.append (j.getItem()); |
---|
2494 | M= CFMatrix (liftBound[i], factors.length() - 1); |
---|
2495 | result= nonMonicHenselLift (bufEval, result, LCs [i-1], diophant, bufPi, M, |
---|
2496 | liftBound[i-1], liftBound[i], MOD, noOneToOne); |
---|
2497 | if (noOneToOne) |
---|
2498 | return result; |
---|
2499 | MOD.append (power (Variable (i + 2), liftBound[i])); |
---|
2500 | bufEval.removeFirst(); |
---|
2501 | } |
---|
2502 | |
---|
2503 | return result; |
---|
2504 | } |
---|
2505 | |
---|
2506 | #endif |
---|
2507 | /* HAVE_NTL */ |
---|
2508 | |
---|