/*****************************************************************************\ * Computer Algebra System SINGULAR \*****************************************************************************/ /** @file facHensel.cc * * This file implements functions to lift factors via Hensel lifting and * functions for modular multiplication and division with remainder. * * ABSTRACT: Hensel lifting is described in "Efficient Multivariate * Factorization over Finite Fields" by L. Bernardin & M. Monagon. Division with * remainder is described in "Fast Recursive Division" by C. Burnikel and * J. Ziegler. Karatsuba multiplication is described in "Modern Computer * Algebra" by J. von zur Gathen and J. Gerhard. * * @author Martin Lee * * @internal @version \$Id$ * **/ /*****************************************************************************/ #include "assert.h" #include "debug.h" #include "timing.h" #include "facHensel.h" #include "cf_util.h" #ifdef HAVE_NTL #include #include "NTLconvert.h" static inline CanonicalForm mulNTL (const CanonicalForm& F, const CanonicalForm& G) { if (F.inCoeffDomain() || G.inCoeffDomain()) return F*G; ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); ASSERT (F.level() == G.level(), "expected polys of same level"); if (CFFactory::gettype() == GaloisFieldDomain) return F*G; zz_p::init (getCharacteristic()); Variable alpha; CanonicalForm result; if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) { zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); zz_pE::init (NTLMipo); zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); mul (NTLF, NTLF, NTLG); result= convertNTLzz_pEX2CF(NTLF, F.mvar(), alpha); } else { zz_pX NTLF= convertFacCF2NTLzzpX (F); zz_pX NTLG= convertFacCF2NTLzzpX (G); mul (NTLF, NTLF, NTLG); result= convertNTLzzpX2CF(NTLF, F.mvar()); } return result; } static inline CanonicalForm modNTL (const CanonicalForm& F, const CanonicalForm& G) { if (F.inCoeffDomain() && G.isUnivariate()) return F; else if (F.inCoeffDomain() && G.inCoeffDomain()) return mod (F, G); else if (F.isUnivariate() && G.inCoeffDomain()) return mod (F,G); ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); ASSERT (F.level() == G.level(), "expected polys of same level"); if (CFFactory::gettype() == GaloisFieldDomain) return mod (F, G); zz_p::init (getCharacteristic()); Variable alpha; CanonicalForm result; if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) { zz_pX NTLMipo= convertFacCF2NTLzzpX(getMipo (alpha)); zz_pE::init (NTLMipo); zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); rem (NTLF, NTLF, NTLG); result= convertNTLzz_pEX2CF(NTLF, F.mvar(), alpha); } else { zz_pX NTLF= convertFacCF2NTLzzpX (F); zz_pX NTLG= convertFacCF2NTLzzpX (G); rem (NTLF, NTLF, NTLG); result= convertNTLzzpX2CF(NTLF, F.mvar()); } return result; } static inline CanonicalForm divNTL (const CanonicalForm& F, const CanonicalForm& G) { if (F.inCoeffDomain() && G.isUnivariate()) return F; else if (F.inCoeffDomain() && G.inCoeffDomain()) return div (F, G); else if (F.isUnivariate() && G.inCoeffDomain()) return div (F,G); ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); ASSERT (F.level() == G.level(), "expected polys of same level"); if (CFFactory::gettype() == GaloisFieldDomain) return div (F, G); zz_p::init (getCharacteristic()); Variable alpha; CanonicalForm result; if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) { zz_pX NTLMipo= convertFacCF2NTLzzpX(getMipo (alpha)); zz_pE::init (NTLMipo); zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); div (NTLF, NTLF, NTLG); result= convertNTLzz_pEX2CF(NTLF, F.mvar(), alpha); } else { zz_pX NTLF= convertFacCF2NTLzzpX (F); zz_pX NTLG= convertFacCF2NTLzzpX (G); div (NTLF, NTLF, NTLG); result= convertNTLzzpX2CF(NTLF, F.mvar()); } return result; } /*static inline void divremNTL (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, CanonicalForm& R) { if (F.inCoeffDomain() && G.isUnivariate()) { R= F; Q= 0; } else if (F.inCoeffDomain() && G.inCoeffDomain()) { divrem (F, G, Q, R); return; } else if (F.isUnivariate() && G.inCoeffDomain()) { divrem (F, G, Q, R); return; } ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); ASSERT (F.level() == G.level(), "expected polys of same level"); if (CFFactory::gettype() == GaloisFieldDomain) { divrem (F, G, Q, R); return; } zz_p::init (getCharacteristic()); Variable alpha; CanonicalForm result; if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) { zz_pX NTLMipo= convertFacCF2NTLzzpX(getMipo (alpha)); zz_pE::init (NTLMipo); zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); zz_pEX NTLQ; zz_pEX NTLR; DivRem (NTLQ, NTLR, NTLF, NTLG); Q= convertNTLzz_pEX2CF(NTLQ, F.mvar(), alpha); R= convertNTLzz_pEX2CF(NTLR, F.mvar(), alpha); return; } else { zz_pX NTLF= convertFacCF2NTLzzpX (F); zz_pX NTLG= convertFacCF2NTLzzpX (G); zz_pX NTLQ; zz_pX NTLR; DivRem (NTLQ, NTLR, NTLF, NTLG); Q= convertNTLzzpX2CF(NTLQ, F.mvar()); R= convertNTLzzpX2CF(NTLR, F.mvar()); return; } }*/ CanonicalForm mod (const CanonicalForm& F, const CFList& M) { CanonicalForm A= F; for (CFListIterator i= M; i.hasItem(); i++) A= mod (A, i.getItem()); return A; } CanonicalForm mulMod2 (const CanonicalForm& A, const CanonicalForm& B, const CanonicalForm& M) { if (A.isZero() || B.isZero()) return 0; ASSERT (M.isUnivariate(), "M must be univariate"); CanonicalForm F= mod (A, M); CanonicalForm G= mod (B, M); if (F.inCoeffDomain() || G.inCoeffDomain()) return F*G; Variable y= M.mvar(); int degF= degree (F, y); int degG= degree (G, y); if ((degF < 1 && degG < 1) && (F.isUnivariate() && G.isUnivariate()) && (F.level() == G.level())) { CanonicalForm result= mulNTL (F, G); return mod (result, M); } else if (degF <= 1 && degG <= 1) { CanonicalForm result= F*G; return mod (result, M); } int m= (int) ceil (degree (M)/2.0); if (degF >= m || degG >= m) { CanonicalForm MLo= power (y, m); CanonicalForm MHi= power (y, degree (M) - m); CanonicalForm F0= mod (F, MLo); CanonicalForm F1= div (F, MLo); CanonicalForm G0= mod (G, MLo); CanonicalForm G1= div (G, MLo); CanonicalForm F0G1= mulMod2 (F0, G1, MHi); CanonicalForm F1G0= mulMod2 (F1, G0, MHi); CanonicalForm F0G0= mulMod2 (F0, G0, M); return F0G0 + MLo*(F0G1 + F1G0); } else { m= (int) ceil (tmax (degF, degG)/2.0); CanonicalForm yToM= power (y, m); CanonicalForm F0= mod (F, yToM); CanonicalForm F1= div (F, yToM); CanonicalForm G0= mod (G, yToM); CanonicalForm G1= div (G, yToM); CanonicalForm H00= mulMod2 (F0, G0, M); CanonicalForm H11= mulMod2 (F1, G1, M); CanonicalForm H01= mulMod2 (F0 + F1, G0 + G1, M); return H11*yToM*yToM + (H01 - H11 - H00)*yToM + H00; } DEBOUTLN (cerr, "fatal end in mulMod2"); } CanonicalForm mulMod (const CanonicalForm& A, const CanonicalForm& B, const CFList& MOD) { if (A.isZero() || B.isZero()) return 0; if (MOD.length() == 1) return mulMod2 (A, B, MOD.getLast()); CanonicalForm M= MOD.getLast(); CanonicalForm F= mod (A, M); CanonicalForm G= mod (B, M); if (F.inCoeffDomain() || G.inCoeffDomain()) return F*G; Variable y= M.mvar(); int degF= degree (F, y); int degG= degree (G, y); if ((degF <= 1 && F.level() <= M.level()) && (degG <= 1 && G.level() <= M.level())) { CFList buf= MOD; buf.removeLast(); if (degF == 1 && degG == 1) { CanonicalForm F0= mod (F, y); CanonicalForm F1= div (F, y); CanonicalForm G0= mod (G, y); CanonicalForm G1= div (G, y); if (degree (M) > 2) { CanonicalForm H00= mulMod (F0, G0, buf); CanonicalForm H11= mulMod (F1, G1, buf); CanonicalForm H01= mulMod (F0 + F1, G0 + G1, buf); return H11*y*y + (H01 - H00 - H11)*y + H00; } else //here degree (M) == 2 { buf.append (y); CanonicalForm F0G1= mulMod (F0, G1, buf); CanonicalForm F1G0= mulMod (F1, G0, buf); CanonicalForm F0G0= mulMod (F0, G0, MOD); CanonicalForm result= F0G0 + y*(F0G1 + F1G0); return result; } } else if (degF == 1 && degG == 0) return mulMod (div (F, y), G, buf)*y + mulMod (mod (F, y), G, buf); else if (degF == 0 && degG == 1) return mulMod (div (G, y), F, buf)*y + mulMod (mod (G, y), F, buf); else return mulMod (F, G, buf); } int m= (int) ceil (degree (M)/2.0); if (degF >= m || degG >= m) { CanonicalForm MLo= power (y, m); CanonicalForm MHi= power (y, degree (M) - m); CanonicalForm F0= mod (F, MLo); CanonicalForm F1= div (F, MLo); CanonicalForm G0= mod (G, MLo); CanonicalForm G1= div (G, MLo); CFList buf= MOD; buf.removeLast(); buf.append (MHi); CanonicalForm F0G1= mulMod (F0, G1, buf); CanonicalForm F1G0= mulMod (F1, G0, buf); CanonicalForm F0G0= mulMod (F0, G0, MOD); return F0G0 + MLo*(F0G1 + F1G0); } else { m= (int) ceil (tmax (degF, degG)/2.0); CanonicalForm yToM= power (y, m); CanonicalForm F0= mod (F, yToM); CanonicalForm F1= div (F, yToM); CanonicalForm G0= mod (G, yToM); CanonicalForm G1= div (G, yToM); CanonicalForm H00= mulMod (F0, G0, MOD); CanonicalForm H11= mulMod (F1, G1, MOD); CanonicalForm H01= mulMod (F0 + F1, G0 + G1, MOD); return H11*yToM*yToM + (H01 - H11 - H00)*yToM + H00; } DEBOUTLN (cerr, "fatal end in mulMod"); } CanonicalForm prodMod (const CFList& L, const CanonicalForm& M) { if (L.isEmpty()) return 1; int l= L.length(); if (l == 1) return mod (L.getFirst(), M); else if (l == 2) { CanonicalForm result= mulMod2 (L.getFirst(), L.getLast(), M); return result; } else { l /= 2; CFList tmp1, tmp2; CFListIterator i= L; CanonicalForm buf1, buf2; for (int j= 1; j <= l; j++, i++) tmp1.append (i.getItem()); tmp2= Difference (L, tmp1); buf1= prodMod (tmp1, M); buf2= prodMod (tmp2, M); CanonicalForm result= mulMod2 (buf1, buf2, M); return result; } } CanonicalForm prodMod (const CFList& L, const CFList& M) { if (L.isEmpty()) return 1; else if (L.length() == 1) return L.getFirst(); else if (L.length() == 2) return mulMod (L.getFirst(), L.getLast(), M); else { int l= L.length()/2; CFListIterator i= L; CFList tmp1, tmp2; CanonicalForm buf1, buf2; for (int j= 1; j <= l; j++, i++) tmp1.append (i.getItem()); tmp2= Difference (L, tmp1); buf1= prodMod (tmp1, M); buf2= prodMod (tmp2, M); return mulMod (buf1, buf2, M); } } static inline CFList split (const CanonicalForm& F, const int m, const Variable& x) { CanonicalForm A= F; CanonicalForm buf= 0; bool swap= false; if (degree (A, x) <= 0) return CFList(A); else if (x.level() != A.level()) { swap= true; A= swapvar (A, x, A.mvar()); } int j= (int) floor ((double) degree (A)/ m); CFList result; CFIterator i= A; for (; j >= 0; j--) { while (i.hasTerms() && i.exp() - j*m >= 0) { if (swap) buf += i.coeff()*power (A.mvar(), i.exp() - j*m); else buf += i.coeff()*power (x, i.exp() - j*m); i++; } if (swap) result.append (swapvar (buf, x, F.mvar())); else result.append (buf); buf= 0; } return result; } static inline void divrem32 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, CanonicalForm& R, const CFList& M); static inline void divrem21 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, CanonicalForm& R, const CFList& M) { CanonicalForm A= mod (F, M); CanonicalForm B= mod (G, M); Variable x= Variable (1); int degB= degree (B, x); int degA= degree (A, x); if (degA < degB) { Q= 0; R= A; return; } ASSERT (2*degB > degA, "expected degree (F, 1) < 2*degree (G, 1)"); if (degB < 1) { divrem (A, B, Q, R); Q= mod (Q, M); R= mod (R, M); return; } int m= (int) ceil ((double) (degB + 1)/2.0) + 1; CFList splitA= split (A, m, x); CFList splitB= split (B, m, x); if (splitA.length() == 3) splitA.insert (0); if (splitA.length() == 2) { splitA.insert (0); splitA.insert (0); } if (splitA.length() == 1) { splitA.insert (0); splitA.insert (0); splitA.insert (0); } CanonicalForm xToM= power (x, m); CFListIterator i= splitA; CanonicalForm H= i.getItem(); i++; H *= xToM; H += i.getItem(); i++; H *= xToM; H += i.getItem(); i++; divrem32 (H, B, Q, R, M); CFList splitR= split (R, m, x); if (splitR.length() == 1) splitR.insert (0); H= splitR.getFirst(); H *= xToM; H += splitR.getLast(); H *= xToM; H += i.getItem(); CanonicalForm bufQ; divrem32 (H, B, bufQ, R, M); Q *= xToM; Q += bufQ; return; } static inline void divrem32 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, CanonicalForm& R, const CFList& M) { CanonicalForm A= mod (F, M); CanonicalForm B= mod (G, M); Variable x= Variable (1); int degB= degree (B, x); int degA= degree (A, x); if (degA < degB) { Q= 0; R= A; return; } ASSERT (3*(degB/2) > degA, "expected degree (F, 1) < 3*(degree (G, 1)/2)"); if (degB < 1) { divrem (A, B, Q, R); Q= mod (Q, M); R= mod (R, M); return; } int m= (int) ceil ((double) (degB + 1)/ 2.0); CFList splitA= split (A, m, x); CFList splitB= split (B, m, x); if (splitA.length() == 2) { splitA.insert (0); } if (splitA.length() == 1) { splitA.insert (0); splitA.insert (0); } CanonicalForm xToM= power (x, m); CanonicalForm H; CFListIterator i= splitA; i++; if (degree (splitA.getFirst(), x) < degree (splitB.getFirst(), x)) { H= splitA.getFirst()*xToM + i.getItem(); divrem21 (H, splitB.getFirst(), Q, R, M); } else { R= splitA.getFirst()*xToM + i.getItem() + splitB.getFirst() - splitB.getFirst()*xToM; Q= xToM - 1; } H= mulMod (Q, splitB.getLast(), M); R= R*xToM + splitA.getLast() - H; while (degree (R, x) >= degB) { xToM= power (x, degree (R, x) - degB); Q += LC (R, x)*xToM; R -= mulMod (LC (R, x), B, M)*xToM; Q= mod (Q, M); R= mod (R, M); } return; } void divrem2 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, CanonicalForm& R, const CanonicalForm& M) { CanonicalForm A= mod (F, M); CanonicalForm B= mod (G, M); Variable x= Variable (1); int degB= degree (B, x); if (degB > degree (A, x)) { Q= 0; R= A; return; } CFList splitA= split (A, degB, x); CanonicalForm xToDegB= power (x, degB); CanonicalForm H, bufQ; Q= 0; CFListIterator i= splitA; H= i.getItem()*xToDegB; i++; H += i.getItem(); CFList buf; while (i.hasItem()) { buf= CFList (M); divrem21 (H, B, bufQ, R, buf); i++; if (i.hasItem()) H= R*xToDegB + i.getItem(); Q *= xToDegB; Q += bufQ; } return; } void divrem (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, CanonicalForm& R, const CFList& MOD) { CanonicalForm A= mod (F, MOD); CanonicalForm B= mod (G, MOD); Variable x= Variable (1); int degB= degree (B, x); if (degB > degree (A, x)) { Q= 0; R= A; return; } if (degB == 0) { divrem (A, B, Q, R); Q= mod (Q, MOD); R= mod (R, MOD); return; } CFList splitA= split (A, degB, x); CanonicalForm xToDegB= power (x, degB); CanonicalForm H, bufQ; Q= 0; CFListIterator i= splitA; H= i.getItem()*xToDegB; i++; H += i.getItem(); while (i.hasItem()) { divrem21 (H, B, bufQ, R, MOD); i++; if (i.hasItem()) H= R*xToDegB + i.getItem(); Q *= xToDegB; Q += bufQ; } return; } void sortList (CFList& list, const Variable& x) { int l= 1; int k= 1; CanonicalForm buf; CFListIterator m; for (CFListIterator i= list; l <= list.length(); i++, l++) { for (CFListIterator j= list; k <= list.length() - l; k++) { m= j; m++; if (degree (j.getItem(), x) > degree (m.getItem(), x)) { buf= m.getItem(); m.getItem()= j.getItem(); j.getItem()= buf; j++; j.getItem()= m.getItem(); } else j++; } k= 1; } } static inline CFList diophantine (const CanonicalForm& F, const CFList& factors) { CanonicalForm buf1, buf2, buf3, S, T; CFListIterator i= factors; CFList result; if (i.hasItem()) i++; buf1= F/factors.getFirst(); buf2= divNTL (F, i.getItem()); buf3= extgcd (buf1, buf2, S, T); result.append (S); result.append (T); if (i.hasItem()) i++; for (; i.hasItem(); i++) { buf1= divNTL (F, i.getItem()); buf3= extgcd (buf3, buf1, S, T); CFListIterator k= factors; for (CFListIterator j= result; j.hasItem(); j++, k++) { j.getItem()= mulNTL (j.getItem(), S); j.getItem()= modNTL (j.getItem(), k.getItem()); } result.append (T); } return result; } void henselStep12 (const CanonicalForm& F, const CFList& factors, CFArray& bufFactors, const CFList& diophant, CFMatrix& M, CFArray& Pi, int j) { CanonicalForm E; CanonicalForm xToJ= power (F.mvar(), j); Variable x= F.mvar(); // compute the error if (j == 1) E= F[j]; else { if (degree (Pi [factors.length() - 2], x) > 0) E= F[j] - Pi [factors.length() - 2] [j]; else E= F[j]; } CFArray buf= CFArray (diophant.length()); bufFactors[0]= mod (factors.getFirst(), power (F.mvar(), j + 1)); int k= 0; CanonicalForm remainder; // actual lifting for (CFListIterator i= diophant; i.hasItem(); i++, k++) { if (degree (bufFactors[k], x) > 0) { if (k > 0) remainder= modNTL (E, bufFactors[k] [0]); else remainder= E; } else remainder= modNTL (E, bufFactors[k]); buf[k]= mulNTL (i.getItem(), remainder); if (degree (bufFactors[k], x) > 0) buf[k]= modNTL (buf[k], bufFactors[k] [0]); else buf[k]= modNTL (buf[k], bufFactors[k]); } for (k= 1; k < factors.length(); k++) bufFactors[k] += xToJ*buf[k]; // update Pi [0] int degBuf0= degree (bufFactors[0], x); int degBuf1= degree (bufFactors[1], x); if (degBuf0 > 0 && degBuf1 > 0) M (j + 1, 1)= mulNTL (bufFactors[0] [j], bufFactors[1] [j]); CanonicalForm uIZeroJ; if (j == 1) { if (degBuf0 > 0 && degBuf1 > 0) uIZeroJ= mulNTL ((bufFactors[0] [0] + bufFactors[0] [j]), (bufFactors[1] [0] + buf[1])) - M(1, 1) - M(j + 1, 1); else if (degBuf0 > 0) uIZeroJ= mulNTL (bufFactors[0] [j], bufFactors[1]); else if (degBuf1 > 0) uIZeroJ= mulNTL (bufFactors[0], buf[1]); else uIZeroJ= 0; Pi [0] += xToJ*uIZeroJ; } else { if (degBuf0 > 0 && degBuf1 > 0) uIZeroJ= mulNTL ((bufFactors[0] [0] + bufFactors[0] [j]), (bufFactors[1] [0] + buf[1])) - M(1, 1) - M(j + 1, 1); else if (degBuf0 > 0) uIZeroJ= mulNTL (bufFactors[0] [j], bufFactors[1]); else if (degBuf1 > 0) uIZeroJ= mulNTL (bufFactors[0], buf[1]); else uIZeroJ= 0; Pi [0] += xToJ*uIZeroJ; } CFArray tmp= CFArray (factors.length() - 1); for (k= 0; k < factors.length() - 1; k++) tmp[k]= 0; CFIterator one, two; one= bufFactors [0]; two= bufFactors [1]; if (degBuf0 > 0 && degBuf1 > 0) { for (k= 1; k <= (int) ceil (j/2.0); k++) { if (k != j - k + 1) { if (one.exp() == j - k + 1 && two.exp() == j - k + 1) { tmp[0] += mulNTL ((bufFactors[0] [k] + one.coeff()), (bufFactors[1] [k] + two.coeff())) - M (k + 1, 1) - M (j - k + 2, 1); one++; two++; } else if (one.exp() == j - k + 1) { tmp[0] += mulNTL ((bufFactors[0] [k] + one.coeff()), bufFactors[1] [k]) - M (k + 1, 1); one++; } else if (two.exp() == j - k + 1) { tmp[0] += mulNTL (bufFactors[0] [k], (bufFactors[1] [k] + two.coeff())) - M (k + 1, 1); two++; } } else { tmp[0] += M (k + 1, 1); } } } Pi [0] += tmp[0]*xToJ*F.mvar(); // update Pi [l] int degPi, degBuf; for (int l= 1; l < factors.length() - 1; l++) { degPi= degree (Pi [l - 1], x); degBuf= degree (bufFactors[l + 1], x); if (degPi > 0 && degBuf > 0) M (j + 1, l + 1)= mulNTL (Pi [l - 1] [j], bufFactors[l + 1] [j]); if (j == 1) { if (degPi > 0 && degBuf > 0) Pi [l] += xToJ*(mulNTL (Pi [l - 1] [0] + Pi [l - 1] [j], bufFactors[l + 1] [0] + buf[l + 1]) - M (j + 1, l +1) - M (1, l + 1)); else if (degPi > 0) Pi [l] += xToJ*(mulNTL (Pi [l - 1] [j], bufFactors[l + 1])); else if (degBuf > 0) Pi [l] += xToJ*(mulNTL (Pi [l - 1], buf[l + 1])); } else { if (degPi > 0 && degBuf > 0) { uIZeroJ= mulNTL (uIZeroJ, bufFactors [l + 1] [0]); uIZeroJ += mulNTL (Pi [l - 1] [0], buf [l + 1]); } else if (degPi > 0) uIZeroJ= mulNTL (uIZeroJ, bufFactors [l + 1]); else if (degBuf > 0) { uIZeroJ= mulNTL (uIZeroJ, bufFactors [l + 1] [0]); uIZeroJ += mulNTL (Pi [l - 1], buf[l + 1]); } Pi[l] += xToJ*uIZeroJ; } one= bufFactors [l + 1]; two= Pi [l - 1]; if (two.exp() == j + 1) { if (degBuf > 0 && degPi > 0) { tmp[l] += mulNTL (two.coeff(), bufFactors[l + 1][0]); two++; } else if (degPi > 0) { tmp[l] += mulNTL (two.coeff(), bufFactors[l + 1]); two++; } } if (degBuf > 0 && degPi > 0) { for (k= 1; k <= (int) ceil (j/2.0); k++) { if (k != j - k + 1) { if (one.exp() == j - k + 1 && two.exp() == j - k + 1) { tmp[l] += mulNTL ((bufFactors[l + 1] [k] + one.coeff()), (Pi[l - 1] [k] + two.coeff())) - M (k + 1, l + 1) - M (j - k + 2, l + 1); one++; two++; } else if (one.exp() == j - k + 1) { tmp[l] += mulNTL ((bufFactors[l + 1] [k] + one.coeff()), Pi[l - 1] [k]) - M (k + 1, l + 1); one++; } else if (two.exp() == j - k + 1) { tmp[l] += mulNTL (bufFactors[l + 1] [k], (Pi[l - 1] [k] + two.coeff())) - M (k + 1, l + 1); two++; } } else tmp[l] += M (k + 1, l + 1); } } Pi[l] += tmp[l]*xToJ*F.mvar(); } return; } void henselLift12 (const CanonicalForm& F, CFList& factors, int l, CFArray& Pi, CFList& diophant, CFMatrix& M) { sortList (factors, Variable (1)); Pi= CFArray (factors.length() - 1); CFListIterator j= factors; diophant= diophantine (F[0], factors); DEBOUTLN (cerr, "diophant= " << diophant); j++; Pi [0]= mulNTL (j.getItem(), mod (factors.getFirst(), F.mvar())); M (1, 1)= Pi [0]; int i= 1; if (j.hasItem()) j++; for (j; j.hasItem(); j++, i++) { Pi [i]= mulNTL (Pi [i - 1], j.getItem()); M (1, i + 1)= Pi [i]; } CFArray bufFactors= CFArray (factors.length()); i= 0; for (CFListIterator k= factors; k.hasItem(); i++, k++) { if (i == 0) bufFactors[i]= mod (k.getItem(), F.mvar()); else bufFactors[i]= k.getItem(); } for (i= 1; i < l; i++) henselStep12 (F, factors, bufFactors, diophant, M, Pi, i); CFListIterator k= factors; for (i= 0; i < factors.length (); i++, k++) k.getItem()= bufFactors[i]; factors.removeFirst(); return; } void henselLiftResume12 (const CanonicalForm& F, CFList& factors, int start, int end, CFArray& Pi, const CFList& diophant, CFMatrix& M) { CFArray bufFactors= CFArray (factors.length()); int i= 0; CanonicalForm xToStart= power (F.mvar(), start); for (CFListIterator k= factors; k.hasItem(); k++, i++) { if (i == 0) bufFactors[i]= mod (k.getItem(), xToStart); else bufFactors[i]= k.getItem(); } for (i= start; i < end; i++) henselStep12 (F, factors, bufFactors, diophant, M, Pi, i); CFListIterator k= factors; for (i= 0; i < factors.length(); k++, i++) k.getItem()= bufFactors [i]; factors.removeFirst(); return; } static inline CFList biDiophantine (const CanonicalForm& F, const CFList& factors, const int d) { Variable y= F.mvar(); CFList result; if (y.level() == 1) { result= diophantine (F, factors); return result; } else { CFList buf= factors; for (CFListIterator i= buf; i.hasItem(); i++) i.getItem()= mod (i.getItem(), y); CanonicalForm A= mod (F, y); int bufD= 1; CFList recResult= biDiophantine (A, buf, bufD); CanonicalForm e= 1; CFList p; CFArray bufFactors= CFArray (factors.length()); CanonicalForm yToD= power (y, d); int k= 0; for (CFListIterator i= factors; i.hasItem(); i++, k++) { bufFactors [k]= i.getItem(); } CanonicalForm b; for (k= 0; k < factors.length(); k++) //TODO compute b's faster { b= 1; if (fdivides (bufFactors[k], F)) b= F/bufFactors[k]; else { for (int l= 0; l < factors.length(); l++) { if (l == k) continue; else { b= mulMod2 (b, bufFactors[l], yToD); } } } p.append (b); } CFListIterator j= p; for (CFListIterator i= recResult; i.hasItem(); i++, j++) e -= i.getItem()*j.getItem(); if (e.isZero()) return recResult; CanonicalForm coeffE; CFList s; result= recResult; CanonicalForm g; for (int i= 1; i < d; i++) { if (degree (e, y) > 0) coeffE= e[i]; else coeffE= 0; if (!coeffE.isZero()) { CFListIterator k= result; CFListIterator l= p; int ii= 0; j= recResult; for (; j.hasItem(); j++, k++, l++, ii++) { g= coeffE*j.getItem(); if (degree (bufFactors[ii], y) <= 0) g= mod (g, bufFactors[ii]); else g= mod (g, bufFactors[ii][0]); k.getItem() += g*power (y, i); e -= mulMod2 (g*power(y, i), l.getItem(), yToD); DEBOUTLN (cerr, "mod (e, power (y, i + 1))= " << mod (e, power (y, i + 1))); } } if (e.isZero()) break; } DEBOUTLN (cerr, "mod (e, y)= " << mod (e, y)); #ifdef DEBUGOUTPUT CanonicalForm test= 0; j= p; for (CFListIterator i= result; i.hasItem(); i++, j++) test += mod (i.getItem()*j.getItem(), power (y, d)); DEBOUTLN (cerr, "test= " << test); #endif return result; } } static inline CFList multiRecDiophantine (const CanonicalForm& F, const CFList& factors, const CFList& recResult, const CFList& M, const int d) { Variable y= F.mvar(); CFList result; CFListIterator i; CanonicalForm e= 1; CFListIterator j= factors; CFList p; CFArray bufFactors= CFArray (factors.length()); CanonicalForm yToD= power (y, d); int k= 0; for (CFListIterator i= factors; i.hasItem(); i++, k++) bufFactors [k]= i.getItem(); CanonicalForm b; CFList buf= M; buf.removeLast(); buf.append (yToD); for (k= 0; k < factors.length(); k++) //TODO compute b's faster { b= 1; if (fdivides (bufFactors[k], F)) b= F/bufFactors[k]; else { for (int l= 0; l < factors.length(); l++) { if (l == k) continue; else { b= mulMod (b, bufFactors[l], buf); } } } p.append (b); } j= p; for (CFListIterator i= recResult; i.hasItem(); i++, j++) e -= mulMod (i.getItem(), j.getItem(), M); if (e.isZero()) return recResult; CanonicalForm coeffE; CFList s; result= recResult; CanonicalForm g; for (int i= 1; i < d; i++) { if (degree (e, y) > 0) coeffE= e[i]; else coeffE= 0; if (!coeffE.isZero()) { CFListIterator k= result; CFListIterator l= p; j= recResult; int ii= 0; CanonicalForm dummy; for (; j.hasItem(); j++, k++, l++, ii++) { g= mulMod (coeffE, j.getItem(), M); if (degree (bufFactors[ii], y) <= 0) divrem (g, mod (bufFactors[ii], Variable (y.level() - 1)), dummy, g, M); else divrem (g, bufFactors[ii][0], dummy, g, M); k.getItem() += g*power (y, i); e -= mulMod (g*power (y, i), l.getItem(), M); } } if (e.isZero()) break; } #ifdef DEBUGOUTPUT CanonicalForm test= 0; j= p; for (CFListIterator i= result; i.hasItem(); i++, j++) test += mod (i.getItem()*j.getItem(), power (y, d)); DEBOUTLN (cerr, "test= " << test); #endif return result; } static inline void henselStep (const CanonicalForm& F, const CFList& factors, CFArray& bufFactors, const CFList& diophant, CFMatrix& M, CFArray& Pi, int j, const CFList& MOD) { CanonicalForm E; CanonicalForm xToJ= power (F.mvar(), j); Variable x= F.mvar(); // compute the error if (j == 1) { E= F[j]; #ifdef DEBUGOUTPUT CanonicalForm test= 1; for (int i= 0; i < factors.length(); i++) { if (i == 0) test= mulMod (test, mod (bufFactors [i], xToJ), MOD); else test= mulMod (test, bufFactors[i], MOD); } CanonicalForm test2= mod (F-test, xToJ); test2= mod (test2, MOD); DEBOUTLN (cerr, "test= " << test2); #endif } else { #ifdef DEBUGOUTPUT CanonicalForm test= 1; for (int i= 0; i < factors.length(); i++) { if (i == 0) test *= mod (bufFactors [i], power (x, j)); else test *= bufFactors[i]; } test= mod (test, power (x, j)); test= mod (test, MOD); CanonicalForm test2= mod (F, power (x, j - 1)) - mod (test, power (x, j-1)); DEBOUTLN (cerr, "test= " << test2); #endif if (degree (Pi [factors.length() - 2], x) > 0) E= F[j] - Pi [factors.length() - 2] [j]; else E= F[j]; } CFArray buf= CFArray (diophant.length()); bufFactors[0]= mod (factors.getFirst(), power (F.mvar(), j + 1)); int k= 0; // actual lifting CanonicalForm dummy, rest1; for (CFListIterator i= diophant; i.hasItem(); i++, k++) { if (degree (bufFactors[k], x) > 0) { if (k > 0) divrem (E, bufFactors[k] [0], dummy, rest1, MOD); else rest1= E; } else divrem (E, bufFactors[k], dummy, rest1, MOD); buf[k]= mulMod (i.getItem(), rest1, MOD); if (degree (bufFactors[k], x) > 0) divrem (buf[k], bufFactors[k] [0], dummy, buf[k], MOD); else divrem (buf[k], bufFactors[k], dummy, buf[k], MOD); } for (k= 1; k < factors.length(); k++) bufFactors[k] += xToJ*buf[k]; // update Pi [0] int degBuf0= degree (bufFactors[0], x); int degBuf1= degree (bufFactors[1], x); if (degBuf0 > 0 && degBuf1 > 0) M (j + 1, 1)= mulMod (bufFactors[0] [j], bufFactors[1] [j], MOD); CanonicalForm uIZeroJ; if (j == 1) { if (degBuf0 > 0 && degBuf1 > 0) uIZeroJ= mulMod ((bufFactors[0] [0] + bufFactors[0] [j]), (bufFactors[1] [0] + buf[1]), MOD) - M(1, 1) - M(j + 1, 1); else if (degBuf0 > 0) uIZeroJ= mulMod (bufFactors[0] [j], bufFactors[1], MOD); else if (degBuf1 > 0) uIZeroJ= mulMod (bufFactors[0], buf[1], MOD); else uIZeroJ= 0; Pi [0] += xToJ*uIZeroJ; } else { if (degBuf0 > 0 && degBuf1 > 0) uIZeroJ= mulMod ((bufFactors[0] [0] + bufFactors[0] [j]), (bufFactors[1] [0] + buf[1]), MOD) - M(1, 1) - M(j + 1, 1); else if (degBuf0 > 0) uIZeroJ= mulMod (bufFactors[0] [j], bufFactors[1], MOD); else if (degBuf1 > 0) uIZeroJ= mulMod (bufFactors[0], buf[1], MOD); else uIZeroJ= 0; Pi [0] += xToJ*uIZeroJ; } CFArray tmp= CFArray (factors.length() - 1); for (k= 0; k < factors.length() - 1; k++) tmp[k]= 0; CFIterator one, two; one= bufFactors [0]; two= bufFactors [1]; if (degBuf0 > 0 && degBuf1 > 0) { for (k= 1; k <= (int) ceil (j/2.0); k++) { if (k != j - k + 1) { if (one.exp() == j - k + 1 && two.exp() == j - k + 1) { tmp[0] += mulMod ((bufFactors[0] [k] + one.coeff()), (bufFactors[1] [k] + two.coeff()), MOD) - M (k + 1, 1) - M (j - k + 2, 1); one++; two++; } else if (one.exp() == j - k + 1) { tmp[0] += mulMod ((bufFactors[0] [k] + one.coeff()), bufFactors[1] [k], MOD) - M (k + 1, 1); one++; } else if (two.exp() == j - k + 1) { tmp[0] += mulMod (bufFactors[0] [k], (bufFactors[1] [k] + two.coeff()), MOD) - M (k + 1, 1); two++; } } else { tmp[0] += M (k + 1, 1); } } } Pi [0] += tmp[0]*xToJ*F.mvar(); // update Pi [l] int degPi, degBuf; for (int l= 1; l < factors.length() - 1; l++) { degPi= degree (Pi [l - 1], x); degBuf= degree (bufFactors[l + 1], x); if (degPi > 0 && degBuf > 0) M (j + 1, l + 1)= mulMod (Pi [l - 1] [j], bufFactors[l + 1] [j], MOD); if (j == 1) { if (degPi > 0 && degBuf > 0) Pi [l] += xToJ*(mulMod ((Pi [l - 1] [0] + Pi [l - 1] [j]), (bufFactors[l + 1] [0] + buf[l + 1]), MOD) - M (j + 1, l +1)- M (1, l + 1)); else if (degPi > 0) Pi [l] += xToJ*(mulMod (Pi [l - 1] [j], bufFactors[l + 1], MOD)); else if (degBuf > 0) Pi [l] += xToJ*(mulMod (Pi [l - 1], buf[l + 1], MOD)); } else { if (degPi > 0 && degBuf > 0) { uIZeroJ= mulMod (uIZeroJ, bufFactors [l + 1] [0], MOD); uIZeroJ += mulMod (Pi [l - 1] [0], buf [l + 1], MOD); } else if (degPi > 0) uIZeroJ= mulMod (uIZeroJ, bufFactors [l + 1], MOD); else if (degBuf > 0) { uIZeroJ= mulMod (uIZeroJ, bufFactors [l + 1] [0], MOD); uIZeroJ += mulMod (Pi [l - 1], buf[l + 1], MOD); } Pi[l] += xToJ*uIZeroJ; } one= bufFactors [l + 1]; two= Pi [l - 1]; if (two.exp() == j + 1) { if (degBuf > 0 && degPi > 0) { tmp[l] += mulMod (two.coeff(), bufFactors[l + 1][0], MOD); two++; } else if (degPi > 0) { tmp[l] += mulMod (two.coeff(), bufFactors[l + 1], MOD); two++; } } if (degBuf > 0 && degPi > 0) { for (k= 1; k <= (int) ceil (j/2.0); k++) { if (k != j - k + 1) { if (one.exp() == j - k + 1 && two.exp() == j - k + 1) { tmp[l] += mulMod ((bufFactors[l + 1] [k] + one.coeff()), (Pi[l - 1] [k] + two.coeff()), MOD) - M (k + 1, l + 1) - M (j - k + 2, l + 1); one++; two++; } else if (one.exp() == j - k + 1) { tmp[l] += mulMod ((bufFactors[l + 1] [k] + one.coeff()), Pi[l - 1] [k], MOD) - M (k + 1, l + 1); one++; } else if (two.exp() == j - k + 1) { tmp[l] += mulMod (bufFactors[l + 1] [k], (Pi[l - 1] [k] + two.coeff()), MOD) - M (k + 1, l + 1); two++; } } else tmp[l] += M (k + 1, l + 1); } } Pi[l] += tmp[l]*xToJ*F.mvar(); } return; } CFList henselLift23 (const CFList& eval, const CFList& factors, const int* l, CFList& diophant, CFArray& Pi, CFMatrix& M) { CFList buf= factors; int k= 0; int liftBound; int liftBoundBivar= l[k]; diophant= biDiophantine (eval.getFirst(), buf, liftBoundBivar); CFList MOD; MOD.append (power (Variable (2), liftBoundBivar)); CFArray bufFactors= CFArray (factors.length()); k= 0; CFListIterator j= eval; j++; buf.removeFirst(); buf.insert (LC (j.getItem(), 1)); for (CFListIterator i= buf; i.hasItem(); i++, k++) bufFactors[k]= i.getItem(); Pi= CFArray (factors.length() - 1); CFListIterator i= buf; i++; Variable y= j.getItem().mvar(); Pi [0]= mulMod (i.getItem(), mod (buf.getFirst(), y), MOD); M (1, 1)= Pi [0]; k= 1; if (i.hasItem()) i++; for (i; i.hasItem(); i++, k++) { Pi [k]= mulMod (Pi [k - 1], i.getItem(), MOD); M (1, k + 1)= Pi [k]; } for (int d= 1; d < l[1]; d++) henselStep (j.getItem(), buf, bufFactors, diophant, M, Pi, d, MOD); CFList result; for (k= 1; k < factors.length(); k++) result.append (bufFactors[k]); return result; } void henselLiftResume (const CanonicalForm& F, CFList& factors, int start, int end, CFArray& Pi, const CFList& diophant, CFMatrix& M, const CFList& MOD) { CFArray bufFactors= CFArray (factors.length()); int i= 0; CanonicalForm xToStart= power (F.mvar(), start); for (CFListIterator k= factors; k.hasItem(); k++, i++) { if (i == 0) bufFactors[i]= mod (k.getItem(), xToStart); else bufFactors[i]= k.getItem(); } for (i= start; i < end; i++) henselStep (F, factors, bufFactors, diophant, M, Pi, i, MOD); CFListIterator k= factors; for (i= 0; i < factors.length(); k++, i++) k.getItem()= bufFactors [i]; factors.removeFirst(); return; } CFList henselLift (const CFList& F, const CFList& factors, const CFList& MOD, CFList& diophant, CFArray& Pi, CFMatrix& M, const int lOld, const int lNew) { diophant= multiRecDiophantine (F.getFirst(), factors, diophant, MOD, lOld); int k= 0; CFArray bufFactors= CFArray (factors.length()); for (CFListIterator i= factors; i.hasItem(); i++, k++) { if (k == 0) bufFactors[k]= LC (F.getLast(), 1); else bufFactors[k]= i.getItem(); } CFList buf= factors; buf.removeFirst(); buf.insert (LC (F.getLast(), 1)); CFListIterator i= buf; i++; Variable y= F.getLast().mvar(); Variable x= F.getFirst().mvar(); CanonicalForm xToLOld= power (x, lOld); Pi [0]= mod (Pi[0], xToLOld); M (1, 1)= Pi [0]; k= 1; if (i.hasItem()) i++; for (i; i.hasItem(); i++, k++) { Pi [k]= mod (Pi [k], xToLOld); M (1, k + 1)= Pi [k]; } for (int d= 1; d < lNew; d++) henselStep (F.getLast(), buf, bufFactors, diophant, M, Pi, d, MOD); CFList result; for (k= 1; k < factors.length(); k++) result.append (bufFactors[k]); return result; } CFList henselLift (const CFList& eval, const CFList& factors, const int* l, const int lLength) { CFList diophant; CFList buf= factors; buf.insert (LC (eval.getFirst(), 1)); sortList (buf, Variable (1)); CFArray Pi; CFMatrix M= CFMatrix (l[1], factors.length()); CFList result= henselLift23 (eval, buf, l, diophant, Pi, M); if (eval.length() == 2) return result; CFList MOD; for (int i= 0; i < 2; i++) MOD.append (power (Variable (i + 2), l[i])); CFListIterator j= eval; j++; CFList bufEval; bufEval.append (j.getItem()); j++; for (int i= 2; i <= lLength && j.hasItem(); i++, j++) { result.insert (LC (bufEval.getFirst(), 1)); bufEval.append (j.getItem()); M= CFMatrix (l[i], factors.length()); result= henselLift (bufEval, result, MOD, diophant, Pi, M, l[i - 1], l[i]); MOD.append (power (Variable (i + 2), l[i])); bufEval.removeFirst(); } return result; } #endif /* HAVE_NTL */