/*****************************************************************************\ * Computer Algebra System SINGULAR \*****************************************************************************/ /** @file facHensel.cc * * This file implements functions to lift factors via Hensel lifting and * functions for modular multiplication and division with remainder. * * ABSTRACT: Hensel lifting is described in "Efficient Multivariate * Factorization over Finite Fields" by L. Bernardin & M. Monagon. Division with * remainder is described in "Fast Recursive Division" by C. Burnikel and * J. Ziegler. Karatsuba multiplication is described in "Modern Computer * Algebra" by J. von zur Gathen and J. Gerhard. * * @author Martin Lee * * @internal @version \$Id$ * **/ /*****************************************************************************/ #include "assert.h" #include "debug.h" #include "timing.h" #include "facHensel.h" #include "cf_util.h" #include "fac_util.h" #include "cf_algorithm.h" #ifdef HAVE_NTL #include #include "NTLconvert.h" CanonicalForm mulNTL (const CanonicalForm& F, const CanonicalForm& G) { if (F.inCoeffDomain() || G.inCoeffDomain() || getCharacteristic() == 0) return F*G; ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); ASSERT (F.level() == G.level(), "expected polys of same level"); if (CFFactory::gettype() == GaloisFieldDomain) return F*G; zz_p::init (getCharacteristic()); Variable alpha; CanonicalForm result; if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) { zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); zz_pE::init (NTLMipo); zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); mul (NTLF, NTLF, NTLG); result= convertNTLzz_pEX2CF(NTLF, F.mvar(), alpha); } else { zz_pX NTLF= convertFacCF2NTLzzpX (F); zz_pX NTLG= convertFacCF2NTLzzpX (G); mul (NTLF, NTLF, NTLG); result= convertNTLzzpX2CF(NTLF, F.mvar()); } return result; } CanonicalForm modNTL (const CanonicalForm& F, const CanonicalForm& G) { if (F.inCoeffDomain() && G.isUnivariate()) return F; else if (F.inCoeffDomain() && G.inCoeffDomain()) return mod (F, G); else if (F.isUnivariate() && G.inCoeffDomain()) return mod (F,G); if (getCharacteristic() == 0) return mod (F, G); ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); ASSERT (F.level() == G.level(), "expected polys of same level"); if (CFFactory::gettype() == GaloisFieldDomain) return mod (F, G); zz_p::init (getCharacteristic()); Variable alpha; CanonicalForm result; if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) { zz_pX NTLMipo= convertFacCF2NTLzzpX(getMipo (alpha)); zz_pE::init (NTLMipo); zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); rem (NTLF, NTLF, NTLG); result= convertNTLzz_pEX2CF(NTLF, F.mvar(), alpha); } else { zz_pX NTLF= convertFacCF2NTLzzpX (F); zz_pX NTLG= convertFacCF2NTLzzpX (G); rem (NTLF, NTLF, NTLG); result= convertNTLzzpX2CF(NTLF, F.mvar()); } return result; } CanonicalForm divNTL (const CanonicalForm& F, const CanonicalForm& G) { if (F.inCoeffDomain() && G.isUnivariate()) return F; else if (F.inCoeffDomain() && G.inCoeffDomain()) return div (F, G); else if (F.isUnivariate() && G.inCoeffDomain()) return div (F,G); if (getCharacteristic() == 0) return div (F, G); ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); ASSERT (F.level() == G.level(), "expected polys of same level"); if (CFFactory::gettype() == GaloisFieldDomain) return div (F, G); zz_p::init (getCharacteristic()); Variable alpha; CanonicalForm result; if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) { zz_pX NTLMipo= convertFacCF2NTLzzpX(getMipo (alpha)); zz_pE::init (NTLMipo); zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); div (NTLF, NTLF, NTLG); result= convertNTLzz_pEX2CF(NTLF, F.mvar(), alpha); } else { zz_pX NTLF= convertFacCF2NTLzzpX (F); zz_pX NTLG= convertFacCF2NTLzzpX (G); div (NTLF, NTLF, NTLG); result= convertNTLzzpX2CF(NTLF, F.mvar()); } return result; } /* void divremNTL (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, CanonicalForm& R) { if (F.inCoeffDomain() && G.isUnivariate()) { R= F; Q= 0; } else if (F.inCoeffDomain() && G.inCoeffDomain()) { divrem (F, G, Q, R); return; } else if (F.isUnivariate() && G.inCoeffDomain()) { divrem (F, G, Q, R); return; } ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); ASSERT (F.level() == G.level(), "expected polys of same level"); if (CFFactory::gettype() == GaloisFieldDomain) { divrem (F, G, Q, R); return; } zz_p::init (getCharacteristic()); Variable alpha; CanonicalForm result; if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) { zz_pX NTLMipo= convertFacCF2NTLzzpX(getMipo (alpha)); zz_pE::init (NTLMipo); zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); zz_pEX NTLQ; zz_pEX NTLR; DivRem (NTLQ, NTLR, NTLF, NTLG); Q= convertNTLzz_pEX2CF(NTLQ, F.mvar(), alpha); R= convertNTLzz_pEX2CF(NTLR, F.mvar(), alpha); return; } else { zz_pX NTLF= convertFacCF2NTLzzpX (F); zz_pX NTLG= convertFacCF2NTLzzpX (G); zz_pX NTLQ; zz_pX NTLR; DivRem (NTLQ, NTLR, NTLF, NTLG); Q= convertNTLzzpX2CF(NTLQ, F.mvar()); R= convertNTLzzpX2CF(NTLR, F.mvar()); return; } }*/ CanonicalForm mod (const CanonicalForm& F, const CFList& M) { CanonicalForm A= F; for (CFListIterator i= M; i.hasItem(); i++) A= mod (A, i.getItem()); return A; } zz_pX kronSubFp (const CanonicalForm& A, int d) { int degAy= degree (A); zz_pX result; result.rep.SetLength (d*(degAy + 1)); zz_p *resultp; resultp= result.rep.elts(); zz_pX buf; zz_p *bufp; for (CFIterator i= A; i.hasTerms(); i++) { if (i.coeff().inCoeffDomain()) buf= convertFacCF2NTLzzpX (i.coeff()); else buf= convertFacCF2NTLzzpX (i.coeff()); int k= i.exp()*d; bufp= buf.rep.elts(); int bufRepLength= (int) buf.rep.length(); for (int j= 0; j < bufRepLength; j++) resultp [j + k]= bufp [j]; } result.normalize(); return result; } zz_pEX kronSub (const CanonicalForm& A, int d, const Variable& alpha) { int degAy= degree (A); zz_pEX result; result.rep.SetLength (d*(degAy + 1)); Variable v; zz_pE *resultp; resultp= result.rep.elts(); zz_pEX buf1; zz_pE *buf1p; zz_pX buf2; zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); for (CFIterator i= A; i.hasTerms(); i++) { if (i.coeff().inCoeffDomain()) { buf2= convertFacCF2NTLzzpX (i.coeff()); buf1= to_zz_pEX (to_zz_pE (buf2)); } else buf1= convertFacCF2NTLzz_pEX (i.coeff(), NTLMipo); int k= i.exp()*d; buf1p= buf1.rep.elts(); int buf1RepLength= (int) buf1.rep.length(); for (int j= 0; j < buf1RepLength; j++) resultp [j + k]= buf1p [j]; } result.normalize(); return result; } void kronSubRecipro (zz_pEX& subA1, zz_pEX& subA2,const CanonicalForm& A, int d, const Variable& alpha) { int degAy= degree (A); subA1.rep.SetLength ((long) d*(degAy + 1)); subA2.rep.SetLength ((long) d*(degAy + 1)); Variable v; zz_pE *subA1p; zz_pE *subA2p; subA1p= subA1.rep.elts(); subA2p= subA2.rep.elts(); zz_pEX buf; zz_pE *bufp; zz_pX buf2; zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); for (CFIterator i= A; i.hasTerms(); i++) { if (i.coeff().inCoeffDomain()) { buf2= convertFacCF2NTLzzpX (i.coeff()); buf= to_zz_pEX (to_zz_pE (buf2)); } else buf= convertFacCF2NTLzz_pEX (i.coeff(), NTLMipo); int k= i.exp()*d; int kk= (degAy - i.exp())*d; bufp= buf.rep.elts(); int bufRepLength= (int) buf.rep.length(); for (int j= 0; j < bufRepLength; j++) { subA1p [j + k]= bufp [j]; subA2p [j + kk]= bufp [j]; } } subA1.normalize(); subA2.normalize(); } void kronSubRecipro (zz_pX& subA1, zz_pX& subA2,const CanonicalForm& A, int d) { int degAy= degree (A); subA1.rep.SetLength ((long) d*(degAy + 1)); subA2.rep.SetLength ((long) d*(degAy + 1)); Variable v; zz_p *subA1p; zz_p *subA2p; subA1p= subA1.rep.elts(); subA2p= subA2.rep.elts(); zz_pX buf; zz_p *bufp; for (CFIterator i= A; i.hasTerms(); i++) { buf= convertFacCF2NTLzzpX (i.coeff()); int k= i.exp()*d; int kk= (degAy - i.exp())*d; bufp= buf.rep.elts(); int bufRepLength= (int) buf.rep.length(); for (int j= 0; j < bufRepLength; j++) { subA1p [j + k]= bufp [j]; subA2p [j + kk]= bufp [j]; } } subA1.normalize(); subA2.normalize(); } CanonicalForm reverseSubst (const zz_pEX& F, const zz_pEX& G, int d, int k, const Variable& alpha) { Variable y= Variable (2); Variable x= Variable (1); zz_pEX f= F; zz_pEX g= G; int degf= deg(f); int degg= deg(g); zz_pEX buf1; zz_pEX buf2; zz_pEX buf3; zz_pE *buf1p; zz_pE *buf2p; zz_pE *buf3p; if (f.rep.length() < (long) d*(k+1)) //zero padding f.rep.SetLength ((long)d*(k+1)); zz_pE *gp= g.rep.elts(); zz_pE *fp= f.rep.elts(); CanonicalForm result= 0; int i= 0; int lf= 0; int lg= d*k; int degfSubLf= degf; int deggSubLg= degg-lg; int repLengthBuf2; int repLengthBuf1; zz_pE zzpEZero= zz_pE(); while (degf >= lf || lg >= 0) { if (degfSubLf >= d) repLengthBuf1= d; else if (degfSubLf < 0) repLengthBuf1= 0; else repLengthBuf1= degfSubLf + 1; buf1.rep.SetLength((long) repLengthBuf1); buf1p= buf1.rep.elts(); for (int ind= 0; ind < repLengthBuf1; ind++) buf1p [ind]= fp [ind + lf]; buf1.normalize(); repLengthBuf1= buf1.rep.length(); if (deggSubLg >= d - 1) repLengthBuf2= d - 1; else if (deggSubLg < 0) repLengthBuf2= 0; else repLengthBuf2= deggSubLg + 1; buf2.rep.SetLength ((long) repLengthBuf2); buf2p= buf2.rep.elts(); for (int ind= 0; ind < repLengthBuf2; ind++) { buf2p [ind]= gp [ind + lg]; } buf2.normalize(); repLengthBuf2= buf2.rep.length(); buf3.rep.SetLength((long) repLengthBuf2 + d); buf3p= buf3.rep.elts(); buf2p= buf2.rep.elts(); buf1p= buf1.rep.elts(); for (int ind= 0; ind < repLengthBuf1; ind++) buf3p [ind]= buf1p [ind]; for (int ind= repLengthBuf1; ind < d; ind++) buf3p [ind]= zzpEZero; for (int ind= 0; ind < repLengthBuf2; ind++) buf3p [ind + d]= buf2p [ind]; buf3.normalize(); result += convertNTLzz_pEX2CF (buf3, x, alpha)*power (y, i); i++; lf= i*d; degfSubLf= degf - lf; lg= d*(k-i); deggSubLg= degg - lg; buf1p= buf1.rep.elts(); if (lg >= 0 && deggSubLg > 0) { if (repLengthBuf2 > degfSubLf + 1) degfSubLf= repLengthBuf2 - 1; int tmp= tmin (repLengthBuf1, deggSubLg); for (int ind= 0; ind < tmp; ind++) gp [ind + lg] -= buf1p [ind]; } if (lg < 0) break; buf2p= buf2.rep.elts(); if (degfSubLf >= 0) { for (int ind= 0; ind < repLengthBuf2; ind++) fp [ind + lf] -= buf2p [ind]; } } return result; } CanonicalForm reverseSubst (const zz_pX& F, const zz_pX& G, int d, int k) { Variable y= Variable (2); Variable x= Variable (1); zz_pX f= F; zz_pX g= G; int degf= deg(f); int degg= deg(g); zz_pX buf1; zz_pX buf2; zz_pX buf3; zz_p *buf1p; zz_p *buf2p; zz_p *buf3p; if (f.rep.length() < (long) d*(k+1)) //zero padding f.rep.SetLength ((long)d*(k+1)); zz_p *gp= g.rep.elts(); zz_p *fp= f.rep.elts(); CanonicalForm result= 0; int i= 0; int lf= 0; int lg= d*k; int degfSubLf= degf; int deggSubLg= degg-lg; int repLengthBuf2; int repLengthBuf1; zz_p zzpZero= zz_p(); while (degf >= lf || lg >= 0) { if (degfSubLf >= d) repLengthBuf1= d; else if (degfSubLf < 0) repLengthBuf1= 0; else repLengthBuf1= degfSubLf + 1; buf1.rep.SetLength((long) repLengthBuf1); buf1p= buf1.rep.elts(); for (int ind= 0; ind < repLengthBuf1; ind++) buf1p [ind]= fp [ind + lf]; buf1.normalize(); repLengthBuf1= buf1.rep.length(); if (deggSubLg >= d - 1) repLengthBuf2= d - 1; else if (deggSubLg < 0) repLengthBuf2= 0; else repLengthBuf2= deggSubLg + 1; buf2.rep.SetLength ((long) repLengthBuf2); buf2p= buf2.rep.elts(); for (int ind= 0; ind < repLengthBuf2; ind++) buf2p [ind]= gp [ind + lg]; buf2.normalize(); repLengthBuf2= buf2.rep.length(); buf3.rep.SetLength((long) repLengthBuf2 + d); buf3p= buf3.rep.elts(); buf2p= buf2.rep.elts(); buf1p= buf1.rep.elts(); for (int ind= 0; ind < repLengthBuf1; ind++) buf3p [ind]= buf1p [ind]; for (int ind= repLengthBuf1; ind < d; ind++) buf3p [ind]= zzpZero; for (int ind= 0; ind < repLengthBuf2; ind++) buf3p [ind + d]= buf2p [ind]; buf3.normalize(); result += convertNTLzzpX2CF (buf3, x)*power (y, i); i++; lf= i*d; degfSubLf= degf - lf; lg= d*(k-i); deggSubLg= degg - lg; buf1p= buf1.rep.elts(); if (lg >= 0 && deggSubLg > 0) { if (repLengthBuf2 > degfSubLf + 1) degfSubLf= repLengthBuf2 - 1; int tmp= tmin (repLengthBuf1, deggSubLg); for (int ind= 0; ind < tmp; ind++) gp [ind + lg] -= buf1p [ind]; } if (lg < 0) break; buf2p= buf2.rep.elts(); if (degfSubLf >= 0) { for (int ind= 0; ind < repLengthBuf2; ind++) fp [ind + lf] -= buf2p [ind]; } } return result; } CanonicalForm reverseSubst (const zz_pEX& F, int d, const Variable& alpha) { Variable y= Variable (2); Variable x= Variable (1); zz_pEX f= F; zz_pE *fp= f.rep.elts(); zz_pEX buf; zz_pE *bufp; CanonicalForm result= 0; int i= 0; int degf= deg(f); int k= 0; int degfSubK; int repLength; while (degf >= k) { degfSubK= degf - k; if (degfSubK >= d) repLength= d; else repLength= degfSubK + 1; buf.rep.SetLength ((long) repLength); bufp= buf.rep.elts(); for (int j= 0; j < repLength; j++) bufp [j]= fp [j + k]; buf.normalize(); result += convertNTLzz_pEX2CF (buf, x, alpha)*power (y, i); i++; k= d*i; } return result; } CanonicalForm reverseSubstFp (const zz_pX& F, int d) { Variable y= Variable (2); Variable x= Variable (1); zz_pX f= F; zz_p *fp= f.rep.elts(); zz_pX buf; zz_p *bufp; CanonicalForm result= 0; int i= 0; int degf= deg(f); int k= 0; int degfSubK; int repLength; while (degf >= k) { degfSubK= degf - k; if (degfSubK >= d) repLength= d; else repLength= degfSubK + 1; buf.rep.SetLength ((long) repLength); bufp= buf.rep.elts(); for (int j= 0; j < repLength; j++) bufp [j]= fp [j + k]; buf.normalize(); result += convertNTLzzpX2CF (buf, x)*power (y, i); i++; k= d*i; } return result; } // assumes input to be reduced mod M and to be an element of Fq not Fp CanonicalForm mulMod2NTLFpReci (const CanonicalForm& F, const CanonicalForm& G, const CanonicalForm& M) { int d1= tmax (degree (F, 1), degree (G, 1)) + 1; int d2= tmax (degree (F, 2), degree (G, 2)); zz_pX F1, F2; kronSubRecipro (F1, F2, F, d1); zz_pX G1, G2; kronSubRecipro (G1, G2, G, d1); int k= d1*degree (M); MulTrunc (F1, F1, G1, (long) k); mul (F2, F2, G2); F2 >>= k; return reverseSubst (F1, F2, d1, d2); } //Kronecker substitution CanonicalForm mulMod2NTLFp (const CanonicalForm& F, const CanonicalForm& G, const CanonicalForm& M) { CanonicalForm A= F; CanonicalForm B= G; int degAx= degree (A, 1); int degAy= degree (A, 2); int degBx= degree (B, 1); int degBy= degree (B, 2); int d1= degAx + 1 + degBx; int d2= tmax (degree (A, 2), degree (B, 2)); if (d1 > 128 && d2 > 160 && (degAy == degBy)) return mulMod2NTLFpReci (A, B, M); zz_pX NTLA= kronSubFp (A, d1); zz_pX NTLB= kronSubFp (B, d1); int k= d1*degree (M); MulTrunc (NTLA, NTLA, NTLB, (long) k); A= reverseSubstFp (NTLA, d1); return A; } // assumes input to be reduced mod M and to be an element of Fq not Fp CanonicalForm mulMod2NTLFqReci (const CanonicalForm& F, const CanonicalForm& G, const CanonicalForm& M, const Variable& alpha) { int d1= tmax (degree (F, 1), degree (G, 1)) + 1; int d2= tmax (degree (F, 2), degree (G, 2)); zz_pEX F1, F2; kronSubRecipro (F1, F2, F, d1, alpha); zz_pEX G1, G2; kronSubRecipro (G1, G2, G, d1, alpha); int k1= d1*degree (M); MulTrunc (F1, F1, G1, (long) k1); mul (F2, F2, G2); F2 >>= k1; CanonicalForm result= reverseSubst (F1, F2, d1, d2, alpha); return result; } CanonicalForm mulMod2NTLFq (const CanonicalForm& F, const CanonicalForm& G, const CanonicalForm& M) { Variable alpha; CanonicalForm A= F; CanonicalForm B= G; if (hasFirstAlgVar (A, alpha) || hasFirstAlgVar (B, alpha)) { int degAx= degree (A, 1); int degAy= degree (A, 2); int degBx= degree (B, 1); int degBy= degree (B, 2); int d1= degAx + degBx + 1; int d2= tmax (degree (A, 2), degree (B, 2)); zz_p::init (getCharacteristic()); zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); zz_pE::init (NTLMipo); int degMipo= degree (getMipo (alpha)); if ((d1 > 128/degMipo) && (d2 > 160/degMipo) && (degAy == degBy)) return mulMod2NTLFqReci (A, B, M, alpha); zz_pEX NTLA= kronSub (A, d1, alpha); zz_pEX NTLB= kronSub (B, d1, alpha); int k= d1*degree (M); MulTrunc (NTLA, NTLA, NTLB, (long) k); A= reverseSubst (NTLA, d1, alpha); return A; } else return mulMod2NTLFp (A, B, M); } CanonicalForm mulMod2 (const CanonicalForm& A, const CanonicalForm& B, const CanonicalForm& M) { if (A.isZero() || B.isZero()) return 0; ASSERT (M.isUnivariate(), "M must be univariate"); CanonicalForm F= mod (A, M); CanonicalForm G= mod (B, M); if (F.inCoeffDomain() || G.inCoeffDomain()) return F*G; Variable y= M.mvar(); int degF= degree (F, y); int degG= degree (G, y); if ((degF < 1 && degG < 1) && (F.isUnivariate() && G.isUnivariate()) && (F.level() == G.level())) { CanonicalForm result= mulNTL (F, G); return mod (result, M); } else if (degF <= 1 && degG <= 1) { CanonicalForm result= F*G; return mod (result, M); } int sizeF= size (F); int sizeG= size (G); int fallBackToNaive= 50; if (sizeF < fallBackToNaive || sizeG < fallBackToNaive) return mod (F*G, M); if (getCharacteristic() > 0 && CFFactory::gettype() != GaloisFieldDomain && (((degF-degG) < 50 && degF > degG) || ((degG-degF) < 50 && degF <= degG))) return mulMod2NTLFq (F, G, M); int m= (int) ceil (degree (M)/2.0); if (degF >= m || degG >= m) { CanonicalForm MLo= power (y, m); CanonicalForm MHi= power (y, degree (M) - m); CanonicalForm F0= mod (F, MLo); CanonicalForm F1= div (F, MLo); CanonicalForm G0= mod (G, MLo); CanonicalForm G1= div (G, MLo); CanonicalForm F0G1= mulMod2 (F0, G1, MHi); CanonicalForm F1G0= mulMod2 (F1, G0, MHi); CanonicalForm F0G0= mulMod2 (F0, G0, M); return F0G0 + MLo*(F0G1 + F1G0); } else { m= (int) ceil (tmax (degF, degG)/2.0); CanonicalForm yToM= power (y, m); CanonicalForm F0= mod (F, yToM); CanonicalForm F1= div (F, yToM); CanonicalForm G0= mod (G, yToM); CanonicalForm G1= div (G, yToM); CanonicalForm H00= mulMod2 (F0, G0, M); CanonicalForm H11= mulMod2 (F1, G1, M); CanonicalForm H01= mulMod2 (F0 + F1, G0 + G1, M); return H11*yToM*yToM + (H01 - H11 - H00)*yToM + H00; } DEBOUTLN (cerr, "fatal end in mulMod2"); } CanonicalForm mulMod (const CanonicalForm& A, const CanonicalForm& B, const CFList& MOD) { if (A.isZero() || B.isZero()) return 0; if (MOD.length() == 1) return mulMod2 (A, B, MOD.getLast()); CanonicalForm M= MOD.getLast(); CanonicalForm F= mod (A, M); CanonicalForm G= mod (B, M); if (F.inCoeffDomain() || G.inCoeffDomain()) return F*G; Variable y= M.mvar(); int degF= degree (F, y); int degG= degree (G, y); if ((degF <= 1 && F.level() <= M.level()) && (degG <= 1 && G.level() <= M.level())) { CFList buf= MOD; buf.removeLast(); if (degF == 1 && degG == 1) { CanonicalForm F0= mod (F, y); CanonicalForm F1= div (F, y); CanonicalForm G0= mod (G, y); CanonicalForm G1= div (G, y); if (degree (M) > 2) { CanonicalForm H00= mulMod (F0, G0, buf); CanonicalForm H11= mulMod (F1, G1, buf); CanonicalForm H01= mulMod (F0 + F1, G0 + G1, buf); return H11*y*y + (H01 - H00 - H11)*y + H00; } else //here degree (M) == 2 { buf.append (y); CanonicalForm F0G1= mulMod (F0, G1, buf); CanonicalForm F1G0= mulMod (F1, G0, buf); CanonicalForm F0G0= mulMod (F0, G0, MOD); CanonicalForm result= F0G0 + y*(F0G1 + F1G0); return result; } } else if (degF == 1 && degG == 0) return mulMod (div (F, y), G, buf)*y + mulMod (mod (F, y), G, buf); else if (degF == 0 && degG == 1) return mulMod (div (G, y), F, buf)*y + mulMod (mod (G, y), F, buf); else return mulMod (F, G, buf); } int m= (int) ceil (degree (M)/2.0); if (degF >= m || degG >= m) { CanonicalForm MLo= power (y, m); CanonicalForm MHi= power (y, degree (M) - m); CanonicalForm F0= mod (F, MLo); CanonicalForm F1= div (F, MLo); CanonicalForm G0= mod (G, MLo); CanonicalForm G1= div (G, MLo); CFList buf= MOD; buf.removeLast(); buf.append (MHi); CanonicalForm F0G1= mulMod (F0, G1, buf); CanonicalForm F1G0= mulMod (F1, G0, buf); CanonicalForm F0G0= mulMod (F0, G0, MOD); return F0G0 + MLo*(F0G1 + F1G0); } else { m= (int) ceil (tmax (degF, degG)/2.0); CanonicalForm yToM= power (y, m); CanonicalForm F0= mod (F, yToM); CanonicalForm F1= div (F, yToM); CanonicalForm G0= mod (G, yToM); CanonicalForm G1= div (G, yToM); CanonicalForm H00= mulMod (F0, G0, MOD); CanonicalForm H11= mulMod (F1, G1, MOD); CanonicalForm H01= mulMod (F0 + F1, G0 + G1, MOD); return H11*yToM*yToM + (H01 - H11 - H00)*yToM + H00; } DEBOUTLN (cerr, "fatal end in mulMod"); } CanonicalForm prodMod (const CFList& L, const CanonicalForm& M) { if (L.isEmpty()) return 1; int l= L.length(); if (l == 1) return mod (L.getFirst(), M); else if (l == 2) { CanonicalForm result= mulMod2 (L.getFirst(), L.getLast(), M); return result; } else { l /= 2; CFList tmp1, tmp2; CFListIterator i= L; CanonicalForm buf1, buf2; for (int j= 1; j <= l; j++, i++) tmp1.append (i.getItem()); tmp2= Difference (L, tmp1); buf1= prodMod (tmp1, M); buf2= prodMod (tmp2, M); CanonicalForm result= mulMod2 (buf1, buf2, M); return result; } } CanonicalForm prodMod (const CFList& L, const CFList& M) { if (L.isEmpty()) return 1; else if (L.length() == 1) return L.getFirst(); else if (L.length() == 2) return mulMod (L.getFirst(), L.getLast(), M); else { int l= L.length()/2; CFListIterator i= L; CFList tmp1, tmp2; CanonicalForm buf1, buf2; for (int j= 1; j <= l; j++, i++) tmp1.append (i.getItem()); tmp2= Difference (L, tmp1); buf1= prodMod (tmp1, M); buf2= prodMod (tmp2, M); return mulMod (buf1, buf2, M); } } CanonicalForm reverse (const CanonicalForm& F, int d) { if (d == 0) return F; CanonicalForm A= F; Variable y= Variable (2); Variable x= Variable (1); if (degree (A, x) > 0) { A= swapvar (A, x, y); CanonicalForm result= 0; CFIterator i= A; while (d - i.exp() < 0) i++; for (; i.hasTerms() && (d - i.exp() >= 0); i++) result += swapvar (i.coeff(),x,y)*power (x, d - i.exp()); return result; } else return A*power (x, d); } CanonicalForm newtonInverse (const CanonicalForm& F, const int n, const CanonicalForm& M) { int l= ilog2(n); CanonicalForm g= mod (F, M)[0] [0]; ASSERT (!g.isZero(), "expected a unit"); Variable alpha; if (!g.isOne()) g = 1/g; Variable x= Variable (1); CanonicalForm result; int exp= 0; if (n & 1) { result= g; exp= 1; } CanonicalForm h; for (int i= 1; i <= l; i++) { h= mulMod2 (g, mod (F, power (x, (1 << i))), M); h= mod (h, power (x, (1 << i)) - 1); h= div (h, power (x, (1 << (i - 1)))); h= mod (h, M); g -= power (x, (1 << (i - 1)))* mod (mulMod2 (g, h, M), power (x, (1 << (i - 1)))); if (n & (1 << i)) { if (exp) { h= mulMod2 (result, mod (F, power (x, exp + (1 << i))), M); h= mod (h, power (x, exp + (1 << i)) - 1); h= div (h, power (x, exp)); h= mod (h, M); result -= power(x, exp)*mod (mulMod2 (g, h, M), power (x, (1 << i))); exp += (1 << i); } else { exp= (1 << i); result= g; } } } return result; } CanonicalForm newtonDiv (const CanonicalForm& F, const CanonicalForm& G, const CanonicalForm& M) { ASSERT (getCharacteristic() > 0, "positive characteristic expected"); ASSERT (CFFactory::gettype() != GaloisFieldDomain, "no GF expected"); CanonicalForm A= mod (F, M); CanonicalForm B= mod (G, M); Variable x= Variable (1); int degA= degree (A, x); int degB= degree (B, x); int m= degA - degB; if (m < 0) return 0; CanonicalForm Q; if (degB <= 1 || CFFactory::gettype() == GaloisFieldDomain) { CanonicalForm R; divrem2 (A, B, Q, R, M); } else { CanonicalForm R= reverse (A, degA); CanonicalForm revB= reverse (B, degB); revB= newtonInverse (revB, m + 1, M); Q= mulMod2 (R, revB, M); Q= mod (Q, power (x, m + 1)); Q= reverse (Q, m); } return Q; } void newtonDivrem (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, CanonicalForm& R, const CanonicalForm& M) { CanonicalForm A= mod (F, M); CanonicalForm B= mod (G, M); Variable x= Variable (1); int degA= degree (A, x); int degB= degree (B, x); int m= degA - degB; if (m < 0) { R= A; Q= 0; return; } if (degB <= 1 || CFFactory::gettype() == GaloisFieldDomain) { divrem2 (A, B, Q, R, M); } else { R= reverse (A, degA); CanonicalForm revB= reverse (B, degB); revB= newtonInverse (revB, m + 1, M); Q= mulMod2 (R, revB, M); Q= mod (Q, power (x, m + 1)); Q= reverse (Q, m); R= A - mulMod2 (Q, B, M); } } static inline CFList split (const CanonicalForm& F, const int m, const Variable& x) { CanonicalForm A= F; CanonicalForm buf= 0; bool swap= false; if (degree (A, x) <= 0) return CFList(A); else if (x.level() != A.level()) { swap= true; A= swapvar (A, x, A.mvar()); } int j= (int) floor ((double) degree (A)/ m); CFList result; CFIterator i= A; for (; j >= 0; j--) { while (i.hasTerms() && i.exp() - j*m >= 0) { if (swap) buf += i.coeff()*power (A.mvar(), i.exp() - j*m); else buf += i.coeff()*power (x, i.exp() - j*m); i++; } if (swap) result.append (swapvar (buf, x, F.mvar())); else result.append (buf); buf= 0; } return result; } static inline void divrem32 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, CanonicalForm& R, const CFList& M); static inline void divrem21 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, CanonicalForm& R, const CFList& M) { CanonicalForm A= mod (F, M); CanonicalForm B= mod (G, M); Variable x= Variable (1); int degB= degree (B, x); int degA= degree (A, x); if (degA < degB) { Q= 0; R= A; return; } ASSERT (2*degB > degA, "expected degree (F, 1) < 2*degree (G, 1)"); if (degB < 1) { divrem (A, B, Q, R); Q= mod (Q, M); R= mod (R, M); return; } int m= (int) ceil ((double) (degB + 1)/2.0) + 1; CFList splitA= split (A, m, x); if (splitA.length() == 3) splitA.insert (0); if (splitA.length() == 2) { splitA.insert (0); splitA.insert (0); } if (splitA.length() == 1) { splitA.insert (0); splitA.insert (0); splitA.insert (0); } CanonicalForm xToM= power (x, m); CFListIterator i= splitA; CanonicalForm H= i.getItem(); i++; H *= xToM; H += i.getItem(); i++; H *= xToM; H += i.getItem(); i++; divrem32 (H, B, Q, R, M); CFList splitR= split (R, m, x); if (splitR.length() == 1) splitR.insert (0); H= splitR.getFirst(); H *= xToM; H += splitR.getLast(); H *= xToM; H += i.getItem(); CanonicalForm bufQ; divrem32 (H, B, bufQ, R, M); Q *= xToM; Q += bufQ; return; } static inline void divrem32 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, CanonicalForm& R, const CFList& M) { CanonicalForm A= mod (F, M); CanonicalForm B= mod (G, M); Variable x= Variable (1); int degB= degree (B, x); int degA= degree (A, x); if (degA < degB) { Q= 0; R= A; return; } ASSERT (3*(degB/2) > degA, "expected degree (F, 1) < 3*(degree (G, 1)/2)"); if (degB < 1) { divrem (A, B, Q, R); Q= mod (Q, M); R= mod (R, M); return; } int m= (int) ceil ((double) (degB + 1)/ 2.0); CFList splitA= split (A, m, x); CFList splitB= split (B, m, x); if (splitA.length() == 2) { splitA.insert (0); } if (splitA.length() == 1) { splitA.insert (0); splitA.insert (0); } CanonicalForm xToM= power (x, m); CanonicalForm H; CFListIterator i= splitA; i++; if (degree (splitA.getFirst(), x) < degree (splitB.getFirst(), x)) { H= splitA.getFirst()*xToM + i.getItem(); divrem21 (H, splitB.getFirst(), Q, R, M); } else { R= splitA.getFirst()*xToM + i.getItem() + splitB.getFirst() - splitB.getFirst()*xToM; Q= xToM - 1; } H= mulMod (Q, splitB.getLast(), M); R= R*xToM + splitA.getLast() - H; while (degree (R, x) >= degB) { xToM= power (x, degree (R, x) - degB); Q += LC (R, x)*xToM; R -= mulMod (LC (R, x), B, M)*xToM; Q= mod (Q, M); R= mod (R, M); } return; } void divrem2 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, CanonicalForm& R, const CanonicalForm& M) { CanonicalForm A= mod (F, M); CanonicalForm B= mod (G, M); if (B.inCoeffDomain()) { divrem (A, B, Q, R); return; } if (A.inCoeffDomain() && !B.inCoeffDomain()) { Q= 0; R= A; return; } if (B.level() < A.level()) { divrem (A, B, Q, R); return; } if (A.level() > B.level()) { R= A; Q= 0; return; } if (B.level() == 1 && B.isUnivariate()) { divrem (A, B, Q, R); return; } if (!(B.level() == 1 && B.isUnivariate()) && (A.level() == 1 && A.isUnivariate())) { Q= 0; R= A; return; } Variable x= Variable (1); int degB= degree (B, x); if (degB > degree (A, x)) { Q= 0; R= A; return; } CFList splitA= split (A, degB, x); CanonicalForm xToDegB= power (x, degB); CanonicalForm H, bufQ; Q= 0; CFListIterator i= splitA; H= i.getItem()*xToDegB; i++; H += i.getItem(); CFList buf; while (i.hasItem()) { buf= CFList (M); divrem21 (H, B, bufQ, R, buf); i++; if (i.hasItem()) H= R*xToDegB + i.getItem(); Q *= xToDegB; Q += bufQ; } return; } void divrem (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, CanonicalForm& R, const CFList& MOD) { CanonicalForm A= mod (F, MOD); CanonicalForm B= mod (G, MOD); Variable x= Variable (1); int degB= degree (B, x); if (degB > degree (A, x)) { Q= 0; R= A; return; } if (degB <= 0) { divrem (A, B, Q, R); Q= mod (Q, MOD); R= mod (R, MOD); return; } CFList splitA= split (A, degB, x); CanonicalForm xToDegB= power (x, degB); CanonicalForm H, bufQ; Q= 0; CFListIterator i= splitA; H= i.getItem()*xToDegB; i++; H += i.getItem(); while (i.hasItem()) { divrem21 (H, B, bufQ, R, MOD); i++; if (i.hasItem()) H= R*xToDegB + i.getItem(); Q *= xToDegB; Q += bufQ; } return; } void sortList (CFList& list, const Variable& x) { int l= 1; int k= 1; CanonicalForm buf; CFListIterator m; for (CFListIterator i= list; l <= list.length(); i++, l++) { for (CFListIterator j= list; k <= list.length() - l; k++) { m= j; m++; if (degree (j.getItem(), x) > degree (m.getItem(), x)) { buf= m.getItem(); m.getItem()= j.getItem(); j.getItem()= buf; j++; j.getItem()= m.getItem(); } else j++; } k= 1; } } static inline CFList diophantine (const CanonicalForm& F, const CFList& factors) { CanonicalForm buf1, buf2, buf3, S, T; CFListIterator i= factors; CFList result; if (i.hasItem()) i++; buf1= F/factors.getFirst(); buf2= divNTL (F, i.getItem()); buf3= extgcd (buf1, buf2, S, T); result.append (S); result.append (T); if (i.hasItem()) i++; for (; i.hasItem(); i++) { buf1= divNTL (F, i.getItem()); buf3= extgcd (buf3, buf1, S, T); CFListIterator k= factors; for (CFListIterator j= result; j.hasItem(); j++, k++) { j.getItem()= mulNTL (j.getItem(), S); j.getItem()= modNTL (j.getItem(), k.getItem()); } result.append (T); } return result; } void henselStep12 (const CanonicalForm& F, const CFList& factors, CFArray& bufFactors, const CFList& diophant, CFMatrix& M, CFArray& Pi, int j) { CanonicalForm E; CanonicalForm xToJ= power (F.mvar(), j); Variable x= F.mvar(); // compute the error if (j == 1) E= F[j]; else { if (degree (Pi [factors.length() - 2], x) > 0) E= F[j] - Pi [factors.length() - 2] [j]; else E= F[j]; } CFArray buf= CFArray (diophant.length()); bufFactors[0]= mod (factors.getFirst(), power (F.mvar(), j + 1)); int k= 0; CanonicalForm remainder; // actual lifting for (CFListIterator i= diophant; i.hasItem(); i++, k++) { if (degree (bufFactors[k], x) > 0) { if (k > 0) remainder= modNTL (E, bufFactors[k] [0]); else remainder= E; } else remainder= modNTL (E, bufFactors[k]); buf[k]= mulNTL (i.getItem(), remainder); if (degree (bufFactors[k], x) > 0) buf[k]= modNTL (buf[k], bufFactors[k] [0]); else buf[k]= modNTL (buf[k], bufFactors[k]); } for (k= 1; k < factors.length(); k++) bufFactors[k] += xToJ*buf[k]; // update Pi [0] int degBuf0= degree (bufFactors[0], x); int degBuf1= degree (bufFactors[1], x); if (degBuf0 > 0 && degBuf1 > 0) M (j + 1, 1)= mulNTL (bufFactors[0] [j], bufFactors[1] [j]); CanonicalForm uIZeroJ; if (j == 1) { if (degBuf0 > 0 && degBuf1 > 0) uIZeroJ= mulNTL ((bufFactors[0] [0] + bufFactors[0] [j]), (bufFactors[1] [0] + buf[1])) - M(1, 1) - M(j + 1, 1); else if (degBuf0 > 0) uIZeroJ= mulNTL (bufFactors[0] [j], bufFactors[1]); else if (degBuf1 > 0) uIZeroJ= mulNTL (bufFactors[0], buf[1]); else uIZeroJ= 0; Pi [0] += xToJ*uIZeroJ; } else { if (degBuf0 > 0 && degBuf1 > 0) uIZeroJ= mulNTL ((bufFactors[0] [0] + bufFactors[0] [j]), (bufFactors[1] [0] + buf[1])) - M(1, 1) - M(j + 1, 1); else if (degBuf0 > 0) uIZeroJ= mulNTL (bufFactors[0] [j], bufFactors[1]); else if (degBuf1 > 0) uIZeroJ= mulNTL (bufFactors[0], buf[1]); else uIZeroJ= 0; Pi [0] += xToJ*uIZeroJ; } CFArray tmp= CFArray (factors.length() - 1); for (k= 0; k < factors.length() - 1; k++) tmp[k]= 0; CFIterator one, two; one= bufFactors [0]; two= bufFactors [1]; if (degBuf0 > 0 && degBuf1 > 0) { for (k= 1; k <= (int) ceil (j/2.0); k++) { if (k != j - k + 1) { if ((one.hasTerms() && one.exp() == j - k + 1) && (two.hasTerms() && two.exp() == j - k + 1)) { tmp[0] += mulNTL ((bufFactors[0] [k] + one.coeff()), (bufFactors[1] [k] + two.coeff())) - M (k + 1, 1) - M (j - k + 2, 1); one++; two++; } else if (one.hasTerms() && one.exp() == j - k + 1) { tmp[0] += mulNTL ((bufFactors[0] [k] + one.coeff()), bufFactors[1] [k]) - M (k + 1, 1); one++; } else if (two.hasTerms() && two.exp() == j - k + 1) { tmp[0] += mulNTL (bufFactors[0] [k], (bufFactors[1] [k] + two.coeff())) - M (k + 1, 1); two++; } } else { tmp[0] += M (k + 1, 1); } } } Pi [0] += tmp[0]*xToJ*F.mvar(); // update Pi [l] int degPi, degBuf; for (int l= 1; l < factors.length() - 1; l++) { degPi= degree (Pi [l - 1], x); degBuf= degree (bufFactors[l + 1], x); if (degPi > 0 && degBuf > 0) M (j + 1, l + 1)= mulNTL (Pi [l - 1] [j], bufFactors[l + 1] [j]); if (j == 1) { if (degPi > 0 && degBuf > 0) Pi [l] += xToJ*(mulNTL (Pi [l - 1] [0] + Pi [l - 1] [j], bufFactors[l + 1] [0] + buf[l + 1]) - M (j + 1, l +1) - M (1, l + 1)); else if (degPi > 0) Pi [l] += xToJ*(mulNTL (Pi [l - 1] [j], bufFactors[l + 1])); else if (degBuf > 0) Pi [l] += xToJ*(mulNTL (Pi [l - 1], buf[l + 1])); } else { if (degPi > 0 && degBuf > 0) { uIZeroJ= mulNTL (uIZeroJ, bufFactors [l + 1] [0]); uIZeroJ += mulNTL (Pi [l - 1] [0], buf [l + 1]); } else if (degPi > 0) uIZeroJ= mulNTL (uIZeroJ, bufFactors [l + 1]); else if (degBuf > 0) { uIZeroJ= mulNTL (uIZeroJ, bufFactors [l + 1] [0]); uIZeroJ += mulNTL (Pi [l - 1], buf[l + 1]); } Pi[l] += xToJ*uIZeroJ; } one= bufFactors [l + 1]; two= Pi [l - 1]; if (two.hasTerms() && two.exp() == j + 1) { if (degBuf > 0 && degPi > 0) { tmp[l] += mulNTL (two.coeff(), bufFactors[l + 1][0]); two++; } else if (degPi > 0) { tmp[l] += mulNTL (two.coeff(), bufFactors[l + 1]); two++; } } if (degBuf > 0 && degPi > 0) { for (k= 1; k <= (int) ceil (j/2.0); k++) { if (k != j - k + 1) { if ((one.hasTerms() && one.exp() == j - k + 1) && (two.hasTerms() && two.exp() == j - k + 1)) { tmp[l] += mulNTL ((bufFactors[l + 1] [k] + one.coeff()), (Pi[l - 1] [k] + two.coeff())) - M (k + 1, l + 1) - M (j - k + 2, l + 1); one++; two++; } else if (one.hasTerms() && one.exp() == j - k + 1) { tmp[l] += mulNTL ((bufFactors[l + 1] [k] + one.coeff()), Pi[l - 1] [k]) - M (k + 1, l + 1); one++; } else if (two.hasTerms() && two.exp() == j - k + 1) { tmp[l] += mulNTL (bufFactors[l + 1] [k], (Pi[l - 1] [k] + two.coeff())) - M (k + 1, l + 1); two++; } } else tmp[l] += M (k + 1, l + 1); } } Pi[l] += tmp[l]*xToJ*F.mvar(); } return; } void henselLift12 (const CanonicalForm& F, CFList& factors, int l, CFArray& Pi, CFList& diophant, CFMatrix& M, bool sort) { if (sort) sortList (factors, Variable (1)); Pi= CFArray (factors.length() - 1); CFListIterator j= factors; diophant= diophantine (F[0], factors); DEBOUTLN (cerr, "diophant= " << diophant); j++; Pi [0]= mulNTL (j.getItem(), mod (factors.getFirst(), F.mvar())); M (1, 1)= Pi [0]; int i= 1; if (j.hasItem()) j++; for (; j.hasItem(); j++, i++) { Pi [i]= mulNTL (Pi [i - 1], j.getItem()); M (1, i + 1)= Pi [i]; } CFArray bufFactors= CFArray (factors.length()); i= 0; for (CFListIterator k= factors; k.hasItem(); i++, k++) { if (i == 0) bufFactors[i]= mod (k.getItem(), F.mvar()); else bufFactors[i]= k.getItem(); } for (i= 1; i < l; i++) henselStep12 (F, factors, bufFactors, diophant, M, Pi, i); CFListIterator k= factors; for (i= 0; i < factors.length (); i++, k++) k.getItem()= bufFactors[i]; factors.removeFirst(); return; } void henselLiftResume12 (const CanonicalForm& F, CFList& factors, int start, int end, CFArray& Pi, const CFList& diophant, CFMatrix& M) { CFArray bufFactors= CFArray (factors.length()); int i= 0; CanonicalForm xToStart= power (F.mvar(), start); for (CFListIterator k= factors; k.hasItem(); k++, i++) { if (i == 0) bufFactors[i]= mod (k.getItem(), xToStart); else bufFactors[i]= k.getItem(); } for (i= start; i < end; i++) henselStep12 (F, factors, bufFactors, diophant, M, Pi, i); CFListIterator k= factors; for (i= 0; i < factors.length(); k++, i++) k.getItem()= bufFactors [i]; factors.removeFirst(); return; } static inline CFList biDiophantine (const CanonicalForm& F, const CFList& factors, const int d) { Variable y= F.mvar(); CFList result; if (y.level() == 1) { result= diophantine (F, factors); return result; } else { CFList buf= factors; for (CFListIterator i= buf; i.hasItem(); i++) i.getItem()= mod (i.getItem(), y); CanonicalForm A= mod (F, y); int bufD= 1; CFList recResult= biDiophantine (A, buf, bufD); CanonicalForm e= 1; CFList p; CFArray bufFactors= CFArray (factors.length()); CanonicalForm yToD= power (y, d); int k= 0; for (CFListIterator i= factors; i.hasItem(); i++, k++) { bufFactors [k]= i.getItem(); } CanonicalForm b; for (k= 0; k < factors.length(); k++) //TODO compute b's faster { b= 1; if (fdivides (bufFactors[k], F)) b= F/bufFactors[k]; else { for (int l= 0; l < factors.length(); l++) { if (l == k) continue; else { b= mulMod2 (b, bufFactors[l], yToD); } } } p.append (b); } CFListIterator j= p; for (CFListIterator i= recResult; i.hasItem(); i++, j++) e -= i.getItem()*j.getItem(); if (e.isZero()) return recResult; CanonicalForm coeffE; CFList s; result= recResult; CanonicalForm g; for (int i= 1; i < d; i++) { if (degree (e, y) > 0) coeffE= e[i]; else coeffE= 0; if (!coeffE.isZero()) { CFListIterator k= result; CFListIterator l= p; int ii= 0; j= recResult; for (; j.hasItem(); j++, k++, l++, ii++) { g= coeffE*j.getItem(); if (degree (bufFactors[ii], y) <= 0) g= mod (g, bufFactors[ii]); else g= mod (g, bufFactors[ii][0]); k.getItem() += g*power (y, i); e -= mulMod2 (g*power(y, i), l.getItem(), yToD); DEBOUTLN (cerr, "mod (e, power (y, i + 1))= " << mod (e, power (y, i + 1))); } } if (e.isZero()) break; } DEBOUTLN (cerr, "mod (e, y)= " << mod (e, y)); #ifdef DEBUGOUTPUT CanonicalForm test= 0; j= p; for (CFListIterator i= result; i.hasItem(); i++, j++) test += mod (i.getItem()*j.getItem(), power (y, d)); DEBOUTLN (cerr, "test= " << test); #endif return result; } } static inline CFList multiRecDiophantine (const CanonicalForm& F, const CFList& factors, const CFList& recResult, const CFList& M, const int d) { Variable y= F.mvar(); CFList result; CFListIterator i; CanonicalForm e= 1; CFListIterator j= factors; CFList p; CFArray bufFactors= CFArray (factors.length()); CanonicalForm yToD= power (y, d); int k= 0; for (CFListIterator i= factors; i.hasItem(); i++, k++) bufFactors [k]= i.getItem(); CanonicalForm b; CFList buf= M; buf.removeLast(); buf.append (yToD); for (k= 0; k < factors.length(); k++) //TODO compute b's faster { b= 1; if (fdivides (bufFactors[k], F)) b= F/bufFactors[k]; else { for (int l= 0; l < factors.length(); l++) { if (l == k) continue; else { b= mulMod (b, bufFactors[l], buf); } } } p.append (b); } j= p; for (CFListIterator i= recResult; i.hasItem(); i++, j++) e -= mulMod (i.getItem(), j.getItem(), M); if (e.isZero()) return recResult; CanonicalForm coeffE; CFList s; result= recResult; CanonicalForm g; for (int i= 1; i < d; i++) { if (degree (e, y) > 0) coeffE= e[i]; else coeffE= 0; if (!coeffE.isZero()) { CFListIterator k= result; CFListIterator l= p; j= recResult; int ii= 0; CanonicalForm dummy; for (; j.hasItem(); j++, k++, l++, ii++) { g= mulMod (coeffE, j.getItem(), M); if (degree (bufFactors[ii], y) <= 0) divrem (g, mod (bufFactors[ii], Variable (y.level() - 1)), dummy, g, M); else divrem (g, bufFactors[ii][0], dummy, g, M); k.getItem() += g*power (y, i); e -= mulMod (g*power (y, i), l.getItem(), M); } } if (e.isZero()) break; } #ifdef DEBUGOUTPUT CanonicalForm test= 0; j= p; for (CFListIterator i= result; i.hasItem(); i++, j++) test += mod (i.getItem()*j.getItem(), power (y, d)); DEBOUTLN (cerr, "test= " << test); #endif return result; } static inline void henselStep (const CanonicalForm& F, const CFList& factors, CFArray& bufFactors, const CFList& diophant, CFMatrix& M, CFArray& Pi, int j, const CFList& MOD) { CanonicalForm E; CanonicalForm xToJ= power (F.mvar(), j); Variable x= F.mvar(); // compute the error if (j == 1) { E= F[j]; #ifdef DEBUGOUTPUT CanonicalForm test= 1; for (int i= 0; i < factors.length(); i++) { if (i == 0) test= mulMod (test, mod (bufFactors [i], xToJ), MOD); else test= mulMod (test, bufFactors[i], MOD); } CanonicalForm test2= mod (F-test, xToJ); test2= mod (test2, MOD); DEBOUTLN (cerr, "test= " << test2); #endif } else { #ifdef DEBUGOUTPUT CanonicalForm test= 1; for (int i= 0; i < factors.length(); i++) { if (i == 0) test *= mod (bufFactors [i], power (x, j)); else test *= bufFactors[i]; } test= mod (test, power (x, j)); test= mod (test, MOD); CanonicalForm test2= mod (F, power (x, j - 1)) - mod (test, power (x, j-1)); DEBOUTLN (cerr, "test= " << test2); #endif if (degree (Pi [factors.length() - 2], x) > 0) E= F[j] - Pi [factors.length() - 2] [j]; else E= F[j]; } CFArray buf= CFArray (diophant.length()); bufFactors[0]= mod (factors.getFirst(), power (F.mvar(), j + 1)); int k= 0; // actual lifting CanonicalForm dummy, rest1; for (CFListIterator i= diophant; i.hasItem(); i++, k++) { if (degree (bufFactors[k], x) > 0) { if (k > 0) divrem (E, bufFactors[k] [0], dummy, rest1, MOD); else rest1= E; } else divrem (E, bufFactors[k], dummy, rest1, MOD); buf[k]= mulMod (i.getItem(), rest1, MOD); if (degree (bufFactors[k], x) > 0) divrem (buf[k], bufFactors[k] [0], dummy, buf[k], MOD); else divrem (buf[k], bufFactors[k], dummy, buf[k], MOD); } for (k= 1; k < factors.length(); k++) bufFactors[k] += xToJ*buf[k]; // update Pi [0] int degBuf0= degree (bufFactors[0], x); int degBuf1= degree (bufFactors[1], x); if (degBuf0 > 0 && degBuf1 > 0) M (j + 1, 1)= mulMod (bufFactors[0] [j], bufFactors[1] [j], MOD); CanonicalForm uIZeroJ; if (j == 1) { if (degBuf0 > 0 && degBuf1 > 0) uIZeroJ= mulMod ((bufFactors[0] [0] + bufFactors[0] [j]), (bufFactors[1] [0] + buf[1]), MOD) - M(1, 1) - M(j + 1, 1); else if (degBuf0 > 0) uIZeroJ= mulMod (bufFactors[0] [j], bufFactors[1], MOD); else if (degBuf1 > 0) uIZeroJ= mulMod (bufFactors[0], buf[1], MOD); else uIZeroJ= 0; Pi [0] += xToJ*uIZeroJ; } else { if (degBuf0 > 0 && degBuf1 > 0) uIZeroJ= mulMod ((bufFactors[0] [0] + bufFactors[0] [j]), (bufFactors[1] [0] + buf[1]), MOD) - M(1, 1) - M(j + 1, 1); else if (degBuf0 > 0) uIZeroJ= mulMod (bufFactors[0] [j], bufFactors[1], MOD); else if (degBuf1 > 0) uIZeroJ= mulMod (bufFactors[0], buf[1], MOD); else uIZeroJ= 0; Pi [0] += xToJ*uIZeroJ; } CFArray tmp= CFArray (factors.length() - 1); for (k= 0; k < factors.length() - 1; k++) tmp[k]= 0; CFIterator one, two; one= bufFactors [0]; two= bufFactors [1]; if (degBuf0 > 0 && degBuf1 > 0) { for (k= 1; k <= (int) ceil (j/2.0); k++) { if (k != j - k + 1) { if ((one.hasTerms() && one.exp() == j - k + 1) && (two.hasTerms() && two.exp() == j - k + 1)) { tmp[0] += mulMod ((bufFactors[0] [k] + one.coeff()), (bufFactors[1] [k] + two.coeff()), MOD) - M (k + 1, 1) - M (j - k + 2, 1); one++; two++; } else if (one.hasTerms() && one.exp() == j - k + 1) { tmp[0] += mulMod ((bufFactors[0] [k] + one.coeff()), bufFactors[1] [k], MOD) - M (k + 1, 1); one++; } else if (two.hasTerms() && two.exp() == j - k + 1) { tmp[0] += mulMod (bufFactors[0] [k], (bufFactors[1] [k] + two.coeff()), MOD) - M (k + 1, 1); two++; } } else { tmp[0] += M (k + 1, 1); } } } Pi [0] += tmp[0]*xToJ*F.mvar(); // update Pi [l] int degPi, degBuf; for (int l= 1; l < factors.length() - 1; l++) { degPi= degree (Pi [l - 1], x); degBuf= degree (bufFactors[l + 1], x); if (degPi > 0 && degBuf > 0) M (j + 1, l + 1)= mulMod (Pi [l - 1] [j], bufFactors[l + 1] [j], MOD); if (j == 1) { if (degPi > 0 && degBuf > 0) Pi [l] += xToJ*(mulMod ((Pi [l - 1] [0] + Pi [l - 1] [j]), (bufFactors[l + 1] [0] + buf[l + 1]), MOD) - M (j + 1, l +1)- M (1, l + 1)); else if (degPi > 0) Pi [l] += xToJ*(mulMod (Pi [l - 1] [j], bufFactors[l + 1], MOD)); else if (degBuf > 0) Pi [l] += xToJ*(mulMod (Pi [l - 1], buf[l + 1], MOD)); } else { if (degPi > 0 && degBuf > 0) { uIZeroJ= mulMod (uIZeroJ, bufFactors [l + 1] [0], MOD); uIZeroJ += mulMod (Pi [l - 1] [0], buf [l + 1], MOD); } else if (degPi > 0) uIZeroJ= mulMod (uIZeroJ, bufFactors [l + 1], MOD); else if (degBuf > 0) { uIZeroJ= mulMod (uIZeroJ, bufFactors [l + 1] [0], MOD); uIZeroJ += mulMod (Pi [l - 1], buf[l + 1], MOD); } Pi[l] += xToJ*uIZeroJ; } one= bufFactors [l + 1]; two= Pi [l - 1]; if (two.hasTerms() && two.exp() == j + 1) { if (degBuf > 0 && degPi > 0) { tmp[l] += mulMod (two.coeff(), bufFactors[l + 1][0], MOD); two++; } else if (degPi > 0) { tmp[l] += mulMod (two.coeff(), bufFactors[l + 1], MOD); two++; } } if (degBuf > 0 && degPi > 0) { for (k= 1; k <= (int) ceil (j/2.0); k++) { if (k != j - k + 1) { if ((one.hasTerms() && one.exp() == j - k + 1) && (two.hasTerms() && two.exp() == j - k + 1)) { tmp[l] += mulMod ((bufFactors[l + 1] [k] + one.coeff()), (Pi[l - 1] [k] + two.coeff()), MOD) - M (k + 1, l + 1) - M (j - k + 2, l + 1); one++; two++; } else if (one.hasTerms() && one.exp() == j - k + 1) { tmp[l] += mulMod ((bufFactors[l + 1] [k] + one.coeff()), Pi[l - 1] [k], MOD) - M (k + 1, l + 1); one++; } else if (two.hasTerms() && two.exp() == j - k + 1) { tmp[l] += mulMod (bufFactors[l + 1] [k], (Pi[l - 1] [k] + two.coeff()), MOD) - M (k + 1, l + 1); two++; } } else tmp[l] += M (k + 1, l + 1); } } Pi[l] += tmp[l]*xToJ*F.mvar(); } return; } CFList henselLift23 (const CFList& eval, const CFList& factors, const int* l, CFList& diophant, CFArray& Pi, CFMatrix& M) { CFList buf= factors; int k= 0; int liftBoundBivar= l[k]; diophant= biDiophantine (eval.getFirst(), buf, liftBoundBivar); CFList MOD; MOD.append (power (Variable (2), liftBoundBivar)); CFArray bufFactors= CFArray (factors.length()); k= 0; CFListIterator j= eval; j++; buf.removeFirst(); buf.insert (LC (j.getItem(), 1)); for (CFListIterator i= buf; i.hasItem(); i++, k++) bufFactors[k]= i.getItem(); Pi= CFArray (factors.length() - 1); CFListIterator i= buf; i++; Variable y= j.getItem().mvar(); Pi [0]= mulMod (i.getItem(), mod (buf.getFirst(), y), MOD); M (1, 1)= Pi [0]; k= 1; if (i.hasItem()) i++; for (; i.hasItem(); i++, k++) { Pi [k]= mulMod (Pi [k - 1], i.getItem(), MOD); M (1, k + 1)= Pi [k]; } for (int d= 1; d < l[1]; d++) henselStep (j.getItem(), buf, bufFactors, diophant, M, Pi, d, MOD); CFList result; for (k= 1; k < factors.length(); k++) result.append (bufFactors[k]); return result; } void henselLiftResume (const CanonicalForm& F, CFList& factors, int start, int end, CFArray& Pi, const CFList& diophant, CFMatrix& M, const CFList& MOD) { CFArray bufFactors= CFArray (factors.length()); int i= 0; CanonicalForm xToStart= power (F.mvar(), start); for (CFListIterator k= factors; k.hasItem(); k++, i++) { if (i == 0) bufFactors[i]= mod (k.getItem(), xToStart); else bufFactors[i]= k.getItem(); } for (i= start; i < end; i++) henselStep (F, factors, bufFactors, diophant, M, Pi, i, MOD); CFListIterator k= factors; for (i= 0; i < factors.length(); k++, i++) k.getItem()= bufFactors [i]; factors.removeFirst(); return; } CFList henselLift (const CFList& F, const CFList& factors, const CFList& MOD, CFList& diophant, CFArray& Pi, CFMatrix& M, const int lOld, const int lNew) { diophant= multiRecDiophantine (F.getFirst(), factors, diophant, MOD, lOld); int k= 0; CFArray bufFactors= CFArray (factors.length()); for (CFListIterator i= factors; i.hasItem(); i++, k++) { if (k == 0) bufFactors[k]= LC (F.getLast(), 1); else bufFactors[k]= i.getItem(); } CFList buf= factors; buf.removeFirst(); buf.insert (LC (F.getLast(), 1)); CFListIterator i= buf; i++; Variable y= F.getLast().mvar(); Variable x= F.getFirst().mvar(); CanonicalForm xToLOld= power (x, lOld); Pi [0]= mod (Pi[0], xToLOld); M (1, 1)= Pi [0]; k= 1; if (i.hasItem()) i++; for (; i.hasItem(); i++, k++) { Pi [k]= mod (Pi [k], xToLOld); M (1, k + 1)= Pi [k]; } for (int d= 1; d < lNew; d++) henselStep (F.getLast(), buf, bufFactors, diophant, M, Pi, d, MOD); CFList result; for (k= 1; k < factors.length(); k++) result.append (bufFactors[k]); return result; } CFList henselLift (const CFList& eval, const CFList& factors, const int* l, const int lLength, bool sort) { CFList diophant; CFList buf= factors; buf.insert (LC (eval.getFirst(), 1)); if (sort) sortList (buf, Variable (1)); CFArray Pi; CFMatrix M= CFMatrix (l[1], factors.length()); CFList result= henselLift23 (eval, buf, l, diophant, Pi, M); if (eval.length() == 2) return result; CFList MOD; for (int i= 0; i < 2; i++) MOD.append (power (Variable (i + 2), l[i])); CFListIterator j= eval; j++; CFList bufEval; bufEval.append (j.getItem()); j++; for (int i= 2; i < lLength && j.hasItem(); i++, j++) { result.insert (LC (bufEval.getFirst(), 1)); bufEval.append (j.getItem()); M= CFMatrix (l[i], factors.length()); result= henselLift (bufEval, result, MOD, diophant, Pi, M, l[i - 1], l[i]); MOD.append (power (Variable (i + 2), l[i])); bufEval.removeFirst(); } return result; } void henselStep122 (const CanonicalForm& F, const CFList& factors, CFArray& bufFactors, const CFList& diophant, CFMatrix& M, CFArray& Pi, int j, const CFArray& LCs) { Variable x= F.mvar(); CanonicalForm xToJ= power (x, j); CanonicalForm E; // compute the error if (degree (Pi [factors.length() - 2], x) > 0) E= F[j] - Pi [factors.length() - 2] [j]; else E= F[j]; CFArray buf= CFArray (diophant.length()); int k= 0; CanonicalForm remainder; // actual lifting for (CFListIterator i= diophant; i.hasItem(); i++, k++) { if (degree (bufFactors[k], x) > 0) remainder= modNTL (E, bufFactors[k] [0]); else remainder= modNTL (E, bufFactors[k]); buf[k]= mulNTL (i.getItem(), remainder); if (degree (bufFactors[k], x) > 0) buf[k]= modNTL (buf[k], bufFactors[k] [0]); else buf[k]= modNTL (buf[k], bufFactors[k]); } for (k= 0; k < factors.length(); k++) bufFactors[k] += xToJ*buf[k]; // update Pi [0] int degBuf0= degree (bufFactors[0], x); int degBuf1= degree (bufFactors[1], x); if (degBuf0 > 0 && degBuf1 > 0) { M (j + 1, 1)= mulNTL (bufFactors[0] [j], bufFactors[1] [j]); if (j + 2 <= M.rows()) M (j + 2, 1)= mulNTL (bufFactors[0] [j + 1], bufFactors[1] [j + 1]); } CanonicalForm uIZeroJ; if (degBuf0 > 0 && degBuf1 > 0) uIZeroJ= mulNTL(bufFactors[0][0],buf[1])+mulNTL (bufFactors[1][0], buf[0]); else if (degBuf0 > 0) uIZeroJ= mulNTL (buf[0], bufFactors[1]); else if (degBuf1 > 0) uIZeroJ= mulNTL (bufFactors[0], buf [1]); else uIZeroJ= 0; Pi [0] += xToJ*uIZeroJ; CFArray tmp= CFArray (factors.length() - 1); for (k= 0; k < factors.length() - 1; k++) tmp[k]= 0; CFIterator one, two; one= bufFactors [0]; two= bufFactors [1]; if (degBuf0 > 0 && degBuf1 > 0) { while (one.hasTerms() && one.exp() > j) one++; while (two.hasTerms() && two.exp() > j) two++; for (k= 1; k <= (int) ceil (j/2.0); k++) { if (one.hasTerms() && two.hasTerms()) { if (k != j - k + 1) { if ((one.hasTerms() && one.exp() == j - k + 1) && + (two.hasTerms() && two.exp() == j - k + 1)) { tmp[0] += mulNTL ((bufFactors[0][k]+one.coeff()),(bufFactors[1][k] + two.coeff())) - M (k + 1, 1) - M (j - k + 2, 1); one++; two++; } else if (one.hasTerms() && one.exp() == j - k + 1) { tmp[0] += mulNTL ((bufFactors[0][k]+one.coeff()), bufFactors[1] [k]) - M (k + 1, 1); one++; } else if (two.hasTerms() && two.exp() == j - k + 1) { tmp[0] += mulNTL (bufFactors[0][k],(bufFactors[1][k] + two.coeff())) - M (k + 1, 1); two++; } } else tmp[0] += M (k + 1, 1); } } } if (degBuf0 >= j + 1 && degBuf1 >= j + 1) { if (j + 2 <= M.rows()) tmp [0] += mulNTL ((bufFactors [0] [j + 1]+ bufFactors [0] [0]), (bufFactors [1] [j + 1] + bufFactors [1] [0])) - M(1,1) - M (j + 2,1); } else if (degBuf0 >= j + 1) { if (degBuf1 > 0) tmp[0] += mulNTL (bufFactors [0] [j+1], bufFactors [1] [0]); else tmp[0] += mulNTL (bufFactors [0] [j+1], bufFactors [1]); } else if (degBuf1 >= j + 1) { if (degBuf0 > 0) tmp[0] += mulNTL (bufFactors [0] [0], bufFactors [1] [j + 1]); else tmp[0] += mulNTL (bufFactors [0], bufFactors [1] [j + 1]); } Pi [0] += tmp[0]*xToJ*F.mvar(); return; } void henselLift122 (const CanonicalForm& F, CFList& factors, int l, CFArray& Pi, CFList& diophant, CFMatrix& M, const CFArray& LCs, bool sort) { if (sort) sortList (factors, Variable (1)); Pi= CFArray (factors.length() - 2); CFList bufFactors2= factors; bufFactors2.removeFirst(); diophant.removeFirst(); CFListIterator iter= diophant; CanonicalForm s,t; extgcd (bufFactors2.getFirst(), bufFactors2.getLast(), s, t); diophant= CFList(); diophant.append (t); diophant.append (s); DEBOUTLN (cerr, "diophant= " << diophant); CFArray bufFactors= CFArray (bufFactors2.length()); int i= 0; for (CFListIterator k= bufFactors2; k.hasItem(); i++, k++) bufFactors[i]= replaceLc (k.getItem(), LCs [i]); Variable x= F.mvar(); if (degree (bufFactors[0], x) > 0 && degree (bufFactors [1], x) > 0) { M (1, 1)= mulNTL (bufFactors [0] [0], bufFactors[1] [0]); Pi [0]= M (1, 1) + (mulNTL (bufFactors [0] [1], bufFactors[1] [0]) + mulNTL (bufFactors [0] [0], bufFactors [1] [1]))*x; } else if (degree (bufFactors[0], x) > 0) { M (1, 1)= mulNTL (bufFactors [0] [0], bufFactors[1]); Pi [0]= M (1, 1) + mulNTL (bufFactors [0] [1], bufFactors[1])*x; } else if (degree (bufFactors[1], x) > 0) { M (1, 1)= mulNTL (bufFactors [0], bufFactors[1] [0]); Pi [0]= M (1, 1) + mulNTL (bufFactors [0], bufFactors[1] [1])*x; } else { M (1, 1)= mulNTL (bufFactors [0], bufFactors[1]); Pi [0]= M (1, 1); } for (i= 1; i < l; i++) henselStep122 (F, bufFactors2, bufFactors, diophant, M, Pi, i, LCs); factors= CFList(); for (i= 0; i < bufFactors.size(); i++) factors.append (bufFactors[i]); return; } /// solve \f$ E=sum_{i= 1}^{r}{\sigma_{i}prod_{j=1, j\neq i}^{r}{f_{i}}}\f$ /// mod M, products contains \f$ prod_{j=1, j\neq i}^{r}{f_{i}}} \f$ static inline CFList diophantine (const CFList& recResult, const CFList& factors, const CFList& products, const CFList& M, const CanonicalForm& E, bool& bad) { if (M.isEmpty()) { CFList result; CFListIterator j= factors; CanonicalForm buf; for (CFListIterator i= recResult; i.hasItem(); i++, j++) { ASSERT (E.isUnivariate() || E.inCoeffDomain(), "constant or univariate poly expected"); ASSERT (i.getItem().isUnivariate() || i.getItem().inCoeffDomain(), "constant or univariate poly expected"); ASSERT (j.getItem().isUnivariate() || j.getItem().inCoeffDomain(), "constant or univariate poly expected"); buf= mulNTL (E, i.getItem()); result.append (modNTL (buf, j.getItem())); } return result; } Variable y= M.getLast().mvar(); CFList bufFactors= factors; for (CFListIterator i= bufFactors; i.hasItem(); i++) i.getItem()= mod (i.getItem(), y); CFList bufProducts= products; for (CFListIterator i= bufProducts; i.hasItem(); i++) i.getItem()= mod (i.getItem(), y); CFList buf= M; buf.removeLast(); CanonicalForm bufE= mod (E, y); CFList recDiophantine= diophantine (recResult, bufFactors, bufProducts, buf, bufE, bad); if (bad) return CFList(); CanonicalForm e= E; CFListIterator j= products; for (CFListIterator i= recDiophantine; i.hasItem(); i++, j++) e -= i.getItem()*j.getItem(); CFList result= recDiophantine; int d= degree (M.getLast()); CanonicalForm coeffE; for (int i= 1; i < d; i++) { if (degree (e, y) > 0) coeffE= e[i]; else coeffE= 0; if (!coeffE.isZero()) { CFListIterator k= result; recDiophantine= diophantine (recResult, bufFactors, bufProducts, buf, coeffE, bad); if (bad) return CFList(); CFListIterator l= products; for (j= recDiophantine; j.hasItem(); j++, k++, l++) { k.getItem() += j.getItem()*power (y, i); e -= j.getItem()*power (y, i)*l.getItem(); } } if (e.isZero()) break; } if (!e.isZero()) { bad= true; return CFList(); } return result; } static inline void henselStep2 (const CanonicalForm& F, const CFList& factors, CFArray& bufFactors, const CFList& diophant, CFMatrix& M, CFArray& Pi, const CFList& products, int j, const CFList& MOD, bool& noOneToOne) { CanonicalForm E; CanonicalForm xToJ= power (F.mvar(), j); Variable x= F.mvar(); // compute the error #ifdef DEBUGOUTPUT CanonicalForm test= 1; for (int i= 0; i < factors.length(); i++) { if (i == 0) test *= mod (bufFactors [i], power (x, j)); else test *= bufFactors[i]; } test= mod (test, power (x, j)); test= mod (test, MOD); CanonicalForm test2= mod (F, power (x, j - 1)) - mod (test, power (x, j-1)); DEBOUTLN (cerr, "test= " << test2); #endif if (degree (Pi [factors.length() - 2], x) > 0) E= F[j] - Pi [factors.length() - 2] [j]; else E= F[j]; CFArray buf= CFArray (diophant.length()); // actual lifting CFList diophantine2= diophantine (diophant, factors, products, MOD, E, noOneToOne); if (noOneToOne) return; int k= 0; for (CFListIterator i= diophantine2; k < factors.length(); k++, i++) { buf[k]= i.getItem(); bufFactors[k] += xToJ*i.getItem(); } // update Pi [0] int degBuf0= degree (bufFactors[0], x); int degBuf1= degree (bufFactors[1], x); if (degBuf0 > 0 && degBuf1 > 0) { M (j + 1, 1)= mulMod (bufFactors[0] [j], bufFactors[1] [j], MOD); if (j + 2 <= M.rows()) M (j + 2, 1)= mulMod (bufFactors[0] [j + 1], bufFactors[1] [j + 1], MOD); } CanonicalForm uIZeroJ; if (degBuf0 > 0 && degBuf1 > 0) uIZeroJ= mulMod (bufFactors[0] [0], buf[1], MOD) + mulMod (bufFactors[1] [0], buf[0], MOD); else if (degBuf0 > 0) uIZeroJ= mulMod (buf[0], bufFactors[1], MOD); else if (degBuf1 > 0) uIZeroJ= mulMod (bufFactors[0], buf[1], MOD); else uIZeroJ= 0; Pi [0] += xToJ*uIZeroJ; CFArray tmp= CFArray (factors.length() - 1); for (k= 0; k < factors.length() - 1; k++) tmp[k]= 0; CFIterator one, two; one= bufFactors [0]; two= bufFactors [1]; if (degBuf0 > 0 && degBuf1 > 0) { while (one.hasTerms() && one.exp() > j) one++; while (two.hasTerms() && two.exp() > j) two++; for (k= 1; k <= (int) ceil (j/2.0); k++) { if (k != j - k + 1) { if ((one.hasTerms() && one.exp() == j - k + 1) && (two.hasTerms() && two.exp() == j - k + 1)) { tmp[0] += mulMod ((bufFactors[0] [k] + one.coeff()), (bufFactors[1] [k] + two.coeff()), MOD) - M (k + 1, 1) - M (j - k + 2, 1); one++; two++; } else if (one.hasTerms() && one.exp() == j - k + 1) { tmp[0] += mulMod ((bufFactors[0] [k] + one.coeff()), bufFactors[1] [k], MOD) - M (k + 1, 1); one++; } else if (two.hasTerms() && two.exp() == j - k + 1) { tmp[0] += mulMod (bufFactors[0] [k], (bufFactors[1] [k] + two.coeff()), MOD) - M (k + 1, 1); two++; } } else { tmp[0] += M (k + 1, 1); } } } if (degBuf0 >= j + 1 && degBuf1 >= j + 1) { if (j + 2 <= M.rows()) tmp [0] += mulMod ((bufFactors [0] [j + 1]+ bufFactors [0] [0]), (bufFactors [1] [j + 1] + bufFactors [1] [0]), MOD) - M(1,1) - M (j + 2,1); } else if (degBuf0 >= j + 1) { if (degBuf1 > 0) tmp[0] += mulMod (bufFactors [0] [j+1], bufFactors [1] [0], MOD); else tmp[0] += mulMod (bufFactors [0] [j+1], bufFactors [1], MOD); } else if (degBuf1 >= j + 1) { if (degBuf0 > 0) tmp[0] += mulMod (bufFactors [0] [0], bufFactors [1] [j + 1], MOD); else tmp[0] += mulMod (bufFactors [0], bufFactors [1] [j + 1], MOD); } Pi [0] += tmp[0]*xToJ*F.mvar(); // update Pi [l] int degPi, degBuf; for (int l= 1; l < factors.length() - 1; l++) { degPi= degree (Pi [l - 1], x); degBuf= degree (bufFactors[l + 1], x); if (degPi > 0 && degBuf > 0) { M (j + 1, l + 1)= mulMod (Pi [l - 1] [j], bufFactors[l + 1] [j], MOD); if (j + 2 <= M.rows()) M (j + 2, l + 1)= mulMod (Pi [l - 1] [j + 1], bufFactors[l + 1] [j + 1], MOD); } if (degPi > 0 && degBuf > 0) uIZeroJ= mulMod (Pi[l -1] [0], buf[l + 1], MOD) + mulMod (uIZeroJ, bufFactors[l+1] [0], MOD); else if (degPi > 0) uIZeroJ= mulMod (uIZeroJ, bufFactors[l + 1], MOD); else if (degBuf > 0) uIZeroJ= mulMod (Pi[l - 1], buf[1], MOD); else uIZeroJ= 0; Pi [l] += xToJ*uIZeroJ; one= bufFactors [l + 1]; two= Pi [l - 1]; if (degBuf > 0 && degPi > 0) { while (one.hasTerms() && one.exp() > j) one++; while (two.hasTerms() && two.exp() > j) two++; for (k= 1; k <= (int) ceil (j/2.0); k++) { if (k != j - k + 1) { if ((one.hasTerms() && one.exp() == j - k + 1) && (two.hasTerms() && two.exp() == j - k + 1)) { tmp[l] += mulMod ((bufFactors[l + 1] [k] + one.coeff()), (Pi[l - 1] [k] + two.coeff()), MOD) - M (k + 1, l + 1) - M (j - k + 2, l + 1); one++; two++; } else if (one.hasTerms() && one.exp() == j - k + 1) { tmp[l] += mulMod ((bufFactors[l + 1] [k] + one.coeff()), Pi[l - 1] [k], MOD) - M (k + 1, l + 1); one++; } else if (two.hasTerms() && two.exp() == j - k + 1) { tmp[l] += mulMod (bufFactors[l + 1] [k], (Pi[l - 1] [k] + two.coeff()), MOD) - M (k + 1, l + 1); two++; } } else tmp[l] += M (k + 1, l + 1); } } if (degPi >= j + 1 && degBuf >= j + 1) { if (j + 2 <= M.rows()) tmp [l] += mulMod ((Pi [l - 1] [j + 1]+ Pi [l - 1] [0]), (bufFactors [l + 1] [j + 1] + bufFactors [l + 1] [0]) , MOD) - M(1,l+1) - M (j + 2,l+1); } else if (degPi >= j + 1) { if (degBuf > 0) tmp[l] += mulMod (Pi [l - 1] [j+1], bufFactors [l + 1] [0], MOD); else tmp[l] += mulMod (Pi [l - 1] [j+1], bufFactors [l + 1], MOD); } else if (degBuf >= j + 1) { if (degPi > 0) tmp[l] += mulMod (Pi [l - 1] [0], bufFactors [l + 1] [j + 1], MOD); else tmp[l] += mulMod (Pi [l - 1], bufFactors [l + 1] [j + 1], MOD); } Pi[l] += tmp[l]*xToJ*F.mvar(); } return; } // wrt. Variable (1) CanonicalForm replaceLC (const CanonicalForm& F, const CanonicalForm& c) { if (degree (F, 1) <= 0) return c; else { CanonicalForm result= swapvar (F, Variable (F.level() + 1), Variable (1)); result += (swapvar (c, Variable (F.level() + 1), Variable (1)) - LC (result))*power (result.mvar(), degree (result)); return swapvar (result, Variable (F.level() + 1), Variable (1)); } } CFList henselLift232 (const CFList& eval, const CFList& factors, int* l, CFList& diophant, CFArray& Pi, CFMatrix& M, const CFList& LCs1, const CFList& LCs2, bool& bad) { CFList buf= factors; int k= 0; int liftBoundBivar= l[k]; CFList bufbuf= factors; Variable v= Variable (2); CFList MOD; MOD.append (power (Variable (2), liftBoundBivar)); CFArray bufFactors= CFArray (factors.length()); k= 0; CFListIterator j= eval; j++; CFListIterator iter1= LCs1; CFListIterator iter2= LCs2; iter1++; iter2++; bufFactors[0]= replaceLC (buf.getFirst(), iter1.getItem()); bufFactors[1]= replaceLC (buf.getLast(), iter2.getItem()); CFListIterator i= buf; i++; Variable y= j.getItem().mvar(); if (y.level() != 3) y= Variable (3); Pi[0]= mod (Pi[0], power (v, liftBoundBivar)); M (1, 1)= Pi[0]; if (degree (bufFactors[0], y) > 0 && degree (bufFactors [1], y) > 0) Pi [0] += (mulMod (bufFactors [0] [1], bufFactors[1] [0], MOD) + mulMod (bufFactors [0] [0], bufFactors [1] [1], MOD))*y; else if (degree (bufFactors[0], y) > 0) Pi [0] += mulMod (bufFactors [0] [1], bufFactors[1], MOD)*y; else if (degree (bufFactors[1], y) > 0) Pi [0] += mulMod (bufFactors [0], bufFactors[1] [1], MOD)*y; CFList products; for (int i= 0; i < bufFactors.size(); i++) { if (degree (bufFactors[i], y) > 0) products.append (eval.getFirst()/bufFactors[i] [0]); else products.append (eval.getFirst()/bufFactors[i]); } for (int d= 1; d < l[1]; d++) { henselStep2 (j.getItem(), buf, bufFactors, diophant, M, Pi, products, d, MOD, bad); if (bad) return CFList(); } CFList result; for (k= 0; k < factors.length(); k++) result.append (bufFactors[k]); return result; } CFList henselLift2 (const CFList& F, const CFList& factors, const CFList& MOD, CFList& diophant, CFArray& Pi, CFMatrix& M, const int lOld, int& lNew, const CFList& LCs1, const CFList& LCs2, bool& bad) { int k= 0; CFArray bufFactors= CFArray (factors.length()); bufFactors[0]= replaceLC (factors.getFirst(), LCs1.getLast()); bufFactors[1]= replaceLC (factors.getLast(), LCs2.getLast()); CFList buf= factors; Variable y= F.getLast().mvar(); Variable x= F.getFirst().mvar(); CanonicalForm xToLOld= power (x, lOld); Pi [0]= mod (Pi[0], xToLOld); M (1, 1)= Pi [0]; if (degree (bufFactors[0], y) > 0 && degree (bufFactors [1], y) > 0) Pi [0] += (mulMod (bufFactors [0] [1], bufFactors[1] [0], MOD) + mulMod (bufFactors [0] [0], bufFactors [1] [1], MOD))*y; else if (degree (bufFactors[0], y) > 0) Pi [0] += mulMod (bufFactors [0] [1], bufFactors[1], MOD)*y; else if (degree (bufFactors[1], y) > 0) Pi [0] += mulMod (bufFactors [0], bufFactors[1] [1], MOD)*y; CFList products; for (int i= 0; i < bufFactors.size(); i++) { if (degree (bufFactors[i], y) > 0) { if (!fdivides (bufFactors[i] [0], F.getFirst())) { bad= true; return CFList(); } products.append (F.getFirst()/bufFactors[i] [0]); } else { if (!fdivides (bufFactors[i], F.getFirst())) { bad= true; return CFList(); } products.append (F.getFirst()/bufFactors[i]); } } for (int d= 1; d < lNew; d++) { henselStep2 (F.getLast(), buf, bufFactors, diophant, M, Pi, products, d, MOD, bad); if (bad) return CFList(); } CFList result; for (k= 0; k < factors.length(); k++) result.append (bufFactors[k]); return result; } CFList henselLift2 (const CFList& eval, const CFList& factors, int* l, const int lLength, bool sort, const CFList& LCs1, const CFList& LCs2, const CFArray& Pi, const CFList& diophant, bool& bad) { CFList bufDiophant= diophant; CFList buf= factors; if (sort) sortList (buf, Variable (1)); CFArray bufPi= Pi; CFMatrix M= CFMatrix (l[1], factors.length()); CFList result= henselLift232(eval, buf, l, bufDiophant, bufPi, M, LCs1, LCs2, bad); if (bad) return CFList(); if (eval.length() == 2) return result; CFList MOD; for (int i= 0; i < 2; i++) MOD.append (power (Variable (i + 2), l[i])); CFListIterator j= eval; j++; CFList bufEval; bufEval.append (j.getItem()); j++; CFListIterator jj= LCs1; CFListIterator jjj= LCs2; CFList bufLCs1, bufLCs2; jj++, jjj++; bufLCs1.append (jj.getItem()); bufLCs2.append (jjj.getItem()); jj++, jjj++; for (int i= 2; i < lLength && j.hasItem(); i++, j++, jj++, jjj++) { bufEval.append (j.getItem()); bufLCs1.append (jj.getItem()); bufLCs2.append (jjj.getItem()); M= CFMatrix (l[i], factors.length()); result= henselLift2 (bufEval, result, MOD, bufDiophant, bufPi, M, l[i - 1], l[i], bufLCs1, bufLCs2, bad); if (bad) return CFList(); MOD.append (power (Variable (i + 2), l[i])); bufEval.removeFirst(); bufLCs1.removeFirst(); bufLCs2.removeFirst(); } return result; } CFList nonMonicHenselLift23 (const CanonicalForm& F, const CFList& factors, const CFList& LCs, CFList& diophant, CFArray& Pi, int liftBound, int bivarLiftBound, bool& bad) { CFList bufFactors2= factors; Variable y= Variable (2); for (CFListIterator i= bufFactors2; i.hasItem(); i++) i.getItem()= mod (i.getItem(), y); CanonicalForm bufF= F; bufF= mod (bufF, y); bufF= mod (bufF, Variable (3)); diophant= diophantine (bufF, bufFactors2); CFMatrix M= CFMatrix (liftBound, bufFactors2.length() - 1); Pi= CFArray (bufFactors2.length() - 1); CFArray bufFactors= CFArray (bufFactors2.length()); CFListIterator j= LCs; int i= 0; for (CFListIterator k= factors; k.hasItem(); j++, k++, i++) bufFactors[i]= replaceLC (k.getItem(), j.getItem()); //initialise Pi Variable v= Variable (3); CanonicalForm yToL= power (y, bivarLiftBound); if (degree (bufFactors[0], v) > 0 && degree (bufFactors [1], v) > 0) { M (1, 1)= mulMod2 (bufFactors [0] [0], bufFactors[1] [0], yToL); Pi [0]= M (1,1) + (mulMod2 (bufFactors [0] [1], bufFactors[1] [0], yToL) + mulMod2 (bufFactors [0] [0], bufFactors [1] [1], yToL))*v; } else if (degree (bufFactors[0], v) > 0) { M (1,1)= mulMod2 (bufFactors [0] [0], bufFactors [1], yToL); Pi [0]= M(1,1) + mulMod2 (bufFactors [0] [1], bufFactors[1], yToL)*v; } else if (degree (bufFactors[1], v) > 0) { M (1,1)= mulMod2 (bufFactors [0], bufFactors [1] [0], yToL); Pi [0]= M (1,1) + mulMod2 (bufFactors [0], bufFactors[1] [1], yToL)*v; } else { M (1,1)= mulMod2 (bufFactors [0], bufFactors [1], yToL); Pi [0]= M (1,1); } for (i= 1; i < Pi.size(); i++) { if (degree (Pi[i-1], v) > 0 && degree (bufFactors [i+1], v) > 0) { M (1,i+1)= mulMod2 (Pi[i-1] [0], bufFactors[i+1] [0], yToL); Pi [i]= M (1,i+1) + (mulMod2 (Pi[i-1] [1], bufFactors[i+1] [0], yToL) + mulMod2 (Pi[i-1] [0], bufFactors [i+1] [1], yToL))*v; } else if (degree (Pi[i-1], v) > 0) { M (1,i+1)= mulMod2 (Pi[i-1] [0], bufFactors [i+1], yToL); Pi [i]= M(1,i+1) + mulMod2 (Pi[i-1] [1], bufFactors[i+1], yToL)*v; } else if (degree (bufFactors[i+1], v) > 0) { M (1,i+1)= mulMod2 (Pi[i-1], bufFactors [i+1] [0], yToL); Pi [i]= M (1,i+1) + mulMod2 (Pi[i-1], bufFactors[i+1] [1], yToL)*v; } else { M (1,i+1)= mulMod2 (Pi [i-1], bufFactors [i+1], yToL); Pi [i]= M (1,i+1); } } CFList products; bufF= mod (F, Variable (3)); for (CFListIterator k= factors; k.hasItem(); k++) products.append (bufF/k.getItem()); CFList MOD= CFList (power (v, liftBound)); MOD.insert (yToL); for (int d= 1; d < liftBound; d++) { henselStep2 (F, factors, bufFactors, diophant, M, Pi, products, d, MOD, bad); if (bad) return CFList(); } CFList result; for (i= 0; i < factors.length(); i++) result.append (bufFactors[i]); return result; } CFList nonMonicHenselLift (const CFList& F, const CFList& factors, const CFList& LCs, CFList& diophant, CFArray& Pi, CFMatrix& M, const int lOld, int& lNew, const CFList& MOD, bool& noOneToOne ) { int k= 0; CFArray bufFactors= CFArray (factors.length()); CFListIterator j= LCs; for (CFListIterator i= factors; i.hasItem(); i++, j++, k++) bufFactors [k]= replaceLC (i.getItem(), j.getItem()); Variable y= F.getLast().mvar(); Variable x= F.getFirst().mvar(); CanonicalForm xToLOld= power (x, lOld); Pi [0]= mod (Pi[0], xToLOld); M (1, 1)= Pi [0]; if (degree (bufFactors[0], y) > 0 && degree (bufFactors [1], y) > 0) Pi [0] += (mulMod (bufFactors [0] [1], bufFactors[1] [0], MOD) + mulMod (bufFactors [0] [0], bufFactors [1] [1], MOD))*y; else if (degree (bufFactors[0], y) > 0) Pi [0] += mulMod (bufFactors [0] [1], bufFactors[1], MOD)*y; else if (degree (bufFactors[1], y) > 0) Pi [0] += mulMod (bufFactors [0], bufFactors[1] [1], MOD)*y; for (int i= 1; i < Pi.size(); i++) { Pi [i]= mod (Pi [i], xToLOld); M (1, i + 1)= Pi [i]; if (degree (Pi[i-1], y) > 0 && degree (bufFactors [i+1], y) > 0) Pi [i] += (mulMod (Pi[i-1] [1], bufFactors[i+1] [0], MOD) + mulMod (Pi[i-1] [0], bufFactors [i+1] [1], MOD))*y; else if (degree (Pi[i-1], y) > 0) Pi [i] += mulMod (Pi[i-1] [1], bufFactors[i+1], MOD)*y; else if (degree (bufFactors[i+1], y) > 0) Pi [i] += mulMod (Pi[i-1], bufFactors[i+1] [1], MOD)*y; } CFList products; CanonicalForm bufF= F.getFirst(); for (int i= 0; i < bufFactors.size(); i++) { if (degree (bufFactors[i], y) > 0) { if (!fdivides (bufFactors[i] [0], bufF)) { noOneToOne= true; return factors; } products.append (bufF/bufFactors[i] [0]); } else { if (!fdivides (bufFactors[i], bufF)) { noOneToOne= true; return factors; } products.append (bufF/bufFactors[i]); } } for (int d= 1; d < lNew; d++) { henselStep2 (F.getLast(), factors, bufFactors, diophant, M, Pi, products, d, MOD, noOneToOne); if (noOneToOne) return CFList(); } CFList result; for (k= 0; k < factors.length(); k++) result.append (bufFactors[k]); return result; } CFList nonMonicHenselLift (const CFList& eval, const CFList& factors, CFList* const& LCs, CFList& diophant, CFArray& Pi, int* liftBound, int length, bool& noOneToOne ) { CFList bufDiophant= diophant; CFList buf= factors; CFArray bufPi= Pi; CFMatrix M= CFMatrix (liftBound[1], factors.length() - 1); int k= 0; CFList result= nonMonicHenselLift23 (eval.getFirst(), factors, LCs [0], diophant, bufPi, liftBound[1], liftBound[0], noOneToOne); if (noOneToOne) return CFList(); if (eval.length() == 1) return result; k++; CFList MOD; for (int i= 0; i < 2; i++) MOD.append (power (Variable (i + 2), liftBound[i])); CFListIterator j= eval; CFList bufEval; bufEval.append (j.getItem()); j++; for (int i= 2; i <= length && j.hasItem(); i++, j++, k++) { bufEval.append (j.getItem()); M= CFMatrix (liftBound[i], factors.length() - 1); result= nonMonicHenselLift (bufEval, result, LCs [i-1], diophant, bufPi, M, liftBound[i-1], liftBound[i], MOD, noOneToOne); if (noOneToOne) return result; MOD.append (power (Variable (i + 2), liftBound[i])); bufEval.removeFirst(); } return result; } #endif /* HAVE_NTL */