1 | /*****************************************************************************\ |
---|
2 | * Computer Algebra System SINGULAR |
---|
3 | \*****************************************************************************/ |
---|
4 | /** @file facMul.cc |
---|
5 | * |
---|
6 | * This file implements functions for fast multiplication and division with |
---|
7 | * remainder |
---|
8 | * |
---|
9 | * @author Martin Lee |
---|
10 | * |
---|
11 | **/ |
---|
12 | /*****************************************************************************/ |
---|
13 | |
---|
14 | #include "debug.h" |
---|
15 | #ifdef HAVE_CONFIG_H |
---|
16 | #include "config.h" |
---|
17 | #endif /* HAVE_CONFIG_H */ |
---|
18 | |
---|
19 | #include "canonicalform.h" |
---|
20 | #include "facMul.h" |
---|
21 | #include "algext.h" |
---|
22 | #include "cf_util.h" |
---|
23 | #include "templates/ftmpl_functions.h" |
---|
24 | |
---|
25 | #ifdef HAVE_NTL |
---|
26 | #include <NTL/lzz_pEX.h> |
---|
27 | #include "NTLconvert.h" |
---|
28 | |
---|
29 | #ifdef HAVE_FLINT |
---|
30 | #include "FLINTconvert.h" |
---|
31 | #endif |
---|
32 | |
---|
33 | // univariate polys |
---|
34 | |
---|
35 | #ifdef HAVE_FLINT |
---|
36 | void kronSub (fmpz_poly_t result, const CanonicalForm& A, int d) |
---|
37 | { |
---|
38 | int degAy= degree (A); |
---|
39 | fmpz_poly_init2 (result, d*(degAy + 1)); |
---|
40 | _fmpz_poly_set_length (result, d*(degAy + 1)); |
---|
41 | CFIterator j; |
---|
42 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
43 | { |
---|
44 | if (i.coeff().inBaseDomain()) |
---|
45 | convertCF2Fmpz (fmpz_poly_get_coeff_ptr (result, i.exp()*d), i.coeff()); |
---|
46 | else |
---|
47 | for (j= i.coeff(); j.hasTerms(); j++) |
---|
48 | convertCF2Fmpz (fmpz_poly_get_coeff_ptr (result, i.exp()*d+j.exp()), |
---|
49 | j.coeff()); |
---|
50 | } |
---|
51 | _fmpz_poly_normalise(result); |
---|
52 | } |
---|
53 | |
---|
54 | |
---|
55 | CanonicalForm |
---|
56 | reverseSubstQa (const fmpz_poly_t F, int d, const Variable& x, |
---|
57 | const Variable& alpha, const CanonicalForm& den) |
---|
58 | { |
---|
59 | |
---|
60 | CanonicalForm result= 0; |
---|
61 | int i= 0; |
---|
62 | int degf= fmpz_poly_degree (F); |
---|
63 | int k= 0; |
---|
64 | int degfSubK; |
---|
65 | int repLength, j; |
---|
66 | CanonicalForm coeff, ff; |
---|
67 | fmpz* tmp; |
---|
68 | while (degf >= k) |
---|
69 | { |
---|
70 | coeff= 0; |
---|
71 | degfSubK= degf - k; |
---|
72 | if (degfSubK >= d) |
---|
73 | repLength= d; |
---|
74 | else |
---|
75 | repLength= degfSubK + 1; |
---|
76 | |
---|
77 | for (j= 0; j < repLength; j++) |
---|
78 | { |
---|
79 | tmp= fmpz_poly_get_coeff_ptr (F, j+k); |
---|
80 | if (!fmpz_is_zero (tmp)) |
---|
81 | { |
---|
82 | ff= convertFmpz2CF (tmp); |
---|
83 | coeff += ff*power (alpha, j); //TODO faster reduction mod alpha |
---|
84 | } |
---|
85 | } |
---|
86 | result += coeff*power (x, i); |
---|
87 | i++; |
---|
88 | k= d*i; |
---|
89 | } |
---|
90 | result /= den; |
---|
91 | return result; |
---|
92 | } |
---|
93 | |
---|
94 | CanonicalForm |
---|
95 | mulFLINTQa (const CanonicalForm& F, const CanonicalForm& G, |
---|
96 | const Variable& alpha) |
---|
97 | { |
---|
98 | CanonicalForm A= F; |
---|
99 | CanonicalForm B= G; |
---|
100 | |
---|
101 | CanonicalForm denA= bCommonDen (A); |
---|
102 | CanonicalForm denB= bCommonDen (B); |
---|
103 | |
---|
104 | A *= denA; |
---|
105 | B *= denB; |
---|
106 | int degAa= degree (A, alpha); |
---|
107 | int degBa= degree (B, alpha); |
---|
108 | int d= degAa + 1 + degBa; |
---|
109 | |
---|
110 | fmpz_poly_t FLINTA,FLINTB; |
---|
111 | kronSub (FLINTA, A, d); |
---|
112 | kronSub (FLINTB, B, d); |
---|
113 | |
---|
114 | fmpz_poly_mul (FLINTA, FLINTA, FLINTB); |
---|
115 | |
---|
116 | denA *= denB; |
---|
117 | A= reverseSubstQa (FLINTA, d, F.mvar(), alpha, denA); |
---|
118 | |
---|
119 | fmpz_poly_clear (FLINTA); |
---|
120 | fmpz_poly_clear (FLINTB); |
---|
121 | return A; |
---|
122 | } |
---|
123 | |
---|
124 | CanonicalForm |
---|
125 | mulFLINTQ (const CanonicalForm& F, const CanonicalForm& G) |
---|
126 | { |
---|
127 | CanonicalForm A= F; |
---|
128 | CanonicalForm B= G; |
---|
129 | |
---|
130 | CanonicalForm denA= bCommonDen (A); |
---|
131 | CanonicalForm denB= bCommonDen (B); |
---|
132 | |
---|
133 | A *= denA; |
---|
134 | B *= denB; |
---|
135 | fmpz_poly_t FLINTA,FLINTB; |
---|
136 | convertFacCF2Fmpz_poly_t (FLINTA, A); |
---|
137 | convertFacCF2Fmpz_poly_t (FLINTB, B); |
---|
138 | fmpz_poly_mul (FLINTA, FLINTA, FLINTB); |
---|
139 | denA *= denB; |
---|
140 | A= convertFmpz_poly_t2FacCF (FLINTA, F.mvar()); |
---|
141 | A /= denA; |
---|
142 | fmpz_poly_clear (FLINTA); |
---|
143 | fmpz_poly_clear (FLINTB); |
---|
144 | |
---|
145 | return A; |
---|
146 | } |
---|
147 | |
---|
148 | /*CanonicalForm |
---|
149 | mulFLINTQ2 (const CanonicalForm& F, const CanonicalForm& G) |
---|
150 | { |
---|
151 | CanonicalForm A= F; |
---|
152 | CanonicalForm B= G; |
---|
153 | |
---|
154 | fmpq_poly_t FLINTA,FLINTB; |
---|
155 | convertFacCF2Fmpq_poly_t (FLINTA, A); |
---|
156 | convertFacCF2Fmpq_poly_t (FLINTB, B); |
---|
157 | |
---|
158 | fmpq_poly_mul (FLINTA, FLINTA, FLINTB); |
---|
159 | A= convertFmpq_poly_t2FacCF (FLINTA, F.mvar()); |
---|
160 | fmpq_poly_clear (FLINTA); |
---|
161 | fmpq_poly_clear (FLINTB); |
---|
162 | return A; |
---|
163 | }*/ |
---|
164 | |
---|
165 | CanonicalForm |
---|
166 | divFLINTQ (const CanonicalForm& F, const CanonicalForm& G) |
---|
167 | { |
---|
168 | CanonicalForm A= F; |
---|
169 | CanonicalForm B= G; |
---|
170 | |
---|
171 | fmpq_poly_t FLINTA,FLINTB; |
---|
172 | convertFacCF2Fmpq_poly_t (FLINTA, A); |
---|
173 | convertFacCF2Fmpq_poly_t (FLINTB, B); |
---|
174 | |
---|
175 | fmpq_poly_div (FLINTA, FLINTA, FLINTB); |
---|
176 | A= convertFmpq_poly_t2FacCF (FLINTA, F.mvar()); |
---|
177 | |
---|
178 | fmpq_poly_clear (FLINTA); |
---|
179 | fmpq_poly_clear (FLINTB); |
---|
180 | return A; |
---|
181 | } |
---|
182 | |
---|
183 | CanonicalForm |
---|
184 | modFLINTQ (const CanonicalForm& F, const CanonicalForm& G) |
---|
185 | { |
---|
186 | CanonicalForm A= F; |
---|
187 | CanonicalForm B= G; |
---|
188 | |
---|
189 | fmpq_poly_t FLINTA,FLINTB; |
---|
190 | convertFacCF2Fmpq_poly_t (FLINTA, A); |
---|
191 | convertFacCF2Fmpq_poly_t (FLINTB, B); |
---|
192 | |
---|
193 | fmpq_poly_rem (FLINTA, FLINTA, FLINTB); |
---|
194 | A= convertFmpq_poly_t2FacCF (FLINTA, F.mvar()); |
---|
195 | |
---|
196 | fmpq_poly_clear (FLINTA); |
---|
197 | fmpq_poly_clear (FLINTB); |
---|
198 | return A; |
---|
199 | } |
---|
200 | |
---|
201 | CanonicalForm |
---|
202 | mulFLINTQaTrunc (const CanonicalForm& F, const CanonicalForm& G, |
---|
203 | const Variable& alpha, int m) |
---|
204 | { |
---|
205 | CanonicalForm A= F; |
---|
206 | CanonicalForm B= G; |
---|
207 | |
---|
208 | CanonicalForm denA= bCommonDen (A); |
---|
209 | CanonicalForm denB= bCommonDen (B); |
---|
210 | |
---|
211 | A *= denA; |
---|
212 | B *= denB; |
---|
213 | |
---|
214 | int degAa= degree (A, alpha); |
---|
215 | int degBa= degree (B, alpha); |
---|
216 | int d= degAa + 1 + degBa; |
---|
217 | |
---|
218 | fmpz_poly_t FLINTA,FLINTB; |
---|
219 | kronSub (FLINTA, A, d); |
---|
220 | kronSub (FLINTB, B, d); |
---|
221 | |
---|
222 | int k= d*m; |
---|
223 | fmpz_poly_mullow (FLINTA, FLINTA, FLINTB, k); |
---|
224 | |
---|
225 | denA *= denB; |
---|
226 | A= reverseSubstQa (FLINTA, d, F.mvar(), alpha, denA); |
---|
227 | fmpz_poly_clear (FLINTA); |
---|
228 | fmpz_poly_clear (FLINTB); |
---|
229 | return A; |
---|
230 | } |
---|
231 | |
---|
232 | CanonicalForm |
---|
233 | mulFLINTQTrunc (const CanonicalForm& F, const CanonicalForm& G, int m) |
---|
234 | { |
---|
235 | if (F.inCoeffDomain() || G.inCoeffDomain()) |
---|
236 | return mod (F*G, power (Variable (1), m)); |
---|
237 | Variable alpha; |
---|
238 | if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) |
---|
239 | return mulFLINTQaTrunc (F, G, alpha, m); |
---|
240 | |
---|
241 | CanonicalForm A= F; |
---|
242 | CanonicalForm B= G; |
---|
243 | |
---|
244 | CanonicalForm denA= bCommonDen (A); |
---|
245 | CanonicalForm denB= bCommonDen (B); |
---|
246 | |
---|
247 | A *= denA; |
---|
248 | B *= denB; |
---|
249 | fmpz_poly_t FLINTA,FLINTB; |
---|
250 | convertFacCF2Fmpz_poly_t (FLINTA, A); |
---|
251 | convertFacCF2Fmpz_poly_t (FLINTB, B); |
---|
252 | fmpz_poly_mullow (FLINTA, FLINTA, FLINTB, m); |
---|
253 | denA *= denB; |
---|
254 | A= convertFmpz_poly_t2FacCF (FLINTA, F.mvar()); |
---|
255 | A /= denA; |
---|
256 | fmpz_poly_clear (FLINTA); |
---|
257 | fmpz_poly_clear (FLINTB); |
---|
258 | |
---|
259 | return A; |
---|
260 | } |
---|
261 | |
---|
262 | CanonicalForm uniReverse (const CanonicalForm& F, int d) |
---|
263 | { |
---|
264 | if (d == 0) |
---|
265 | return F; |
---|
266 | if (F.inCoeffDomain()) |
---|
267 | return F*power (Variable (1),d); |
---|
268 | Variable x= Variable (1); |
---|
269 | CanonicalForm result= 0; |
---|
270 | CFIterator i= F; |
---|
271 | while (d - i.exp() < 0) |
---|
272 | i++; |
---|
273 | |
---|
274 | for (; i.hasTerms() && (d - i.exp() >= 0); i++) |
---|
275 | result += i.coeff()*power (x, d - i.exp()); |
---|
276 | return result; |
---|
277 | } |
---|
278 | |
---|
279 | CanonicalForm |
---|
280 | newtonInverse (const CanonicalForm& F, const int n) |
---|
281 | { |
---|
282 | int l= ilog2(n); |
---|
283 | |
---|
284 | CanonicalForm g= F [0]; |
---|
285 | |
---|
286 | ASSERT (!g.isZero(), "expected a unit"); |
---|
287 | |
---|
288 | if (!g.isOne()) |
---|
289 | g = 1/g; |
---|
290 | Variable x= Variable (1); |
---|
291 | CanonicalForm result; |
---|
292 | int exp= 0; |
---|
293 | if (n & 1) |
---|
294 | { |
---|
295 | result= g; |
---|
296 | exp= 1; |
---|
297 | } |
---|
298 | CanonicalForm h; |
---|
299 | |
---|
300 | for (int i= 1; i <= l; i++) |
---|
301 | { |
---|
302 | h= mulNTL (g, mod (F, power (x, (1 << i)))); |
---|
303 | h= mod (h, power (x, (1 << i)) - 1); |
---|
304 | h= div (h, power (x, (1 << (i - 1)))); |
---|
305 | g -= power (x, (1 << (i - 1)))* |
---|
306 | mulFLINTQTrunc (g, h, 1 << (i-1)); |
---|
307 | |
---|
308 | if (n & (1 << i)) |
---|
309 | { |
---|
310 | if (exp) |
---|
311 | { |
---|
312 | h= mulNTL (result, mod (F, power (x, exp + (1 << i)))); |
---|
313 | h= mod (h, power (x, exp + (1 << i)) - 1); |
---|
314 | h= div (h, power (x, exp)); |
---|
315 | result -= power(x, exp)*mulFLINTQTrunc (g, h, 1 << i); |
---|
316 | exp += (1 << i); |
---|
317 | } |
---|
318 | else |
---|
319 | { |
---|
320 | exp= (1 << i); |
---|
321 | result= g; |
---|
322 | } |
---|
323 | } |
---|
324 | } |
---|
325 | |
---|
326 | return result; |
---|
327 | } |
---|
328 | |
---|
329 | void |
---|
330 | newtonDivrem (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
331 | CanonicalForm& R) |
---|
332 | { |
---|
333 | CanonicalForm A= F; |
---|
334 | CanonicalForm B= G; |
---|
335 | Variable x= Variable (1); |
---|
336 | int degA= degree (A, x); |
---|
337 | int degB= degree (B, x); |
---|
338 | int m= degA - degB; |
---|
339 | |
---|
340 | if (m < 0) |
---|
341 | { |
---|
342 | R= A; |
---|
343 | Q= 0; |
---|
344 | return; |
---|
345 | } |
---|
346 | |
---|
347 | if (degB <= 1) |
---|
348 | divrem (A, B, Q, R); |
---|
349 | else |
---|
350 | { |
---|
351 | R= uniReverse (A, degA); |
---|
352 | |
---|
353 | CanonicalForm revB= uniReverse (B, degB); |
---|
354 | CanonicalForm buf= revB; |
---|
355 | revB= newtonInverse (revB, m + 1); |
---|
356 | Q= mulFLINTQTrunc (R, revB, m + 1); |
---|
357 | Q= uniReverse (Q, m); |
---|
358 | |
---|
359 | R= A - mulNTL (Q, B); |
---|
360 | } |
---|
361 | } |
---|
362 | |
---|
363 | void |
---|
364 | newtonDiv (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q) |
---|
365 | { |
---|
366 | CanonicalForm A= F; |
---|
367 | CanonicalForm B= G; |
---|
368 | Variable x= Variable (1); |
---|
369 | int degA= degree (A, x); |
---|
370 | int degB= degree (B, x); |
---|
371 | int m= degA - degB; |
---|
372 | |
---|
373 | if (m < 0) |
---|
374 | { |
---|
375 | Q= 0; |
---|
376 | return; |
---|
377 | } |
---|
378 | |
---|
379 | if (degB <= 1) |
---|
380 | Q= div (A, B); |
---|
381 | else |
---|
382 | { |
---|
383 | CanonicalForm R= uniReverse (A, degA); |
---|
384 | |
---|
385 | CanonicalForm revB= uniReverse (B, degB); |
---|
386 | revB= newtonInverse (revB, m + 1); |
---|
387 | Q= mulFLINTQTrunc (R, revB, m + 1); |
---|
388 | Q= uniReverse (Q, m); |
---|
389 | } |
---|
390 | } |
---|
391 | |
---|
392 | #endif |
---|
393 | |
---|
394 | CanonicalForm |
---|
395 | mulNTL (const CanonicalForm& F, const CanonicalForm& G, const modpk& b) |
---|
396 | { |
---|
397 | if (CFFactory::gettype() == GaloisFieldDomain) |
---|
398 | return F*G; |
---|
399 | if (getCharacteristic() == 0) |
---|
400 | { |
---|
401 | Variable alpha; |
---|
402 | if ((!F.inCoeffDomain() && !G.inCoeffDomain()) && |
---|
403 | (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha))) |
---|
404 | { |
---|
405 | if (b.getp() != 0) |
---|
406 | { |
---|
407 | CanonicalForm mipo= getMipo (alpha); |
---|
408 | bool is_rat= isOn (SW_RATIONAL); |
---|
409 | if (!is_rat) |
---|
410 | On (SW_RATIONAL); |
---|
411 | mipo *=bCommonDen (mipo); |
---|
412 | if (!is_rat) |
---|
413 | Off (SW_RATIONAL); |
---|
414 | #if (HAVE_FLINT && __FLINT_VERSION_MINOR >= 4) |
---|
415 | fmpz_t FLINTp; |
---|
416 | fmpz_mod_poly_t FLINTmipo; |
---|
417 | fq_ctx_t fq_con; |
---|
418 | fq_poly_t FLINTF, FLINTG; |
---|
419 | |
---|
420 | fmpz_init (FLINTp); |
---|
421 | |
---|
422 | convertCF2Fmpz (FLINTp, b.getpk()); |
---|
423 | |
---|
424 | convertFacCF2Fmpz_mod_poly_t (FLINTmipo, mipo, FLINTp); |
---|
425 | |
---|
426 | fq_ctx_init_modulus (fq_con, FLINTmipo, "Z"); |
---|
427 | |
---|
428 | convertFacCF2Fq_poly_t (FLINTF, F, fq_con); |
---|
429 | convertFacCF2Fq_poly_t (FLINTG, G, fq_con); |
---|
430 | |
---|
431 | fq_poly_mul (FLINTF, FLINTF, FLINTG, fq_con); |
---|
432 | |
---|
433 | CanonicalForm result= convertFq_poly_t2FacCF (FLINTF, F.mvar(), |
---|
434 | alpha, fq_con); |
---|
435 | |
---|
436 | fmpz_clear (FLINTp); |
---|
437 | fmpz_mod_poly_clear (FLINTmipo); |
---|
438 | fq_poly_clear (FLINTF, fq_con); |
---|
439 | fq_poly_clear (FLINTG, fq_con); |
---|
440 | fq_ctx_clear (fq_con); |
---|
441 | return b (result); |
---|
442 | #else |
---|
443 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
444 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (mipo)); |
---|
445 | ZZ_pE::init (NTLmipo); |
---|
446 | ZZ_pEX NTLg= convertFacCF2NTLZZ_pEX (G, NTLmipo); |
---|
447 | ZZ_pEX NTLf= convertFacCF2NTLZZ_pEX (F, NTLmipo); |
---|
448 | mul (NTLf, NTLf, NTLg); |
---|
449 | |
---|
450 | return b (convertNTLZZ_pEX2CF (NTLf, F.mvar(), alpha)); |
---|
451 | #endif |
---|
452 | } |
---|
453 | #ifdef HAVE_FLINT |
---|
454 | CanonicalForm result= mulFLINTQa (F, G, alpha); |
---|
455 | return result; |
---|
456 | #else |
---|
457 | return F*G; |
---|
458 | #endif |
---|
459 | } |
---|
460 | else if (!F.inCoeffDomain() && !G.inCoeffDomain()) |
---|
461 | { |
---|
462 | #ifdef HAVE_FLINT |
---|
463 | if (b.getp() != 0) |
---|
464 | { |
---|
465 | fmpz_t FLINTpk; |
---|
466 | fmpz_init (FLINTpk); |
---|
467 | convertCF2Fmpz (FLINTpk, b.getpk()); |
---|
468 | fmpz_mod_poly_t FLINTF, FLINTG; |
---|
469 | convertFacCF2Fmpz_mod_poly_t (FLINTF, F, FLINTpk); |
---|
470 | convertFacCF2Fmpz_mod_poly_t (FLINTG, G, FLINTpk); |
---|
471 | fmpz_mod_poly_mul (FLINTF, FLINTF, FLINTG); |
---|
472 | CanonicalForm result= convertFmpz_mod_poly_t2FacCF (FLINTF, F.mvar(),b); |
---|
473 | fmpz_mod_poly_clear (FLINTG); |
---|
474 | fmpz_mod_poly_clear (FLINTF); |
---|
475 | fmpz_clear (FLINTpk); |
---|
476 | return result; |
---|
477 | } |
---|
478 | return mulFLINTQ (F, G); |
---|
479 | #else |
---|
480 | if (b.getp() != 0) |
---|
481 | { |
---|
482 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
483 | ZZX ZZf= convertFacCF2NTLZZX (F); |
---|
484 | ZZX ZZg= convertFacCF2NTLZZX (G); |
---|
485 | ZZ_pX NTLf= to_ZZ_pX (ZZf); |
---|
486 | ZZ_pX NTLg= to_ZZ_pX (ZZg); |
---|
487 | mul (NTLf, NTLf, NTLg); |
---|
488 | return b (convertNTLZZX2CF (to_ZZX (NTLf), F.mvar())); |
---|
489 | } |
---|
490 | return F*G; |
---|
491 | #endif |
---|
492 | } |
---|
493 | if (b.getp() != 0) |
---|
494 | { |
---|
495 | if (!F.inBaseDomain() && !G.inBaseDomain()) |
---|
496 | { |
---|
497 | if (hasFirstAlgVar (G, alpha) || hasFirstAlgVar (F, alpha)) |
---|
498 | { |
---|
499 | #if (HAVE_FLINT && __FLINT_VERSION_MINOR >= 4) |
---|
500 | fmpz_t FLINTp; |
---|
501 | fmpz_mod_poly_t FLINTmipo; |
---|
502 | fq_ctx_t fq_con; |
---|
503 | |
---|
504 | fmpz_init (FLINTp); |
---|
505 | convertCF2Fmpz (FLINTp, b.getpk()); |
---|
506 | |
---|
507 | convertFacCF2Fmpz_mod_poly_t (FLINTmipo, getMipo (alpha), FLINTp); |
---|
508 | |
---|
509 | fq_ctx_init_modulus (fq_con, FLINTmipo, "Z"); |
---|
510 | |
---|
511 | CanonicalForm result; |
---|
512 | |
---|
513 | if (F.inCoeffDomain() && !G.inCoeffDomain()) |
---|
514 | { |
---|
515 | fq_poly_t FLINTG; |
---|
516 | fmpz_poly_t FLINTF; |
---|
517 | convertFacCF2Fmpz_poly_t (FLINTF, F); |
---|
518 | convertFacCF2Fq_poly_t (FLINTG, G, fq_con); |
---|
519 | |
---|
520 | fq_poly_scalar_mul_fq (FLINTG, FLINTG, FLINTF, fq_con); |
---|
521 | |
---|
522 | result= convertFq_poly_t2FacCF (FLINTG, G.mvar(), alpha, fq_con); |
---|
523 | fmpz_poly_clear (FLINTF); |
---|
524 | fq_poly_clear (FLINTG, fq_con); |
---|
525 | } |
---|
526 | else if (!F.inCoeffDomain() && G.inCoeffDomain()) |
---|
527 | { |
---|
528 | fq_poly_t FLINTF; |
---|
529 | fmpz_poly_t FLINTG; |
---|
530 | |
---|
531 | convertFacCF2Fmpz_poly_t (FLINTG, G); |
---|
532 | convertFacCF2Fq_poly_t (FLINTF, F, fq_con); |
---|
533 | |
---|
534 | fq_poly_scalar_mul_fq (FLINTF, FLINTF, FLINTG, fq_con); |
---|
535 | |
---|
536 | result= convertFq_poly_t2FacCF (FLINTF, F.mvar(), alpha, fq_con); |
---|
537 | fmpz_poly_clear (FLINTG); |
---|
538 | fq_poly_clear (FLINTF, fq_con); |
---|
539 | } |
---|
540 | else |
---|
541 | { |
---|
542 | fq_t FLINTF, FLINTG; |
---|
543 | |
---|
544 | convertFacCF2Fq_t (FLINTF, F, fq_con); |
---|
545 | convertFacCF2Fq_t (FLINTG, G, fq_con); |
---|
546 | |
---|
547 | fq_mul (FLINTF, FLINTF, FLINTG, fq_con); |
---|
548 | |
---|
549 | result= convertFq_t2FacCF (FLINTF, alpha); |
---|
550 | fq_clear (FLINTF, fq_con); |
---|
551 | fq_clear (FLINTG, fq_con); |
---|
552 | } |
---|
553 | |
---|
554 | fmpz_clear (FLINTp); |
---|
555 | fmpz_mod_poly_clear (FLINTmipo); |
---|
556 | fq_ctx_clear (fq_con); |
---|
557 | |
---|
558 | return b (result); |
---|
559 | #else |
---|
560 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
561 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
562 | ZZ_pE::init (NTLmipo); |
---|
563 | |
---|
564 | if (F.inCoeffDomain() && !G.inCoeffDomain()) |
---|
565 | { |
---|
566 | ZZ_pEX NTLg= convertFacCF2NTLZZ_pEX (G, NTLmipo); |
---|
567 | ZZ_pX NTLf= convertFacCF2NTLZZpX (F); |
---|
568 | mul (NTLg, to_ZZ_pE (NTLf), NTLg); |
---|
569 | return b (convertNTLZZ_pEX2CF (NTLg, G.mvar(), alpha)); |
---|
570 | } |
---|
571 | else if (!F.inCoeffDomain() && G.inCoeffDomain()) |
---|
572 | { |
---|
573 | ZZ_pX NTLg= convertFacCF2NTLZZpX (G); |
---|
574 | ZZ_pEX NTLf= convertFacCF2NTLZZ_pEX (F, NTLmipo); |
---|
575 | mul (NTLf, NTLf, to_ZZ_pE (NTLg)); |
---|
576 | return b (convertNTLZZ_pEX2CF (NTLf, F.mvar(), alpha)); |
---|
577 | } |
---|
578 | else |
---|
579 | { |
---|
580 | ZZ_pX NTLg= convertFacCF2NTLZZpX (G); |
---|
581 | ZZ_pX NTLf= convertFacCF2NTLZZpX (F); |
---|
582 | ZZ_pE result; |
---|
583 | mul (result, to_ZZ_pE (NTLg), to_ZZ_pE (NTLf)); |
---|
584 | return b (convertNTLZZpX2CF (rep (result), alpha)); |
---|
585 | } |
---|
586 | #endif |
---|
587 | } |
---|
588 | } |
---|
589 | return b (F*G); |
---|
590 | } |
---|
591 | return F*G; |
---|
592 | } |
---|
593 | else if (F.inCoeffDomain() || G.inCoeffDomain()) |
---|
594 | return F*G; |
---|
595 | ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); |
---|
596 | ASSERT (F.level() == G.level(), "expected polys of same level"); |
---|
597 | if (fac_NTL_char != getCharacteristic()) |
---|
598 | { |
---|
599 | fac_NTL_char= getCharacteristic(); |
---|
600 | zz_p::init (getCharacteristic()); |
---|
601 | } |
---|
602 | Variable alpha; |
---|
603 | CanonicalForm result; |
---|
604 | if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) |
---|
605 | { |
---|
606 | #if (HAVE_FLINT && __FLINT_VERSION_MINOR >= 4) |
---|
607 | nmod_poly_t FLINTmipo; |
---|
608 | fq_nmod_ctx_t fq_con; |
---|
609 | |
---|
610 | nmod_poly_init (FLINTmipo, getCharacteristic()); |
---|
611 | convertFacCF2nmod_poly_t (FLINTmipo, getMipo (alpha)); |
---|
612 | |
---|
613 | fq_nmod_ctx_init_modulus (fq_con, FLINTmipo, "Z"); |
---|
614 | |
---|
615 | fq_nmod_poly_t FLINTF, FLINTG; |
---|
616 | convertFacCF2Fq_nmod_poly_t (FLINTF, F, fq_con); |
---|
617 | convertFacCF2Fq_nmod_poly_t (FLINTG, G, fq_con); |
---|
618 | |
---|
619 | fq_nmod_poly_mul (FLINTF, FLINTF, FLINTG, fq_con); |
---|
620 | |
---|
621 | result= convertFq_nmod_poly_t2FacCF (FLINTF, F.mvar(), alpha, fq_con); |
---|
622 | |
---|
623 | fq_nmod_poly_clear (FLINTF, fq_con); |
---|
624 | fq_nmod_poly_clear (FLINTG, fq_con); |
---|
625 | nmod_poly_clear (FLINTmipo); |
---|
626 | fq_nmod_ctx_clear (fq_con); |
---|
627 | #else |
---|
628 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
629 | zz_pE::init (NTLMipo); |
---|
630 | zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); |
---|
631 | zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); |
---|
632 | mul (NTLF, NTLF, NTLG); |
---|
633 | result= convertNTLzz_pEX2CF(NTLF, F.mvar(), alpha); |
---|
634 | #endif |
---|
635 | } |
---|
636 | else |
---|
637 | { |
---|
638 | #ifdef HAVE_FLINT |
---|
639 | nmod_poly_t FLINTF, FLINTG; |
---|
640 | convertFacCF2nmod_poly_t (FLINTF, F); |
---|
641 | convertFacCF2nmod_poly_t (FLINTG, G); |
---|
642 | nmod_poly_mul (FLINTF, FLINTF, FLINTG); |
---|
643 | result= convertnmod_poly_t2FacCF (FLINTF, F.mvar()); |
---|
644 | nmod_poly_clear (FLINTF); |
---|
645 | nmod_poly_clear (FLINTG); |
---|
646 | #else |
---|
647 | zz_pX NTLF= convertFacCF2NTLzzpX (F); |
---|
648 | zz_pX NTLG= convertFacCF2NTLzzpX (G); |
---|
649 | mul (NTLF, NTLF, NTLG); |
---|
650 | result= convertNTLzzpX2CF(NTLF, F.mvar()); |
---|
651 | #endif |
---|
652 | } |
---|
653 | return result; |
---|
654 | } |
---|
655 | |
---|
656 | CanonicalForm |
---|
657 | modNTL (const CanonicalForm& F, const CanonicalForm& G, const modpk& b) |
---|
658 | { |
---|
659 | if (CFFactory::gettype() == GaloisFieldDomain) |
---|
660 | return mod (F, G); |
---|
661 | if (F.inCoeffDomain() && G.isUnivariate() && !G.inCoeffDomain()) |
---|
662 | { |
---|
663 | if (b.getp() != 0) |
---|
664 | return b(F); |
---|
665 | return F; |
---|
666 | } |
---|
667 | else if (F.inCoeffDomain() && G.inCoeffDomain()) |
---|
668 | { |
---|
669 | if (b.getp() != 0) |
---|
670 | return b(F%G); |
---|
671 | return mod (F, G); |
---|
672 | } |
---|
673 | else if (F.isUnivariate() && G.inCoeffDomain()) |
---|
674 | { |
---|
675 | if (b.getp() != 0) |
---|
676 | return b(F%G); |
---|
677 | return mod (F,G); |
---|
678 | } |
---|
679 | |
---|
680 | if (getCharacteristic() == 0) |
---|
681 | { |
---|
682 | Variable alpha; |
---|
683 | if (!hasFirstAlgVar (F, alpha) && !hasFirstAlgVar (G, alpha)) |
---|
684 | { |
---|
685 | #ifdef HAVE_FLINT |
---|
686 | if (b.getp() != 0) |
---|
687 | { |
---|
688 | fmpz_t FLINTpk; |
---|
689 | fmpz_init (FLINTpk); |
---|
690 | convertCF2Fmpz (FLINTpk, b.getpk()); |
---|
691 | fmpz_mod_poly_t FLINTF, FLINTG; |
---|
692 | convertFacCF2Fmpz_mod_poly_t (FLINTF, F, FLINTpk); |
---|
693 | convertFacCF2Fmpz_mod_poly_t (FLINTG, G, FLINTpk); |
---|
694 | fmpz_mod_poly_divrem (FLINTG, FLINTF, FLINTF, FLINTG); |
---|
695 | CanonicalForm result= convertFmpz_mod_poly_t2FacCF (FLINTF,F.mvar(),b); |
---|
696 | fmpz_mod_poly_clear (FLINTG); |
---|
697 | fmpz_mod_poly_clear (FLINTF); |
---|
698 | fmpz_clear (FLINTpk); |
---|
699 | return result; |
---|
700 | } |
---|
701 | return modFLINTQ (F, G); |
---|
702 | #else |
---|
703 | if (b.getp() != 0) |
---|
704 | { |
---|
705 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
706 | ZZX ZZf= convertFacCF2NTLZZX (F); |
---|
707 | ZZX ZZg= convertFacCF2NTLZZX (G); |
---|
708 | ZZ_pX NTLf= to_ZZ_pX (ZZf); |
---|
709 | ZZ_pX NTLg= to_ZZ_pX (ZZg); |
---|
710 | rem (NTLf, NTLf, NTLg); |
---|
711 | return b (convertNTLZZX2CF (to_ZZX (NTLf), F.mvar())); |
---|
712 | } |
---|
713 | return mod (F, G); |
---|
714 | #endif |
---|
715 | } |
---|
716 | else |
---|
717 | { |
---|
718 | if (b.getp() != 0) |
---|
719 | { |
---|
720 | #if (HAVE_FLINT && __FLINT_VERSION_MINOR >= 4) |
---|
721 | fmpz_t FLINTp; |
---|
722 | fmpz_mod_poly_t FLINTmipo; |
---|
723 | fq_ctx_t fq_con; |
---|
724 | fq_poly_t FLINTF, FLINTG; |
---|
725 | |
---|
726 | fmpz_init (FLINTp); |
---|
727 | |
---|
728 | convertCF2Fmpz (FLINTp, b.getpk()); |
---|
729 | |
---|
730 | convertFacCF2Fmpz_mod_poly_t (FLINTmipo, getMipo (alpha), FLINTp); |
---|
731 | |
---|
732 | fq_ctx_init_modulus (fq_con, FLINTmipo, "Z"); |
---|
733 | |
---|
734 | convertFacCF2Fq_poly_t (FLINTF, F, fq_con); |
---|
735 | convertFacCF2Fq_poly_t (FLINTG, G, fq_con); |
---|
736 | |
---|
737 | fq_poly_rem (FLINTF, FLINTF, FLINTG, fq_con); |
---|
738 | |
---|
739 | CanonicalForm result= convertFq_poly_t2FacCF (FLINTF, F.mvar(), |
---|
740 | alpha, fq_con); |
---|
741 | |
---|
742 | fmpz_clear (FLINTp); |
---|
743 | fmpz_mod_poly_clear (FLINTmipo); |
---|
744 | fq_poly_clear (FLINTF, fq_con); |
---|
745 | fq_poly_clear (FLINTG, fq_con); |
---|
746 | fq_ctx_clear (fq_con); |
---|
747 | |
---|
748 | return b(result); |
---|
749 | #else |
---|
750 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
751 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
752 | ZZ_pE::init (NTLmipo); |
---|
753 | ZZ_pEX NTLg= convertFacCF2NTLZZ_pEX (G, NTLmipo); |
---|
754 | ZZ_pEX NTLf= convertFacCF2NTLZZ_pEX (F, NTLmipo); |
---|
755 | rem (NTLf, NTLf, NTLg); |
---|
756 | return b (convertNTLZZ_pEX2CF (NTLf, F.mvar(), alpha)); |
---|
757 | #endif |
---|
758 | } |
---|
759 | #ifdef HAVE_FLINT |
---|
760 | CanonicalForm Q, R; |
---|
761 | newtonDivrem (F, G, Q, R); |
---|
762 | return R; |
---|
763 | #else |
---|
764 | return mod (F,G); |
---|
765 | #endif |
---|
766 | } |
---|
767 | } |
---|
768 | |
---|
769 | ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); |
---|
770 | ASSERT (F.level() == G.level(), "expected polys of same level"); |
---|
771 | if (fac_NTL_char != getCharacteristic()) |
---|
772 | { |
---|
773 | fac_NTL_char= getCharacteristic(); |
---|
774 | zz_p::init (getCharacteristic()); |
---|
775 | } |
---|
776 | Variable alpha; |
---|
777 | CanonicalForm result; |
---|
778 | if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) |
---|
779 | { |
---|
780 | #if (HAVE_FLINT && __FLINT_VERSION_MINOR >= 4) |
---|
781 | nmod_poly_t FLINTmipo; |
---|
782 | fq_nmod_ctx_t fq_con; |
---|
783 | |
---|
784 | nmod_poly_init (FLINTmipo, getCharacteristic()); |
---|
785 | convertFacCF2nmod_poly_t (FLINTmipo, getMipo (alpha)); |
---|
786 | |
---|
787 | fq_nmod_ctx_init_modulus (fq_con, FLINTmipo, "Z"); |
---|
788 | |
---|
789 | fq_nmod_poly_t FLINTF, FLINTG; |
---|
790 | convertFacCF2Fq_nmod_poly_t (FLINTF, F, fq_con); |
---|
791 | convertFacCF2Fq_nmod_poly_t (FLINTG, G, fq_con); |
---|
792 | |
---|
793 | fq_nmod_poly_rem (FLINTF, FLINTF, FLINTG, fq_con); |
---|
794 | |
---|
795 | result= convertFq_nmod_poly_t2FacCF (FLINTF, F.mvar(), alpha, fq_con); |
---|
796 | |
---|
797 | fq_nmod_poly_clear (FLINTF, fq_con); |
---|
798 | fq_nmod_poly_clear (FLINTG, fq_con); |
---|
799 | nmod_poly_clear (FLINTmipo); |
---|
800 | fq_nmod_ctx_clear (fq_con); |
---|
801 | #else |
---|
802 | zz_pX NTLMipo= convertFacCF2NTLzzpX(getMipo (alpha)); |
---|
803 | zz_pE::init (NTLMipo); |
---|
804 | zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); |
---|
805 | zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); |
---|
806 | rem (NTLF, NTLF, NTLG); |
---|
807 | result= convertNTLzz_pEX2CF(NTLF, F.mvar(), alpha); |
---|
808 | #endif |
---|
809 | } |
---|
810 | else |
---|
811 | { |
---|
812 | #ifdef HAVE_FLINT |
---|
813 | nmod_poly_t FLINTF, FLINTG; |
---|
814 | convertFacCF2nmod_poly_t (FLINTF, F); |
---|
815 | convertFacCF2nmod_poly_t (FLINTG, G); |
---|
816 | nmod_poly_divrem (FLINTG, FLINTF, FLINTF, FLINTG); |
---|
817 | result= convertnmod_poly_t2FacCF (FLINTF, F.mvar()); |
---|
818 | nmod_poly_clear (FLINTF); |
---|
819 | nmod_poly_clear (FLINTG); |
---|
820 | #else |
---|
821 | zz_pX NTLF= convertFacCF2NTLzzpX (F); |
---|
822 | zz_pX NTLG= convertFacCF2NTLzzpX (G); |
---|
823 | rem (NTLF, NTLF, NTLG); |
---|
824 | result= convertNTLzzpX2CF(NTLF, F.mvar()); |
---|
825 | #endif |
---|
826 | } |
---|
827 | return result; |
---|
828 | } |
---|
829 | |
---|
830 | CanonicalForm |
---|
831 | divNTL (const CanonicalForm& F, const CanonicalForm& G, const modpk& b) |
---|
832 | { |
---|
833 | if (CFFactory::gettype() == GaloisFieldDomain) |
---|
834 | return div (F, G); |
---|
835 | if (F.inCoeffDomain() && G.isUnivariate() && !G.inCoeffDomain()) |
---|
836 | { |
---|
837 | return 0; |
---|
838 | } |
---|
839 | else if (F.inCoeffDomain() && G.inCoeffDomain()) |
---|
840 | { |
---|
841 | if (b.getp() != 0) |
---|
842 | { |
---|
843 | if (!F.inBaseDomain() || !G.inBaseDomain()) |
---|
844 | { |
---|
845 | Variable alpha; |
---|
846 | hasFirstAlgVar (F, alpha); |
---|
847 | hasFirstAlgVar (G, alpha); |
---|
848 | #if (HAVE_FLINT && __FLINT_VERSION_MINOR >= 4) |
---|
849 | fmpz_t FLINTp; |
---|
850 | fmpz_mod_poly_t FLINTmipo; |
---|
851 | fq_ctx_t fq_con; |
---|
852 | fq_t FLINTF, FLINTG; |
---|
853 | |
---|
854 | fmpz_init (FLINTp); |
---|
855 | convertCF2Fmpz (FLINTp, b.getpk()); |
---|
856 | |
---|
857 | convertFacCF2Fmpz_mod_poly_t (FLINTmipo, getMipo (alpha), FLINTp); |
---|
858 | |
---|
859 | fq_ctx_init_modulus (fq_con, FLINTmipo, "Z"); |
---|
860 | |
---|
861 | convertFacCF2Fq_t (FLINTF, F, fq_con); |
---|
862 | convertFacCF2Fq_t (FLINTG, G, fq_con); |
---|
863 | |
---|
864 | fq_inv (FLINTG, FLINTG, fq_con); |
---|
865 | fq_mul (FLINTF, FLINTF, FLINTG, fq_con); |
---|
866 | |
---|
867 | CanonicalForm result= convertFq_t2FacCF (FLINTF, alpha); |
---|
868 | |
---|
869 | fmpz_clear (FLINTp); |
---|
870 | fmpz_mod_poly_clear (FLINTmipo); |
---|
871 | fq_clear (FLINTF, fq_con); |
---|
872 | fq_clear (FLINTG, fq_con); |
---|
873 | fq_ctx_clear (fq_con); |
---|
874 | return b (result); |
---|
875 | #else |
---|
876 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
877 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
878 | ZZ_pE::init (NTLmipo); |
---|
879 | ZZ_pX NTLg= convertFacCF2NTLZZpX (G); |
---|
880 | ZZ_pX NTLf= convertFacCF2NTLZZpX (F); |
---|
881 | ZZ_pE result; |
---|
882 | div (result, to_ZZ_pE (NTLf), to_ZZ_pE (NTLg)); |
---|
883 | return b (convertNTLZZpX2CF (rep (result), alpha)); |
---|
884 | #endif |
---|
885 | } |
---|
886 | return b(div (F,G)); |
---|
887 | } |
---|
888 | return div (F, G); |
---|
889 | } |
---|
890 | else if (F.isUnivariate() && G.inCoeffDomain()) |
---|
891 | { |
---|
892 | if (b.getp() != 0) |
---|
893 | { |
---|
894 | if (!G.inBaseDomain()) |
---|
895 | { |
---|
896 | Variable alpha; |
---|
897 | hasFirstAlgVar (G, alpha); |
---|
898 | #if (HAVE_FLINT && __FLINT_VERSION_MINOR >= 4) |
---|
899 | fmpz_t FLINTp; |
---|
900 | fmpz_mod_poly_t FLINTmipo; |
---|
901 | fq_ctx_t fq_con; |
---|
902 | fq_poly_t FLINTF; |
---|
903 | fq_t FLINTG; |
---|
904 | |
---|
905 | fmpz_init (FLINTp); |
---|
906 | convertCF2Fmpz (FLINTp, b.getpk()); |
---|
907 | |
---|
908 | convertFacCF2Fmpz_mod_poly_t (FLINTmipo, getMipo (alpha), FLINTp); |
---|
909 | |
---|
910 | fq_ctx_init_modulus (fq_con, FLINTmipo, "Z"); |
---|
911 | |
---|
912 | convertFacCF2Fq_poly_t (FLINTF, F, fq_con); |
---|
913 | convertFacCF2Fq_t (FLINTG, G, fq_con); |
---|
914 | |
---|
915 | fq_inv (FLINTG, FLINTG, fq_con); |
---|
916 | fq_poly_scalar_mul_fq (FLINTF, FLINTF, FLINTG, fq_con); |
---|
917 | |
---|
918 | CanonicalForm result= convertFq_poly_t2FacCF (FLINTF, F.mvar(), |
---|
919 | alpha, fq_con); |
---|
920 | |
---|
921 | fmpz_clear (FLINTp); |
---|
922 | fmpz_mod_poly_clear (FLINTmipo); |
---|
923 | fq_poly_clear (FLINTF, fq_con); |
---|
924 | fq_clear (FLINTG, fq_con); |
---|
925 | fq_ctx_clear (fq_con); |
---|
926 | return b (result); |
---|
927 | #else |
---|
928 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
929 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
930 | ZZ_pE::init (NTLmipo); |
---|
931 | ZZ_pX NTLg= convertFacCF2NTLZZpX (G); |
---|
932 | ZZ_pEX NTLf= convertFacCF2NTLZZ_pEX (F, NTLmipo); |
---|
933 | div (NTLf, NTLf, to_ZZ_pE (NTLg)); |
---|
934 | return b (convertNTLZZ_pEX2CF (NTLf, F.mvar(), alpha)); |
---|
935 | #endif |
---|
936 | } |
---|
937 | return b(div (F,G)); |
---|
938 | } |
---|
939 | return div (F, G); |
---|
940 | } |
---|
941 | |
---|
942 | if (getCharacteristic() == 0) |
---|
943 | { |
---|
944 | |
---|
945 | Variable alpha; |
---|
946 | if (!hasFirstAlgVar (F, alpha) && !hasFirstAlgVar (G, alpha)) |
---|
947 | { |
---|
948 | #ifdef HAVE_FLINT |
---|
949 | if (b.getp() != 0) |
---|
950 | { |
---|
951 | fmpz_t FLINTpk; |
---|
952 | fmpz_init (FLINTpk); |
---|
953 | convertCF2Fmpz (FLINTpk, b.getpk()); |
---|
954 | fmpz_mod_poly_t FLINTF, FLINTG; |
---|
955 | convertFacCF2Fmpz_mod_poly_t (FLINTF, F, FLINTpk); |
---|
956 | convertFacCF2Fmpz_mod_poly_t (FLINTG, G, FLINTpk); |
---|
957 | fmpz_mod_poly_divrem (FLINTF, FLINTG, FLINTF, FLINTG); |
---|
958 | CanonicalForm result= convertFmpz_mod_poly_t2FacCF (FLINTF,F.mvar(),b); |
---|
959 | fmpz_mod_poly_clear (FLINTG); |
---|
960 | fmpz_mod_poly_clear (FLINTF); |
---|
961 | fmpz_clear (FLINTpk); |
---|
962 | return result; |
---|
963 | } |
---|
964 | return divFLINTQ (F,G); |
---|
965 | #else |
---|
966 | if (b.getp() != 0) |
---|
967 | { |
---|
968 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
969 | ZZX ZZf= convertFacCF2NTLZZX (F); |
---|
970 | ZZX ZZg= convertFacCF2NTLZZX (G); |
---|
971 | ZZ_pX NTLf= to_ZZ_pX (ZZf); |
---|
972 | ZZ_pX NTLg= to_ZZ_pX (ZZg); |
---|
973 | div (NTLf, NTLf, NTLg); |
---|
974 | return b (convertNTLZZX2CF (to_ZZX (NTLf), F.mvar())); |
---|
975 | } |
---|
976 | return div (F, G); |
---|
977 | #endif |
---|
978 | } |
---|
979 | else |
---|
980 | { |
---|
981 | if (b.getp() != 0) |
---|
982 | { |
---|
983 | #if (HAVE_FLINT && __FLINT_VERSION_MINOR >= 4) |
---|
984 | fmpz_t FLINTp; |
---|
985 | fmpz_mod_poly_t FLINTmipo; |
---|
986 | fq_ctx_t fq_con; |
---|
987 | fq_poly_t FLINTF, FLINTG; |
---|
988 | |
---|
989 | fmpz_init (FLINTp); |
---|
990 | convertCF2Fmpz (FLINTp, b.getpk()); |
---|
991 | |
---|
992 | convertFacCF2Fmpz_mod_poly_t (FLINTmipo, getMipo (alpha), FLINTp); |
---|
993 | |
---|
994 | fq_ctx_init_modulus (fq_con, FLINTmipo, "Z"); |
---|
995 | |
---|
996 | convertFacCF2Fq_poly_t (FLINTF, F, fq_con); |
---|
997 | convertFacCF2Fq_poly_t (FLINTG, G, fq_con); |
---|
998 | |
---|
999 | fq_poly_divrem (FLINTF, FLINTG, FLINTF, FLINTG, fq_con); |
---|
1000 | |
---|
1001 | CanonicalForm result= convertFq_poly_t2FacCF (FLINTF, F.mvar(), |
---|
1002 | alpha, fq_con); |
---|
1003 | |
---|
1004 | fmpz_clear (FLINTp); |
---|
1005 | fmpz_mod_poly_clear (FLINTmipo); |
---|
1006 | fq_ctx_clear (fq_con); |
---|
1007 | fq_poly_clear (FLINTF, fq_con); |
---|
1008 | fq_poly_clear (FLINTG, fq_con); |
---|
1009 | return b (result); |
---|
1010 | #else |
---|
1011 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
1012 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
1013 | ZZ_pE::init (NTLmipo); |
---|
1014 | ZZ_pEX NTLg= convertFacCF2NTLZZ_pEX (G, NTLmipo); |
---|
1015 | ZZ_pEX NTLf= convertFacCF2NTLZZ_pEX (F, NTLmipo); |
---|
1016 | div (NTLf, NTLf, NTLg); |
---|
1017 | return b (convertNTLZZ_pEX2CF (NTLf, F.mvar(), alpha)); |
---|
1018 | #endif |
---|
1019 | } |
---|
1020 | #ifdef HAVE_FLINT |
---|
1021 | CanonicalForm Q; |
---|
1022 | newtonDiv (F, G, Q); |
---|
1023 | return Q; |
---|
1024 | #else |
---|
1025 | return div (F,G); |
---|
1026 | #endif |
---|
1027 | } |
---|
1028 | } |
---|
1029 | |
---|
1030 | ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); |
---|
1031 | ASSERT (F.level() == G.level(), "expected polys of same level"); |
---|
1032 | if (fac_NTL_char != getCharacteristic()) |
---|
1033 | { |
---|
1034 | fac_NTL_char= getCharacteristic(); |
---|
1035 | zz_p::init (getCharacteristic()); |
---|
1036 | } |
---|
1037 | Variable alpha; |
---|
1038 | CanonicalForm result; |
---|
1039 | if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) |
---|
1040 | { |
---|
1041 | #if (HAVE_FLINT && __FLINT_VERSION_MINOR >= 4) |
---|
1042 | nmod_poly_t FLINTmipo; |
---|
1043 | fq_nmod_ctx_t fq_con; |
---|
1044 | |
---|
1045 | nmod_poly_init (FLINTmipo, getCharacteristic()); |
---|
1046 | convertFacCF2nmod_poly_t (FLINTmipo, getMipo (alpha)); |
---|
1047 | |
---|
1048 | fq_nmod_ctx_init_modulus (fq_con, FLINTmipo, "Z"); |
---|
1049 | |
---|
1050 | fq_nmod_poly_t FLINTF, FLINTG; |
---|
1051 | convertFacCF2Fq_nmod_poly_t (FLINTF, F, fq_con); |
---|
1052 | convertFacCF2Fq_nmod_poly_t (FLINTG, G, fq_con); |
---|
1053 | |
---|
1054 | fq_nmod_poly_divrem (FLINTF, FLINTG, FLINTF, FLINTG, fq_con); |
---|
1055 | |
---|
1056 | result= convertFq_nmod_poly_t2FacCF (FLINTF, F.mvar(), alpha, fq_con); |
---|
1057 | |
---|
1058 | fq_nmod_poly_clear (FLINTF, fq_con); |
---|
1059 | fq_nmod_poly_clear (FLINTG, fq_con); |
---|
1060 | nmod_poly_clear (FLINTmipo); |
---|
1061 | fq_nmod_ctx_clear (fq_con); |
---|
1062 | #else |
---|
1063 | zz_pX NTLMipo= convertFacCF2NTLzzpX(getMipo (alpha)); |
---|
1064 | zz_pE::init (NTLMipo); |
---|
1065 | zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); |
---|
1066 | zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); |
---|
1067 | div (NTLF, NTLF, NTLG); |
---|
1068 | result= convertNTLzz_pEX2CF(NTLF, F.mvar(), alpha); |
---|
1069 | #endif |
---|
1070 | } |
---|
1071 | else |
---|
1072 | { |
---|
1073 | #ifdef HAVE_FLINT |
---|
1074 | nmod_poly_t FLINTF, FLINTG; |
---|
1075 | convertFacCF2nmod_poly_t (FLINTF, F); |
---|
1076 | convertFacCF2nmod_poly_t (FLINTG, G); |
---|
1077 | nmod_poly_div (FLINTF, FLINTF, FLINTG); |
---|
1078 | result= convertnmod_poly_t2FacCF (FLINTF, F.mvar()); |
---|
1079 | nmod_poly_clear (FLINTF); |
---|
1080 | nmod_poly_clear (FLINTG); |
---|
1081 | #else |
---|
1082 | zz_pX NTLF= convertFacCF2NTLzzpX (F); |
---|
1083 | zz_pX NTLG= convertFacCF2NTLzzpX (G); |
---|
1084 | div (NTLF, NTLF, NTLG); |
---|
1085 | result= convertNTLzzpX2CF(NTLF, F.mvar()); |
---|
1086 | #endif |
---|
1087 | } |
---|
1088 | return result; |
---|
1089 | } |
---|
1090 | |
---|
1091 | // end univariate polys |
---|
1092 | //************************* |
---|
1093 | // bivariate polys |
---|
1094 | |
---|
1095 | #ifdef HAVE_FLINT |
---|
1096 | void kronSubFp (nmod_poly_t result, const CanonicalForm& A, int d) |
---|
1097 | { |
---|
1098 | int degAy= degree (A); |
---|
1099 | nmod_poly_init2 (result, getCharacteristic(), d*(degAy + 1)); |
---|
1100 | result->length= d*(degAy + 1); |
---|
1101 | flint_mpn_zero (result->coeffs, d*(degAy+1)); |
---|
1102 | |
---|
1103 | nmod_poly_t buf; |
---|
1104 | |
---|
1105 | int k; |
---|
1106 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
1107 | { |
---|
1108 | convertFacCF2nmod_poly_t (buf, i.coeff()); |
---|
1109 | k= i.exp()*d; |
---|
1110 | flint_mpn_copyi (result->coeffs+k, buf->coeffs, nmod_poly_length(buf)); |
---|
1111 | |
---|
1112 | nmod_poly_clear (buf); |
---|
1113 | } |
---|
1114 | _nmod_poly_normalise (result); |
---|
1115 | } |
---|
1116 | |
---|
1117 | #if (__FLINT_VERSION_MINOR >= 4) |
---|
1118 | void |
---|
1119 | kronSubFq (fq_nmod_poly_t result, const CanonicalForm& A, int d, |
---|
1120 | const fq_nmod_ctx_t fq_con) |
---|
1121 | { |
---|
1122 | int degAy= degree (A); |
---|
1123 | fq_nmod_poly_init2 (result, d*(degAy + 1), fq_con); |
---|
1124 | _fq_nmod_poly_set_length (result, d*(degAy + 1), fq_con); |
---|
1125 | _fq_nmod_vec_zero (result->coeffs, d*(degAy + 1), fq_con); |
---|
1126 | |
---|
1127 | fq_nmod_poly_t buf1; |
---|
1128 | |
---|
1129 | nmod_poly_t buf2; |
---|
1130 | |
---|
1131 | int k; |
---|
1132 | |
---|
1133 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
1134 | { |
---|
1135 | if (i.coeff().inCoeffDomain()) |
---|
1136 | { |
---|
1137 | convertFacCF2nmod_poly_t (buf2, i.coeff()); |
---|
1138 | fq_nmod_poly_init2 (buf1, 1, fq_con); |
---|
1139 | fq_nmod_poly_set_coeff (buf1, 0, buf2, fq_con); |
---|
1140 | nmod_poly_clear (buf2); |
---|
1141 | } |
---|
1142 | else |
---|
1143 | convertFacCF2Fq_nmod_poly_t (buf1, i.coeff(), fq_con); |
---|
1144 | |
---|
1145 | k= i.exp()*d; |
---|
1146 | _fq_nmod_vec_set (result->coeffs+k, buf1->coeffs, |
---|
1147 | fq_nmod_poly_length (buf1, fq_con), fq_con); |
---|
1148 | |
---|
1149 | fq_nmod_poly_clear (buf1, fq_con); |
---|
1150 | } |
---|
1151 | |
---|
1152 | _fq_nmod_poly_normalise (result, fq_con); |
---|
1153 | } |
---|
1154 | #endif |
---|
1155 | |
---|
1156 | void kronSubQa (fmpq_poly_t result, const CanonicalForm& A, int d1, int d2) |
---|
1157 | { |
---|
1158 | int degAy= degree (A); |
---|
1159 | fmpq_poly_init2 (result, d1*(degAy + 1)); |
---|
1160 | |
---|
1161 | fmpq_poly_t buf; |
---|
1162 | fmpq_t coeff; |
---|
1163 | |
---|
1164 | int k, l, bufRepLength; |
---|
1165 | CFIterator j; |
---|
1166 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
1167 | { |
---|
1168 | if (i.coeff().inCoeffDomain()) |
---|
1169 | { |
---|
1170 | k= d1*i.exp(); |
---|
1171 | convertFacCF2Fmpq_poly_t (buf, i.coeff()); |
---|
1172 | bufRepLength= (int) fmpq_poly_length(buf); |
---|
1173 | for (l= 0; l < bufRepLength; l++) |
---|
1174 | { |
---|
1175 | fmpq_poly_get_coeff_fmpq (coeff, buf, l); |
---|
1176 | fmpq_poly_set_coeff_fmpq (result, l + k, coeff); |
---|
1177 | } |
---|
1178 | fmpq_poly_clear (buf); |
---|
1179 | } |
---|
1180 | else |
---|
1181 | { |
---|
1182 | for (j= i.coeff(); j.hasTerms(); j++) |
---|
1183 | { |
---|
1184 | k= d1*i.exp(); |
---|
1185 | k += d2*j.exp(); |
---|
1186 | convertFacCF2Fmpq_poly_t (buf, j.coeff()); |
---|
1187 | bufRepLength= (int) fmpq_poly_length(buf); |
---|
1188 | for (l= 0; l < bufRepLength; l++) |
---|
1189 | { |
---|
1190 | fmpq_poly_get_coeff_fmpq (coeff, buf, l); |
---|
1191 | fmpq_poly_set_coeff_fmpq (result, k + l, coeff); |
---|
1192 | } |
---|
1193 | fmpq_poly_clear (buf); |
---|
1194 | } |
---|
1195 | } |
---|
1196 | } |
---|
1197 | fmpq_clear (coeff); |
---|
1198 | _fmpq_poly_normalise (result); |
---|
1199 | } |
---|
1200 | |
---|
1201 | void |
---|
1202 | kronSubReciproFp (nmod_poly_t subA1, nmod_poly_t subA2, const CanonicalForm& A, |
---|
1203 | int d) |
---|
1204 | { |
---|
1205 | int degAy= degree (A); |
---|
1206 | mp_limb_t ninv= n_preinvert_limb (getCharacteristic()); |
---|
1207 | nmod_poly_init2_preinv (subA1, getCharacteristic(), ninv, d*(degAy + 2)); |
---|
1208 | nmod_poly_init2_preinv (subA2, getCharacteristic(), ninv, d*(degAy + 2)); |
---|
1209 | |
---|
1210 | nmod_poly_t buf; |
---|
1211 | |
---|
1212 | int k, kk, j, bufRepLength; |
---|
1213 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
1214 | { |
---|
1215 | convertFacCF2nmod_poly_t (buf, i.coeff()); |
---|
1216 | |
---|
1217 | k= i.exp()*d; |
---|
1218 | kk= (degAy - i.exp())*d; |
---|
1219 | bufRepLength= (int) nmod_poly_length (buf); |
---|
1220 | for (j= 0; j < bufRepLength; j++) |
---|
1221 | { |
---|
1222 | nmod_poly_set_coeff_ui (subA1, j + k, |
---|
1223 | n_addmod (nmod_poly_get_coeff_ui (subA1, j+k), |
---|
1224 | nmod_poly_get_coeff_ui (buf, j), |
---|
1225 | getCharacteristic() |
---|
1226 | ) |
---|
1227 | ); |
---|
1228 | nmod_poly_set_coeff_ui (subA2, j + kk, |
---|
1229 | n_addmod (nmod_poly_get_coeff_ui (subA2, j + kk), |
---|
1230 | nmod_poly_get_coeff_ui (buf, j), |
---|
1231 | getCharacteristic() |
---|
1232 | ) |
---|
1233 | ); |
---|
1234 | } |
---|
1235 | nmod_poly_clear (buf); |
---|
1236 | } |
---|
1237 | _nmod_poly_normalise (subA1); |
---|
1238 | _nmod_poly_normalise (subA2); |
---|
1239 | } |
---|
1240 | |
---|
1241 | #if (__FLINT_VERSION_MINOR >= 4) |
---|
1242 | void |
---|
1243 | kronSubReciproFq (fq_nmod_poly_t subA1, fq_nmod_poly_t subA2, |
---|
1244 | const CanonicalForm& A, int d, const fq_nmod_ctx_t fq_con) |
---|
1245 | { |
---|
1246 | int degAy= degree (A); |
---|
1247 | fq_nmod_poly_init2 (subA1, d*(degAy + 2), fq_con); |
---|
1248 | fq_nmod_poly_init2 (subA2, d*(degAy + 2), fq_con); |
---|
1249 | |
---|
1250 | _fq_nmod_poly_set_length (subA1, d*(degAy + 2), fq_con); |
---|
1251 | _fq_nmod_vec_zero (subA1->coeffs, d*(degAy + 2), fq_con); |
---|
1252 | |
---|
1253 | _fq_nmod_poly_set_length (subA2, d*(degAy + 2), fq_con); |
---|
1254 | _fq_nmod_vec_zero (subA2->coeffs, d*(degAy + 2), fq_con); |
---|
1255 | |
---|
1256 | fq_nmod_poly_t buf1; |
---|
1257 | |
---|
1258 | nmod_poly_t buf2; |
---|
1259 | |
---|
1260 | int k, kk; |
---|
1261 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
1262 | { |
---|
1263 | if (i.coeff().inCoeffDomain()) |
---|
1264 | { |
---|
1265 | convertFacCF2nmod_poly_t (buf2, i.coeff()); |
---|
1266 | fq_nmod_poly_init2 (buf1, 1, fq_con); |
---|
1267 | fq_nmod_poly_set_coeff (buf1, 0, buf2, fq_con); |
---|
1268 | nmod_poly_clear (buf2); |
---|
1269 | } |
---|
1270 | else |
---|
1271 | convertFacCF2Fq_nmod_poly_t (buf1, i.coeff(), fq_con); |
---|
1272 | |
---|
1273 | k= i.exp()*d; |
---|
1274 | kk= (degAy - i.exp())*d; |
---|
1275 | _fq_nmod_vec_add (subA1->coeffs+k, subA1->coeffs+k, buf1->coeffs, |
---|
1276 | fq_nmod_poly_length(buf1, fq_con), fq_con); |
---|
1277 | _fq_nmod_vec_add (subA2->coeffs+kk, subA2->coeffs+kk, buf1->coeffs, |
---|
1278 | fq_nmod_poly_length(buf1, fq_con), fq_con); |
---|
1279 | |
---|
1280 | fq_nmod_poly_clear (buf1, fq_con); |
---|
1281 | } |
---|
1282 | _fq_nmod_poly_normalise (subA1, fq_con); |
---|
1283 | _fq_nmod_poly_normalise (subA2, fq_con); |
---|
1284 | } |
---|
1285 | #endif |
---|
1286 | |
---|
1287 | void |
---|
1288 | kronSubReciproQ (fmpz_poly_t subA1, fmpz_poly_t subA2, const CanonicalForm& A, |
---|
1289 | int d) |
---|
1290 | { |
---|
1291 | int degAy= degree (A); |
---|
1292 | fmpz_poly_init2 (subA1, d*(degAy + 2)); |
---|
1293 | fmpz_poly_init2 (subA2, d*(degAy + 2)); |
---|
1294 | |
---|
1295 | fmpz_poly_t buf; |
---|
1296 | fmpz_t coeff1, coeff2; |
---|
1297 | |
---|
1298 | int k, kk, j, bufRepLength; |
---|
1299 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
1300 | { |
---|
1301 | convertFacCF2Fmpz_poly_t (buf, i.coeff()); |
---|
1302 | |
---|
1303 | k= i.exp()*d; |
---|
1304 | kk= (degAy - i.exp())*d; |
---|
1305 | bufRepLength= (int) fmpz_poly_length (buf); |
---|
1306 | for (j= 0; j < bufRepLength; j++) |
---|
1307 | { |
---|
1308 | fmpz_poly_get_coeff_fmpz (coeff1, subA1, j+k); |
---|
1309 | fmpz_poly_get_coeff_fmpz (coeff2, buf, j); |
---|
1310 | fmpz_add (coeff1, coeff1, coeff2); |
---|
1311 | fmpz_poly_set_coeff_fmpz (subA1, j + k, coeff1); |
---|
1312 | fmpz_poly_get_coeff_fmpz (coeff1, subA2, j + kk); |
---|
1313 | fmpz_add (coeff1, coeff1, coeff2); |
---|
1314 | fmpz_poly_set_coeff_fmpz (subA2, j + kk, coeff1); |
---|
1315 | } |
---|
1316 | fmpz_poly_clear (buf); |
---|
1317 | } |
---|
1318 | fmpz_clear (coeff1); |
---|
1319 | fmpz_clear (coeff2); |
---|
1320 | _fmpz_poly_normalise (subA1); |
---|
1321 | _fmpz_poly_normalise (subA2); |
---|
1322 | } |
---|
1323 | |
---|
1324 | CanonicalForm reverseSubstQ (const fmpz_poly_t F, int d) |
---|
1325 | { |
---|
1326 | Variable y= Variable (2); |
---|
1327 | Variable x= Variable (1); |
---|
1328 | |
---|
1329 | fmpz_poly_t f; |
---|
1330 | fmpz_poly_init (f); |
---|
1331 | fmpz_poly_set (f, F); |
---|
1332 | |
---|
1333 | fmpz_poly_t buf; |
---|
1334 | CanonicalForm result= 0; |
---|
1335 | int i= 0; |
---|
1336 | int degf= fmpz_poly_degree(f); |
---|
1337 | int k= 0; |
---|
1338 | int degfSubK, repLength, j; |
---|
1339 | fmpz_t coeff; |
---|
1340 | while (degf >= k) |
---|
1341 | { |
---|
1342 | degfSubK= degf - k; |
---|
1343 | if (degfSubK >= d) |
---|
1344 | repLength= d; |
---|
1345 | else |
---|
1346 | repLength= degfSubK + 1; |
---|
1347 | |
---|
1348 | fmpz_poly_init2 (buf, repLength); |
---|
1349 | fmpz_init (coeff); |
---|
1350 | for (j= 0; j < repLength; j++) |
---|
1351 | { |
---|
1352 | fmpz_poly_get_coeff_fmpz (coeff, f, j + k); |
---|
1353 | fmpz_poly_set_coeff_fmpz (buf, j, coeff); |
---|
1354 | } |
---|
1355 | _fmpz_poly_normalise (buf); |
---|
1356 | |
---|
1357 | result += convertFmpz_poly_t2FacCF (buf, x)*power (y, i); |
---|
1358 | i++; |
---|
1359 | k= d*i; |
---|
1360 | fmpz_poly_clear (buf); |
---|
1361 | fmpz_clear (coeff); |
---|
1362 | } |
---|
1363 | fmpz_poly_clear (f); |
---|
1364 | |
---|
1365 | return result; |
---|
1366 | } |
---|
1367 | |
---|
1368 | CanonicalForm |
---|
1369 | reverseSubstQa (const fmpq_poly_t F, int d1, int d2, const Variable& alpha, |
---|
1370 | const fmpq_poly_t mipo) |
---|
1371 | { |
---|
1372 | Variable y= Variable (2); |
---|
1373 | Variable x= Variable (1); |
---|
1374 | |
---|
1375 | fmpq_poly_t f; |
---|
1376 | fmpq_poly_init (f); |
---|
1377 | fmpq_poly_set (f, F); |
---|
1378 | |
---|
1379 | fmpq_poly_t buf; |
---|
1380 | CanonicalForm result= 0, result2; |
---|
1381 | int i= 0; |
---|
1382 | int degf= fmpq_poly_degree(f); |
---|
1383 | int k= 0; |
---|
1384 | int degfSubK; |
---|
1385 | int repLength; |
---|
1386 | fmpq_t coeff; |
---|
1387 | while (degf >= k) |
---|
1388 | { |
---|
1389 | degfSubK= degf - k; |
---|
1390 | if (degfSubK >= d1) |
---|
1391 | repLength= d1; |
---|
1392 | else |
---|
1393 | repLength= degfSubK + 1; |
---|
1394 | |
---|
1395 | fmpq_init (coeff); |
---|
1396 | int j= 0; |
---|
1397 | int l; |
---|
1398 | result2= 0; |
---|
1399 | while (j*d2 < repLength) |
---|
1400 | { |
---|
1401 | fmpq_poly_init2 (buf, d2); |
---|
1402 | for (l= 0; l < d2; l++) |
---|
1403 | { |
---|
1404 | fmpq_poly_get_coeff_fmpq (coeff, f, k + j*d2 + l); |
---|
1405 | fmpq_poly_set_coeff_fmpq (buf, l, coeff); |
---|
1406 | } |
---|
1407 | _fmpq_poly_normalise (buf); |
---|
1408 | fmpq_poly_rem (buf, buf, mipo); |
---|
1409 | result2 += convertFmpq_poly_t2FacCF (buf, alpha)*power (x, j); |
---|
1410 | j++; |
---|
1411 | fmpq_poly_clear (buf); |
---|
1412 | } |
---|
1413 | if (repLength - j*d2 != 0 && j*d2 - repLength < d2) |
---|
1414 | { |
---|
1415 | j--; |
---|
1416 | repLength -= j*d2; |
---|
1417 | fmpq_poly_init2 (buf, repLength); |
---|
1418 | j++; |
---|
1419 | for (l= 0; l < repLength; l++) |
---|
1420 | { |
---|
1421 | fmpq_poly_get_coeff_fmpq (coeff, f, k + j*d2 + l); |
---|
1422 | fmpq_poly_set_coeff_fmpq (buf, l, coeff); |
---|
1423 | } |
---|
1424 | _fmpq_poly_normalise (buf); |
---|
1425 | fmpq_poly_rem (buf, buf, mipo); |
---|
1426 | result2 += convertFmpq_poly_t2FacCF (buf, alpha)*power (x, j); |
---|
1427 | fmpq_poly_clear (buf); |
---|
1428 | } |
---|
1429 | fmpq_clear (coeff); |
---|
1430 | |
---|
1431 | result += result2*power (y, i); |
---|
1432 | i++; |
---|
1433 | k= d1*i; |
---|
1434 | } |
---|
1435 | |
---|
1436 | fmpq_poly_clear (f); |
---|
1437 | return result; |
---|
1438 | } |
---|
1439 | |
---|
1440 | CanonicalForm |
---|
1441 | reverseSubstReciproFp (const nmod_poly_t F, const nmod_poly_t G, int d, int k) |
---|
1442 | { |
---|
1443 | Variable y= Variable (2); |
---|
1444 | Variable x= Variable (1); |
---|
1445 | |
---|
1446 | nmod_poly_t f, g; |
---|
1447 | mp_limb_t ninv= n_preinvert_limb (getCharacteristic()); |
---|
1448 | nmod_poly_init_preinv (f, getCharacteristic(), ninv); |
---|
1449 | nmod_poly_init_preinv (g, getCharacteristic(), ninv); |
---|
1450 | nmod_poly_set (f, F); |
---|
1451 | nmod_poly_set (g, G); |
---|
1452 | int degf= nmod_poly_degree(f); |
---|
1453 | int degg= nmod_poly_degree(g); |
---|
1454 | |
---|
1455 | |
---|
1456 | nmod_poly_t buf1,buf2, buf3; |
---|
1457 | |
---|
1458 | if (nmod_poly_length (f) < (long) d*(k+1)) //zero padding |
---|
1459 | nmod_poly_fit_length (f,(long)d*(k+1)); |
---|
1460 | |
---|
1461 | CanonicalForm result= 0; |
---|
1462 | int i= 0; |
---|
1463 | int lf= 0; |
---|
1464 | int lg= d*k; |
---|
1465 | int degfSubLf= degf; |
---|
1466 | int deggSubLg= degg-lg; |
---|
1467 | int repLengthBuf2, repLengthBuf1, ind, tmp; |
---|
1468 | while (degf >= lf || lg >= 0) |
---|
1469 | { |
---|
1470 | if (degfSubLf >= d) |
---|
1471 | repLengthBuf1= d; |
---|
1472 | else if (degfSubLf < 0) |
---|
1473 | repLengthBuf1= 0; |
---|
1474 | else |
---|
1475 | repLengthBuf1= degfSubLf + 1; |
---|
1476 | nmod_poly_init2_preinv (buf1, getCharacteristic(), ninv, repLengthBuf1); |
---|
1477 | |
---|
1478 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1479 | nmod_poly_set_coeff_ui (buf1, ind, nmod_poly_get_coeff_ui (f, ind+lf)); |
---|
1480 | _nmod_poly_normalise (buf1); |
---|
1481 | |
---|
1482 | repLengthBuf1= nmod_poly_length (buf1); |
---|
1483 | |
---|
1484 | if (deggSubLg >= d - 1) |
---|
1485 | repLengthBuf2= d - 1; |
---|
1486 | else if (deggSubLg < 0) |
---|
1487 | repLengthBuf2= 0; |
---|
1488 | else |
---|
1489 | repLengthBuf2= deggSubLg + 1; |
---|
1490 | |
---|
1491 | nmod_poly_init2_preinv (buf2, getCharacteristic(), ninv, repLengthBuf2); |
---|
1492 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1493 | nmod_poly_set_coeff_ui (buf2, ind, nmod_poly_get_coeff_ui (g, ind + lg)); |
---|
1494 | |
---|
1495 | _nmod_poly_normalise (buf2); |
---|
1496 | repLengthBuf2= nmod_poly_length (buf2); |
---|
1497 | |
---|
1498 | nmod_poly_init2_preinv (buf3, getCharacteristic(), ninv, repLengthBuf2 + d); |
---|
1499 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1500 | nmod_poly_set_coeff_ui (buf3, ind, nmod_poly_get_coeff_ui (buf1, ind)); |
---|
1501 | for (ind= repLengthBuf1; ind < d; ind++) |
---|
1502 | nmod_poly_set_coeff_ui (buf3, ind, 0); |
---|
1503 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1504 | nmod_poly_set_coeff_ui (buf3, ind+d, nmod_poly_get_coeff_ui (buf2, ind)); |
---|
1505 | _nmod_poly_normalise (buf3); |
---|
1506 | |
---|
1507 | result += convertnmod_poly_t2FacCF (buf3, x)*power (y, i); |
---|
1508 | i++; |
---|
1509 | |
---|
1510 | |
---|
1511 | lf= i*d; |
---|
1512 | degfSubLf= degf - lf; |
---|
1513 | |
---|
1514 | lg= d*(k-i); |
---|
1515 | deggSubLg= degg - lg; |
---|
1516 | |
---|
1517 | if (lg >= 0 && deggSubLg > 0) |
---|
1518 | { |
---|
1519 | if (repLengthBuf2 > degfSubLf + 1) |
---|
1520 | degfSubLf= repLengthBuf2 - 1; |
---|
1521 | tmp= tmin (repLengthBuf1, deggSubLg + 1); |
---|
1522 | for (ind= 0; ind < tmp; ind++) |
---|
1523 | nmod_poly_set_coeff_ui (g, ind + lg, |
---|
1524 | n_submod (nmod_poly_get_coeff_ui (g, ind + lg), |
---|
1525 | nmod_poly_get_coeff_ui (buf1, ind), |
---|
1526 | getCharacteristic() |
---|
1527 | ) |
---|
1528 | ); |
---|
1529 | } |
---|
1530 | if (lg < 0) |
---|
1531 | { |
---|
1532 | nmod_poly_clear (buf1); |
---|
1533 | nmod_poly_clear (buf2); |
---|
1534 | nmod_poly_clear (buf3); |
---|
1535 | break; |
---|
1536 | } |
---|
1537 | if (degfSubLf >= 0) |
---|
1538 | { |
---|
1539 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1540 | nmod_poly_set_coeff_ui (f, ind + lf, |
---|
1541 | n_submod (nmod_poly_get_coeff_ui (f, ind + lf), |
---|
1542 | nmod_poly_get_coeff_ui (buf2, ind), |
---|
1543 | getCharacteristic() |
---|
1544 | ) |
---|
1545 | ); |
---|
1546 | } |
---|
1547 | nmod_poly_clear (buf1); |
---|
1548 | nmod_poly_clear (buf2); |
---|
1549 | nmod_poly_clear (buf3); |
---|
1550 | } |
---|
1551 | |
---|
1552 | nmod_poly_clear (f); |
---|
1553 | nmod_poly_clear (g); |
---|
1554 | |
---|
1555 | return result; |
---|
1556 | } |
---|
1557 | |
---|
1558 | #if (__FLINT_VERSION_MINOR >= 4) |
---|
1559 | CanonicalForm |
---|
1560 | reverseSubstReciproFq (const fq_nmod_poly_t F, const fq_nmod_poly_t G, int d, |
---|
1561 | int k, const Variable& alpha, const fq_nmod_ctx_t fq_con) |
---|
1562 | { |
---|
1563 | Variable y= Variable (2); |
---|
1564 | Variable x= Variable (1); |
---|
1565 | |
---|
1566 | fq_nmod_poly_t f, g; |
---|
1567 | int degf= fq_nmod_poly_degree(F, fq_con); |
---|
1568 | int degg= fq_nmod_poly_degree(G, fq_con); |
---|
1569 | |
---|
1570 | fq_nmod_poly_t buf1,buf2, buf3; |
---|
1571 | |
---|
1572 | fq_nmod_poly_init (f, fq_con); |
---|
1573 | fq_nmod_poly_init (g, fq_con); |
---|
1574 | fq_nmod_poly_set (f, F, fq_con); |
---|
1575 | fq_nmod_poly_set (g, G, fq_con); |
---|
1576 | if (fq_nmod_poly_length (f, fq_con) < (long) d*(k + 1)) //zero padding |
---|
1577 | fq_nmod_poly_fit_length (f, (long) d*(k + 1), fq_con); |
---|
1578 | |
---|
1579 | CanonicalForm result= 0; |
---|
1580 | int i= 0; |
---|
1581 | int lf= 0; |
---|
1582 | int lg= d*k; |
---|
1583 | int degfSubLf= degf; |
---|
1584 | int deggSubLg= degg-lg; |
---|
1585 | int repLengthBuf2, repLengthBuf1, tmp; |
---|
1586 | while (degf >= lf || lg >= 0) |
---|
1587 | { |
---|
1588 | if (degfSubLf >= d) |
---|
1589 | repLengthBuf1= d; |
---|
1590 | else if (degfSubLf < 0) |
---|
1591 | repLengthBuf1= 0; |
---|
1592 | else |
---|
1593 | repLengthBuf1= degfSubLf + 1; |
---|
1594 | fq_nmod_poly_init2 (buf1, repLengthBuf1, fq_con); |
---|
1595 | _fq_nmod_poly_set_length (buf1, repLengthBuf1, fq_con); |
---|
1596 | |
---|
1597 | _fq_nmod_vec_set (buf1->coeffs, f->coeffs + lf, repLengthBuf1, fq_con); |
---|
1598 | _fq_nmod_poly_normalise (buf1, fq_con); |
---|
1599 | |
---|
1600 | repLengthBuf1= fq_nmod_poly_length (buf1, fq_con); |
---|
1601 | |
---|
1602 | if (deggSubLg >= d - 1) |
---|
1603 | repLengthBuf2= d - 1; |
---|
1604 | else if (deggSubLg < 0) |
---|
1605 | repLengthBuf2= 0; |
---|
1606 | else |
---|
1607 | repLengthBuf2= deggSubLg + 1; |
---|
1608 | |
---|
1609 | fq_nmod_poly_init2 (buf2, repLengthBuf2, fq_con); |
---|
1610 | _fq_nmod_poly_set_length (buf2, repLengthBuf2, fq_con); |
---|
1611 | _fq_nmod_vec_set (buf2->coeffs, g->coeffs + lg, repLengthBuf2, fq_con); |
---|
1612 | |
---|
1613 | _fq_nmod_poly_normalise (buf2, fq_con); |
---|
1614 | repLengthBuf2= fq_nmod_poly_length (buf2, fq_con); |
---|
1615 | |
---|
1616 | fq_nmod_poly_init2 (buf3, repLengthBuf2 + d, fq_con); |
---|
1617 | _fq_nmod_poly_set_length (buf3, repLengthBuf2 + d, fq_con); |
---|
1618 | _fq_nmod_vec_set (buf3->coeffs, buf1->coeffs, repLengthBuf1, fq_con); |
---|
1619 | _fq_nmod_vec_set (buf3->coeffs + d, buf2->coeffs, repLengthBuf2, fq_con); |
---|
1620 | |
---|
1621 | _fq_nmod_poly_normalise (buf3, fq_con); |
---|
1622 | |
---|
1623 | result += convertFq_nmod_poly_t2FacCF (buf3, x, alpha, fq_con)*power (y, i); |
---|
1624 | i++; |
---|
1625 | |
---|
1626 | |
---|
1627 | lf= i*d; |
---|
1628 | degfSubLf= degf - lf; |
---|
1629 | |
---|
1630 | lg= d*(k - i); |
---|
1631 | deggSubLg= degg - lg; |
---|
1632 | |
---|
1633 | if (lg >= 0 && deggSubLg > 0) |
---|
1634 | { |
---|
1635 | if (repLengthBuf2 > degfSubLf + 1) |
---|
1636 | degfSubLf= repLengthBuf2 - 1; |
---|
1637 | tmp= tmin (repLengthBuf1, deggSubLg + 1); |
---|
1638 | _fq_nmod_vec_sub (g->coeffs + lg, g->coeffs + lg, buf1-> coeffs, |
---|
1639 | tmp, fq_con); |
---|
1640 | } |
---|
1641 | if (lg < 0) |
---|
1642 | { |
---|
1643 | fq_nmod_poly_clear (buf1, fq_con); |
---|
1644 | fq_nmod_poly_clear (buf2, fq_con); |
---|
1645 | fq_nmod_poly_clear (buf3, fq_con); |
---|
1646 | break; |
---|
1647 | } |
---|
1648 | if (degfSubLf >= 0) |
---|
1649 | _fq_nmod_vec_sub (f->coeffs + lf, f->coeffs + lf, buf2->coeffs, |
---|
1650 | repLengthBuf2, fq_con); |
---|
1651 | fq_nmod_poly_clear (buf1, fq_con); |
---|
1652 | fq_nmod_poly_clear (buf2, fq_con); |
---|
1653 | fq_nmod_poly_clear (buf3, fq_con); |
---|
1654 | } |
---|
1655 | |
---|
1656 | fq_nmod_poly_clear (f, fq_con); |
---|
1657 | fq_nmod_poly_clear (g, fq_con); |
---|
1658 | |
---|
1659 | return result; |
---|
1660 | } |
---|
1661 | #endif |
---|
1662 | |
---|
1663 | CanonicalForm |
---|
1664 | reverseSubstReciproQ (const fmpz_poly_t F, const fmpz_poly_t G, int d, int k) |
---|
1665 | { |
---|
1666 | Variable y= Variable (2); |
---|
1667 | Variable x= Variable (1); |
---|
1668 | |
---|
1669 | fmpz_poly_t f, g; |
---|
1670 | fmpz_poly_init (f); |
---|
1671 | fmpz_poly_init (g); |
---|
1672 | fmpz_poly_set (f, F); |
---|
1673 | fmpz_poly_set (g, G); |
---|
1674 | int degf= fmpz_poly_degree(f); |
---|
1675 | int degg= fmpz_poly_degree(g); |
---|
1676 | |
---|
1677 | |
---|
1678 | fmpz_poly_t buf1,buf2, buf3; |
---|
1679 | |
---|
1680 | if (fmpz_poly_length (f) < (long) d*(k+1)) //zero padding |
---|
1681 | fmpz_poly_fit_length (f,(long)d*(k+1)); |
---|
1682 | |
---|
1683 | CanonicalForm result= 0; |
---|
1684 | int i= 0; |
---|
1685 | int lf= 0; |
---|
1686 | int lg= d*k; |
---|
1687 | int degfSubLf= degf; |
---|
1688 | int deggSubLg= degg-lg; |
---|
1689 | int repLengthBuf2, repLengthBuf1, ind, tmp; |
---|
1690 | fmpz_t tmp1, tmp2; |
---|
1691 | while (degf >= lf || lg >= 0) |
---|
1692 | { |
---|
1693 | if (degfSubLf >= d) |
---|
1694 | repLengthBuf1= d; |
---|
1695 | else if (degfSubLf < 0) |
---|
1696 | repLengthBuf1= 0; |
---|
1697 | else |
---|
1698 | repLengthBuf1= degfSubLf + 1; |
---|
1699 | |
---|
1700 | fmpz_poly_init2 (buf1, repLengthBuf1); |
---|
1701 | |
---|
1702 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1703 | { |
---|
1704 | fmpz_poly_get_coeff_fmpz (tmp1, f, ind + lf); |
---|
1705 | fmpz_poly_set_coeff_fmpz (buf1, ind, tmp1); |
---|
1706 | } |
---|
1707 | _fmpz_poly_normalise (buf1); |
---|
1708 | |
---|
1709 | repLengthBuf1= fmpz_poly_length (buf1); |
---|
1710 | |
---|
1711 | if (deggSubLg >= d - 1) |
---|
1712 | repLengthBuf2= d - 1; |
---|
1713 | else if (deggSubLg < 0) |
---|
1714 | repLengthBuf2= 0; |
---|
1715 | else |
---|
1716 | repLengthBuf2= deggSubLg + 1; |
---|
1717 | |
---|
1718 | fmpz_poly_init2 (buf2, repLengthBuf2); |
---|
1719 | |
---|
1720 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1721 | { |
---|
1722 | fmpz_poly_get_coeff_fmpz (tmp1, g, ind + lg); |
---|
1723 | fmpz_poly_set_coeff_fmpz (buf2, ind, tmp1); |
---|
1724 | } |
---|
1725 | |
---|
1726 | _fmpz_poly_normalise (buf2); |
---|
1727 | repLengthBuf2= fmpz_poly_length (buf2); |
---|
1728 | |
---|
1729 | fmpz_poly_init2 (buf3, repLengthBuf2 + d); |
---|
1730 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1731 | { |
---|
1732 | fmpz_poly_get_coeff_fmpz (tmp1, buf1, ind); |
---|
1733 | fmpz_poly_set_coeff_fmpz (buf3, ind, tmp1); |
---|
1734 | } |
---|
1735 | for (ind= repLengthBuf1; ind < d; ind++) |
---|
1736 | fmpz_poly_set_coeff_ui (buf3, ind, 0); |
---|
1737 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1738 | { |
---|
1739 | fmpz_poly_get_coeff_fmpz (tmp1, buf2, ind); |
---|
1740 | fmpz_poly_set_coeff_fmpz (buf3, ind + d, tmp1); |
---|
1741 | } |
---|
1742 | _fmpz_poly_normalise (buf3); |
---|
1743 | |
---|
1744 | result += convertFmpz_poly_t2FacCF (buf3, x)*power (y, i); |
---|
1745 | i++; |
---|
1746 | |
---|
1747 | |
---|
1748 | lf= i*d; |
---|
1749 | degfSubLf= degf - lf; |
---|
1750 | |
---|
1751 | lg= d*(k-i); |
---|
1752 | deggSubLg= degg - lg; |
---|
1753 | |
---|
1754 | if (lg >= 0 && deggSubLg > 0) |
---|
1755 | { |
---|
1756 | if (repLengthBuf2 > degfSubLf + 1) |
---|
1757 | degfSubLf= repLengthBuf2 - 1; |
---|
1758 | tmp= tmin (repLengthBuf1, deggSubLg + 1); |
---|
1759 | for (ind= 0; ind < tmp; ind++) |
---|
1760 | { |
---|
1761 | fmpz_poly_get_coeff_fmpz (tmp1, g, ind + lg); |
---|
1762 | fmpz_poly_get_coeff_fmpz (tmp2, buf1, ind); |
---|
1763 | fmpz_sub (tmp1, tmp1, tmp2); |
---|
1764 | fmpz_poly_set_coeff_fmpz (g, ind + lg, tmp1); |
---|
1765 | } |
---|
1766 | } |
---|
1767 | if (lg < 0) |
---|
1768 | { |
---|
1769 | fmpz_poly_clear (buf1); |
---|
1770 | fmpz_poly_clear (buf2); |
---|
1771 | fmpz_poly_clear (buf3); |
---|
1772 | break; |
---|
1773 | } |
---|
1774 | if (degfSubLf >= 0) |
---|
1775 | { |
---|
1776 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1777 | { |
---|
1778 | fmpz_poly_get_coeff_fmpz (tmp1, f, ind + lf); |
---|
1779 | fmpz_poly_get_coeff_fmpz (tmp2, buf2, ind); |
---|
1780 | fmpz_sub (tmp1, tmp1, tmp2); |
---|
1781 | fmpz_poly_set_coeff_fmpz (f, ind + lf, tmp1); |
---|
1782 | } |
---|
1783 | } |
---|
1784 | fmpz_poly_clear (buf1); |
---|
1785 | fmpz_poly_clear (buf2); |
---|
1786 | fmpz_poly_clear (buf3); |
---|
1787 | } |
---|
1788 | |
---|
1789 | fmpz_poly_clear (f); |
---|
1790 | fmpz_poly_clear (g); |
---|
1791 | fmpz_clear (tmp1); |
---|
1792 | fmpz_clear (tmp2); |
---|
1793 | |
---|
1794 | return result; |
---|
1795 | } |
---|
1796 | |
---|
1797 | #if (__FLINT_VERSION_MINOR >= 4) |
---|
1798 | CanonicalForm |
---|
1799 | reverseSubstFq (const fq_nmod_poly_t F, int d, const Variable& alpha, |
---|
1800 | const fq_nmod_ctx_t fq_con) |
---|
1801 | { |
---|
1802 | Variable y= Variable (2); |
---|
1803 | Variable x= Variable (1); |
---|
1804 | |
---|
1805 | fq_nmod_poly_t buf; |
---|
1806 | CanonicalForm result= 0; |
---|
1807 | int i= 0; |
---|
1808 | int degf= fq_nmod_poly_degree(F, fq_con); |
---|
1809 | int k= 0; |
---|
1810 | int degfSubK, repLength; |
---|
1811 | while (degf >= k) |
---|
1812 | { |
---|
1813 | degfSubK= degf - k; |
---|
1814 | if (degfSubK >= d) |
---|
1815 | repLength= d; |
---|
1816 | else |
---|
1817 | repLength= degfSubK + 1; |
---|
1818 | |
---|
1819 | fq_nmod_poly_init2 (buf, repLength, fq_con); |
---|
1820 | _fq_nmod_poly_set_length (buf, repLength, fq_con); |
---|
1821 | _fq_nmod_vec_set (buf->coeffs, F->coeffs+k, repLength, fq_con); |
---|
1822 | _fq_nmod_poly_normalise (buf, fq_con); |
---|
1823 | |
---|
1824 | result += convertFq_nmod_poly_t2FacCF (buf, x, alpha, fq_con)*power (y, i); |
---|
1825 | i++; |
---|
1826 | k= d*i; |
---|
1827 | fq_nmod_poly_clear (buf, fq_con); |
---|
1828 | } |
---|
1829 | |
---|
1830 | return result; |
---|
1831 | } |
---|
1832 | #endif |
---|
1833 | |
---|
1834 | CanonicalForm reverseSubstFp (const nmod_poly_t F, int d) |
---|
1835 | { |
---|
1836 | Variable y= Variable (2); |
---|
1837 | Variable x= Variable (1); |
---|
1838 | |
---|
1839 | mp_limb_t ninv= n_preinvert_limb (getCharacteristic()); |
---|
1840 | |
---|
1841 | nmod_poly_t buf; |
---|
1842 | CanonicalForm result= 0; |
---|
1843 | int i= 0; |
---|
1844 | int degf= nmod_poly_degree(F); |
---|
1845 | int k= 0; |
---|
1846 | int degfSubK, repLength, j; |
---|
1847 | while (degf >= k) |
---|
1848 | { |
---|
1849 | degfSubK= degf - k; |
---|
1850 | if (degfSubK >= d) |
---|
1851 | repLength= d; |
---|
1852 | else |
---|
1853 | repLength= degfSubK + 1; |
---|
1854 | |
---|
1855 | nmod_poly_init2_preinv (buf, getCharacteristic(), ninv, repLength); |
---|
1856 | for (j= 0; j < repLength; j++) |
---|
1857 | nmod_poly_set_coeff_ui (buf, j, nmod_poly_get_coeff_ui (F, j + k)); |
---|
1858 | _nmod_poly_normalise (buf); |
---|
1859 | |
---|
1860 | result += convertnmod_poly_t2FacCF (buf, x)*power (y, i); |
---|
1861 | i++; |
---|
1862 | k= d*i; |
---|
1863 | nmod_poly_clear (buf); |
---|
1864 | } |
---|
1865 | |
---|
1866 | return result; |
---|
1867 | } |
---|
1868 | |
---|
1869 | CanonicalForm |
---|
1870 | mulMod2FLINTFpReci (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1871 | CanonicalForm& M) |
---|
1872 | { |
---|
1873 | int d1= degree (F, 1) + degree (G, 1) + 1; |
---|
1874 | d1 /= 2; |
---|
1875 | d1 += 1; |
---|
1876 | |
---|
1877 | nmod_poly_t F1, F2; |
---|
1878 | kronSubReciproFp (F1, F2, F, d1); |
---|
1879 | |
---|
1880 | nmod_poly_t G1, G2; |
---|
1881 | kronSubReciproFp (G1, G2, G, d1); |
---|
1882 | |
---|
1883 | int k= d1*degree (M); |
---|
1884 | nmod_poly_mullow (F1, F1, G1, (long) k); |
---|
1885 | |
---|
1886 | int degtailF= degree (tailcoeff (F), 1);; |
---|
1887 | int degtailG= degree (tailcoeff (G), 1); |
---|
1888 | int taildegF= taildegree (F); |
---|
1889 | int taildegG= taildegree (G); |
---|
1890 | |
---|
1891 | int b= nmod_poly_degree (F2) + nmod_poly_degree (G2) - k - degtailF - degtailG |
---|
1892 | + d1*(2+taildegF + taildegG); |
---|
1893 | nmod_poly_mulhigh (F2, F2, G2, b); |
---|
1894 | nmod_poly_shift_right (F2, F2, b); |
---|
1895 | int d2= tmax (nmod_poly_degree (F2)/d1, nmod_poly_degree (F1)/d1); |
---|
1896 | |
---|
1897 | |
---|
1898 | CanonicalForm result= reverseSubstReciproFp (F1, F2, d1, d2); |
---|
1899 | |
---|
1900 | nmod_poly_clear (F1); |
---|
1901 | nmod_poly_clear (F2); |
---|
1902 | nmod_poly_clear (G1); |
---|
1903 | nmod_poly_clear (G2); |
---|
1904 | return result; |
---|
1905 | } |
---|
1906 | |
---|
1907 | CanonicalForm |
---|
1908 | mulMod2FLINTFp (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1909 | CanonicalForm& M) |
---|
1910 | { |
---|
1911 | CanonicalForm A= F; |
---|
1912 | CanonicalForm B= G; |
---|
1913 | |
---|
1914 | int degAx= degree (A, 1); |
---|
1915 | int degAy= degree (A, 2); |
---|
1916 | int degBx= degree (B, 1); |
---|
1917 | int degBy= degree (B, 2); |
---|
1918 | int d1= degAx + 1 + degBx; |
---|
1919 | int d2= tmax (degAy, degBy); |
---|
1920 | |
---|
1921 | if (d1 > 128 && d2 > 160 && (degAy == degBy) && (2*degAy > degree (M))) |
---|
1922 | return mulMod2FLINTFpReci (A, B, M); |
---|
1923 | |
---|
1924 | nmod_poly_t FLINTA, FLINTB; |
---|
1925 | kronSubFp (FLINTA, A, d1); |
---|
1926 | kronSubFp (FLINTB, B, d1); |
---|
1927 | |
---|
1928 | int k= d1*degree (M); |
---|
1929 | nmod_poly_mullow (FLINTA, FLINTA, FLINTB, (long) k); |
---|
1930 | |
---|
1931 | A= reverseSubstFp (FLINTA, d1); |
---|
1932 | |
---|
1933 | nmod_poly_clear (FLINTA); |
---|
1934 | nmod_poly_clear (FLINTB); |
---|
1935 | return A; |
---|
1936 | } |
---|
1937 | |
---|
1938 | #if (__FLINT_VERSION_MINOR >= 4) |
---|
1939 | CanonicalForm |
---|
1940 | mulMod2FLINTFqReci (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1941 | CanonicalForm& M, const Variable& alpha, |
---|
1942 | const fq_nmod_ctx_t fq_con) |
---|
1943 | { |
---|
1944 | int d1= degree (F, 1) + degree (G, 1) + 1; |
---|
1945 | d1 /= 2; |
---|
1946 | d1 += 1; |
---|
1947 | |
---|
1948 | fq_nmod_poly_t F1, F2; |
---|
1949 | kronSubReciproFq (F1, F2, F, d1, fq_con); |
---|
1950 | |
---|
1951 | fq_nmod_poly_t G1, G2; |
---|
1952 | kronSubReciproFq (G1, G2, G, d1, fq_con); |
---|
1953 | |
---|
1954 | int k= d1*degree (M); |
---|
1955 | fq_nmod_poly_mullow (F1, F1, G1, (long) k, fq_con); |
---|
1956 | |
---|
1957 | int degtailF= degree (tailcoeff (F), 1);; |
---|
1958 | int degtailG= degree (tailcoeff (G), 1); |
---|
1959 | int taildegF= taildegree (F); |
---|
1960 | int taildegG= taildegree (G); |
---|
1961 | |
---|
1962 | int b= fq_nmod_poly_degree (F2, fq_con) + fq_nmod_poly_degree (G2, fq_con) - k |
---|
1963 | - degtailF - degtailG + d1*(2+taildegF + taildegG); |
---|
1964 | |
---|
1965 | fq_nmod_poly_reverse (F2, F2, fq_nmod_poly_degree (F2, fq_con), fq_con); |
---|
1966 | fq_nmod_poly_reverse (G2, G2, fq_nmod_poly_degree (G2, fq_con), fq_con); |
---|
1967 | fq_nmod_poly_mullow (F2, F2, G2, b+1, fq_con); |
---|
1968 | fq_nmod_poly_reverse (F2, F2, b, fq_con); |
---|
1969 | |
---|
1970 | int d2= tmax (fq_nmod_poly_degree (F2, fq_con)/d1, |
---|
1971 | fq_nmod_poly_degree (F1, fq_con)/d1); |
---|
1972 | |
---|
1973 | CanonicalForm result= reverseSubstReciproFq (F1, F2, d1, d2, alpha, fq_con); |
---|
1974 | |
---|
1975 | fq_nmod_poly_clear (F1, fq_con); |
---|
1976 | fq_nmod_poly_clear (F2, fq_con); |
---|
1977 | fq_nmod_poly_clear (G1, fq_con); |
---|
1978 | fq_nmod_poly_clear (G2, fq_con); |
---|
1979 | return result; |
---|
1980 | } |
---|
1981 | |
---|
1982 | CanonicalForm |
---|
1983 | mulMod2FLINTFq (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1984 | CanonicalForm& M, const Variable& alpha, |
---|
1985 | const fq_nmod_ctx_t fq_con) |
---|
1986 | { |
---|
1987 | CanonicalForm A= F; |
---|
1988 | CanonicalForm B= G; |
---|
1989 | |
---|
1990 | int degAx= degree (A, 1); |
---|
1991 | int degAy= degree (A, 2); |
---|
1992 | int degBx= degree (B, 1); |
---|
1993 | int degBy= degree (B, 2); |
---|
1994 | int d1= degAx + 1 + degBx; |
---|
1995 | int d2= tmax (degAy, degBy); |
---|
1996 | |
---|
1997 | if (d1 > 128 && d2 > 160 && (degAy == degBy) && (2*degAy > degree (M))) |
---|
1998 | return mulMod2FLINTFqReci (A, B, M, alpha, fq_con); |
---|
1999 | |
---|
2000 | fq_nmod_poly_t FLINTA, FLINTB; |
---|
2001 | kronSubFq (FLINTA, A, d1, fq_con); |
---|
2002 | kronSubFq (FLINTB, B, d1, fq_con); |
---|
2003 | |
---|
2004 | int k= d1*degree (M); |
---|
2005 | fq_nmod_poly_mullow (FLINTA, FLINTA, FLINTB, (long) k, fq_con); |
---|
2006 | |
---|
2007 | A= reverseSubstFq (FLINTA, d1, alpha, fq_con); |
---|
2008 | |
---|
2009 | fq_nmod_poly_clear (FLINTA, fq_con); |
---|
2010 | fq_nmod_poly_clear (FLINTB, fq_con); |
---|
2011 | return A; |
---|
2012 | } |
---|
2013 | #endif |
---|
2014 | |
---|
2015 | CanonicalForm |
---|
2016 | mulMod2FLINTQReci (const CanonicalForm& F, const CanonicalForm& G, const |
---|
2017 | CanonicalForm& M) |
---|
2018 | { |
---|
2019 | int d1= degree (F, 1) + degree (G, 1) + 1; |
---|
2020 | d1 /= 2; |
---|
2021 | d1 += 1; |
---|
2022 | |
---|
2023 | fmpz_poly_t F1, F2; |
---|
2024 | kronSubReciproQ (F1, F2, F, d1); |
---|
2025 | |
---|
2026 | fmpz_poly_t G1, G2; |
---|
2027 | kronSubReciproQ (G1, G2, G, d1); |
---|
2028 | |
---|
2029 | int k= d1*degree (M); |
---|
2030 | fmpz_poly_mullow (F1, F1, G1, (long) k); |
---|
2031 | |
---|
2032 | int degtailF= degree (tailcoeff (F), 1);; |
---|
2033 | int degtailG= degree (tailcoeff (G), 1); |
---|
2034 | int taildegF= taildegree (F); |
---|
2035 | int taildegG= taildegree (G); |
---|
2036 | |
---|
2037 | int b= fmpz_poly_degree (F2) + fmpz_poly_degree (G2) - k - degtailF - degtailG |
---|
2038 | + d1*(2+taildegF + taildegG); |
---|
2039 | fmpz_poly_mulhigh_n (F2, F2, G2, b); |
---|
2040 | fmpz_poly_shift_right (F2, F2, b); |
---|
2041 | int d2= tmax (fmpz_poly_degree (F2)/d1, fmpz_poly_degree (F1)/d1); |
---|
2042 | |
---|
2043 | CanonicalForm result= reverseSubstReciproQ (F1, F2, d1, d2); |
---|
2044 | |
---|
2045 | fmpz_poly_clear (F1); |
---|
2046 | fmpz_poly_clear (F2); |
---|
2047 | fmpz_poly_clear (G1); |
---|
2048 | fmpz_poly_clear (G2); |
---|
2049 | return result; |
---|
2050 | } |
---|
2051 | |
---|
2052 | CanonicalForm |
---|
2053 | mulMod2FLINTQ (const CanonicalForm& F, const CanonicalForm& G, const |
---|
2054 | CanonicalForm& M) |
---|
2055 | { |
---|
2056 | CanonicalForm A= F; |
---|
2057 | CanonicalForm B= G; |
---|
2058 | |
---|
2059 | int degAx= degree (A, 1); |
---|
2060 | int degBx= degree (B, 1); |
---|
2061 | int d1= degAx + 1 + degBx; |
---|
2062 | |
---|
2063 | CanonicalForm f= bCommonDen (F); |
---|
2064 | CanonicalForm g= bCommonDen (G); |
---|
2065 | A *= f; |
---|
2066 | B *= g; |
---|
2067 | |
---|
2068 | fmpz_poly_t FLINTA, FLINTB; |
---|
2069 | kronSub (FLINTA, A, d1); |
---|
2070 | kronSub (FLINTB, B, d1); |
---|
2071 | int k= d1*degree (M); |
---|
2072 | |
---|
2073 | fmpz_poly_mullow (FLINTA, FLINTA, FLINTB, (long) k); |
---|
2074 | A= reverseSubstQ (FLINTA, d1); |
---|
2075 | fmpz_poly_clear (FLINTA); |
---|
2076 | fmpz_poly_clear (FLINTB); |
---|
2077 | return A/(f*g); |
---|
2078 | } |
---|
2079 | |
---|
2080 | CanonicalForm |
---|
2081 | mulMod2FLINTQa (const CanonicalForm& F, const CanonicalForm& G, |
---|
2082 | const CanonicalForm& M) |
---|
2083 | { |
---|
2084 | Variable a; |
---|
2085 | if (!hasFirstAlgVar (F,a) && !hasFirstAlgVar (G, a)) |
---|
2086 | return mulMod2FLINTQ (F, G, M); |
---|
2087 | CanonicalForm A= F; |
---|
2088 | |
---|
2089 | int degFx= degree (F, 1); |
---|
2090 | int degFa= degree (F, a); |
---|
2091 | int degGx= degree (G, 1); |
---|
2092 | int degGa= degree (G, a); |
---|
2093 | |
---|
2094 | int d2= degFa+degGa+1; |
---|
2095 | int d1= degFx + 1 + degGx; |
---|
2096 | d1 *= d2; |
---|
2097 | |
---|
2098 | fmpq_poly_t FLINTF, FLINTG; |
---|
2099 | kronSubQa (FLINTF, F, d1, d2); |
---|
2100 | kronSubQa (FLINTG, G, d1, d2); |
---|
2101 | |
---|
2102 | fmpq_poly_mullow (FLINTF, FLINTF, FLINTG, d1*degree (M)); |
---|
2103 | |
---|
2104 | fmpq_poly_t mipo; |
---|
2105 | convertFacCF2Fmpq_poly_t (mipo, getMipo (a)); |
---|
2106 | CanonicalForm result= reverseSubstQa (FLINTF, d1, d2, a, mipo); |
---|
2107 | fmpq_poly_clear (FLINTF); |
---|
2108 | fmpq_poly_clear (FLINTG); |
---|
2109 | return result; |
---|
2110 | } |
---|
2111 | |
---|
2112 | #endif |
---|
2113 | |
---|
2114 | zz_pX kronSubFp (const CanonicalForm& A, int d) |
---|
2115 | { |
---|
2116 | int degAy= degree (A); |
---|
2117 | zz_pX result; |
---|
2118 | result.rep.SetLength (d*(degAy + 1)); |
---|
2119 | |
---|
2120 | zz_p *resultp; |
---|
2121 | resultp= result.rep.elts(); |
---|
2122 | zz_pX buf; |
---|
2123 | zz_p *bufp; |
---|
2124 | int j, k, bufRepLength; |
---|
2125 | |
---|
2126 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
2127 | { |
---|
2128 | if (i.coeff().inCoeffDomain()) |
---|
2129 | buf= convertFacCF2NTLzzpX (i.coeff()); |
---|
2130 | else |
---|
2131 | buf= convertFacCF2NTLzzpX (i.coeff()); |
---|
2132 | |
---|
2133 | k= i.exp()*d; |
---|
2134 | bufp= buf.rep.elts(); |
---|
2135 | bufRepLength= (int) buf.rep.length(); |
---|
2136 | for (j= 0; j < bufRepLength; j++) |
---|
2137 | resultp [j + k]= bufp [j]; |
---|
2138 | } |
---|
2139 | result.normalize(); |
---|
2140 | |
---|
2141 | return result; |
---|
2142 | } |
---|
2143 | |
---|
2144 | zz_pEX kronSubFq (const CanonicalForm& A, int d, const Variable& alpha) |
---|
2145 | { |
---|
2146 | int degAy= degree (A); |
---|
2147 | zz_pEX result; |
---|
2148 | result.rep.SetLength (d*(degAy + 1)); |
---|
2149 | |
---|
2150 | Variable v; |
---|
2151 | zz_pE *resultp; |
---|
2152 | resultp= result.rep.elts(); |
---|
2153 | zz_pEX buf1; |
---|
2154 | zz_pE *buf1p; |
---|
2155 | zz_pX buf2; |
---|
2156 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
2157 | int j, k, buf1RepLength; |
---|
2158 | |
---|
2159 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
2160 | { |
---|
2161 | if (i.coeff().inCoeffDomain()) |
---|
2162 | { |
---|
2163 | buf2= convertFacCF2NTLzzpX (i.coeff()); |
---|
2164 | buf1= to_zz_pEX (to_zz_pE (buf2)); |
---|
2165 | } |
---|
2166 | else |
---|
2167 | buf1= convertFacCF2NTLzz_pEX (i.coeff(), NTLMipo); |
---|
2168 | |
---|
2169 | k= i.exp()*d; |
---|
2170 | buf1p= buf1.rep.elts(); |
---|
2171 | buf1RepLength= (int) buf1.rep.length(); |
---|
2172 | for (j= 0; j < buf1RepLength; j++) |
---|
2173 | resultp [j + k]= buf1p [j]; |
---|
2174 | } |
---|
2175 | result.normalize(); |
---|
2176 | |
---|
2177 | return result; |
---|
2178 | } |
---|
2179 | |
---|
2180 | void |
---|
2181 | kronSubReciproFq (zz_pEX& subA1, zz_pEX& subA2,const CanonicalForm& A, int d, |
---|
2182 | const Variable& alpha) |
---|
2183 | { |
---|
2184 | int degAy= degree (A); |
---|
2185 | subA1.rep.SetLength ((long) d*(degAy + 2)); |
---|
2186 | subA2.rep.SetLength ((long) d*(degAy + 2)); |
---|
2187 | |
---|
2188 | Variable v; |
---|
2189 | zz_pE *subA1p; |
---|
2190 | zz_pE *subA2p; |
---|
2191 | subA1p= subA1.rep.elts(); |
---|
2192 | subA2p= subA2.rep.elts(); |
---|
2193 | zz_pEX buf; |
---|
2194 | zz_pE *bufp; |
---|
2195 | zz_pX buf2; |
---|
2196 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
2197 | int j, k, kk, bufRepLength; |
---|
2198 | |
---|
2199 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
2200 | { |
---|
2201 | if (i.coeff().inCoeffDomain()) |
---|
2202 | { |
---|
2203 | buf2= convertFacCF2NTLzzpX (i.coeff()); |
---|
2204 | buf= to_zz_pEX (to_zz_pE (buf2)); |
---|
2205 | } |
---|
2206 | else |
---|
2207 | buf= convertFacCF2NTLzz_pEX (i.coeff(), NTLMipo); |
---|
2208 | |
---|
2209 | k= i.exp()*d; |
---|
2210 | kk= (degAy - i.exp())*d; |
---|
2211 | bufp= buf.rep.elts(); |
---|
2212 | bufRepLength= (int) buf.rep.length(); |
---|
2213 | for (j= 0; j < bufRepLength; j++) |
---|
2214 | { |
---|
2215 | subA1p [j + k] += bufp [j]; |
---|
2216 | subA2p [j + kk] += bufp [j]; |
---|
2217 | } |
---|
2218 | } |
---|
2219 | subA1.normalize(); |
---|
2220 | subA2.normalize(); |
---|
2221 | } |
---|
2222 | |
---|
2223 | void |
---|
2224 | kronSubReciproFp (zz_pX& subA1, zz_pX& subA2, const CanonicalForm& A, int d) |
---|
2225 | { |
---|
2226 | int degAy= degree (A); |
---|
2227 | subA1.rep.SetLength ((long) d*(degAy + 2)); |
---|
2228 | subA2.rep.SetLength ((long) d*(degAy + 2)); |
---|
2229 | |
---|
2230 | zz_p *subA1p; |
---|
2231 | zz_p *subA2p; |
---|
2232 | subA1p= subA1.rep.elts(); |
---|
2233 | subA2p= subA2.rep.elts(); |
---|
2234 | zz_pX buf; |
---|
2235 | zz_p *bufp; |
---|
2236 | int j, k, kk, bufRepLength; |
---|
2237 | |
---|
2238 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
2239 | { |
---|
2240 | buf= convertFacCF2NTLzzpX (i.coeff()); |
---|
2241 | |
---|
2242 | k= i.exp()*d; |
---|
2243 | kk= (degAy - i.exp())*d; |
---|
2244 | bufp= buf.rep.elts(); |
---|
2245 | bufRepLength= (int) buf.rep.length(); |
---|
2246 | for (j= 0; j < bufRepLength; j++) |
---|
2247 | { |
---|
2248 | subA1p [j + k] += bufp [j]; |
---|
2249 | subA2p [j + kk] += bufp [j]; |
---|
2250 | } |
---|
2251 | } |
---|
2252 | subA1.normalize(); |
---|
2253 | subA2.normalize(); |
---|
2254 | } |
---|
2255 | |
---|
2256 | CanonicalForm |
---|
2257 | reverseSubstReciproFq (const zz_pEX& F, const zz_pEX& G, int d, int k, |
---|
2258 | const Variable& alpha) |
---|
2259 | { |
---|
2260 | Variable y= Variable (2); |
---|
2261 | Variable x= Variable (1); |
---|
2262 | |
---|
2263 | zz_pEX f= F; |
---|
2264 | zz_pEX g= G; |
---|
2265 | int degf= deg(f); |
---|
2266 | int degg= deg(g); |
---|
2267 | |
---|
2268 | zz_pEX buf1; |
---|
2269 | zz_pEX buf2; |
---|
2270 | zz_pEX buf3; |
---|
2271 | |
---|
2272 | zz_pE *buf1p; |
---|
2273 | zz_pE *buf2p; |
---|
2274 | zz_pE *buf3p; |
---|
2275 | if (f.rep.length() < (long) d*(k+1)) //zero padding |
---|
2276 | f.rep.SetLength ((long)d*(k+1)); |
---|
2277 | |
---|
2278 | zz_pE *gp= g.rep.elts(); |
---|
2279 | zz_pE *fp= f.rep.elts(); |
---|
2280 | CanonicalForm result= 0; |
---|
2281 | int i= 0; |
---|
2282 | int lf= 0; |
---|
2283 | int lg= d*k; |
---|
2284 | int degfSubLf= degf; |
---|
2285 | int deggSubLg= degg-lg; |
---|
2286 | int repLengthBuf2, repLengthBuf1, ind, tmp; |
---|
2287 | zz_pE zzpEZero= zz_pE(); |
---|
2288 | |
---|
2289 | while (degf >= lf || lg >= 0) |
---|
2290 | { |
---|
2291 | if (degfSubLf >= d) |
---|
2292 | repLengthBuf1= d; |
---|
2293 | else if (degfSubLf < 0) |
---|
2294 | repLengthBuf1= 0; |
---|
2295 | else |
---|
2296 | repLengthBuf1= degfSubLf + 1; |
---|
2297 | buf1.rep.SetLength((long) repLengthBuf1); |
---|
2298 | |
---|
2299 | buf1p= buf1.rep.elts(); |
---|
2300 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
2301 | buf1p [ind]= fp [ind + lf]; |
---|
2302 | buf1.normalize(); |
---|
2303 | |
---|
2304 | repLengthBuf1= buf1.rep.length(); |
---|
2305 | |
---|
2306 | if (deggSubLg >= d - 1) |
---|
2307 | repLengthBuf2= d - 1; |
---|
2308 | else if (deggSubLg < 0) |
---|
2309 | repLengthBuf2= 0; |
---|
2310 | else |
---|
2311 | repLengthBuf2= deggSubLg + 1; |
---|
2312 | |
---|
2313 | buf2.rep.SetLength ((long) repLengthBuf2); |
---|
2314 | buf2p= buf2.rep.elts(); |
---|
2315 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
2316 | buf2p [ind]= gp [ind + lg]; |
---|
2317 | buf2.normalize(); |
---|
2318 | |
---|
2319 | repLengthBuf2= buf2.rep.length(); |
---|
2320 | |
---|
2321 | buf3.rep.SetLength((long) repLengthBuf2 + d); |
---|
2322 | buf3p= buf3.rep.elts(); |
---|
2323 | buf2p= buf2.rep.elts(); |
---|
2324 | buf1p= buf1.rep.elts(); |
---|
2325 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
2326 | buf3p [ind]= buf1p [ind]; |
---|
2327 | for (ind= repLengthBuf1; ind < d; ind++) |
---|
2328 | buf3p [ind]= zzpEZero; |
---|
2329 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
2330 | buf3p [ind + d]= buf2p [ind]; |
---|
2331 | buf3.normalize(); |
---|
2332 | |
---|
2333 | result += convertNTLzz_pEX2CF (buf3, x, alpha)*power (y, i); |
---|
2334 | i++; |
---|
2335 | |
---|
2336 | |
---|
2337 | lf= i*d; |
---|
2338 | degfSubLf= degf - lf; |
---|
2339 | |
---|
2340 | lg= d*(k-i); |
---|
2341 | deggSubLg= degg - lg; |
---|
2342 | |
---|
2343 | buf1p= buf1.rep.elts(); |
---|
2344 | |
---|
2345 | if (lg >= 0 && deggSubLg > 0) |
---|
2346 | { |
---|
2347 | if (repLengthBuf2 > degfSubLf + 1) |
---|
2348 | degfSubLf= repLengthBuf2 - 1; |
---|
2349 | tmp= tmin (repLengthBuf1, deggSubLg + 1); |
---|
2350 | for (ind= 0; ind < tmp; ind++) |
---|
2351 | gp [ind + lg] -= buf1p [ind]; |
---|
2352 | } |
---|
2353 | |
---|
2354 | if (lg < 0) |
---|
2355 | break; |
---|
2356 | |
---|
2357 | buf2p= buf2.rep.elts(); |
---|
2358 | if (degfSubLf >= 0) |
---|
2359 | { |
---|
2360 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
2361 | fp [ind + lf] -= buf2p [ind]; |
---|
2362 | } |
---|
2363 | } |
---|
2364 | |
---|
2365 | return result; |
---|
2366 | } |
---|
2367 | |
---|
2368 | CanonicalForm |
---|
2369 | reverseSubstReciproFp (const zz_pX& F, const zz_pX& G, int d, int k) |
---|
2370 | { |
---|
2371 | Variable y= Variable (2); |
---|
2372 | Variable x= Variable (1); |
---|
2373 | |
---|
2374 | zz_pX f= F; |
---|
2375 | zz_pX g= G; |
---|
2376 | int degf= deg(f); |
---|
2377 | int degg= deg(g); |
---|
2378 | |
---|
2379 | zz_pX buf1; |
---|
2380 | zz_pX buf2; |
---|
2381 | zz_pX buf3; |
---|
2382 | |
---|
2383 | zz_p *buf1p; |
---|
2384 | zz_p *buf2p; |
---|
2385 | zz_p *buf3p; |
---|
2386 | |
---|
2387 | if (f.rep.length() < (long) d*(k+1)) //zero padding |
---|
2388 | f.rep.SetLength ((long)d*(k+1)); |
---|
2389 | |
---|
2390 | zz_p *gp= g.rep.elts(); |
---|
2391 | zz_p *fp= f.rep.elts(); |
---|
2392 | CanonicalForm result= 0; |
---|
2393 | int i= 0; |
---|
2394 | int lf= 0; |
---|
2395 | int lg= d*k; |
---|
2396 | int degfSubLf= degf; |
---|
2397 | int deggSubLg= degg-lg; |
---|
2398 | int repLengthBuf2, repLengthBuf1, ind, tmp; |
---|
2399 | zz_p zzpZero= zz_p(); |
---|
2400 | while (degf >= lf || lg >= 0) |
---|
2401 | { |
---|
2402 | if (degfSubLf >= d) |
---|
2403 | repLengthBuf1= d; |
---|
2404 | else if (degfSubLf < 0) |
---|
2405 | repLengthBuf1= 0; |
---|
2406 | else |
---|
2407 | repLengthBuf1= degfSubLf + 1; |
---|
2408 | buf1.rep.SetLength((long) repLengthBuf1); |
---|
2409 | |
---|
2410 | buf1p= buf1.rep.elts(); |
---|
2411 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
2412 | buf1p [ind]= fp [ind + lf]; |
---|
2413 | buf1.normalize(); |
---|
2414 | |
---|
2415 | repLengthBuf1= buf1.rep.length(); |
---|
2416 | |
---|
2417 | if (deggSubLg >= d - 1) |
---|
2418 | repLengthBuf2= d - 1; |
---|
2419 | else if (deggSubLg < 0) |
---|
2420 | repLengthBuf2= 0; |
---|
2421 | else |
---|
2422 | repLengthBuf2= deggSubLg + 1; |
---|
2423 | |
---|
2424 | buf2.rep.SetLength ((long) repLengthBuf2); |
---|
2425 | buf2p= buf2.rep.elts(); |
---|
2426 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
2427 | buf2p [ind]= gp [ind + lg]; |
---|
2428 | |
---|
2429 | buf2.normalize(); |
---|
2430 | |
---|
2431 | repLengthBuf2= buf2.rep.length(); |
---|
2432 | |
---|
2433 | |
---|
2434 | buf3.rep.SetLength((long) repLengthBuf2 + d); |
---|
2435 | buf3p= buf3.rep.elts(); |
---|
2436 | buf2p= buf2.rep.elts(); |
---|
2437 | buf1p= buf1.rep.elts(); |
---|
2438 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
2439 | buf3p [ind]= buf1p [ind]; |
---|
2440 | for (ind= repLengthBuf1; ind < d; ind++) |
---|
2441 | buf3p [ind]= zzpZero; |
---|
2442 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
2443 | buf3p [ind + d]= buf2p [ind]; |
---|
2444 | buf3.normalize(); |
---|
2445 | |
---|
2446 | result += convertNTLzzpX2CF (buf3, x)*power (y, i); |
---|
2447 | i++; |
---|
2448 | |
---|
2449 | |
---|
2450 | lf= i*d; |
---|
2451 | degfSubLf= degf - lf; |
---|
2452 | |
---|
2453 | lg= d*(k-i); |
---|
2454 | deggSubLg= degg - lg; |
---|
2455 | |
---|
2456 | buf1p= buf1.rep.elts(); |
---|
2457 | |
---|
2458 | if (lg >= 0 && deggSubLg > 0) |
---|
2459 | { |
---|
2460 | if (repLengthBuf2 > degfSubLf + 1) |
---|
2461 | degfSubLf= repLengthBuf2 - 1; |
---|
2462 | tmp= tmin (repLengthBuf1, deggSubLg + 1); |
---|
2463 | for (ind= 0; ind < tmp; ind++) |
---|
2464 | gp [ind + lg] -= buf1p [ind]; |
---|
2465 | } |
---|
2466 | if (lg < 0) |
---|
2467 | break; |
---|
2468 | |
---|
2469 | buf2p= buf2.rep.elts(); |
---|
2470 | if (degfSubLf >= 0) |
---|
2471 | { |
---|
2472 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
2473 | fp [ind + lf] -= buf2p [ind]; |
---|
2474 | } |
---|
2475 | } |
---|
2476 | |
---|
2477 | return result; |
---|
2478 | } |
---|
2479 | |
---|
2480 | CanonicalForm reverseSubstFq (const zz_pEX& F, int d, const Variable& alpha) |
---|
2481 | { |
---|
2482 | Variable y= Variable (2); |
---|
2483 | Variable x= Variable (1); |
---|
2484 | |
---|
2485 | zz_pEX f= F; |
---|
2486 | zz_pE *fp= f.rep.elts(); |
---|
2487 | |
---|
2488 | zz_pEX buf; |
---|
2489 | zz_pE *bufp; |
---|
2490 | CanonicalForm result= 0; |
---|
2491 | int i= 0; |
---|
2492 | int degf= deg(f); |
---|
2493 | int k= 0; |
---|
2494 | int degfSubK, repLength, j; |
---|
2495 | while (degf >= k) |
---|
2496 | { |
---|
2497 | degfSubK= degf - k; |
---|
2498 | if (degfSubK >= d) |
---|
2499 | repLength= d; |
---|
2500 | else |
---|
2501 | repLength= degfSubK + 1; |
---|
2502 | |
---|
2503 | buf.rep.SetLength ((long) repLength); |
---|
2504 | bufp= buf.rep.elts(); |
---|
2505 | for (j= 0; j < repLength; j++) |
---|
2506 | bufp [j]= fp [j + k]; |
---|
2507 | buf.normalize(); |
---|
2508 | |
---|
2509 | result += convertNTLzz_pEX2CF (buf, x, alpha)*power (y, i); |
---|
2510 | i++; |
---|
2511 | k= d*i; |
---|
2512 | } |
---|
2513 | |
---|
2514 | return result; |
---|
2515 | } |
---|
2516 | |
---|
2517 | CanonicalForm reverseSubstFp (const zz_pX& F, int d) |
---|
2518 | { |
---|
2519 | Variable y= Variable (2); |
---|
2520 | Variable x= Variable (1); |
---|
2521 | |
---|
2522 | zz_pX f= F; |
---|
2523 | zz_p *fp= f.rep.elts(); |
---|
2524 | |
---|
2525 | zz_pX buf; |
---|
2526 | zz_p *bufp; |
---|
2527 | CanonicalForm result= 0; |
---|
2528 | int i= 0; |
---|
2529 | int degf= deg(f); |
---|
2530 | int k= 0; |
---|
2531 | int degfSubK, repLength, j; |
---|
2532 | while (degf >= k) |
---|
2533 | { |
---|
2534 | degfSubK= degf - k; |
---|
2535 | if (degfSubK >= d) |
---|
2536 | repLength= d; |
---|
2537 | else |
---|
2538 | repLength= degfSubK + 1; |
---|
2539 | |
---|
2540 | buf.rep.SetLength ((long) repLength); |
---|
2541 | bufp= buf.rep.elts(); |
---|
2542 | for (j= 0; j < repLength; j++) |
---|
2543 | bufp [j]= fp [j + k]; |
---|
2544 | buf.normalize(); |
---|
2545 | |
---|
2546 | result += convertNTLzzpX2CF (buf, x)*power (y, i); |
---|
2547 | i++; |
---|
2548 | k= d*i; |
---|
2549 | } |
---|
2550 | |
---|
2551 | return result; |
---|
2552 | } |
---|
2553 | |
---|
2554 | // assumes input to be reduced mod M and to be an element of Fp |
---|
2555 | CanonicalForm |
---|
2556 | mulMod2NTLFpReci (const CanonicalForm& F, const CanonicalForm& G, const |
---|
2557 | CanonicalForm& M) |
---|
2558 | { |
---|
2559 | int d1= degree (F, 1) + degree (G, 1) + 1; |
---|
2560 | d1 /= 2; |
---|
2561 | d1 += 1; |
---|
2562 | |
---|
2563 | zz_pX F1, F2; |
---|
2564 | kronSubReciproFp (F1, F2, F, d1); |
---|
2565 | zz_pX G1, G2; |
---|
2566 | kronSubReciproFp (G1, G2, G, d1); |
---|
2567 | |
---|
2568 | int k= d1*degree (M); |
---|
2569 | MulTrunc (F1, F1, G1, (long) k); |
---|
2570 | |
---|
2571 | int degtailF= degree (tailcoeff (F), 1); |
---|
2572 | int degtailG= degree (tailcoeff (G), 1); |
---|
2573 | int taildegF= taildegree (F); |
---|
2574 | int taildegG= taildegree (G); |
---|
2575 | int b= k + degtailF + degtailG - d1*(2+taildegF+taildegG); |
---|
2576 | |
---|
2577 | reverse (F2, F2); |
---|
2578 | reverse (G2, G2); |
---|
2579 | MulTrunc (F2, F2, G2, b + 1); |
---|
2580 | reverse (F2, F2, b); |
---|
2581 | |
---|
2582 | int d2= tmax (deg (F2)/d1, deg (F1)/d1); |
---|
2583 | return reverseSubstReciproFp (F1, F2, d1, d2); |
---|
2584 | } |
---|
2585 | |
---|
2586 | //Kronecker substitution |
---|
2587 | CanonicalForm |
---|
2588 | mulMod2NTLFp (const CanonicalForm& F, const CanonicalForm& G, const |
---|
2589 | CanonicalForm& M) |
---|
2590 | { |
---|
2591 | CanonicalForm A= F; |
---|
2592 | CanonicalForm B= G; |
---|
2593 | |
---|
2594 | int degAx= degree (A, 1); |
---|
2595 | int degAy= degree (A, 2); |
---|
2596 | int degBx= degree (B, 1); |
---|
2597 | int degBy= degree (B, 2); |
---|
2598 | int d1= degAx + 1 + degBx; |
---|
2599 | int d2= tmax (degAy, degBy); |
---|
2600 | |
---|
2601 | if (d1 > 128 && d2 > 160 && (degAy == degBy) && (2*degAy > degree (M))) |
---|
2602 | return mulMod2NTLFpReci (A, B, M); |
---|
2603 | |
---|
2604 | zz_pX NTLA= kronSubFp (A, d1); |
---|
2605 | zz_pX NTLB= kronSubFp (B, d1); |
---|
2606 | |
---|
2607 | int k= d1*degree (M); |
---|
2608 | MulTrunc (NTLA, NTLA, NTLB, (long) k); |
---|
2609 | |
---|
2610 | A= reverseSubstFp (NTLA, d1); |
---|
2611 | |
---|
2612 | return A; |
---|
2613 | } |
---|
2614 | |
---|
2615 | // assumes input to be reduced mod M and to be an element of Fq not Fp |
---|
2616 | CanonicalForm |
---|
2617 | mulMod2NTLFqReci (const CanonicalForm& F, const CanonicalForm& G, const |
---|
2618 | CanonicalForm& M, const Variable& alpha) |
---|
2619 | { |
---|
2620 | int d1= degree (F, 1) + degree (G, 1) + 1; |
---|
2621 | d1 /= 2; |
---|
2622 | d1 += 1; |
---|
2623 | |
---|
2624 | zz_pEX F1, F2; |
---|
2625 | kronSubReciproFq (F1, F2, F, d1, alpha); |
---|
2626 | zz_pEX G1, G2; |
---|
2627 | kronSubReciproFq (G1, G2, G, d1, alpha); |
---|
2628 | |
---|
2629 | int k= d1*degree (M); |
---|
2630 | MulTrunc (F1, F1, G1, (long) k); |
---|
2631 | |
---|
2632 | int degtailF= degree (tailcoeff (F), 1); |
---|
2633 | int degtailG= degree (tailcoeff (G), 1); |
---|
2634 | int taildegF= taildegree (F); |
---|
2635 | int taildegG= taildegree (G); |
---|
2636 | int b= k + degtailF + degtailG - d1*(2+taildegF+taildegG); |
---|
2637 | |
---|
2638 | reverse (F2, F2); |
---|
2639 | reverse (G2, G2); |
---|
2640 | MulTrunc (F2, F2, G2, b + 1); |
---|
2641 | reverse (F2, F2, b); |
---|
2642 | |
---|
2643 | int d2= tmax (deg (F2)/d1, deg (F1)/d1); |
---|
2644 | return reverseSubstReciproFq (F1, F2, d1, d2, alpha); |
---|
2645 | } |
---|
2646 | |
---|
2647 | #ifdef HAVE_FLINT |
---|
2648 | CanonicalForm |
---|
2649 | mulMod2FLINTFp (const CanonicalForm& F, const CanonicalForm& G, const |
---|
2650 | CanonicalForm& M); |
---|
2651 | #endif |
---|
2652 | |
---|
2653 | CanonicalForm |
---|
2654 | mulMod2NTLFq (const CanonicalForm& F, const CanonicalForm& G, const |
---|
2655 | CanonicalForm& M) |
---|
2656 | { |
---|
2657 | Variable alpha; |
---|
2658 | CanonicalForm A= F; |
---|
2659 | CanonicalForm B= G; |
---|
2660 | |
---|
2661 | if (hasFirstAlgVar (A, alpha) || hasFirstAlgVar (B, alpha)) |
---|
2662 | { |
---|
2663 | #if (HAVE_FLINT && __FLINT_VERSION_MINOR >= 4) |
---|
2664 | nmod_poly_t FLINTmipo; |
---|
2665 | convertFacCF2nmod_poly_t (FLINTmipo, getMipo (alpha)); |
---|
2666 | |
---|
2667 | fq_nmod_ctx_t fq_con; |
---|
2668 | fq_nmod_ctx_init_modulus (fq_con, FLINTmipo, "Z"); |
---|
2669 | |
---|
2670 | A= mulMod2FLINTFq (A, B, M, alpha, fq_con); |
---|
2671 | nmod_poly_clear (FLINTmipo); |
---|
2672 | fq_nmod_ctx_clear (fq_con); |
---|
2673 | #else |
---|
2674 | int degAx= degree (A, 1); |
---|
2675 | int degAy= degree (A, 2); |
---|
2676 | int degBx= degree (B, 1); |
---|
2677 | int degBy= degree (B, 2); |
---|
2678 | int d1= degAx + degBx + 1; |
---|
2679 | int d2= tmax (degAy, degBy); |
---|
2680 | if (fac_NTL_char != getCharacteristic()) |
---|
2681 | { |
---|
2682 | fac_NTL_char= getCharacteristic(); |
---|
2683 | zz_p::init (getCharacteristic()); |
---|
2684 | } |
---|
2685 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
2686 | zz_pE::init (NTLMipo); |
---|
2687 | |
---|
2688 | int degMipo= degree (getMipo (alpha)); |
---|
2689 | if ((d1 > 128/degMipo) && (d2 > 160/degMipo) && (degAy == degBy) && |
---|
2690 | (2*degAy > degree (M))) |
---|
2691 | return mulMod2NTLFqReci (A, B, M, alpha); |
---|
2692 | |
---|
2693 | zz_pEX NTLA= kronSubFq (A, d1, alpha); |
---|
2694 | zz_pEX NTLB= kronSubFq (B, d1, alpha); |
---|
2695 | |
---|
2696 | int k= d1*degree (M); |
---|
2697 | |
---|
2698 | MulTrunc (NTLA, NTLA, NTLB, (long) k); |
---|
2699 | |
---|
2700 | A= reverseSubstFq (NTLA, d1, alpha); |
---|
2701 | #endif |
---|
2702 | } |
---|
2703 | else |
---|
2704 | { |
---|
2705 | #ifdef HAVE_FLINT |
---|
2706 | A= mulMod2FLINTFp (A, B, M); |
---|
2707 | #else |
---|
2708 | A= mulMod2NTLFp (A, B, M); |
---|
2709 | #endif |
---|
2710 | } |
---|
2711 | return A; |
---|
2712 | } |
---|
2713 | |
---|
2714 | CanonicalForm mulMod2 (const CanonicalForm& A, const CanonicalForm& B, |
---|
2715 | const CanonicalForm& M) |
---|
2716 | { |
---|
2717 | if (A.isZero() || B.isZero()) |
---|
2718 | return 0; |
---|
2719 | |
---|
2720 | ASSERT (M.isUnivariate(), "M must be univariate"); |
---|
2721 | |
---|
2722 | CanonicalForm F= mod (A, M); |
---|
2723 | CanonicalForm G= mod (B, M); |
---|
2724 | if (F.inCoeffDomain()) |
---|
2725 | return G*F; |
---|
2726 | if (G.inCoeffDomain()) |
---|
2727 | return F*G; |
---|
2728 | |
---|
2729 | Variable y= M.mvar(); |
---|
2730 | int degF= degree (F, y); |
---|
2731 | int degG= degree (G, y); |
---|
2732 | |
---|
2733 | if ((degF < 1 && degG < 1) && (F.isUnivariate() && G.isUnivariate()) && |
---|
2734 | (F.level() == G.level())) |
---|
2735 | { |
---|
2736 | CanonicalForm result= mulNTL (F, G); |
---|
2737 | return mod (result, M); |
---|
2738 | } |
---|
2739 | else if (degF <= 1 && degG <= 1) |
---|
2740 | { |
---|
2741 | CanonicalForm result= F*G; |
---|
2742 | return mod (result, M); |
---|
2743 | } |
---|
2744 | |
---|
2745 | int sizeF= size (F); |
---|
2746 | int sizeG= size (G); |
---|
2747 | |
---|
2748 | int fallBackToNaive= 50; |
---|
2749 | if (sizeF < fallBackToNaive || sizeG < fallBackToNaive) |
---|
2750 | { |
---|
2751 | if (sizeF < sizeG) |
---|
2752 | return mod (G*F, M); |
---|
2753 | else |
---|
2754 | return mod (F*G, M); |
---|
2755 | } |
---|
2756 | |
---|
2757 | #ifdef HAVE_FLINT |
---|
2758 | if (getCharacteristic() == 0) |
---|
2759 | return mulMod2FLINTQa (F, G, M); |
---|
2760 | #endif |
---|
2761 | |
---|
2762 | if (getCharacteristic() > 0 && CFFactory::gettype() != GaloisFieldDomain && |
---|
2763 | (((degF-degG) < 50 && degF > degG) || ((degG-degF) < 50 && degF <= degG))) |
---|
2764 | return mulMod2NTLFq (F, G, M); |
---|
2765 | |
---|
2766 | int m= (int) ceil (degree (M)/2.0); |
---|
2767 | if (degF >= m || degG >= m) |
---|
2768 | { |
---|
2769 | CanonicalForm MLo= power (y, m); |
---|
2770 | CanonicalForm MHi= power (y, degree (M) - m); |
---|
2771 | CanonicalForm F0= mod (F, MLo); |
---|
2772 | CanonicalForm F1= div (F, MLo); |
---|
2773 | CanonicalForm G0= mod (G, MLo); |
---|
2774 | CanonicalForm G1= div (G, MLo); |
---|
2775 | CanonicalForm F0G1= mulMod2 (F0, G1, MHi); |
---|
2776 | CanonicalForm F1G0= mulMod2 (F1, G0, MHi); |
---|
2777 | CanonicalForm F0G0= mulMod2 (F0, G0, M); |
---|
2778 | return F0G0 + MLo*(F0G1 + F1G0); |
---|
2779 | } |
---|
2780 | else |
---|
2781 | { |
---|
2782 | m= (int) ceil (tmax (degF, degG)/2.0); |
---|
2783 | CanonicalForm yToM= power (y, m); |
---|
2784 | CanonicalForm F0= mod (F, yToM); |
---|
2785 | CanonicalForm F1= div (F, yToM); |
---|
2786 | CanonicalForm G0= mod (G, yToM); |
---|
2787 | CanonicalForm G1= div (G, yToM); |
---|
2788 | CanonicalForm H00= mulMod2 (F0, G0, M); |
---|
2789 | CanonicalForm H11= mulMod2 (F1, G1, M); |
---|
2790 | CanonicalForm H01= mulMod2 (F0 + F1, G0 + G1, M); |
---|
2791 | return H11*yToM*yToM + (H01 - H11 - H00)*yToM + H00; |
---|
2792 | } |
---|
2793 | DEBOUTLN (cerr, "fatal end in mulMod2"); |
---|
2794 | } |
---|
2795 | |
---|
2796 | // end bivariate polys |
---|
2797 | //********************** |
---|
2798 | // multivariate polys |
---|
2799 | |
---|
2800 | CanonicalForm mod (const CanonicalForm& F, const CFList& M) |
---|
2801 | { |
---|
2802 | CanonicalForm A= F; |
---|
2803 | for (CFListIterator i= M; i.hasItem(); i++) |
---|
2804 | A= mod (A, i.getItem()); |
---|
2805 | return A; |
---|
2806 | } |
---|
2807 | |
---|
2808 | CanonicalForm mulMod (const CanonicalForm& A, const CanonicalForm& B, |
---|
2809 | const CFList& MOD) |
---|
2810 | { |
---|
2811 | if (A.isZero() || B.isZero()) |
---|
2812 | return 0; |
---|
2813 | |
---|
2814 | if (MOD.length() == 1) |
---|
2815 | return mulMod2 (A, B, MOD.getLast()); |
---|
2816 | |
---|
2817 | CanonicalForm M= MOD.getLast(); |
---|
2818 | CanonicalForm F= mod (A, M); |
---|
2819 | CanonicalForm G= mod (B, M); |
---|
2820 | if (F.inCoeffDomain()) |
---|
2821 | return G*F; |
---|
2822 | if (G.inCoeffDomain()) |
---|
2823 | return F*G; |
---|
2824 | |
---|
2825 | int sizeF= size (F); |
---|
2826 | int sizeG= size (G); |
---|
2827 | |
---|
2828 | if (sizeF / MOD.length() < 100 || sizeG / MOD.length() < 100) |
---|
2829 | { |
---|
2830 | if (sizeF < sizeG) |
---|
2831 | return mod (G*F, MOD); |
---|
2832 | else |
---|
2833 | return mod (F*G, MOD); |
---|
2834 | } |
---|
2835 | |
---|
2836 | Variable y= M.mvar(); |
---|
2837 | int degF= degree (F, y); |
---|
2838 | int degG= degree (G, y); |
---|
2839 | |
---|
2840 | if ((degF <= 1 && F.level() <= M.level()) && |
---|
2841 | (degG <= 1 && G.level() <= M.level())) |
---|
2842 | { |
---|
2843 | CFList buf= MOD; |
---|
2844 | buf.removeLast(); |
---|
2845 | if (degF == 1 && degG == 1) |
---|
2846 | { |
---|
2847 | CanonicalForm F0= mod (F, y); |
---|
2848 | CanonicalForm F1= div (F, y); |
---|
2849 | CanonicalForm G0= mod (G, y); |
---|
2850 | CanonicalForm G1= div (G, y); |
---|
2851 | if (degree (M) > 2) |
---|
2852 | { |
---|
2853 | CanonicalForm H00= mulMod (F0, G0, buf); |
---|
2854 | CanonicalForm H11= mulMod (F1, G1, buf); |
---|
2855 | CanonicalForm H01= mulMod (F0 + F1, G0 + G1, buf); |
---|
2856 | return H11*y*y + (H01 - H00 - H11)*y + H00; |
---|
2857 | } |
---|
2858 | else //here degree (M) == 2 |
---|
2859 | { |
---|
2860 | buf.append (y); |
---|
2861 | CanonicalForm F0G1= mulMod (F0, G1, buf); |
---|
2862 | CanonicalForm F1G0= mulMod (F1, G0, buf); |
---|
2863 | CanonicalForm F0G0= mulMod (F0, G0, MOD); |
---|
2864 | CanonicalForm result= F0G0 + y*(F0G1 + F1G0); |
---|
2865 | return result; |
---|
2866 | } |
---|
2867 | } |
---|
2868 | else if (degF == 1 && degG == 0) |
---|
2869 | return mulMod (div (F, y), G, buf)*y + mulMod (mod (F, y), G, buf); |
---|
2870 | else if (degF == 0 && degG == 1) |
---|
2871 | return mulMod (div (G, y), F, buf)*y + mulMod (mod (G, y), F, buf); |
---|
2872 | else |
---|
2873 | return mulMod (F, G, buf); |
---|
2874 | } |
---|
2875 | int m= (int) ceil (degree (M)/2.0); |
---|
2876 | if (degF >= m || degG >= m) |
---|
2877 | { |
---|
2878 | CanonicalForm MLo= power (y, m); |
---|
2879 | CanonicalForm MHi= power (y, degree (M) - m); |
---|
2880 | CanonicalForm F0= mod (F, MLo); |
---|
2881 | CanonicalForm F1= div (F, MLo); |
---|
2882 | CanonicalForm G0= mod (G, MLo); |
---|
2883 | CanonicalForm G1= div (G, MLo); |
---|
2884 | CFList buf= MOD; |
---|
2885 | buf.removeLast(); |
---|
2886 | buf.append (MHi); |
---|
2887 | CanonicalForm F0G1= mulMod (F0, G1, buf); |
---|
2888 | CanonicalForm F1G0= mulMod (F1, G0, buf); |
---|
2889 | CanonicalForm F0G0= mulMod (F0, G0, MOD); |
---|
2890 | return F0G0 + MLo*(F0G1 + F1G0); |
---|
2891 | } |
---|
2892 | else |
---|
2893 | { |
---|
2894 | m= (int) ceil (tmin (degF, degG)/2.0); |
---|
2895 | CanonicalForm yToM= power (y, m); |
---|
2896 | CanonicalForm F0= mod (F, yToM); |
---|
2897 | CanonicalForm F1= div (F, yToM); |
---|
2898 | CanonicalForm G0= mod (G, yToM); |
---|
2899 | CanonicalForm G1= div (G, yToM); |
---|
2900 | CanonicalForm H00= mulMod (F0, G0, MOD); |
---|
2901 | CanonicalForm H11= mulMod (F1, G1, MOD); |
---|
2902 | CanonicalForm H01= mulMod (F0 + F1, G0 + G1, MOD); |
---|
2903 | return H11*yToM*yToM + (H01 - H11 - H00)*yToM + H00; |
---|
2904 | } |
---|
2905 | DEBOUTLN (cerr, "fatal end in mulMod"); |
---|
2906 | } |
---|
2907 | |
---|
2908 | CanonicalForm prodMod (const CFList& L, const CanonicalForm& M) |
---|
2909 | { |
---|
2910 | if (L.isEmpty()) |
---|
2911 | return 1; |
---|
2912 | int l= L.length(); |
---|
2913 | if (l == 1) |
---|
2914 | return mod (L.getFirst(), M); |
---|
2915 | else if (l == 2) { |
---|
2916 | CanonicalForm result= mulMod2 (L.getFirst(), L.getLast(), M); |
---|
2917 | return result; |
---|
2918 | } |
---|
2919 | else |
---|
2920 | { |
---|
2921 | l /= 2; |
---|
2922 | CFList tmp1, tmp2; |
---|
2923 | CFListIterator i= L; |
---|
2924 | CanonicalForm buf1, buf2; |
---|
2925 | for (int j= 1; j <= l; j++, i++) |
---|
2926 | tmp1.append (i.getItem()); |
---|
2927 | tmp2= Difference (L, tmp1); |
---|
2928 | buf1= prodMod (tmp1, M); |
---|
2929 | buf2= prodMod (tmp2, M); |
---|
2930 | CanonicalForm result= mulMod2 (buf1, buf2, M); |
---|
2931 | return result; |
---|
2932 | } |
---|
2933 | } |
---|
2934 | |
---|
2935 | CanonicalForm prodMod (const CFList& L, const CFList& M) |
---|
2936 | { |
---|
2937 | if (L.isEmpty()) |
---|
2938 | return 1; |
---|
2939 | else if (L.length() == 1) |
---|
2940 | return L.getFirst(); |
---|
2941 | else if (L.length() == 2) |
---|
2942 | return mulMod (L.getFirst(), L.getLast(), M); |
---|
2943 | else |
---|
2944 | { |
---|
2945 | int l= L.length()/2; |
---|
2946 | CFListIterator i= L; |
---|
2947 | CFList tmp1, tmp2; |
---|
2948 | CanonicalForm buf1, buf2; |
---|
2949 | for (int j= 1; j <= l; j++, i++) |
---|
2950 | tmp1.append (i.getItem()); |
---|
2951 | tmp2= Difference (L, tmp1); |
---|
2952 | buf1= prodMod (tmp1, M); |
---|
2953 | buf2= prodMod (tmp2, M); |
---|
2954 | return mulMod (buf1, buf2, M); |
---|
2955 | } |
---|
2956 | } |
---|
2957 | |
---|
2958 | // end multivariate polys |
---|
2959 | //*************************** |
---|
2960 | // division |
---|
2961 | |
---|
2962 | CanonicalForm reverse (const CanonicalForm& F, int d) |
---|
2963 | { |
---|
2964 | if (d == 0) |
---|
2965 | return F; |
---|
2966 | CanonicalForm A= F; |
---|
2967 | Variable y= Variable (2); |
---|
2968 | Variable x= Variable (1); |
---|
2969 | if (degree (A, x) > 0) |
---|
2970 | { |
---|
2971 | A= swapvar (A, x, y); |
---|
2972 | CanonicalForm result= 0; |
---|
2973 | CFIterator i= A; |
---|
2974 | while (d - i.exp() < 0) |
---|
2975 | i++; |
---|
2976 | |
---|
2977 | for (; i.hasTerms() && (d - i.exp() >= 0); i++) |
---|
2978 | result += swapvar (i.coeff(),x,y)*power (x, d - i.exp()); |
---|
2979 | return result; |
---|
2980 | } |
---|
2981 | else |
---|
2982 | return A*power (x, d); |
---|
2983 | } |
---|
2984 | |
---|
2985 | CanonicalForm |
---|
2986 | newtonInverse (const CanonicalForm& F, const int n, const CanonicalForm& M) |
---|
2987 | { |
---|
2988 | int l= ilog2(n); |
---|
2989 | |
---|
2990 | CanonicalForm g= mod (F, M)[0] [0]; |
---|
2991 | |
---|
2992 | ASSERT (!g.isZero(), "expected a unit"); |
---|
2993 | |
---|
2994 | Variable alpha; |
---|
2995 | |
---|
2996 | if (!g.isOne()) |
---|
2997 | g = 1/g; |
---|
2998 | Variable x= Variable (1); |
---|
2999 | CanonicalForm result; |
---|
3000 | int exp= 0; |
---|
3001 | if (n & 1) |
---|
3002 | { |
---|
3003 | result= g; |
---|
3004 | exp= 1; |
---|
3005 | } |
---|
3006 | CanonicalForm h; |
---|
3007 | |
---|
3008 | for (int i= 1; i <= l; i++) |
---|
3009 | { |
---|
3010 | h= mulMod2 (g, mod (F, power (x, (1 << i))), M); |
---|
3011 | h= mod (h, power (x, (1 << i)) - 1); |
---|
3012 | h= div (h, power (x, (1 << (i - 1)))); |
---|
3013 | h= mod (h, M); |
---|
3014 | g -= power (x, (1 << (i - 1)))* |
---|
3015 | mod (mulMod2 (g, h, M), power (x, (1 << (i - 1)))); |
---|
3016 | |
---|
3017 | if (n & (1 << i)) |
---|
3018 | { |
---|
3019 | if (exp) |
---|
3020 | { |
---|
3021 | h= mulMod2 (result, mod (F, power (x, exp + (1 << i))), M); |
---|
3022 | h= mod (h, power (x, exp + (1 << i)) - 1); |
---|
3023 | h= div (h, power (x, exp)); |
---|
3024 | h= mod (h, M); |
---|
3025 | result -= power(x, exp)*mod (mulMod2 (g, h, M), |
---|
3026 | power (x, (1 << i))); |
---|
3027 | exp += (1 << i); |
---|
3028 | } |
---|
3029 | else |
---|
3030 | { |
---|
3031 | exp= (1 << i); |
---|
3032 | result= g; |
---|
3033 | } |
---|
3034 | } |
---|
3035 | } |
---|
3036 | |
---|
3037 | return result; |
---|
3038 | } |
---|
3039 | |
---|
3040 | CanonicalForm |
---|
3041 | newtonDiv (const CanonicalForm& F, const CanonicalForm& G, const CanonicalForm& |
---|
3042 | M) |
---|
3043 | { |
---|
3044 | ASSERT (getCharacteristic() > 0, "positive characteristic expected"); |
---|
3045 | |
---|
3046 | CanonicalForm A= mod (F, M); |
---|
3047 | CanonicalForm B= mod (G, M); |
---|
3048 | |
---|
3049 | Variable x= Variable (1); |
---|
3050 | int degA= degree (A, x); |
---|
3051 | int degB= degree (B, x); |
---|
3052 | int m= degA - degB; |
---|
3053 | if (m < 0) |
---|
3054 | return 0; |
---|
3055 | |
---|
3056 | Variable v; |
---|
3057 | CanonicalForm Q; |
---|
3058 | if (degB < 1 || CFFactory::gettype() == GaloisFieldDomain) |
---|
3059 | { |
---|
3060 | CanonicalForm R; |
---|
3061 | divrem2 (A, B, Q, R, M); |
---|
3062 | } |
---|
3063 | else |
---|
3064 | { |
---|
3065 | if (hasFirstAlgVar (A, v) || hasFirstAlgVar (B, v)) |
---|
3066 | { |
---|
3067 | CanonicalForm R= reverse (A, degA); |
---|
3068 | CanonicalForm revB= reverse (B, degB); |
---|
3069 | revB= newtonInverse (revB, m + 1, M); |
---|
3070 | Q= mulMod2 (R, revB, M); |
---|
3071 | Q= mod (Q, power (x, m + 1)); |
---|
3072 | Q= reverse (Q, m); |
---|
3073 | } |
---|
3074 | else |
---|
3075 | { |
---|
3076 | Variable y= Variable (2); |
---|
3077 | #if (HAVE_FLINT && __FLINT_VERSION_MINOR >= 4) |
---|
3078 | nmod_poly_t FLINTmipo; |
---|
3079 | fq_nmod_ctx_t fq_con; |
---|
3080 | |
---|
3081 | nmod_poly_init (FLINTmipo, getCharacteristic()); |
---|
3082 | convertFacCF2nmod_poly_t (FLINTmipo, M); |
---|
3083 | |
---|
3084 | fq_nmod_ctx_init_modulus (fq_con, FLINTmipo, "Z"); |
---|
3085 | |
---|
3086 | |
---|
3087 | fq_nmod_poly_t FLINTA, FLINTB; |
---|
3088 | convertFacCF2Fq_nmod_poly_t (FLINTA, swapvar (A, x, y), fq_con); |
---|
3089 | convertFacCF2Fq_nmod_poly_t (FLINTB, swapvar (B, x, y), fq_con); |
---|
3090 | |
---|
3091 | fq_nmod_poly_divrem (FLINTA, FLINTB, FLINTA, FLINTB, fq_con); |
---|
3092 | |
---|
3093 | Q= convertFq_nmod_poly_t2FacCF (FLINTA, x, y, fq_con); |
---|
3094 | |
---|
3095 | fq_nmod_poly_clear (FLINTA, fq_con); |
---|
3096 | fq_nmod_poly_clear (FLINTB, fq_con); |
---|
3097 | nmod_poly_clear (FLINTmipo); |
---|
3098 | fq_nmod_ctx_clear (fq_con); |
---|
3099 | #else |
---|
3100 | bool zz_pEbak= zz_pE::initialized(); |
---|
3101 | zz_pEBak bak; |
---|
3102 | if (zz_pEbak) |
---|
3103 | bak.save(); |
---|
3104 | zz_pX mipo= convertFacCF2NTLzzpX (M); |
---|
3105 | zz_pEX NTLA, NTLB; |
---|
3106 | NTLA= convertFacCF2NTLzz_pEX (swapvar (A, x, y), mipo); |
---|
3107 | NTLB= convertFacCF2NTLzz_pEX (swapvar (B, x, y), mipo); |
---|
3108 | div (NTLA, NTLA, NTLB); |
---|
3109 | Q= convertNTLzz_pEX2CF (NTLA, x, y); |
---|
3110 | if (zz_pEbak) |
---|
3111 | bak.restore(); |
---|
3112 | #endif |
---|
3113 | } |
---|
3114 | } |
---|
3115 | |
---|
3116 | return Q; |
---|
3117 | } |
---|
3118 | |
---|
3119 | void |
---|
3120 | newtonDivrem (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
3121 | CanonicalForm& R, const CanonicalForm& M) |
---|
3122 | { |
---|
3123 | CanonicalForm A= mod (F, M); |
---|
3124 | CanonicalForm B= mod (G, M); |
---|
3125 | Variable x= Variable (1); |
---|
3126 | int degA= degree (A, x); |
---|
3127 | int degB= degree (B, x); |
---|
3128 | int m= degA - degB; |
---|
3129 | |
---|
3130 | if (m < 0) |
---|
3131 | { |
---|
3132 | R= A; |
---|
3133 | Q= 0; |
---|
3134 | return; |
---|
3135 | } |
---|
3136 | |
---|
3137 | Variable v; |
---|
3138 | if (degB <= 1 || CFFactory::gettype() == GaloisFieldDomain) |
---|
3139 | { |
---|
3140 | divrem2 (A, B, Q, R, M); |
---|
3141 | } |
---|
3142 | else |
---|
3143 | { |
---|
3144 | if (hasFirstAlgVar (A, v) || hasFirstAlgVar (B, v)) |
---|
3145 | { |
---|
3146 | R= reverse (A, degA); |
---|
3147 | |
---|
3148 | CanonicalForm revB= reverse (B, degB); |
---|
3149 | revB= newtonInverse (revB, m + 1, M); |
---|
3150 | Q= mulMod2 (R, revB, M); |
---|
3151 | |
---|
3152 | Q= mod (Q, power (x, m + 1)); |
---|
3153 | Q= reverse (Q, m); |
---|
3154 | |
---|
3155 | R= A - mulMod2 (Q, B, M); |
---|
3156 | } |
---|
3157 | else |
---|
3158 | { |
---|
3159 | Variable y= Variable (2); |
---|
3160 | #if (HAVE_FLINT && __FLINT_VERSION_MINOR >= 4) |
---|
3161 | nmod_poly_t FLINTmipo; |
---|
3162 | fq_nmod_ctx_t fq_con; |
---|
3163 | |
---|
3164 | nmod_poly_init (FLINTmipo, getCharacteristic()); |
---|
3165 | convertFacCF2nmod_poly_t (FLINTmipo, M); |
---|
3166 | |
---|
3167 | fq_nmod_ctx_init_modulus (fq_con, FLINTmipo, "Z"); |
---|
3168 | |
---|
3169 | fq_nmod_poly_t FLINTA, FLINTB; |
---|
3170 | convertFacCF2Fq_nmod_poly_t (FLINTA, swapvar (A, x, y), fq_con); |
---|
3171 | convertFacCF2Fq_nmod_poly_t (FLINTB, swapvar (B, x, y), fq_con); |
---|
3172 | |
---|
3173 | fq_nmod_poly_divrem (FLINTA, FLINTB, FLINTA, FLINTB, fq_con); |
---|
3174 | |
---|
3175 | Q= convertFq_nmod_poly_t2FacCF (FLINTA, x, y, fq_con); |
---|
3176 | R= convertFq_nmod_poly_t2FacCF (FLINTB, x, y, fq_con); |
---|
3177 | |
---|
3178 | fq_nmod_poly_clear (FLINTA, fq_con); |
---|
3179 | fq_nmod_poly_clear (FLINTB, fq_con); |
---|
3180 | nmod_poly_clear (FLINTmipo); |
---|
3181 | fq_nmod_ctx_clear (fq_con); |
---|
3182 | #else |
---|
3183 | zz_pX mipo= convertFacCF2NTLzzpX (M); |
---|
3184 | zz_pEX NTLA, NTLB; |
---|
3185 | NTLA= convertFacCF2NTLzz_pEX (swapvar (A, x, y), mipo); |
---|
3186 | NTLB= convertFacCF2NTLzz_pEX (swapvar (B, x, y), mipo); |
---|
3187 | zz_pEX NTLQ, NTLR; |
---|
3188 | DivRem (NTLQ, NTLR, NTLA, NTLB); |
---|
3189 | Q= convertNTLzz_pEX2CF (NTLQ, x, y); |
---|
3190 | R= convertNTLzz_pEX2CF (NTLR, x, y); |
---|
3191 | #endif |
---|
3192 | } |
---|
3193 | } |
---|
3194 | } |
---|
3195 | |
---|
3196 | static inline |
---|
3197 | CFList split (const CanonicalForm& F, const int m, const Variable& x) |
---|
3198 | { |
---|
3199 | CanonicalForm A= F; |
---|
3200 | CanonicalForm buf= 0; |
---|
3201 | bool swap= false; |
---|
3202 | if (degree (A, x) <= 0) |
---|
3203 | return CFList(A); |
---|
3204 | else if (x.level() != A.level()) |
---|
3205 | { |
---|
3206 | swap= true; |
---|
3207 | A= swapvar (A, x, A.mvar()); |
---|
3208 | } |
---|
3209 | |
---|
3210 | int j= (int) floor ((double) degree (A)/ m); |
---|
3211 | CFList result; |
---|
3212 | CFIterator i= A; |
---|
3213 | for (; j >= 0; j--) |
---|
3214 | { |
---|
3215 | while (i.hasTerms() && i.exp() - j*m >= 0) |
---|
3216 | { |
---|
3217 | if (swap) |
---|
3218 | buf += i.coeff()*power (A.mvar(), i.exp() - j*m); |
---|
3219 | else |
---|
3220 | buf += i.coeff()*power (x, i.exp() - j*m); |
---|
3221 | i++; |
---|
3222 | } |
---|
3223 | if (swap) |
---|
3224 | result.append (swapvar (buf, x, F.mvar())); |
---|
3225 | else |
---|
3226 | result.append (buf); |
---|
3227 | buf= 0; |
---|
3228 | } |
---|
3229 | return result; |
---|
3230 | } |
---|
3231 | |
---|
3232 | static inline |
---|
3233 | void divrem32 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
3234 | CanonicalForm& R, const CFList& M); |
---|
3235 | |
---|
3236 | static inline |
---|
3237 | void divrem21 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
3238 | CanonicalForm& R, const CFList& M) |
---|
3239 | { |
---|
3240 | CanonicalForm A= mod (F, M); |
---|
3241 | CanonicalForm B= mod (G, M); |
---|
3242 | Variable x= Variable (1); |
---|
3243 | int degB= degree (B, x); |
---|
3244 | int degA= degree (A, x); |
---|
3245 | if (degA < degB) |
---|
3246 | { |
---|
3247 | Q= 0; |
---|
3248 | R= A; |
---|
3249 | return; |
---|
3250 | } |
---|
3251 | if (degB < 1) |
---|
3252 | { |
---|
3253 | divrem (A, B, Q, R); |
---|
3254 | Q= mod (Q, M); |
---|
3255 | R= mod (R, M); |
---|
3256 | return; |
---|
3257 | } |
---|
3258 | int m= (int) ceil ((double) (degB + 1)/2.0) + 1; |
---|
3259 | ASSERT (4*m >= degA, "expected degree (F, 1) < 2*degree (G, 1)"); |
---|
3260 | CFList splitA= split (A, m, x); |
---|
3261 | if (splitA.length() == 3) |
---|
3262 | splitA.insert (0); |
---|
3263 | if (splitA.length() == 2) |
---|
3264 | { |
---|
3265 | splitA.insert (0); |
---|
3266 | splitA.insert (0); |
---|
3267 | } |
---|
3268 | if (splitA.length() == 1) |
---|
3269 | { |
---|
3270 | splitA.insert (0); |
---|
3271 | splitA.insert (0); |
---|
3272 | splitA.insert (0); |
---|
3273 | } |
---|
3274 | |
---|
3275 | CanonicalForm xToM= power (x, m); |
---|
3276 | |
---|
3277 | CFListIterator i= splitA; |
---|
3278 | CanonicalForm H= i.getItem(); |
---|
3279 | i++; |
---|
3280 | H *= xToM; |
---|
3281 | H += i.getItem(); |
---|
3282 | i++; |
---|
3283 | H *= xToM; |
---|
3284 | H += i.getItem(); |
---|
3285 | i++; |
---|
3286 | |
---|
3287 | divrem32 (H, B, Q, R, M); |
---|
3288 | |
---|
3289 | CFList splitR= split (R, m, x); |
---|
3290 | if (splitR.length() == 1) |
---|
3291 | splitR.insert (0); |
---|
3292 | |
---|
3293 | H= splitR.getFirst(); |
---|
3294 | H *= xToM; |
---|
3295 | H += splitR.getLast(); |
---|
3296 | H *= xToM; |
---|
3297 | H += i.getItem(); |
---|
3298 | |
---|
3299 | CanonicalForm bufQ; |
---|
3300 | divrem32 (H, B, bufQ, R, M); |
---|
3301 | |
---|
3302 | Q *= xToM; |
---|
3303 | Q += bufQ; |
---|
3304 | return; |
---|
3305 | } |
---|
3306 | |
---|
3307 | static inline |
---|
3308 | void divrem32 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
3309 | CanonicalForm& R, const CFList& M) |
---|
3310 | { |
---|
3311 | CanonicalForm A= mod (F, M); |
---|
3312 | CanonicalForm B= mod (G, M); |
---|
3313 | Variable x= Variable (1); |
---|
3314 | int degB= degree (B, x); |
---|
3315 | int degA= degree (A, x); |
---|
3316 | if (degA < degB) |
---|
3317 | { |
---|
3318 | Q= 0; |
---|
3319 | R= A; |
---|
3320 | return; |
---|
3321 | } |
---|
3322 | if (degB < 1) |
---|
3323 | { |
---|
3324 | divrem (A, B, Q, R); |
---|
3325 | Q= mod (Q, M); |
---|
3326 | R= mod (R, M); |
---|
3327 | return; |
---|
3328 | } |
---|
3329 | int m= (int) ceil ((double) (degB + 1)/ 2.0); |
---|
3330 | ASSERT (3*m > degA, "expected degree (F, 1) < 3*degree (G, 1)"); |
---|
3331 | CFList splitA= split (A, m, x); |
---|
3332 | CFList splitB= split (B, m, x); |
---|
3333 | |
---|
3334 | if (splitA.length() == 2) |
---|
3335 | { |
---|
3336 | splitA.insert (0); |
---|
3337 | } |
---|
3338 | if (splitA.length() == 1) |
---|
3339 | { |
---|
3340 | splitA.insert (0); |
---|
3341 | splitA.insert (0); |
---|
3342 | } |
---|
3343 | CanonicalForm xToM= power (x, m); |
---|
3344 | |
---|
3345 | CanonicalForm H; |
---|
3346 | CFListIterator i= splitA; |
---|
3347 | i++; |
---|
3348 | |
---|
3349 | if (degree (splitA.getFirst(), x) < degree (splitB.getFirst(), x)) |
---|
3350 | { |
---|
3351 | H= splitA.getFirst()*xToM + i.getItem(); |
---|
3352 | divrem21 (H, splitB.getFirst(), Q, R, M); |
---|
3353 | } |
---|
3354 | else |
---|
3355 | { |
---|
3356 | R= splitA.getFirst()*xToM + i.getItem() + splitB.getFirst() - |
---|
3357 | splitB.getFirst()*xToM; |
---|
3358 | Q= xToM - 1; |
---|
3359 | } |
---|
3360 | |
---|
3361 | H= mulMod (Q, splitB.getLast(), M); |
---|
3362 | |
---|
3363 | R= R*xToM + splitA.getLast() - H; |
---|
3364 | |
---|
3365 | while (degree (R, x) >= degB) |
---|
3366 | { |
---|
3367 | xToM= power (x, degree (R, x) - degB); |
---|
3368 | Q += LC (R, x)*xToM; |
---|
3369 | R -= mulMod (LC (R, x), B, M)*xToM; |
---|
3370 | Q= mod (Q, M); |
---|
3371 | R= mod (R, M); |
---|
3372 | } |
---|
3373 | |
---|
3374 | return; |
---|
3375 | } |
---|
3376 | |
---|
3377 | void divrem2 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
3378 | CanonicalForm& R, const CanonicalForm& M) |
---|
3379 | { |
---|
3380 | CanonicalForm A= mod (F, M); |
---|
3381 | CanonicalForm B= mod (G, M); |
---|
3382 | |
---|
3383 | if (B.inCoeffDomain()) |
---|
3384 | { |
---|
3385 | divrem (A, B, Q, R); |
---|
3386 | return; |
---|
3387 | } |
---|
3388 | if (A.inCoeffDomain() && !B.inCoeffDomain()) |
---|
3389 | { |
---|
3390 | Q= 0; |
---|
3391 | R= A; |
---|
3392 | return; |
---|
3393 | } |
---|
3394 | |
---|
3395 | if (B.level() < A.level()) |
---|
3396 | { |
---|
3397 | divrem (A, B, Q, R); |
---|
3398 | return; |
---|
3399 | } |
---|
3400 | if (A.level() > B.level()) |
---|
3401 | { |
---|
3402 | R= A; |
---|
3403 | Q= 0; |
---|
3404 | return; |
---|
3405 | } |
---|
3406 | if (B.level() == 1 && B.isUnivariate()) |
---|
3407 | { |
---|
3408 | divrem (A, B, Q, R); |
---|
3409 | return; |
---|
3410 | } |
---|
3411 | |
---|
3412 | Variable x= Variable (1); |
---|
3413 | int degB= degree (B, x); |
---|
3414 | if (degB > degree (A, x)) |
---|
3415 | { |
---|
3416 | Q= 0; |
---|
3417 | R= A; |
---|
3418 | return; |
---|
3419 | } |
---|
3420 | |
---|
3421 | CFList splitA= split (A, degB, x); |
---|
3422 | |
---|
3423 | CanonicalForm xToDegB= power (x, degB); |
---|
3424 | CanonicalForm H, bufQ; |
---|
3425 | Q= 0; |
---|
3426 | CFListIterator i= splitA; |
---|
3427 | H= i.getItem()*xToDegB; |
---|
3428 | i++; |
---|
3429 | H += i.getItem(); |
---|
3430 | CFList buf; |
---|
3431 | while (i.hasItem()) |
---|
3432 | { |
---|
3433 | buf= CFList (M); |
---|
3434 | divrem21 (H, B, bufQ, R, buf); |
---|
3435 | i++; |
---|
3436 | if (i.hasItem()) |
---|
3437 | H= R*xToDegB + i.getItem(); |
---|
3438 | Q *= xToDegB; |
---|
3439 | Q += bufQ; |
---|
3440 | } |
---|
3441 | return; |
---|
3442 | } |
---|
3443 | |
---|
3444 | void divrem (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
3445 | CanonicalForm& R, const CFList& MOD) |
---|
3446 | { |
---|
3447 | CanonicalForm A= mod (F, MOD); |
---|
3448 | CanonicalForm B= mod (G, MOD); |
---|
3449 | Variable x= Variable (1); |
---|
3450 | int degB= degree (B, x); |
---|
3451 | if (degB > degree (A, x)) |
---|
3452 | { |
---|
3453 | Q= 0; |
---|
3454 | R= A; |
---|
3455 | return; |
---|
3456 | } |
---|
3457 | |
---|
3458 | if (degB <= 0) |
---|
3459 | { |
---|
3460 | divrem (A, B, Q, R); |
---|
3461 | Q= mod (Q, MOD); |
---|
3462 | R= mod (R, MOD); |
---|
3463 | return; |
---|
3464 | } |
---|
3465 | CFList splitA= split (A, degB, x); |
---|
3466 | |
---|
3467 | CanonicalForm xToDegB= power (x, degB); |
---|
3468 | CanonicalForm H, bufQ; |
---|
3469 | Q= 0; |
---|
3470 | CFListIterator i= splitA; |
---|
3471 | H= i.getItem()*xToDegB; |
---|
3472 | i++; |
---|
3473 | H += i.getItem(); |
---|
3474 | while (i.hasItem()) |
---|
3475 | { |
---|
3476 | divrem21 (H, B, bufQ, R, MOD); |
---|
3477 | i++; |
---|
3478 | if (i.hasItem()) |
---|
3479 | H= R*xToDegB + i.getItem(); |
---|
3480 | Q *= xToDegB; |
---|
3481 | Q += bufQ; |
---|
3482 | } |
---|
3483 | return; |
---|
3484 | } |
---|
3485 | |
---|
3486 | bool |
---|
3487 | uniFdivides (const CanonicalForm& A, const CanonicalForm& B) |
---|
3488 | { |
---|
3489 | if (B.isZero()) |
---|
3490 | return true; |
---|
3491 | if (A.isZero()) |
---|
3492 | return false; |
---|
3493 | if (CFFactory::gettype() == GaloisFieldDomain) |
---|
3494 | return fdivides (A, B); |
---|
3495 | int p= getCharacteristic(); |
---|
3496 | if (A.inCoeffDomain() || B.inCoeffDomain()) |
---|
3497 | { |
---|
3498 | if (A.inCoeffDomain()) |
---|
3499 | return true; |
---|
3500 | else |
---|
3501 | return false; |
---|
3502 | } |
---|
3503 | if (p > 0) |
---|
3504 | { |
---|
3505 | if (fac_NTL_char != p) |
---|
3506 | { |
---|
3507 | fac_NTL_char= p; |
---|
3508 | zz_p::init (p); |
---|
3509 | } |
---|
3510 | Variable alpha; |
---|
3511 | if (hasFirstAlgVar (A, alpha) || hasFirstAlgVar (B, alpha)) |
---|
3512 | { |
---|
3513 | #if (HAVE_FLINT && __FLINT_VERSION_MINOR >= 4) |
---|
3514 | nmod_poly_t FLINTmipo; |
---|
3515 | fq_nmod_ctx_t fq_con; |
---|
3516 | |
---|
3517 | nmod_poly_init (FLINTmipo, getCharacteristic()); |
---|
3518 | convertFacCF2nmod_poly_t (FLINTmipo, getMipo (alpha)); |
---|
3519 | |
---|
3520 | fq_nmod_ctx_init_modulus (fq_con, FLINTmipo, "Z"); |
---|
3521 | |
---|
3522 | fq_nmod_poly_t FLINTA, FLINTB; |
---|
3523 | convertFacCF2Fq_nmod_poly_t (FLINTA, A, fq_con); |
---|
3524 | convertFacCF2Fq_nmod_poly_t (FLINTB, B, fq_con); |
---|
3525 | int result= fq_nmod_poly_divides (FLINTA, FLINTB, FLINTA, fq_con); |
---|
3526 | fq_nmod_poly_clear (FLINTA, fq_con); |
---|
3527 | fq_nmod_poly_clear (FLINTB, fq_con); |
---|
3528 | nmod_poly_clear (FLINTmipo); |
---|
3529 | fq_nmod_ctx_clear (fq_con); |
---|
3530 | return result; |
---|
3531 | #else |
---|
3532 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
3533 | zz_pE::init (NTLMipo); |
---|
3534 | zz_pEX NTLA= convertFacCF2NTLzz_pEX (A, NTLMipo); |
---|
3535 | zz_pEX NTLB= convertFacCF2NTLzz_pEX (B, NTLMipo); |
---|
3536 | return divide (NTLB, NTLA); |
---|
3537 | #endif |
---|
3538 | } |
---|
3539 | #ifdef HAVE_FLINT |
---|
3540 | nmod_poly_t FLINTA, FLINTB; |
---|
3541 | convertFacCF2nmod_poly_t (FLINTA, A); |
---|
3542 | convertFacCF2nmod_poly_t (FLINTB, B); |
---|
3543 | nmod_poly_divrem (FLINTB, FLINTA, FLINTB, FLINTA); |
---|
3544 | bool result= nmod_poly_is_zero (FLINTA); |
---|
3545 | nmod_poly_clear (FLINTA); |
---|
3546 | nmod_poly_clear (FLINTB); |
---|
3547 | return result; |
---|
3548 | #else |
---|
3549 | zz_pX NTLA= convertFacCF2NTLzzpX (A); |
---|
3550 | zz_pX NTLB= convertFacCF2NTLzzpX (B); |
---|
3551 | return divide (NTLB, NTLA); |
---|
3552 | #endif |
---|
3553 | } |
---|
3554 | #ifdef HAVE_FLINT |
---|
3555 | Variable alpha; |
---|
3556 | bool isRat= isOn (SW_RATIONAL); |
---|
3557 | if (!isRat) |
---|
3558 | On (SW_RATIONAL); |
---|
3559 | if (!hasFirstAlgVar (A, alpha) && !hasFirstAlgVar (B, alpha)) |
---|
3560 | { |
---|
3561 | fmpq_poly_t FLINTA,FLINTB; |
---|
3562 | convertFacCF2Fmpq_poly_t (FLINTA, A); |
---|
3563 | convertFacCF2Fmpq_poly_t (FLINTB, B); |
---|
3564 | fmpq_poly_rem (FLINTA, FLINTB, FLINTA); |
---|
3565 | bool result= fmpq_poly_is_zero (FLINTA); |
---|
3566 | fmpq_poly_clear (FLINTA); |
---|
3567 | fmpq_poly_clear (FLINTB); |
---|
3568 | if (!isRat) |
---|
3569 | Off (SW_RATIONAL); |
---|
3570 | return result; |
---|
3571 | } |
---|
3572 | CanonicalForm Q, R; |
---|
3573 | Variable x= Variable (1); |
---|
3574 | Variable y= Variable (2); |
---|
3575 | newtonDivrem (swapvar (B, y, x), swapvar (A, y, x), Q, R); |
---|
3576 | if (!isRat) |
---|
3577 | Off (SW_RATIONAL); |
---|
3578 | return R.isZero(); |
---|
3579 | #else |
---|
3580 | bool isRat= isOn (SW_RATIONAL); |
---|
3581 | if (!isRat) |
---|
3582 | On (SW_RATIONAL); |
---|
3583 | bool result= fdivides (A, B); |
---|
3584 | if (!isRat) |
---|
3585 | Off (SW_RATIONAL); |
---|
3586 | return result; //maybe NTL? |
---|
3587 | #endif |
---|
3588 | } |
---|
3589 | |
---|
3590 | // end division |
---|
3591 | |
---|
3592 | #endif |
---|