1 | /*****************************************************************************\ |
---|
2 | * Computer Algebra System SINGULAR |
---|
3 | \*****************************************************************************/ |
---|
4 | /** @file facMul.cc |
---|
5 | * |
---|
6 | * This file implements functions for fast multiplication and division with |
---|
7 | * remainder |
---|
8 | * |
---|
9 | * @author Martin Lee |
---|
10 | * |
---|
11 | **/ |
---|
12 | /*****************************************************************************/ |
---|
13 | |
---|
14 | #include "debug.h" |
---|
15 | |
---|
16 | #include "canonicalform.h" |
---|
17 | #include "facMul.h" |
---|
18 | #include "algext.h" |
---|
19 | #include "cf_util.h" |
---|
20 | #include "templates/ftmpl_functions.h" |
---|
21 | |
---|
22 | #ifdef HAVE_NTL |
---|
23 | #include <NTL/lzz_pEX.h> |
---|
24 | #include "NTLconvert.h" |
---|
25 | |
---|
26 | #ifdef HAVE_FLINT |
---|
27 | #include "FLINTconvert.h" |
---|
28 | #endif |
---|
29 | |
---|
30 | // univariate polys |
---|
31 | |
---|
32 | #ifdef HAVE_FLINT |
---|
33 | void kronSub (fmpz_poly_t result, const CanonicalForm& A, int d) |
---|
34 | { |
---|
35 | int degAy= degree (A); |
---|
36 | fmpz_poly_init2 (result, d*(degAy + 1)); |
---|
37 | _fmpz_poly_set_length (result, d*(degAy + 1)); |
---|
38 | CFIterator j; |
---|
39 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
40 | { |
---|
41 | if (i.coeff().inBaseDomain()) |
---|
42 | convertCF2Fmpz (fmpz_poly_get_coeff_ptr (result, i.exp()*d), i.coeff()); |
---|
43 | else |
---|
44 | for (j= i.coeff(); j.hasTerms(); j++) |
---|
45 | convertCF2Fmpz (fmpz_poly_get_coeff_ptr (result, i.exp()*d+j.exp()), |
---|
46 | j.coeff()); |
---|
47 | } |
---|
48 | _fmpz_poly_normalise(result); |
---|
49 | } |
---|
50 | |
---|
51 | |
---|
52 | CanonicalForm |
---|
53 | reverseSubstQa (const fmpz_poly_t F, int d, const Variable& alpha, |
---|
54 | const CanonicalForm& den) |
---|
55 | { |
---|
56 | Variable x= Variable (1); |
---|
57 | |
---|
58 | CanonicalForm result= 0; |
---|
59 | int i= 0; |
---|
60 | int degf= fmpz_poly_degree (F); |
---|
61 | int k= 0; |
---|
62 | int degfSubK; |
---|
63 | int repLength, j; |
---|
64 | CanonicalForm coeff, ff; |
---|
65 | fmpz* tmp; |
---|
66 | while (degf >= k) |
---|
67 | { |
---|
68 | coeff= 0; |
---|
69 | degfSubK= degf - k; |
---|
70 | if (degfSubK >= d) |
---|
71 | repLength= d; |
---|
72 | else |
---|
73 | repLength= degfSubK + 1; |
---|
74 | |
---|
75 | for (j= 0; j < repLength; j++) |
---|
76 | { |
---|
77 | tmp= fmpz_poly_get_coeff_ptr (F, j+k); |
---|
78 | if (!fmpz_is_zero (tmp)) |
---|
79 | { |
---|
80 | ff= convertFmpz2CF (tmp); |
---|
81 | coeff += ff*power (alpha, j); //TODO faster reduction mod alpha |
---|
82 | } |
---|
83 | } |
---|
84 | result += coeff*power (x, i); |
---|
85 | i++; |
---|
86 | k= d*i; |
---|
87 | } |
---|
88 | result /= den; |
---|
89 | return result; |
---|
90 | } |
---|
91 | |
---|
92 | CanonicalForm |
---|
93 | mulFLINTQa (const CanonicalForm& F, const CanonicalForm& G, |
---|
94 | const Variable& alpha) |
---|
95 | { |
---|
96 | CanonicalForm A= F; |
---|
97 | CanonicalForm B= G; |
---|
98 | |
---|
99 | CanonicalForm denA= bCommonDen (A); |
---|
100 | CanonicalForm denB= bCommonDen (B); |
---|
101 | |
---|
102 | A *= denA; |
---|
103 | B *= denB; |
---|
104 | int degAa= degree (A, alpha); |
---|
105 | int degBa= degree (B, alpha); |
---|
106 | int d= degAa + 1 + degBa; |
---|
107 | |
---|
108 | fmpz_poly_t FLINTA,FLINTB; |
---|
109 | fmpz_poly_init (FLINTA); |
---|
110 | fmpz_poly_init (FLINTB); |
---|
111 | kronSub (FLINTA, A, d); |
---|
112 | kronSub (FLINTB, B, d); |
---|
113 | |
---|
114 | fmpz_poly_mul (FLINTA, FLINTA, FLINTB); |
---|
115 | |
---|
116 | denA *= denB; |
---|
117 | A= reverseSubstQa (FLINTA, d, alpha, denA); |
---|
118 | |
---|
119 | fmpz_poly_clear (FLINTA); |
---|
120 | fmpz_poly_clear (FLINTB); |
---|
121 | return A; |
---|
122 | } |
---|
123 | |
---|
124 | CanonicalForm |
---|
125 | mulFLINTQ (const CanonicalForm& F, const CanonicalForm& G) |
---|
126 | { |
---|
127 | CanonicalForm A= F; |
---|
128 | CanonicalForm B= G; |
---|
129 | |
---|
130 | CanonicalForm denA= bCommonDen (A); |
---|
131 | CanonicalForm denB= bCommonDen (B); |
---|
132 | |
---|
133 | A *= denA; |
---|
134 | B *= denB; |
---|
135 | fmpz_poly_t FLINTA,FLINTB; |
---|
136 | convertFacCF2Fmpz_poly_t (FLINTA, A); |
---|
137 | convertFacCF2Fmpz_poly_t (FLINTB, B); |
---|
138 | fmpz_poly_mul (FLINTA, FLINTA, FLINTB); |
---|
139 | denA *= denB; |
---|
140 | A= convertFmpz_poly_t2FacCF (FLINTA, F.mvar()); |
---|
141 | A /= denA; |
---|
142 | fmpz_poly_clear (FLINTA); |
---|
143 | fmpz_poly_clear (FLINTB); |
---|
144 | |
---|
145 | return A; |
---|
146 | } |
---|
147 | |
---|
148 | /*CanonicalForm |
---|
149 | mulFLINTQ2 (const CanonicalForm& F, const CanonicalForm& G) |
---|
150 | { |
---|
151 | CanonicalForm A= F; |
---|
152 | CanonicalForm B= G; |
---|
153 | |
---|
154 | fmpq_poly_t FLINTA,FLINTB; |
---|
155 | convertFacCF2Fmpq_poly_t (FLINTA, A); |
---|
156 | convertFacCF2Fmpq_poly_t (FLINTB, B); |
---|
157 | |
---|
158 | fmpq_poly_mul (FLINTA, FLINTA, FLINTB); |
---|
159 | A= convertFmpq_poly_t2FacCF (FLINTA, F.mvar()); |
---|
160 | fmpq_poly_clear (FLINTA); |
---|
161 | fmpq_poly_clear (FLINTB); |
---|
162 | return A; |
---|
163 | }*/ |
---|
164 | |
---|
165 | CanonicalForm |
---|
166 | divFLINTQ (const CanonicalForm& F, const CanonicalForm& G) |
---|
167 | { |
---|
168 | CanonicalForm A= F; |
---|
169 | CanonicalForm B= G; |
---|
170 | |
---|
171 | fmpq_poly_t FLINTA,FLINTB; |
---|
172 | convertFacCF2Fmpq_poly_t (FLINTA, A); |
---|
173 | convertFacCF2Fmpq_poly_t (FLINTB, B); |
---|
174 | |
---|
175 | fmpq_poly_div (FLINTA, FLINTA, FLINTB); |
---|
176 | A= convertFmpq_poly_t2FacCF (FLINTA, F.mvar()); |
---|
177 | |
---|
178 | fmpq_poly_clear (FLINTA); |
---|
179 | fmpq_poly_clear (FLINTB); |
---|
180 | return A; |
---|
181 | } |
---|
182 | |
---|
183 | CanonicalForm |
---|
184 | modFLINTQ (const CanonicalForm& F, const CanonicalForm& G) |
---|
185 | { |
---|
186 | CanonicalForm A= F; |
---|
187 | CanonicalForm B= G; |
---|
188 | |
---|
189 | fmpq_poly_t FLINTA,FLINTB; |
---|
190 | convertFacCF2Fmpq_poly_t (FLINTA, A); |
---|
191 | convertFacCF2Fmpq_poly_t (FLINTB, B); |
---|
192 | |
---|
193 | fmpq_poly_rem (FLINTA, FLINTA, FLINTB); |
---|
194 | A= convertFmpq_poly_t2FacCF (FLINTA, F.mvar()); |
---|
195 | |
---|
196 | fmpq_poly_clear (FLINTA); |
---|
197 | fmpq_poly_clear (FLINTB); |
---|
198 | return A; |
---|
199 | } |
---|
200 | |
---|
201 | CanonicalForm |
---|
202 | mulFLINTQaTrunc (const CanonicalForm& F, const CanonicalForm& G, |
---|
203 | const Variable& alpha, int m) |
---|
204 | { |
---|
205 | CanonicalForm A= F; |
---|
206 | CanonicalForm B= G; |
---|
207 | |
---|
208 | CanonicalForm denA= bCommonDen (A); |
---|
209 | CanonicalForm denB= bCommonDen (B); |
---|
210 | |
---|
211 | A *= denA; |
---|
212 | B *= denB; |
---|
213 | |
---|
214 | int degAa= degree (A, alpha); |
---|
215 | int degBa= degree (B, alpha); |
---|
216 | int d= degAa + 1 + degBa; |
---|
217 | |
---|
218 | fmpz_poly_t FLINTA,FLINTB; |
---|
219 | fmpz_poly_init (FLINTA); |
---|
220 | fmpz_poly_init (FLINTB); |
---|
221 | kronSub (FLINTA, A, d); |
---|
222 | kronSub (FLINTB, B, d); |
---|
223 | |
---|
224 | int k= d*m; |
---|
225 | fmpz_poly_mullow (FLINTA, FLINTA, FLINTB, k); |
---|
226 | |
---|
227 | denA *= denB; |
---|
228 | A= reverseSubstQa (FLINTA, d, alpha, denA); |
---|
229 | fmpz_poly_clear (FLINTA); |
---|
230 | fmpz_poly_clear (FLINTB); |
---|
231 | return A; |
---|
232 | } |
---|
233 | |
---|
234 | CanonicalForm |
---|
235 | mulFLINTQTrunc (const CanonicalForm& F, const CanonicalForm& G, int m) |
---|
236 | { |
---|
237 | if (F.inCoeffDomain() || G.inCoeffDomain()) |
---|
238 | return mod (F*G, power (Variable (1), m)); |
---|
239 | Variable alpha; |
---|
240 | if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) |
---|
241 | return mulFLINTQaTrunc (F, G, alpha, m); |
---|
242 | |
---|
243 | CanonicalForm A= F; |
---|
244 | CanonicalForm B= G; |
---|
245 | |
---|
246 | CanonicalForm denA= bCommonDen (A); |
---|
247 | CanonicalForm denB= bCommonDen (B); |
---|
248 | |
---|
249 | A *= denA; |
---|
250 | B *= denB; |
---|
251 | fmpz_poly_t FLINTA,FLINTB; |
---|
252 | convertFacCF2Fmpz_poly_t (FLINTA, A); |
---|
253 | convertFacCF2Fmpz_poly_t (FLINTB, B); |
---|
254 | fmpz_poly_mullow (FLINTA, FLINTA, FLINTB, m); |
---|
255 | denA *= denB; |
---|
256 | A= convertFmpz_poly_t2FacCF (FLINTA, F.mvar()); |
---|
257 | A /= denA; |
---|
258 | fmpz_poly_clear (FLINTA); |
---|
259 | fmpz_poly_clear (FLINTB); |
---|
260 | |
---|
261 | return A; |
---|
262 | } |
---|
263 | |
---|
264 | CanonicalForm uniReverse (const CanonicalForm& F, int d) |
---|
265 | { |
---|
266 | if (d == 0) |
---|
267 | return F; |
---|
268 | if (F.inCoeffDomain()) |
---|
269 | return F*power (Variable (1),d); |
---|
270 | Variable x= Variable (1); |
---|
271 | CanonicalForm result= 0; |
---|
272 | CFIterator i= F; |
---|
273 | while (d - i.exp() < 0) |
---|
274 | i++; |
---|
275 | |
---|
276 | for (; i.hasTerms() && (d - i.exp() >= 0); i++) |
---|
277 | result += i.coeff()*power (x, d - i.exp()); |
---|
278 | return result; |
---|
279 | } |
---|
280 | |
---|
281 | CanonicalForm |
---|
282 | newtonInverse (const CanonicalForm& F, const int n) |
---|
283 | { |
---|
284 | int l= ilog2(n); |
---|
285 | |
---|
286 | CanonicalForm g= F [0]; |
---|
287 | |
---|
288 | ASSERT (!g.isZero(), "expected a unit"); |
---|
289 | |
---|
290 | if (!g.isOne()) |
---|
291 | g = 1/g; |
---|
292 | Variable x= Variable (1); |
---|
293 | CanonicalForm result; |
---|
294 | int exp= 0; |
---|
295 | if (n & 1) |
---|
296 | { |
---|
297 | result= g; |
---|
298 | exp= 1; |
---|
299 | } |
---|
300 | CanonicalForm h; |
---|
301 | |
---|
302 | for (int i= 1; i <= l; i++) |
---|
303 | { |
---|
304 | h= mulNTL (g, mod (F, power (x, (1 << i)))); |
---|
305 | h= mod (h, power (x, (1 << i)) - 1); |
---|
306 | h= div (h, power (x, (1 << (i - 1)))); |
---|
307 | g -= power (x, (1 << (i - 1)))* |
---|
308 | mulFLINTQTrunc (g, h, 1 << (i-1)); |
---|
309 | |
---|
310 | if (n & (1 << i)) |
---|
311 | { |
---|
312 | if (exp) |
---|
313 | { |
---|
314 | h= mulNTL (result, mod (F, power (x, exp + (1 << i)))); |
---|
315 | h= mod (h, power (x, exp + (1 << i)) - 1); |
---|
316 | h= div (h, power (x, exp)); |
---|
317 | result -= power(x, exp)*mulFLINTQTrunc (g, h, 1 << i); |
---|
318 | exp += (1 << i); |
---|
319 | } |
---|
320 | else |
---|
321 | { |
---|
322 | exp= (1 << i); |
---|
323 | result= g; |
---|
324 | } |
---|
325 | } |
---|
326 | } |
---|
327 | |
---|
328 | return result; |
---|
329 | } |
---|
330 | |
---|
331 | void |
---|
332 | newtonDivrem (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
333 | CanonicalForm& R) |
---|
334 | { |
---|
335 | CanonicalForm A= F; |
---|
336 | CanonicalForm B= G; |
---|
337 | Variable x= Variable (1); |
---|
338 | int degA= degree (A, x); |
---|
339 | int degB= degree (B, x); |
---|
340 | int m= degA - degB; |
---|
341 | |
---|
342 | if (m < 0) |
---|
343 | { |
---|
344 | R= A; |
---|
345 | Q= 0; |
---|
346 | return; |
---|
347 | } |
---|
348 | |
---|
349 | if (degB <= 1) |
---|
350 | divrem (A, B, Q, R); |
---|
351 | else |
---|
352 | { |
---|
353 | R= uniReverse (A, degA); |
---|
354 | |
---|
355 | CanonicalForm revB= uniReverse (B, degB); |
---|
356 | CanonicalForm buf= revB; |
---|
357 | revB= newtonInverse (revB, m + 1); |
---|
358 | Q= mulFLINTQTrunc (R, revB, m + 1); |
---|
359 | Q= uniReverse (Q, m); |
---|
360 | |
---|
361 | R= A - mulNTL (Q, B); |
---|
362 | } |
---|
363 | } |
---|
364 | |
---|
365 | void |
---|
366 | newtonDiv (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q) |
---|
367 | { |
---|
368 | CanonicalForm A= F; |
---|
369 | CanonicalForm B= G; |
---|
370 | Variable x= Variable (1); |
---|
371 | int degA= degree (A, x); |
---|
372 | int degB= degree (B, x); |
---|
373 | int m= degA - degB; |
---|
374 | |
---|
375 | if (m < 0) |
---|
376 | { |
---|
377 | Q= 0; |
---|
378 | return; |
---|
379 | } |
---|
380 | |
---|
381 | if (degB <= 1) |
---|
382 | Q= div (A, B); |
---|
383 | else |
---|
384 | { |
---|
385 | CanonicalForm R= uniReverse (A, degA); |
---|
386 | |
---|
387 | CanonicalForm revB= uniReverse (B, degB); |
---|
388 | revB= newtonInverse (revB, m + 1); |
---|
389 | Q= mulFLINTQTrunc (R, revB, m + 1); |
---|
390 | Q= uniReverse (Q, m); |
---|
391 | } |
---|
392 | } |
---|
393 | |
---|
394 | #endif |
---|
395 | |
---|
396 | CanonicalForm |
---|
397 | mulNTL (const CanonicalForm& F, const CanonicalForm& G, const modpk& b) |
---|
398 | { |
---|
399 | if (CFFactory::gettype() == GaloisFieldDomain) |
---|
400 | return F*G; |
---|
401 | if (F.inCoeffDomain() || G.inCoeffDomain() || getCharacteristic() == 0) |
---|
402 | { |
---|
403 | Variable alpha; |
---|
404 | #ifdef HAVE_FLINT |
---|
405 | if ((!F.inCoeffDomain() && !G.inCoeffDomain()) && |
---|
406 | (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha))) |
---|
407 | { |
---|
408 | if (b.getp() != 0) |
---|
409 | { |
---|
410 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
411 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
412 | ZZ_pE::init (NTLmipo); |
---|
413 | ZZ_pEX NTLg= convertFacCF2NTLZZ_pEX (G, NTLmipo); |
---|
414 | ZZ_pEX NTLf= convertFacCF2NTLZZ_pEX (F, NTLmipo); |
---|
415 | mul (NTLf, NTLf, NTLg); |
---|
416 | return b (convertNTLZZ_pEX2CF (NTLf, F.mvar(), alpha)); |
---|
417 | } |
---|
418 | CanonicalForm result= mulFLINTQa (F, G, alpha); |
---|
419 | return result; |
---|
420 | } |
---|
421 | else if (!F.inCoeffDomain() && !G.inCoeffDomain()) |
---|
422 | { |
---|
423 | if (b.getp() != 0) |
---|
424 | { |
---|
425 | fmpz_t FLINTpk; |
---|
426 | fmpz_init (FLINTpk); |
---|
427 | convertCF2Fmpz (FLINTpk, b.getpk()); |
---|
428 | fmpz_mod_poly_t FLINTF, FLINTG; |
---|
429 | convertFacCF2Fmpz_mod_poly_t (FLINTF, F, FLINTpk); |
---|
430 | convertFacCF2Fmpz_mod_poly_t (FLINTG, G, FLINTpk); |
---|
431 | fmpz_mod_poly_mul (FLINTF, FLINTF, FLINTG); |
---|
432 | CanonicalForm result= convertFmpz_mod_poly_t2FacCF (FLINTF, F.mvar(), b); |
---|
433 | fmpz_mod_poly_clear (FLINTG); |
---|
434 | fmpz_mod_poly_clear (FLINTF); |
---|
435 | fmpz_clear (FLINTpk); |
---|
436 | return result; |
---|
437 | } |
---|
438 | return mulFLINTQ (F, G); |
---|
439 | } |
---|
440 | #endif |
---|
441 | if (b.getp() != 0) |
---|
442 | { |
---|
443 | if (!F.inBaseDomain() && !G.inBaseDomain()) |
---|
444 | { |
---|
445 | if (hasFirstAlgVar (G, alpha) || hasFirstAlgVar (F, alpha)) |
---|
446 | { |
---|
447 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
448 | if (F.inCoeffDomain() && !G.inCoeffDomain()) |
---|
449 | { |
---|
450 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
451 | ZZ_pE::init (NTLmipo); |
---|
452 | ZZ_pEX NTLg= convertFacCF2NTLZZ_pEX (G, NTLmipo); |
---|
453 | ZZ_pX NTLf= convertFacCF2NTLZZpX (F); |
---|
454 | mul (NTLg, to_ZZ_pE (NTLf), NTLg); |
---|
455 | return b (convertNTLZZ_pEX2CF (NTLg, G.mvar(), alpha)); |
---|
456 | } |
---|
457 | else if (!F.inCoeffDomain() && G.inCoeffDomain()) |
---|
458 | { |
---|
459 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
460 | ZZ_pE::init (NTLmipo); |
---|
461 | ZZ_pX NTLg= convertFacCF2NTLZZpX (G); |
---|
462 | ZZ_pEX NTLf= convertFacCF2NTLZZ_pEX (F, NTLmipo); |
---|
463 | mul (NTLf, NTLf, to_ZZ_pE (NTLg)); |
---|
464 | return b (convertNTLZZ_pEX2CF (NTLf, F.mvar(), alpha)); |
---|
465 | } |
---|
466 | else |
---|
467 | { |
---|
468 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
469 | ZZ_pE::init (NTLmipo); |
---|
470 | ZZ_pX NTLg= convertFacCF2NTLZZpX (G); |
---|
471 | ZZ_pX NTLf= convertFacCF2NTLZZpX (F); |
---|
472 | ZZ_pE result; |
---|
473 | mul (result, to_ZZ_pE (NTLg), to_ZZ_pE (NTLf)); |
---|
474 | return b (convertNTLZZpX2CF (rep (result), alpha)); |
---|
475 | } |
---|
476 | } |
---|
477 | } |
---|
478 | return b (F*G); |
---|
479 | } |
---|
480 | return F*G; |
---|
481 | } |
---|
482 | ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); |
---|
483 | ASSERT (F.level() == G.level(), "expected polys of same level"); |
---|
484 | zz_p::init (getCharacteristic()); |
---|
485 | Variable alpha; |
---|
486 | CanonicalForm result; |
---|
487 | if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) |
---|
488 | { |
---|
489 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
490 | zz_pE::init (NTLMipo); |
---|
491 | zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); |
---|
492 | zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); |
---|
493 | mul (NTLF, NTLF, NTLG); |
---|
494 | result= convertNTLzz_pEX2CF(NTLF, F.mvar(), alpha); |
---|
495 | } |
---|
496 | else |
---|
497 | { |
---|
498 | #ifdef HAVE_FLINT |
---|
499 | nmod_poly_t FLINTF, FLINTG; |
---|
500 | convertFacCF2nmod_poly_t (FLINTF, F); |
---|
501 | convertFacCF2nmod_poly_t (FLINTG, G); |
---|
502 | nmod_poly_mul (FLINTF, FLINTF, FLINTG); |
---|
503 | result= convertnmod_poly_t2FacCF (FLINTF, F.mvar()); |
---|
504 | nmod_poly_clear (FLINTF); |
---|
505 | nmod_poly_clear (FLINTG); |
---|
506 | #else |
---|
507 | zz_pX NTLF= convertFacCF2NTLzzpX (F); |
---|
508 | zz_pX NTLG= convertFacCF2NTLzzpX (G); |
---|
509 | mul (NTLF, NTLF, NTLG); |
---|
510 | result= convertNTLzzpX2CF(NTLF, F.mvar()); |
---|
511 | #endif |
---|
512 | } |
---|
513 | return result; |
---|
514 | } |
---|
515 | |
---|
516 | CanonicalForm |
---|
517 | modNTL (const CanonicalForm& F, const CanonicalForm& G, const modpk& b) |
---|
518 | { |
---|
519 | if (CFFactory::gettype() == GaloisFieldDomain) |
---|
520 | return mod (F, G); |
---|
521 | if (F.inCoeffDomain() && G.isUnivariate()) |
---|
522 | { |
---|
523 | if (b.getp() != 0) |
---|
524 | return b(F); |
---|
525 | return F; |
---|
526 | } |
---|
527 | else if (F.inCoeffDomain() && G.inCoeffDomain()) |
---|
528 | { |
---|
529 | if (b.getp() != 0) |
---|
530 | return b(F%G); |
---|
531 | return mod (F, G); |
---|
532 | } |
---|
533 | else if (F.isUnivariate() && G.inCoeffDomain()) |
---|
534 | { |
---|
535 | if (b.getp() != 0) |
---|
536 | return b(F%G); |
---|
537 | return mod (F,G); |
---|
538 | } |
---|
539 | |
---|
540 | if (getCharacteristic() == 0) |
---|
541 | { |
---|
542 | #ifdef HAVE_FLINT |
---|
543 | Variable alpha; |
---|
544 | if (!hasFirstAlgVar (F, alpha) && !hasFirstAlgVar (G, alpha)) |
---|
545 | { |
---|
546 | if (b.getp() != 0) |
---|
547 | { |
---|
548 | fmpz_t FLINTpk; |
---|
549 | fmpz_init (FLINTpk); |
---|
550 | convertCF2Fmpz (FLINTpk, b.getpk()); |
---|
551 | fmpz_mod_poly_t FLINTF, FLINTG; |
---|
552 | convertFacCF2Fmpz_mod_poly_t (FLINTF, F, FLINTpk); |
---|
553 | convertFacCF2Fmpz_mod_poly_t (FLINTG, G, FLINTpk); |
---|
554 | fmpz_mod_poly_rem (FLINTF, FLINTF, FLINTG); |
---|
555 | CanonicalForm result= convertFmpz_mod_poly_t2FacCF (FLINTF,F.mvar(),b); |
---|
556 | fmpz_mod_poly_clear (FLINTG); |
---|
557 | fmpz_mod_poly_clear (FLINTF); |
---|
558 | fmpz_clear (FLINTpk); |
---|
559 | return result; |
---|
560 | } |
---|
561 | return modFLINTQ (F, G); |
---|
562 | } |
---|
563 | else |
---|
564 | { |
---|
565 | if (b.getp() != 0) |
---|
566 | { |
---|
567 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
568 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
569 | ZZ_pE::init (NTLmipo); |
---|
570 | ZZ_pEX NTLg= convertFacCF2NTLZZ_pEX (G, NTLmipo); |
---|
571 | ZZ_pEX NTLf= convertFacCF2NTLZZ_pEX (F, NTLmipo); |
---|
572 | rem (NTLf, NTLf, NTLg); |
---|
573 | return b (convertNTLZZ_pEX2CF (NTLf, F.mvar(), alpha)); |
---|
574 | } |
---|
575 | CanonicalForm Q, R; |
---|
576 | newtonDivrem (F, G, Q, R); |
---|
577 | return R; |
---|
578 | } |
---|
579 | #else |
---|
580 | if (b.getp() != 0) |
---|
581 | { |
---|
582 | ZZ NTLpk= power_ZZ (b.getp(), b.getk()); |
---|
583 | ZZ_p::init (NTLpk); |
---|
584 | ZZX ZZf= convertFacCF2NTLZZX (F); |
---|
585 | ZZX ZZg= convertFacCF2NTLZZX (G); |
---|
586 | ZZ_pX NTLf= to_ZZ_pX (ZZf); |
---|
587 | ZZ_pX NTLg= to_ZZ_pX (ZZg); |
---|
588 | rem (NTLf, NTLf, NTLg); |
---|
589 | return b (convertNTLZZX2CF (to_ZZX (NTLf), F.mvar())); |
---|
590 | } |
---|
591 | return mod (F, G); |
---|
592 | #endif |
---|
593 | } |
---|
594 | |
---|
595 | ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); |
---|
596 | ASSERT (F.level() == G.level(), "expected polys of same level"); |
---|
597 | zz_p::init (getCharacteristic()); |
---|
598 | Variable alpha; |
---|
599 | CanonicalForm result; |
---|
600 | if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) |
---|
601 | { |
---|
602 | zz_pX NTLMipo= convertFacCF2NTLzzpX(getMipo (alpha)); |
---|
603 | zz_pE::init (NTLMipo); |
---|
604 | zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); |
---|
605 | zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); |
---|
606 | rem (NTLF, NTLF, NTLG); |
---|
607 | result= convertNTLzz_pEX2CF(NTLF, F.mvar(), alpha); |
---|
608 | } |
---|
609 | else |
---|
610 | { |
---|
611 | #ifdef HAVE_FLINT |
---|
612 | nmod_poly_t FLINTF, FLINTG; |
---|
613 | convertFacCF2nmod_poly_t (FLINTF, F); |
---|
614 | convertFacCF2nmod_poly_t (FLINTG, G); |
---|
615 | nmod_poly_divrem (FLINTG, FLINTF, FLINTF, FLINTG); |
---|
616 | result= convertnmod_poly_t2FacCF (FLINTF, F.mvar()); |
---|
617 | nmod_poly_clear (FLINTF); |
---|
618 | nmod_poly_clear (FLINTG); |
---|
619 | #else |
---|
620 | zz_pX NTLF= convertFacCF2NTLzzpX (F); |
---|
621 | zz_pX NTLG= convertFacCF2NTLzzpX (G); |
---|
622 | rem (NTLF, NTLF, NTLG); |
---|
623 | result= convertNTLzzpX2CF(NTLF, F.mvar()); |
---|
624 | #endif |
---|
625 | } |
---|
626 | return result; |
---|
627 | } |
---|
628 | |
---|
629 | CanonicalForm |
---|
630 | divNTL (const CanonicalForm& F, const CanonicalForm& G, const modpk& b) |
---|
631 | { |
---|
632 | if (CFFactory::gettype() == GaloisFieldDomain) |
---|
633 | return div (F, G); |
---|
634 | if (F.inCoeffDomain() && G.isUnivariate()) |
---|
635 | { |
---|
636 | if (b.getp() != 0) |
---|
637 | return b(F); |
---|
638 | return F; |
---|
639 | } |
---|
640 | else if (F.inCoeffDomain() && G.inCoeffDomain()) |
---|
641 | { |
---|
642 | if (b.getp() != 0) |
---|
643 | { |
---|
644 | if (!F.inBaseDomain() || !G.inBaseDomain()) |
---|
645 | { |
---|
646 | Variable alpha; |
---|
647 | hasFirstAlgVar (F, alpha); |
---|
648 | hasFirstAlgVar (G, alpha); |
---|
649 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
650 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
651 | ZZ_pE::init (NTLmipo); |
---|
652 | ZZ_pX NTLg= convertFacCF2NTLZZpX (G); |
---|
653 | ZZ_pX NTLf= convertFacCF2NTLZZpX (F); |
---|
654 | ZZ_pE result; |
---|
655 | div (result, to_ZZ_pE (NTLg), to_ZZ_pE (NTLf)); |
---|
656 | return b (convertNTLZZpX2CF (rep (result), alpha)); |
---|
657 | } |
---|
658 | return b(div (F,G)); |
---|
659 | } |
---|
660 | return div (F, G); |
---|
661 | } |
---|
662 | else if (F.isUnivariate() && G.inCoeffDomain()) |
---|
663 | { |
---|
664 | if (b.getp() != 0) |
---|
665 | { |
---|
666 | if (!G.inBaseDomain()) |
---|
667 | { |
---|
668 | Variable alpha; |
---|
669 | hasFirstAlgVar (G, alpha); |
---|
670 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
671 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
672 | ZZ_pE::init (NTLmipo); |
---|
673 | ZZ_pX NTLg= convertFacCF2NTLZZpX (G); |
---|
674 | ZZ_pEX NTLf= convertFacCF2NTLZZ_pEX (F, NTLmipo); |
---|
675 | div (NTLf, NTLf, to_ZZ_pE (NTLg)); |
---|
676 | return b (convertNTLZZ_pEX2CF (NTLf, F.mvar(), alpha)); |
---|
677 | } |
---|
678 | return b(div (F,G)); |
---|
679 | } |
---|
680 | return div (F, G); |
---|
681 | } |
---|
682 | |
---|
683 | if (getCharacteristic() == 0) |
---|
684 | { |
---|
685 | #ifdef HAVE_FLINT |
---|
686 | Variable alpha; |
---|
687 | if (!hasFirstAlgVar (F, alpha) && !hasFirstAlgVar (G, alpha)) |
---|
688 | { |
---|
689 | if (b.getp() != 0) |
---|
690 | { |
---|
691 | fmpz_t FLINTpk; |
---|
692 | fmpz_init (FLINTpk); |
---|
693 | convertCF2Fmpz (FLINTpk, b.getpk()); |
---|
694 | fmpz_mod_poly_t FLINTF, FLINTG; |
---|
695 | convertFacCF2Fmpz_mod_poly_t (FLINTF, F, FLINTpk); |
---|
696 | convertFacCF2Fmpz_mod_poly_t (FLINTG, G, FLINTpk); |
---|
697 | fmpz_mod_poly_divrem (FLINTF, FLINTG, FLINTF, FLINTG); |
---|
698 | CanonicalForm result= convertFmpz_mod_poly_t2FacCF (FLINTF,F.mvar(),b); |
---|
699 | fmpz_mod_poly_clear (FLINTG); |
---|
700 | fmpz_mod_poly_clear (FLINTF); |
---|
701 | fmpz_clear (FLINTpk); |
---|
702 | return result; |
---|
703 | } |
---|
704 | return divFLINTQ (F,G); |
---|
705 | } |
---|
706 | else |
---|
707 | { |
---|
708 | if (b.getp() != 0) |
---|
709 | { |
---|
710 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
711 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
712 | ZZ_pE::init (NTLmipo); |
---|
713 | ZZ_pEX NTLg= convertFacCF2NTLZZ_pEX (G, NTLmipo); |
---|
714 | ZZ_pEX NTLf= convertFacCF2NTLZZ_pEX (F, NTLmipo); |
---|
715 | div (NTLf, NTLf, NTLg); |
---|
716 | return b (convertNTLZZ_pEX2CF (NTLf, F.mvar(), alpha)); |
---|
717 | } |
---|
718 | CanonicalForm Q; |
---|
719 | newtonDiv (F, G, Q); |
---|
720 | return Q; |
---|
721 | } |
---|
722 | #else |
---|
723 | if (b.getp() != 0) |
---|
724 | { |
---|
725 | ZZ NTLpk= power_ZZ (b.getp(), b.getk()); |
---|
726 | ZZ_p::init (NTLpk); |
---|
727 | ZZX ZZf= convertFacCF2NTLZZX (F); |
---|
728 | ZZX ZZg= convertFacCF2NTLZZX (G); |
---|
729 | ZZ_pX NTLf= to_ZZ_pX (ZZf); |
---|
730 | ZZ_pX NTLg= to_ZZ_pX (ZZg); |
---|
731 | div (NTLf, NTLf, NTLg); |
---|
732 | return b (convertNTLZZX2CF (to_ZZX (NTLf), F.mvar())); |
---|
733 | } |
---|
734 | return div (F, G); |
---|
735 | #endif |
---|
736 | } |
---|
737 | |
---|
738 | ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); |
---|
739 | ASSERT (F.level() == G.level(), "expected polys of same level"); |
---|
740 | zz_p::init (getCharacteristic()); |
---|
741 | Variable alpha; |
---|
742 | CanonicalForm result; |
---|
743 | if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) |
---|
744 | { |
---|
745 | zz_pX NTLMipo= convertFacCF2NTLzzpX(getMipo (alpha)); |
---|
746 | zz_pE::init (NTLMipo); |
---|
747 | zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); |
---|
748 | zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); |
---|
749 | div (NTLF, NTLF, NTLG); |
---|
750 | result= convertNTLzz_pEX2CF(NTLF, F.mvar(), alpha); |
---|
751 | } |
---|
752 | else |
---|
753 | { |
---|
754 | #ifdef HAVE_FLINT |
---|
755 | nmod_poly_t FLINTF, FLINTG; |
---|
756 | convertFacCF2nmod_poly_t (FLINTF, F); |
---|
757 | convertFacCF2nmod_poly_t (FLINTG, G); |
---|
758 | nmod_poly_div (FLINTF, FLINTF, FLINTG); |
---|
759 | result= convertnmod_poly_t2FacCF (FLINTF, F.mvar()); |
---|
760 | nmod_poly_clear (FLINTF); |
---|
761 | nmod_poly_clear (FLINTG); |
---|
762 | #else |
---|
763 | zz_pX NTLF= convertFacCF2NTLzzpX (F); |
---|
764 | zz_pX NTLG= convertFacCF2NTLzzpX (G); |
---|
765 | div (NTLF, NTLF, NTLG); |
---|
766 | result= convertNTLzzpX2CF(NTLF, F.mvar()); |
---|
767 | #endif |
---|
768 | } |
---|
769 | return result; |
---|
770 | } |
---|
771 | |
---|
772 | // end univariate polys |
---|
773 | //************************* |
---|
774 | // bivariate polys |
---|
775 | |
---|
776 | #ifdef HAVE_FLINT |
---|
777 | void kronSubFp (nmod_poly_t result, const CanonicalForm& A, int d) |
---|
778 | { |
---|
779 | int degAy= degree (A); |
---|
780 | nmod_poly_init2 (result, getCharacteristic(), d*(degAy + 1)); |
---|
781 | |
---|
782 | nmod_poly_t buf; |
---|
783 | |
---|
784 | int j, k, bufRepLength; |
---|
785 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
786 | { |
---|
787 | convertFacCF2nmod_poly_t (buf, i.coeff()); |
---|
788 | |
---|
789 | k= i.exp()*d; |
---|
790 | bufRepLength= (int) nmod_poly_length (buf); |
---|
791 | for (j= 0; j < bufRepLength; j++) |
---|
792 | nmod_poly_set_coeff_ui (result, j + k, nmod_poly_get_coeff_ui (buf, j)); |
---|
793 | nmod_poly_clear (buf); |
---|
794 | } |
---|
795 | _nmod_poly_normalise (result); |
---|
796 | } |
---|
797 | |
---|
798 | void kronSubQa (fmpq_poly_t result, const CanonicalForm& A, int d1, int d2) |
---|
799 | { |
---|
800 | int degAy= degree (A); |
---|
801 | fmpq_poly_init2 (result, d1*(degAy + 1)); |
---|
802 | |
---|
803 | fmpq_poly_t buf; |
---|
804 | fmpq_t coeff; |
---|
805 | |
---|
806 | int k, l, bufRepLength; |
---|
807 | CFIterator j; |
---|
808 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
809 | { |
---|
810 | if (i.coeff().inCoeffDomain()) |
---|
811 | { |
---|
812 | k= d1*i.exp(); |
---|
813 | convertFacCF2Fmpq_poly_t (buf, i.coeff()); |
---|
814 | bufRepLength= (int) fmpq_poly_length(buf); |
---|
815 | for (l= 0; l < bufRepLength; l++) |
---|
816 | { |
---|
817 | fmpq_poly_get_coeff_fmpq (coeff, buf, l); |
---|
818 | fmpq_poly_set_coeff_fmpq (result, l + k, coeff); |
---|
819 | } |
---|
820 | fmpq_poly_clear (buf); |
---|
821 | } |
---|
822 | else |
---|
823 | { |
---|
824 | for (j= i.coeff(); j.hasTerms(); j++) |
---|
825 | { |
---|
826 | k= d1*i.exp(); |
---|
827 | k += d2*j.exp(); |
---|
828 | convertFacCF2Fmpq_poly_t (buf, j.coeff()); |
---|
829 | bufRepLength= (int) fmpq_poly_length(buf); |
---|
830 | for (l= 0; l < bufRepLength; l++) |
---|
831 | { |
---|
832 | fmpq_poly_get_coeff_fmpq (coeff, buf, l); |
---|
833 | fmpq_poly_set_coeff_fmpq (result, k + l, coeff); |
---|
834 | } |
---|
835 | fmpq_poly_clear (buf); |
---|
836 | } |
---|
837 | } |
---|
838 | } |
---|
839 | fmpq_clear (coeff); |
---|
840 | _fmpq_poly_normalise (result); |
---|
841 | } |
---|
842 | |
---|
843 | void |
---|
844 | kronSubReciproFp (nmod_poly_t subA1, nmod_poly_t subA2, const CanonicalForm& A, |
---|
845 | int d) |
---|
846 | { |
---|
847 | int degAy= degree (A); |
---|
848 | mp_limb_t ninv= n_preinvert_limb (getCharacteristic()); |
---|
849 | nmod_poly_init2_preinv (subA1, getCharacteristic(), ninv, d*(degAy + 2)); |
---|
850 | nmod_poly_init2_preinv (subA2, getCharacteristic(), ninv, d*(degAy + 2)); |
---|
851 | |
---|
852 | nmod_poly_t buf; |
---|
853 | |
---|
854 | int k, kk, j, bufRepLength; |
---|
855 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
856 | { |
---|
857 | convertFacCF2nmod_poly_t (buf, i.coeff()); |
---|
858 | |
---|
859 | k= i.exp()*d; |
---|
860 | kk= (degAy - i.exp())*d; |
---|
861 | bufRepLength= (int) nmod_poly_length (buf); |
---|
862 | for (j= 0; j < bufRepLength; j++) |
---|
863 | { |
---|
864 | nmod_poly_set_coeff_ui (subA1, j + k, |
---|
865 | n_addmod (nmod_poly_get_coeff_ui (subA1, j+k), |
---|
866 | nmod_poly_get_coeff_ui (buf, j), |
---|
867 | getCharacteristic() |
---|
868 | ) |
---|
869 | ); |
---|
870 | nmod_poly_set_coeff_ui (subA2, j + kk, |
---|
871 | n_addmod (nmod_poly_get_coeff_ui (subA2, j + kk), |
---|
872 | nmod_poly_get_coeff_ui (buf, j), |
---|
873 | getCharacteristic() |
---|
874 | ) |
---|
875 | ); |
---|
876 | } |
---|
877 | nmod_poly_clear (buf); |
---|
878 | } |
---|
879 | _nmod_poly_normalise (subA1); |
---|
880 | _nmod_poly_normalise (subA2); |
---|
881 | } |
---|
882 | |
---|
883 | void |
---|
884 | kronSubReciproQ (fmpz_poly_t subA1, fmpz_poly_t subA2, const CanonicalForm& A, |
---|
885 | int d) |
---|
886 | { |
---|
887 | int degAy= degree (A); |
---|
888 | fmpz_poly_init2 (subA1, d*(degAy + 2)); |
---|
889 | fmpz_poly_init2 (subA2, d*(degAy + 2)); |
---|
890 | |
---|
891 | fmpz_poly_t buf; |
---|
892 | fmpz_t coeff1, coeff2; |
---|
893 | |
---|
894 | int k, kk, j, bufRepLength; |
---|
895 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
896 | { |
---|
897 | convertFacCF2Fmpz_poly_t (buf, i.coeff()); |
---|
898 | |
---|
899 | k= i.exp()*d; |
---|
900 | kk= (degAy - i.exp())*d; |
---|
901 | bufRepLength= (int) fmpz_poly_length (buf); |
---|
902 | for (j= 0; j < bufRepLength; j++) |
---|
903 | { |
---|
904 | fmpz_poly_get_coeff_fmpz (coeff1, subA1, j+k); |
---|
905 | fmpz_poly_get_coeff_fmpz (coeff2, buf, j); |
---|
906 | fmpz_add (coeff1, coeff1, coeff2); |
---|
907 | fmpz_poly_set_coeff_fmpz (subA1, j + k, coeff1); |
---|
908 | fmpz_poly_get_coeff_fmpz (coeff1, subA2, j + kk); |
---|
909 | fmpz_add (coeff1, coeff1, coeff2); |
---|
910 | fmpz_poly_set_coeff_fmpz (subA2, j + kk, coeff1); |
---|
911 | } |
---|
912 | fmpz_poly_clear (buf); |
---|
913 | } |
---|
914 | fmpz_clear (coeff1); |
---|
915 | fmpz_clear (coeff2); |
---|
916 | _fmpz_poly_normalise (subA1); |
---|
917 | _fmpz_poly_normalise (subA2); |
---|
918 | } |
---|
919 | |
---|
920 | CanonicalForm reverseSubstQ (const fmpz_poly_t F, int d) |
---|
921 | { |
---|
922 | Variable y= Variable (2); |
---|
923 | Variable x= Variable (1); |
---|
924 | |
---|
925 | fmpz_poly_t f; |
---|
926 | fmpz_poly_init (f); |
---|
927 | fmpz_poly_set (f, F); |
---|
928 | |
---|
929 | fmpz_poly_t buf; |
---|
930 | CanonicalForm result= 0; |
---|
931 | int i= 0; |
---|
932 | int degf= fmpz_poly_degree(f); |
---|
933 | int k= 0; |
---|
934 | int degfSubK, repLength, j; |
---|
935 | fmpz_t coeff; |
---|
936 | while (degf >= k) |
---|
937 | { |
---|
938 | degfSubK= degf - k; |
---|
939 | if (degfSubK >= d) |
---|
940 | repLength= d; |
---|
941 | else |
---|
942 | repLength= degfSubK + 1; |
---|
943 | |
---|
944 | fmpz_poly_init2 (buf, repLength); |
---|
945 | fmpz_init (coeff); |
---|
946 | for (j= 0; j < repLength; j++) |
---|
947 | { |
---|
948 | fmpz_poly_get_coeff_fmpz (coeff, f, j + k); |
---|
949 | fmpz_poly_set_coeff_fmpz (buf, j, coeff); |
---|
950 | } |
---|
951 | _fmpz_poly_normalise (buf); |
---|
952 | |
---|
953 | result += convertFmpz_poly_t2FacCF (buf, x)*power (y, i); |
---|
954 | i++; |
---|
955 | k= d*i; |
---|
956 | fmpz_poly_clear (buf); |
---|
957 | fmpz_clear (coeff); |
---|
958 | } |
---|
959 | fmpz_poly_clear (f); |
---|
960 | |
---|
961 | return result; |
---|
962 | } |
---|
963 | |
---|
964 | CanonicalForm |
---|
965 | reverseSubstQa (const fmpq_poly_t F, int d1, int d2, const Variable& alpha, |
---|
966 | const fmpq_poly_t mipo) |
---|
967 | { |
---|
968 | Variable y= Variable (2); |
---|
969 | Variable x= Variable (1); |
---|
970 | |
---|
971 | fmpq_poly_t f; |
---|
972 | fmpq_poly_init (f); |
---|
973 | fmpq_poly_set (f, F); |
---|
974 | |
---|
975 | fmpq_poly_t buf; |
---|
976 | CanonicalForm result= 0, result2; |
---|
977 | int i= 0; |
---|
978 | int degf= fmpq_poly_degree(f); |
---|
979 | int k= 0; |
---|
980 | int degfSubK; |
---|
981 | int repLength; |
---|
982 | fmpq_t coeff; |
---|
983 | while (degf >= k) |
---|
984 | { |
---|
985 | degfSubK= degf - k; |
---|
986 | if (degfSubK >= d1) |
---|
987 | repLength= d1; |
---|
988 | else |
---|
989 | repLength= degfSubK + 1; |
---|
990 | |
---|
991 | fmpq_init (coeff); |
---|
992 | int j= 0; |
---|
993 | int l; |
---|
994 | result2= 0; |
---|
995 | while (j*d2 < repLength) |
---|
996 | { |
---|
997 | fmpq_poly_init2 (buf, d2); |
---|
998 | for (l= 0; l < d2; l++) |
---|
999 | { |
---|
1000 | fmpq_poly_get_coeff_fmpq (coeff, f, k + j*d2 + l); |
---|
1001 | fmpq_poly_set_coeff_fmpq (buf, l, coeff); |
---|
1002 | } |
---|
1003 | _fmpq_poly_normalise (buf); |
---|
1004 | fmpq_poly_rem (buf, buf, mipo); |
---|
1005 | result2 += convertFmpq_poly_t2FacCF (buf, alpha)*power (x, j); |
---|
1006 | j++; |
---|
1007 | fmpq_poly_clear (buf); |
---|
1008 | } |
---|
1009 | if (repLength - j*d2 != 0 && j*d2 - repLength < d2) |
---|
1010 | { |
---|
1011 | j--; |
---|
1012 | repLength -= j*d2; |
---|
1013 | fmpq_poly_init2 (buf, repLength); |
---|
1014 | j++; |
---|
1015 | for (l= 0; l < repLength; l++) |
---|
1016 | { |
---|
1017 | fmpq_poly_get_coeff_fmpq (coeff, f, k + j*d2 + l); |
---|
1018 | fmpq_poly_set_coeff_fmpq (buf, l, coeff); |
---|
1019 | } |
---|
1020 | _fmpq_poly_normalise (buf); |
---|
1021 | fmpq_poly_rem (buf, buf, mipo); |
---|
1022 | result2 += convertFmpq_poly_t2FacCF (buf, alpha)*power (x, j); |
---|
1023 | fmpq_poly_clear (buf); |
---|
1024 | } |
---|
1025 | fmpq_clear (coeff); |
---|
1026 | |
---|
1027 | result += result2*power (y, i); |
---|
1028 | i++; |
---|
1029 | k= d1*i; |
---|
1030 | } |
---|
1031 | |
---|
1032 | fmpq_poly_clear (f); |
---|
1033 | return result; |
---|
1034 | } |
---|
1035 | |
---|
1036 | CanonicalForm |
---|
1037 | reverseSubstReciproFp (const nmod_poly_t F, const nmod_poly_t G, int d, int k) |
---|
1038 | { |
---|
1039 | Variable y= Variable (2); |
---|
1040 | Variable x= Variable (1); |
---|
1041 | |
---|
1042 | nmod_poly_t f, g; |
---|
1043 | mp_limb_t ninv= n_preinvert_limb (getCharacteristic()); |
---|
1044 | nmod_poly_init_preinv (f, getCharacteristic(), ninv); |
---|
1045 | nmod_poly_init_preinv (g, getCharacteristic(), ninv); |
---|
1046 | nmod_poly_set (f, F); |
---|
1047 | nmod_poly_set (g, G); |
---|
1048 | int degf= nmod_poly_degree(f); |
---|
1049 | int degg= nmod_poly_degree(g); |
---|
1050 | |
---|
1051 | |
---|
1052 | nmod_poly_t buf1,buf2, buf3; |
---|
1053 | |
---|
1054 | if (nmod_poly_length (f) < (long) d*(k+1)) //zero padding |
---|
1055 | nmod_poly_fit_length (f,(long)d*(k+1)); |
---|
1056 | |
---|
1057 | CanonicalForm result= 0; |
---|
1058 | int i= 0; |
---|
1059 | int lf= 0; |
---|
1060 | int lg= d*k; |
---|
1061 | int degfSubLf= degf; |
---|
1062 | int deggSubLg= degg-lg; |
---|
1063 | int repLengthBuf2, repLengthBuf1, ind, tmp; |
---|
1064 | while (degf >= lf || lg >= 0) |
---|
1065 | { |
---|
1066 | if (degfSubLf >= d) |
---|
1067 | repLengthBuf1= d; |
---|
1068 | else if (degfSubLf < 0) |
---|
1069 | repLengthBuf1= 0; |
---|
1070 | else |
---|
1071 | repLengthBuf1= degfSubLf + 1; |
---|
1072 | nmod_poly_init2_preinv (buf1, getCharacteristic(), ninv, repLengthBuf1); |
---|
1073 | |
---|
1074 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1075 | nmod_poly_set_coeff_ui (buf1, ind, nmod_poly_get_coeff_ui (f, ind+lf)); |
---|
1076 | _nmod_poly_normalise (buf1); |
---|
1077 | |
---|
1078 | repLengthBuf1= nmod_poly_length (buf1); |
---|
1079 | |
---|
1080 | if (deggSubLg >= d - 1) |
---|
1081 | repLengthBuf2= d - 1; |
---|
1082 | else if (deggSubLg < 0) |
---|
1083 | repLengthBuf2= 0; |
---|
1084 | else |
---|
1085 | repLengthBuf2= deggSubLg + 1; |
---|
1086 | |
---|
1087 | nmod_poly_init2_preinv (buf2, getCharacteristic(), ninv, repLengthBuf2); |
---|
1088 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1089 | nmod_poly_set_coeff_ui (buf2, ind, nmod_poly_get_coeff_ui (g, ind + lg)); |
---|
1090 | |
---|
1091 | _nmod_poly_normalise (buf2); |
---|
1092 | repLengthBuf2= nmod_poly_length (buf2); |
---|
1093 | |
---|
1094 | nmod_poly_init2_preinv (buf3, getCharacteristic(), ninv, repLengthBuf2 + d); |
---|
1095 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1096 | nmod_poly_set_coeff_ui (buf3, ind, nmod_poly_get_coeff_ui (buf1, ind)); |
---|
1097 | for (ind= repLengthBuf1; ind < d; ind++) |
---|
1098 | nmod_poly_set_coeff_ui (buf3, ind, 0); |
---|
1099 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1100 | nmod_poly_set_coeff_ui (buf3, ind+d, nmod_poly_get_coeff_ui (buf2, ind)); |
---|
1101 | _nmod_poly_normalise (buf3); |
---|
1102 | |
---|
1103 | result += convertnmod_poly_t2FacCF (buf3, x)*power (y, i); |
---|
1104 | i++; |
---|
1105 | |
---|
1106 | |
---|
1107 | lf= i*d; |
---|
1108 | degfSubLf= degf - lf; |
---|
1109 | |
---|
1110 | lg= d*(k-i); |
---|
1111 | deggSubLg= degg - lg; |
---|
1112 | |
---|
1113 | if (lg >= 0 && deggSubLg > 0) |
---|
1114 | { |
---|
1115 | if (repLengthBuf2 > degfSubLf + 1) |
---|
1116 | degfSubLf= repLengthBuf2 - 1; |
---|
1117 | tmp= tmin (repLengthBuf1, deggSubLg + 1); |
---|
1118 | for (ind= 0; ind < tmp; ind++) |
---|
1119 | nmod_poly_set_coeff_ui (g, ind + lg, |
---|
1120 | n_submod (nmod_poly_get_coeff_ui (g, ind + lg), |
---|
1121 | nmod_poly_get_coeff_ui (buf1, ind), |
---|
1122 | getCharacteristic() |
---|
1123 | ) |
---|
1124 | ); |
---|
1125 | } |
---|
1126 | if (lg < 0) |
---|
1127 | { |
---|
1128 | nmod_poly_clear (buf1); |
---|
1129 | nmod_poly_clear (buf2); |
---|
1130 | nmod_poly_clear (buf3); |
---|
1131 | break; |
---|
1132 | } |
---|
1133 | if (degfSubLf >= 0) |
---|
1134 | { |
---|
1135 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1136 | nmod_poly_set_coeff_ui (f, ind + lf, |
---|
1137 | n_submod (nmod_poly_get_coeff_ui (f, ind + lf), |
---|
1138 | nmod_poly_get_coeff_ui (buf2, ind), |
---|
1139 | getCharacteristic() |
---|
1140 | ) |
---|
1141 | ); |
---|
1142 | } |
---|
1143 | nmod_poly_clear (buf1); |
---|
1144 | nmod_poly_clear (buf2); |
---|
1145 | nmod_poly_clear (buf3); |
---|
1146 | } |
---|
1147 | |
---|
1148 | nmod_poly_clear (f); |
---|
1149 | nmod_poly_clear (g); |
---|
1150 | |
---|
1151 | return result; |
---|
1152 | } |
---|
1153 | |
---|
1154 | CanonicalForm |
---|
1155 | reverseSubstReciproQ (const fmpz_poly_t F, const fmpz_poly_t G, int d, int k) |
---|
1156 | { |
---|
1157 | Variable y= Variable (2); |
---|
1158 | Variable x= Variable (1); |
---|
1159 | |
---|
1160 | fmpz_poly_t f, g; |
---|
1161 | fmpz_poly_init (f); |
---|
1162 | fmpz_poly_init (g); |
---|
1163 | fmpz_poly_set (f, F); |
---|
1164 | fmpz_poly_set (g, G); |
---|
1165 | int degf= fmpz_poly_degree(f); |
---|
1166 | int degg= fmpz_poly_degree(g); |
---|
1167 | |
---|
1168 | |
---|
1169 | fmpz_poly_t buf1,buf2, buf3; |
---|
1170 | |
---|
1171 | if (fmpz_poly_length (f) < (long) d*(k+1)) //zero padding |
---|
1172 | fmpz_poly_fit_length (f,(long)d*(k+1)); |
---|
1173 | |
---|
1174 | CanonicalForm result= 0; |
---|
1175 | int i= 0; |
---|
1176 | int lf= 0; |
---|
1177 | int lg= d*k; |
---|
1178 | int degfSubLf= degf; |
---|
1179 | int deggSubLg= degg-lg; |
---|
1180 | int repLengthBuf2, repLengthBuf1, ind, tmp; |
---|
1181 | fmpz_t tmp1, tmp2; |
---|
1182 | while (degf >= lf || lg >= 0) |
---|
1183 | { |
---|
1184 | if (degfSubLf >= d) |
---|
1185 | repLengthBuf1= d; |
---|
1186 | else if (degfSubLf < 0) |
---|
1187 | repLengthBuf1= 0; |
---|
1188 | else |
---|
1189 | repLengthBuf1= degfSubLf + 1; |
---|
1190 | |
---|
1191 | fmpz_poly_init2 (buf1, repLengthBuf1); |
---|
1192 | |
---|
1193 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1194 | { |
---|
1195 | fmpz_poly_get_coeff_fmpz (tmp1, f, ind + lf); |
---|
1196 | fmpz_poly_set_coeff_fmpz (buf1, ind, tmp1); |
---|
1197 | } |
---|
1198 | _fmpz_poly_normalise (buf1); |
---|
1199 | |
---|
1200 | repLengthBuf1= fmpz_poly_length (buf1); |
---|
1201 | |
---|
1202 | if (deggSubLg >= d - 1) |
---|
1203 | repLengthBuf2= d - 1; |
---|
1204 | else if (deggSubLg < 0) |
---|
1205 | repLengthBuf2= 0; |
---|
1206 | else |
---|
1207 | repLengthBuf2= deggSubLg + 1; |
---|
1208 | |
---|
1209 | fmpz_poly_init2 (buf2, repLengthBuf2); |
---|
1210 | |
---|
1211 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1212 | { |
---|
1213 | fmpz_poly_get_coeff_fmpz (tmp1, g, ind + lg); |
---|
1214 | fmpz_poly_set_coeff_fmpz (buf2, ind, tmp1); |
---|
1215 | } |
---|
1216 | |
---|
1217 | _fmpz_poly_normalise (buf2); |
---|
1218 | repLengthBuf2= fmpz_poly_length (buf2); |
---|
1219 | |
---|
1220 | fmpz_poly_init2 (buf3, repLengthBuf2 + d); |
---|
1221 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1222 | { |
---|
1223 | fmpz_poly_get_coeff_fmpz (tmp1, buf1, ind); |
---|
1224 | fmpz_poly_set_coeff_fmpz (buf3, ind, tmp1); |
---|
1225 | } |
---|
1226 | for (ind= repLengthBuf1; ind < d; ind++) |
---|
1227 | fmpz_poly_set_coeff_ui (buf3, ind, 0); |
---|
1228 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1229 | { |
---|
1230 | fmpz_poly_get_coeff_fmpz (tmp1, buf2, ind); |
---|
1231 | fmpz_poly_set_coeff_fmpz (buf3, ind + d, tmp1); |
---|
1232 | } |
---|
1233 | _fmpz_poly_normalise (buf3); |
---|
1234 | |
---|
1235 | result += convertFmpz_poly_t2FacCF (buf3, x)*power (y, i); |
---|
1236 | i++; |
---|
1237 | |
---|
1238 | |
---|
1239 | lf= i*d; |
---|
1240 | degfSubLf= degf - lf; |
---|
1241 | |
---|
1242 | lg= d*(k-i); |
---|
1243 | deggSubLg= degg - lg; |
---|
1244 | |
---|
1245 | if (lg >= 0 && deggSubLg > 0) |
---|
1246 | { |
---|
1247 | if (repLengthBuf2 > degfSubLf + 1) |
---|
1248 | degfSubLf= repLengthBuf2 - 1; |
---|
1249 | tmp= tmin (repLengthBuf1, deggSubLg + 1); |
---|
1250 | for (ind= 0; ind < tmp; ind++) |
---|
1251 | { |
---|
1252 | fmpz_poly_get_coeff_fmpz (tmp1, g, ind + lg); |
---|
1253 | fmpz_poly_get_coeff_fmpz (tmp2, buf1, ind); |
---|
1254 | fmpz_sub (tmp1, tmp1, tmp2); |
---|
1255 | fmpz_poly_set_coeff_fmpz (g, ind + lg, tmp1); |
---|
1256 | } |
---|
1257 | } |
---|
1258 | if (lg < 0) |
---|
1259 | { |
---|
1260 | fmpz_poly_clear (buf1); |
---|
1261 | fmpz_poly_clear (buf2); |
---|
1262 | fmpz_poly_clear (buf3); |
---|
1263 | break; |
---|
1264 | } |
---|
1265 | if (degfSubLf >= 0) |
---|
1266 | { |
---|
1267 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1268 | { |
---|
1269 | fmpz_poly_get_coeff_fmpz (tmp1, f, ind + lf); |
---|
1270 | fmpz_poly_get_coeff_fmpz (tmp2, buf2, ind); |
---|
1271 | fmpz_sub (tmp1, tmp1, tmp2); |
---|
1272 | fmpz_poly_set_coeff_fmpz (f, ind + lf, tmp1); |
---|
1273 | } |
---|
1274 | } |
---|
1275 | fmpz_poly_clear (buf1); |
---|
1276 | fmpz_poly_clear (buf2); |
---|
1277 | fmpz_poly_clear (buf3); |
---|
1278 | } |
---|
1279 | |
---|
1280 | fmpz_poly_clear (f); |
---|
1281 | fmpz_poly_clear (g); |
---|
1282 | fmpz_clear (tmp1); |
---|
1283 | fmpz_clear (tmp2); |
---|
1284 | |
---|
1285 | return result; |
---|
1286 | } |
---|
1287 | |
---|
1288 | CanonicalForm reverseSubstFp (const nmod_poly_t F, int d) |
---|
1289 | { |
---|
1290 | Variable y= Variable (2); |
---|
1291 | Variable x= Variable (1); |
---|
1292 | |
---|
1293 | nmod_poly_t f; |
---|
1294 | mp_limb_t ninv= n_preinvert_limb (getCharacteristic()); |
---|
1295 | nmod_poly_init_preinv (f, getCharacteristic(), ninv); |
---|
1296 | nmod_poly_set (f, F); |
---|
1297 | |
---|
1298 | nmod_poly_t buf; |
---|
1299 | CanonicalForm result= 0; |
---|
1300 | int i= 0; |
---|
1301 | int degf= nmod_poly_degree(f); |
---|
1302 | int k= 0; |
---|
1303 | int degfSubK, repLength, j; |
---|
1304 | while (degf >= k) |
---|
1305 | { |
---|
1306 | degfSubK= degf - k; |
---|
1307 | if (degfSubK >= d) |
---|
1308 | repLength= d; |
---|
1309 | else |
---|
1310 | repLength= degfSubK + 1; |
---|
1311 | |
---|
1312 | nmod_poly_init2_preinv (buf, getCharacteristic(), ninv, repLength); |
---|
1313 | for (j= 0; j < repLength; j++) |
---|
1314 | nmod_poly_set_coeff_ui (buf, j, nmod_poly_get_coeff_ui (f, j + k)); |
---|
1315 | _nmod_poly_normalise (buf); |
---|
1316 | |
---|
1317 | result += convertnmod_poly_t2FacCF (buf, x)*power (y, i); |
---|
1318 | i++; |
---|
1319 | k= d*i; |
---|
1320 | nmod_poly_clear (buf); |
---|
1321 | } |
---|
1322 | nmod_poly_clear (f); |
---|
1323 | |
---|
1324 | return result; |
---|
1325 | } |
---|
1326 | |
---|
1327 | CanonicalForm |
---|
1328 | mulMod2FLINTFpReci (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1329 | CanonicalForm& M) |
---|
1330 | { |
---|
1331 | int d1= tmax (degree (F, 1), degree (G, 1)) + 1; |
---|
1332 | d1 /= 2; |
---|
1333 | d1 += 1; |
---|
1334 | |
---|
1335 | nmod_poly_t F1, F2; |
---|
1336 | mp_limb_t ninv= n_preinvert_limb (getCharacteristic()); |
---|
1337 | nmod_poly_init_preinv (F1, getCharacteristic(), ninv); |
---|
1338 | nmod_poly_init_preinv (F2, getCharacteristic(), ninv); |
---|
1339 | kronSubReciproFp (F1, F2, F, d1); |
---|
1340 | |
---|
1341 | nmod_poly_t G1, G2; |
---|
1342 | nmod_poly_init_preinv (G1, getCharacteristic(), ninv); |
---|
1343 | nmod_poly_init_preinv (G2, getCharacteristic(), ninv); |
---|
1344 | kronSubReciproFp (G1, G2, G, d1); |
---|
1345 | |
---|
1346 | int k= d1*degree (M); |
---|
1347 | nmod_poly_mullow (F1, F1, G1, (long) k); |
---|
1348 | |
---|
1349 | int degtailF= degree (tailcoeff (F), 1);; |
---|
1350 | int degtailG= degree (tailcoeff (G), 1); |
---|
1351 | int taildegF= taildegree (F); |
---|
1352 | int taildegG= taildegree (G); |
---|
1353 | |
---|
1354 | int b= nmod_poly_degree (F2) + nmod_poly_degree (G2) - k - degtailF - degtailG |
---|
1355 | + d1*(2+taildegF + taildegG); |
---|
1356 | nmod_poly_mulhigh (F2, F2, G2, b); |
---|
1357 | nmod_poly_shift_right (F2, F2, b); |
---|
1358 | int d2= tmax (nmod_poly_degree (F2)/d1, nmod_poly_degree (F1)/d1); |
---|
1359 | |
---|
1360 | |
---|
1361 | CanonicalForm result= reverseSubstReciproFp (F1, F2, d1, d2); |
---|
1362 | |
---|
1363 | nmod_poly_clear (F1); |
---|
1364 | nmod_poly_clear (F2); |
---|
1365 | nmod_poly_clear (G1); |
---|
1366 | nmod_poly_clear (G2); |
---|
1367 | return result; |
---|
1368 | } |
---|
1369 | |
---|
1370 | CanonicalForm |
---|
1371 | mulMod2FLINTFp (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1372 | CanonicalForm& M) |
---|
1373 | { |
---|
1374 | CanonicalForm A= F; |
---|
1375 | CanonicalForm B= G; |
---|
1376 | |
---|
1377 | int degAx= degree (A, 1); |
---|
1378 | int degAy= degree (A, 2); |
---|
1379 | int degBx= degree (B, 1); |
---|
1380 | int degBy= degree (B, 2); |
---|
1381 | int d1= degAx + 1 + degBx; |
---|
1382 | int d2= tmax (degAy, degBy); |
---|
1383 | |
---|
1384 | if (d1 > 128 && d2 > 160 && (degAy == degBy) && (2*degAy > degree (M))) |
---|
1385 | return mulMod2FLINTFpReci (A, B, M); |
---|
1386 | |
---|
1387 | nmod_poly_t FLINTA, FLINTB; |
---|
1388 | mp_limb_t ninv= n_preinvert_limb (getCharacteristic()); |
---|
1389 | nmod_poly_init_preinv (FLINTA, getCharacteristic(), ninv); |
---|
1390 | nmod_poly_init_preinv (FLINTB, getCharacteristic(), ninv); |
---|
1391 | kronSubFp (FLINTA, A, d1); |
---|
1392 | kronSubFp (FLINTB, B, d1); |
---|
1393 | |
---|
1394 | int k= d1*degree (M); |
---|
1395 | nmod_poly_mullow (FLINTA, FLINTA, FLINTB, (long) k); |
---|
1396 | |
---|
1397 | A= reverseSubstFp (FLINTA, d1); |
---|
1398 | |
---|
1399 | nmod_poly_clear (FLINTA); |
---|
1400 | nmod_poly_clear (FLINTB); |
---|
1401 | return A; |
---|
1402 | } |
---|
1403 | |
---|
1404 | CanonicalForm |
---|
1405 | mulMod2FLINTQReci (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1406 | CanonicalForm& M) |
---|
1407 | { |
---|
1408 | int d1= tmax (degree (F, 1), degree (G, 1)) + 1; |
---|
1409 | d1 /= 2; |
---|
1410 | d1 += 1; |
---|
1411 | |
---|
1412 | fmpz_poly_t F1, F2; |
---|
1413 | fmpz_poly_init (F1); |
---|
1414 | fmpz_poly_init (F2); |
---|
1415 | kronSubReciproQ (F1, F2, F, d1); |
---|
1416 | |
---|
1417 | fmpz_poly_t G1, G2; |
---|
1418 | fmpz_poly_init (G1); |
---|
1419 | fmpz_poly_init (G2); |
---|
1420 | kronSubReciproQ (G1, G2, G, d1); |
---|
1421 | |
---|
1422 | int k= d1*degree (M); |
---|
1423 | fmpz_poly_mullow (F1, F1, G1, (long) k); |
---|
1424 | |
---|
1425 | int degtailF= degree (tailcoeff (F), 1);; |
---|
1426 | int degtailG= degree (tailcoeff (G), 1); |
---|
1427 | int taildegF= taildegree (F); |
---|
1428 | int taildegG= taildegree (G); |
---|
1429 | |
---|
1430 | int b= fmpz_poly_degree (F2) + fmpz_poly_degree (G2) - k - degtailF - degtailG |
---|
1431 | + d1*(2+taildegF + taildegG); |
---|
1432 | fmpz_poly_mulhigh_n (F2, F2, G2, b); |
---|
1433 | fmpz_poly_shift_right (F2, F2, b); |
---|
1434 | int d2= tmax (fmpz_poly_degree (F2)/d1, fmpz_poly_degree (F1)/d1); |
---|
1435 | |
---|
1436 | CanonicalForm result= reverseSubstReciproQ (F1, F2, d1, d2); |
---|
1437 | |
---|
1438 | fmpz_poly_clear (F1); |
---|
1439 | fmpz_poly_clear (F2); |
---|
1440 | fmpz_poly_clear (G1); |
---|
1441 | fmpz_poly_clear (G2); |
---|
1442 | return result; |
---|
1443 | } |
---|
1444 | |
---|
1445 | CanonicalForm |
---|
1446 | mulMod2FLINTQ (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1447 | CanonicalForm& M) |
---|
1448 | { |
---|
1449 | CanonicalForm A= F; |
---|
1450 | CanonicalForm B= G; |
---|
1451 | |
---|
1452 | int degAx= degree (A, 1); |
---|
1453 | int degBx= degree (B, 1); |
---|
1454 | int d1= degAx + 1 + degBx; |
---|
1455 | |
---|
1456 | CanonicalForm f= bCommonDen (F); |
---|
1457 | CanonicalForm g= bCommonDen (G); |
---|
1458 | A *= f; |
---|
1459 | B *= g; |
---|
1460 | |
---|
1461 | fmpz_poly_t FLINTA, FLINTB; |
---|
1462 | fmpz_poly_init (FLINTA); |
---|
1463 | fmpz_poly_init (FLINTB); |
---|
1464 | kronSub (FLINTA, A, d1); |
---|
1465 | kronSub (FLINTB, B, d1); |
---|
1466 | int k= d1*degree (M); |
---|
1467 | |
---|
1468 | fmpz_poly_mullow (FLINTA, FLINTA, FLINTB, (long) k); |
---|
1469 | A= reverseSubstQ (FLINTA, d1); |
---|
1470 | fmpz_poly_clear (FLINTA); |
---|
1471 | fmpz_poly_clear (FLINTB); |
---|
1472 | return A/(f*g); |
---|
1473 | } |
---|
1474 | |
---|
1475 | CanonicalForm |
---|
1476 | mulMod2FLINTQa (const CanonicalForm& F, const CanonicalForm& G, |
---|
1477 | const CanonicalForm& M) |
---|
1478 | { |
---|
1479 | Variable a; |
---|
1480 | if (!hasFirstAlgVar (F,a) && !hasFirstAlgVar (G, a)) |
---|
1481 | return mulMod2FLINTQ (F, G, M); |
---|
1482 | CanonicalForm A= F; |
---|
1483 | |
---|
1484 | int degFx= degree (F, 1); |
---|
1485 | int degFa= degree (F, a); |
---|
1486 | int degGx= degree (G, 1); |
---|
1487 | int degGa= degree (G, a); |
---|
1488 | |
---|
1489 | int d2= degFa+degGa+1; |
---|
1490 | int d1= degFx + 1 + degGx; |
---|
1491 | d1 *= d2; |
---|
1492 | |
---|
1493 | fmpq_poly_t FLINTF, FLINTG; |
---|
1494 | kronSubQa (FLINTF, F, d1, d2); |
---|
1495 | kronSubQa (FLINTG, G, d1, d2); |
---|
1496 | |
---|
1497 | fmpq_poly_mullow (FLINTF, FLINTF, FLINTG, d1*degree (M)); |
---|
1498 | |
---|
1499 | fmpq_poly_t mipo; |
---|
1500 | convertFacCF2Fmpq_poly_t (mipo, getMipo (a)); |
---|
1501 | CanonicalForm result= reverseSubstQa (FLINTF, d1, d2, a, mipo); |
---|
1502 | fmpq_poly_clear (FLINTF); |
---|
1503 | fmpq_poly_clear (FLINTG); |
---|
1504 | return result; |
---|
1505 | } |
---|
1506 | |
---|
1507 | #endif |
---|
1508 | |
---|
1509 | zz_pX kronSubFp (const CanonicalForm& A, int d) |
---|
1510 | { |
---|
1511 | int degAy= degree (A); |
---|
1512 | zz_pX result; |
---|
1513 | result.rep.SetLength (d*(degAy + 1)); |
---|
1514 | |
---|
1515 | zz_p *resultp; |
---|
1516 | resultp= result.rep.elts(); |
---|
1517 | zz_pX buf; |
---|
1518 | zz_p *bufp; |
---|
1519 | int j, k, bufRepLength; |
---|
1520 | |
---|
1521 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
1522 | { |
---|
1523 | if (i.coeff().inCoeffDomain()) |
---|
1524 | buf= convertFacCF2NTLzzpX (i.coeff()); |
---|
1525 | else |
---|
1526 | buf= convertFacCF2NTLzzpX (i.coeff()); |
---|
1527 | |
---|
1528 | k= i.exp()*d; |
---|
1529 | bufp= buf.rep.elts(); |
---|
1530 | bufRepLength= (int) buf.rep.length(); |
---|
1531 | for (j= 0; j < bufRepLength; j++) |
---|
1532 | resultp [j + k]= bufp [j]; |
---|
1533 | } |
---|
1534 | result.normalize(); |
---|
1535 | |
---|
1536 | return result; |
---|
1537 | } |
---|
1538 | |
---|
1539 | zz_pEX kronSubFq (const CanonicalForm& A, int d, const Variable& alpha) |
---|
1540 | { |
---|
1541 | int degAy= degree (A); |
---|
1542 | zz_pEX result; |
---|
1543 | result.rep.SetLength (d*(degAy + 1)); |
---|
1544 | |
---|
1545 | Variable v; |
---|
1546 | zz_pE *resultp; |
---|
1547 | resultp= result.rep.elts(); |
---|
1548 | zz_pEX buf1; |
---|
1549 | zz_pE *buf1p; |
---|
1550 | zz_pX buf2; |
---|
1551 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
1552 | int j, k, buf1RepLength; |
---|
1553 | |
---|
1554 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
1555 | { |
---|
1556 | if (i.coeff().inCoeffDomain()) |
---|
1557 | { |
---|
1558 | buf2= convertFacCF2NTLzzpX (i.coeff()); |
---|
1559 | buf1= to_zz_pEX (to_zz_pE (buf2)); |
---|
1560 | } |
---|
1561 | else |
---|
1562 | buf1= convertFacCF2NTLzz_pEX (i.coeff(), NTLMipo); |
---|
1563 | |
---|
1564 | k= i.exp()*d; |
---|
1565 | buf1p= buf1.rep.elts(); |
---|
1566 | buf1RepLength= (int) buf1.rep.length(); |
---|
1567 | for (j= 0; j < buf1RepLength; j++) |
---|
1568 | resultp [j + k]= buf1p [j]; |
---|
1569 | } |
---|
1570 | result.normalize(); |
---|
1571 | |
---|
1572 | return result; |
---|
1573 | } |
---|
1574 | |
---|
1575 | void |
---|
1576 | kronSubReciproFq (zz_pEX& subA1, zz_pEX& subA2,const CanonicalForm& A, int d, |
---|
1577 | const Variable& alpha) |
---|
1578 | { |
---|
1579 | int degAy= degree (A); |
---|
1580 | subA1.rep.SetLength ((long) d*(degAy + 2)); |
---|
1581 | subA2.rep.SetLength ((long) d*(degAy + 2)); |
---|
1582 | |
---|
1583 | Variable v; |
---|
1584 | zz_pE *subA1p; |
---|
1585 | zz_pE *subA2p; |
---|
1586 | subA1p= subA1.rep.elts(); |
---|
1587 | subA2p= subA2.rep.elts(); |
---|
1588 | zz_pEX buf; |
---|
1589 | zz_pE *bufp; |
---|
1590 | zz_pX buf2; |
---|
1591 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
1592 | int j, k, kk, bufRepLength; |
---|
1593 | |
---|
1594 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
1595 | { |
---|
1596 | if (i.coeff().inCoeffDomain()) |
---|
1597 | { |
---|
1598 | buf2= convertFacCF2NTLzzpX (i.coeff()); |
---|
1599 | buf= to_zz_pEX (to_zz_pE (buf2)); |
---|
1600 | } |
---|
1601 | else |
---|
1602 | buf= convertFacCF2NTLzz_pEX (i.coeff(), NTLMipo); |
---|
1603 | |
---|
1604 | k= i.exp()*d; |
---|
1605 | kk= (degAy - i.exp())*d; |
---|
1606 | bufp= buf.rep.elts(); |
---|
1607 | bufRepLength= (int) buf.rep.length(); |
---|
1608 | for (j= 0; j < bufRepLength; j++) |
---|
1609 | { |
---|
1610 | subA1p [j + k] += bufp [j]; |
---|
1611 | subA2p [j + kk] += bufp [j]; |
---|
1612 | } |
---|
1613 | } |
---|
1614 | subA1.normalize(); |
---|
1615 | subA2.normalize(); |
---|
1616 | } |
---|
1617 | |
---|
1618 | void |
---|
1619 | kronSubReciproFp (zz_pX& subA1, zz_pX& subA2, const CanonicalForm& A, int d) |
---|
1620 | { |
---|
1621 | int degAy= degree (A); |
---|
1622 | subA1.rep.SetLength ((long) d*(degAy + 2)); |
---|
1623 | subA2.rep.SetLength ((long) d*(degAy + 2)); |
---|
1624 | |
---|
1625 | zz_p *subA1p; |
---|
1626 | zz_p *subA2p; |
---|
1627 | subA1p= subA1.rep.elts(); |
---|
1628 | subA2p= subA2.rep.elts(); |
---|
1629 | zz_pX buf; |
---|
1630 | zz_p *bufp; |
---|
1631 | int j, k, kk, bufRepLength; |
---|
1632 | |
---|
1633 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
1634 | { |
---|
1635 | buf= convertFacCF2NTLzzpX (i.coeff()); |
---|
1636 | |
---|
1637 | k= i.exp()*d; |
---|
1638 | kk= (degAy - i.exp())*d; |
---|
1639 | bufp= buf.rep.elts(); |
---|
1640 | bufRepLength= (int) buf.rep.length(); |
---|
1641 | for (j= 0; j < bufRepLength; j++) |
---|
1642 | { |
---|
1643 | subA1p [j + k] += bufp [j]; |
---|
1644 | subA2p [j + kk] += bufp [j]; |
---|
1645 | } |
---|
1646 | } |
---|
1647 | subA1.normalize(); |
---|
1648 | subA2.normalize(); |
---|
1649 | } |
---|
1650 | |
---|
1651 | CanonicalForm |
---|
1652 | reverseSubstReciproFq (const zz_pEX& F, const zz_pEX& G, int d, int k, |
---|
1653 | const Variable& alpha) |
---|
1654 | { |
---|
1655 | Variable y= Variable (2); |
---|
1656 | Variable x= Variable (1); |
---|
1657 | |
---|
1658 | zz_pEX f= F; |
---|
1659 | zz_pEX g= G; |
---|
1660 | int degf= deg(f); |
---|
1661 | int degg= deg(g); |
---|
1662 | |
---|
1663 | zz_pEX buf1; |
---|
1664 | zz_pEX buf2; |
---|
1665 | zz_pEX buf3; |
---|
1666 | |
---|
1667 | zz_pE *buf1p; |
---|
1668 | zz_pE *buf2p; |
---|
1669 | zz_pE *buf3p; |
---|
1670 | if (f.rep.length() < (long) d*(k+1)) //zero padding |
---|
1671 | f.rep.SetLength ((long)d*(k+1)); |
---|
1672 | |
---|
1673 | zz_pE *gp= g.rep.elts(); |
---|
1674 | zz_pE *fp= f.rep.elts(); |
---|
1675 | CanonicalForm result= 0; |
---|
1676 | int i= 0; |
---|
1677 | int lf= 0; |
---|
1678 | int lg= d*k; |
---|
1679 | int degfSubLf= degf; |
---|
1680 | int deggSubLg= degg-lg; |
---|
1681 | int repLengthBuf2, repLengthBuf1, ind, tmp; |
---|
1682 | zz_pE zzpEZero= zz_pE(); |
---|
1683 | |
---|
1684 | while (degf >= lf || lg >= 0) |
---|
1685 | { |
---|
1686 | if (degfSubLf >= d) |
---|
1687 | repLengthBuf1= d; |
---|
1688 | else if (degfSubLf < 0) |
---|
1689 | repLengthBuf1= 0; |
---|
1690 | else |
---|
1691 | repLengthBuf1= degfSubLf + 1; |
---|
1692 | buf1.rep.SetLength((long) repLengthBuf1); |
---|
1693 | |
---|
1694 | buf1p= buf1.rep.elts(); |
---|
1695 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1696 | buf1p [ind]= fp [ind + lf]; |
---|
1697 | buf1.normalize(); |
---|
1698 | |
---|
1699 | repLengthBuf1= buf1.rep.length(); |
---|
1700 | |
---|
1701 | if (deggSubLg >= d - 1) |
---|
1702 | repLengthBuf2= d - 1; |
---|
1703 | else if (deggSubLg < 0) |
---|
1704 | repLengthBuf2= 0; |
---|
1705 | else |
---|
1706 | repLengthBuf2= deggSubLg + 1; |
---|
1707 | |
---|
1708 | buf2.rep.SetLength ((long) repLengthBuf2); |
---|
1709 | buf2p= buf2.rep.elts(); |
---|
1710 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1711 | buf2p [ind]= gp [ind + lg]; |
---|
1712 | buf2.normalize(); |
---|
1713 | |
---|
1714 | repLengthBuf2= buf2.rep.length(); |
---|
1715 | |
---|
1716 | buf3.rep.SetLength((long) repLengthBuf2 + d); |
---|
1717 | buf3p= buf3.rep.elts(); |
---|
1718 | buf2p= buf2.rep.elts(); |
---|
1719 | buf1p= buf1.rep.elts(); |
---|
1720 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1721 | buf3p [ind]= buf1p [ind]; |
---|
1722 | for (ind= repLengthBuf1; ind < d; ind++) |
---|
1723 | buf3p [ind]= zzpEZero; |
---|
1724 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1725 | buf3p [ind + d]= buf2p [ind]; |
---|
1726 | buf3.normalize(); |
---|
1727 | |
---|
1728 | result += convertNTLzz_pEX2CF (buf3, x, alpha)*power (y, i); |
---|
1729 | i++; |
---|
1730 | |
---|
1731 | |
---|
1732 | lf= i*d; |
---|
1733 | degfSubLf= degf - lf; |
---|
1734 | |
---|
1735 | lg= d*(k-i); |
---|
1736 | deggSubLg= degg - lg; |
---|
1737 | |
---|
1738 | buf1p= buf1.rep.elts(); |
---|
1739 | |
---|
1740 | if (lg >= 0 && deggSubLg > 0) |
---|
1741 | { |
---|
1742 | if (repLengthBuf2 > degfSubLf + 1) |
---|
1743 | degfSubLf= repLengthBuf2 - 1; |
---|
1744 | tmp= tmin (repLengthBuf1, deggSubLg + 1); |
---|
1745 | for (ind= 0; ind < tmp; ind++) |
---|
1746 | gp [ind + lg] -= buf1p [ind]; |
---|
1747 | } |
---|
1748 | |
---|
1749 | if (lg < 0) |
---|
1750 | break; |
---|
1751 | |
---|
1752 | buf2p= buf2.rep.elts(); |
---|
1753 | if (degfSubLf >= 0) |
---|
1754 | { |
---|
1755 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1756 | fp [ind + lf] -= buf2p [ind]; |
---|
1757 | } |
---|
1758 | } |
---|
1759 | |
---|
1760 | return result; |
---|
1761 | } |
---|
1762 | |
---|
1763 | CanonicalForm |
---|
1764 | reverseSubstReciproFp (const zz_pX& F, const zz_pX& G, int d, int k) |
---|
1765 | { |
---|
1766 | Variable y= Variable (2); |
---|
1767 | Variable x= Variable (1); |
---|
1768 | |
---|
1769 | zz_pX f= F; |
---|
1770 | zz_pX g= G; |
---|
1771 | int degf= deg(f); |
---|
1772 | int degg= deg(g); |
---|
1773 | |
---|
1774 | zz_pX buf1; |
---|
1775 | zz_pX buf2; |
---|
1776 | zz_pX buf3; |
---|
1777 | |
---|
1778 | zz_p *buf1p; |
---|
1779 | zz_p *buf2p; |
---|
1780 | zz_p *buf3p; |
---|
1781 | |
---|
1782 | if (f.rep.length() < (long) d*(k+1)) //zero padding |
---|
1783 | f.rep.SetLength ((long)d*(k+1)); |
---|
1784 | |
---|
1785 | zz_p *gp= g.rep.elts(); |
---|
1786 | zz_p *fp= f.rep.elts(); |
---|
1787 | CanonicalForm result= 0; |
---|
1788 | int i= 0; |
---|
1789 | int lf= 0; |
---|
1790 | int lg= d*k; |
---|
1791 | int degfSubLf= degf; |
---|
1792 | int deggSubLg= degg-lg; |
---|
1793 | int repLengthBuf2, repLengthBuf1, ind, tmp; |
---|
1794 | zz_p zzpZero= zz_p(); |
---|
1795 | while (degf >= lf || lg >= 0) |
---|
1796 | { |
---|
1797 | if (degfSubLf >= d) |
---|
1798 | repLengthBuf1= d; |
---|
1799 | else if (degfSubLf < 0) |
---|
1800 | repLengthBuf1= 0; |
---|
1801 | else |
---|
1802 | repLengthBuf1= degfSubLf + 1; |
---|
1803 | buf1.rep.SetLength((long) repLengthBuf1); |
---|
1804 | |
---|
1805 | buf1p= buf1.rep.elts(); |
---|
1806 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1807 | buf1p [ind]= fp [ind + lf]; |
---|
1808 | buf1.normalize(); |
---|
1809 | |
---|
1810 | repLengthBuf1= buf1.rep.length(); |
---|
1811 | |
---|
1812 | if (deggSubLg >= d - 1) |
---|
1813 | repLengthBuf2= d - 1; |
---|
1814 | else if (deggSubLg < 0) |
---|
1815 | repLengthBuf2= 0; |
---|
1816 | else |
---|
1817 | repLengthBuf2= deggSubLg + 1; |
---|
1818 | |
---|
1819 | buf2.rep.SetLength ((long) repLengthBuf2); |
---|
1820 | buf2p= buf2.rep.elts(); |
---|
1821 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1822 | buf2p [ind]= gp [ind + lg]; |
---|
1823 | |
---|
1824 | buf2.normalize(); |
---|
1825 | |
---|
1826 | repLengthBuf2= buf2.rep.length(); |
---|
1827 | |
---|
1828 | |
---|
1829 | buf3.rep.SetLength((long) repLengthBuf2 + d); |
---|
1830 | buf3p= buf3.rep.elts(); |
---|
1831 | buf2p= buf2.rep.elts(); |
---|
1832 | buf1p= buf1.rep.elts(); |
---|
1833 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1834 | buf3p [ind]= buf1p [ind]; |
---|
1835 | for (ind= repLengthBuf1; ind < d; ind++) |
---|
1836 | buf3p [ind]= zzpZero; |
---|
1837 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1838 | buf3p [ind + d]= buf2p [ind]; |
---|
1839 | buf3.normalize(); |
---|
1840 | |
---|
1841 | result += convertNTLzzpX2CF (buf3, x)*power (y, i); |
---|
1842 | i++; |
---|
1843 | |
---|
1844 | |
---|
1845 | lf= i*d; |
---|
1846 | degfSubLf= degf - lf; |
---|
1847 | |
---|
1848 | lg= d*(k-i); |
---|
1849 | deggSubLg= degg - lg; |
---|
1850 | |
---|
1851 | buf1p= buf1.rep.elts(); |
---|
1852 | |
---|
1853 | if (lg >= 0 && deggSubLg > 0) |
---|
1854 | { |
---|
1855 | if (repLengthBuf2 > degfSubLf + 1) |
---|
1856 | degfSubLf= repLengthBuf2 - 1; |
---|
1857 | tmp= tmin (repLengthBuf1, deggSubLg + 1); |
---|
1858 | for (ind= 0; ind < tmp; ind++) |
---|
1859 | gp [ind + lg] -= buf1p [ind]; |
---|
1860 | } |
---|
1861 | if (lg < 0) |
---|
1862 | break; |
---|
1863 | |
---|
1864 | buf2p= buf2.rep.elts(); |
---|
1865 | if (degfSubLf >= 0) |
---|
1866 | { |
---|
1867 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1868 | fp [ind + lf] -= buf2p [ind]; |
---|
1869 | } |
---|
1870 | } |
---|
1871 | |
---|
1872 | return result; |
---|
1873 | } |
---|
1874 | |
---|
1875 | CanonicalForm reverseSubstFq (const zz_pEX& F, int d, const Variable& alpha) |
---|
1876 | { |
---|
1877 | Variable y= Variable (2); |
---|
1878 | Variable x= Variable (1); |
---|
1879 | |
---|
1880 | zz_pEX f= F; |
---|
1881 | zz_pE *fp= f.rep.elts(); |
---|
1882 | |
---|
1883 | zz_pEX buf; |
---|
1884 | zz_pE *bufp; |
---|
1885 | CanonicalForm result= 0; |
---|
1886 | int i= 0; |
---|
1887 | int degf= deg(f); |
---|
1888 | int k= 0; |
---|
1889 | int degfSubK, repLength, j; |
---|
1890 | while (degf >= k) |
---|
1891 | { |
---|
1892 | degfSubK= degf - k; |
---|
1893 | if (degfSubK >= d) |
---|
1894 | repLength= d; |
---|
1895 | else |
---|
1896 | repLength= degfSubK + 1; |
---|
1897 | |
---|
1898 | buf.rep.SetLength ((long) repLength); |
---|
1899 | bufp= buf.rep.elts(); |
---|
1900 | for (j= 0; j < repLength; j++) |
---|
1901 | bufp [j]= fp [j + k]; |
---|
1902 | buf.normalize(); |
---|
1903 | |
---|
1904 | result += convertNTLzz_pEX2CF (buf, x, alpha)*power (y, i); |
---|
1905 | i++; |
---|
1906 | k= d*i; |
---|
1907 | } |
---|
1908 | |
---|
1909 | return result; |
---|
1910 | } |
---|
1911 | |
---|
1912 | CanonicalForm reverseSubstFp (const zz_pX& F, int d) |
---|
1913 | { |
---|
1914 | Variable y= Variable (2); |
---|
1915 | Variable x= Variable (1); |
---|
1916 | |
---|
1917 | zz_pX f= F; |
---|
1918 | zz_p *fp= f.rep.elts(); |
---|
1919 | |
---|
1920 | zz_pX buf; |
---|
1921 | zz_p *bufp; |
---|
1922 | CanonicalForm result= 0; |
---|
1923 | int i= 0; |
---|
1924 | int degf= deg(f); |
---|
1925 | int k= 0; |
---|
1926 | int degfSubK, repLength, j; |
---|
1927 | while (degf >= k) |
---|
1928 | { |
---|
1929 | degfSubK= degf - k; |
---|
1930 | if (degfSubK >= d) |
---|
1931 | repLength= d; |
---|
1932 | else |
---|
1933 | repLength= degfSubK + 1; |
---|
1934 | |
---|
1935 | buf.rep.SetLength ((long) repLength); |
---|
1936 | bufp= buf.rep.elts(); |
---|
1937 | for (j= 0; j < repLength; j++) |
---|
1938 | bufp [j]= fp [j + k]; |
---|
1939 | buf.normalize(); |
---|
1940 | |
---|
1941 | result += convertNTLzzpX2CF (buf, x)*power (y, i); |
---|
1942 | i++; |
---|
1943 | k= d*i; |
---|
1944 | } |
---|
1945 | |
---|
1946 | return result; |
---|
1947 | } |
---|
1948 | |
---|
1949 | // assumes input to be reduced mod M and to be an element of Fq not Fp |
---|
1950 | CanonicalForm |
---|
1951 | mulMod2NTLFpReci (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1952 | CanonicalForm& M) |
---|
1953 | { |
---|
1954 | int d1= degree (F, 1) + degree (G, 1) + 1; |
---|
1955 | d1 /= 2; |
---|
1956 | d1 += 1; |
---|
1957 | |
---|
1958 | zz_pX F1, F2; |
---|
1959 | kronSubReciproFp (F1, F2, F, d1); |
---|
1960 | zz_pX G1, G2; |
---|
1961 | kronSubReciproFp (G1, G2, G, d1); |
---|
1962 | |
---|
1963 | int k= d1*degree (M); |
---|
1964 | MulTrunc (F1, F1, G1, (long) k); |
---|
1965 | |
---|
1966 | int degtailF= degree (tailcoeff (F), 1); |
---|
1967 | int degtailG= degree (tailcoeff (G), 1); |
---|
1968 | int taildegF= taildegree (F); |
---|
1969 | int taildegG= taildegree (G); |
---|
1970 | int b= k + degtailF + degtailG - d1*(2+taildegF+taildegG); |
---|
1971 | |
---|
1972 | reverse (F2, F2); |
---|
1973 | reverse (G2, G2); |
---|
1974 | MulTrunc (F2, F2, G2, b + 1); |
---|
1975 | reverse (F2, F2, b); |
---|
1976 | |
---|
1977 | int d2= tmax (deg (F2)/d1, deg (F1)/d1); |
---|
1978 | return reverseSubstReciproFp (F1, F2, d1, d2); |
---|
1979 | } |
---|
1980 | |
---|
1981 | //Kronecker substitution |
---|
1982 | CanonicalForm |
---|
1983 | mulMod2NTLFp (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1984 | CanonicalForm& M) |
---|
1985 | { |
---|
1986 | CanonicalForm A= F; |
---|
1987 | CanonicalForm B= G; |
---|
1988 | |
---|
1989 | int degAx= degree (A, 1); |
---|
1990 | int degAy= degree (A, 2); |
---|
1991 | int degBx= degree (B, 1); |
---|
1992 | int degBy= degree (B, 2); |
---|
1993 | int d1= degAx + 1 + degBx; |
---|
1994 | int d2= tmax (degAy, degBy); |
---|
1995 | |
---|
1996 | if (d1 > 128 && d2 > 160 && (degAy == degBy) && (2*degAy > degree (M))) |
---|
1997 | return mulMod2NTLFpReci (A, B, M); |
---|
1998 | |
---|
1999 | zz_pX NTLA= kronSubFp (A, d1); |
---|
2000 | zz_pX NTLB= kronSubFp (B, d1); |
---|
2001 | |
---|
2002 | int k= d1*degree (M); |
---|
2003 | MulTrunc (NTLA, NTLA, NTLB, (long) k); |
---|
2004 | |
---|
2005 | A= reverseSubstFp (NTLA, d1); |
---|
2006 | |
---|
2007 | return A; |
---|
2008 | } |
---|
2009 | |
---|
2010 | // assumes input to be reduced mod M and to be an element of Fq not Fp |
---|
2011 | CanonicalForm |
---|
2012 | mulMod2NTLFqReci (const CanonicalForm& F, const CanonicalForm& G, const |
---|
2013 | CanonicalForm& M, const Variable& alpha) |
---|
2014 | { |
---|
2015 | int d1= degree (F, 1) + degree (G, 1) + 1; |
---|
2016 | d1 /= 2; |
---|
2017 | d1 += 1; |
---|
2018 | |
---|
2019 | zz_pEX F1, F2; |
---|
2020 | kronSubReciproFq (F1, F2, F, d1, alpha); |
---|
2021 | zz_pEX G1, G2; |
---|
2022 | kronSubReciproFq (G1, G2, G, d1, alpha); |
---|
2023 | |
---|
2024 | int k= d1*degree (M); |
---|
2025 | MulTrunc (F1, F1, G1, (long) k); |
---|
2026 | |
---|
2027 | int degtailF= degree (tailcoeff (F), 1); |
---|
2028 | int degtailG= degree (tailcoeff (G), 1); |
---|
2029 | int taildegF= taildegree (F); |
---|
2030 | int taildegG= taildegree (G); |
---|
2031 | int b= k + degtailF + degtailG - d1*(2+taildegF+taildegG); |
---|
2032 | |
---|
2033 | reverse (F2, F2); |
---|
2034 | reverse (G2, G2); |
---|
2035 | MulTrunc (F2, F2, G2, b + 1); |
---|
2036 | reverse (F2, F2, b); |
---|
2037 | |
---|
2038 | int d2= tmax (deg (F2)/d1, deg (F1)/d1); |
---|
2039 | return reverseSubstReciproFq (F1, F2, d1, d2, alpha); |
---|
2040 | } |
---|
2041 | |
---|
2042 | #ifdef HAVE_FLINT |
---|
2043 | CanonicalForm |
---|
2044 | mulMod2FLINTFp (const CanonicalForm& F, const CanonicalForm& G, const |
---|
2045 | CanonicalForm& M); |
---|
2046 | #endif |
---|
2047 | |
---|
2048 | CanonicalForm |
---|
2049 | mulMod2NTLFq (const CanonicalForm& F, const CanonicalForm& G, const |
---|
2050 | CanonicalForm& M) |
---|
2051 | { |
---|
2052 | Variable alpha; |
---|
2053 | CanonicalForm A= F; |
---|
2054 | CanonicalForm B= G; |
---|
2055 | |
---|
2056 | if (hasFirstAlgVar (A, alpha) || hasFirstAlgVar (B, alpha)) |
---|
2057 | { |
---|
2058 | int degAx= degree (A, 1); |
---|
2059 | int degAy= degree (A, 2); |
---|
2060 | int degBx= degree (B, 1); |
---|
2061 | int degBy= degree (B, 2); |
---|
2062 | int d1= degAx + degBx + 1; |
---|
2063 | int d2= tmax (degAy, degBy); |
---|
2064 | zz_p::init (getCharacteristic()); |
---|
2065 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
2066 | zz_pE::init (NTLMipo); |
---|
2067 | |
---|
2068 | int degMipo= degree (getMipo (alpha)); |
---|
2069 | if ((d1 > 128/degMipo) && (d2 > 160/degMipo) && (degAy == degBy) && |
---|
2070 | (2*degAy > degree (M))) |
---|
2071 | return mulMod2NTLFqReci (A, B, M, alpha); |
---|
2072 | |
---|
2073 | zz_pEX NTLA= kronSubFq (A, d1, alpha); |
---|
2074 | zz_pEX NTLB= kronSubFq (B, d1, alpha); |
---|
2075 | |
---|
2076 | int k= d1*degree (M); |
---|
2077 | |
---|
2078 | MulTrunc (NTLA, NTLA, NTLB, (long) k); |
---|
2079 | |
---|
2080 | A= reverseSubstFq (NTLA, d1, alpha); |
---|
2081 | |
---|
2082 | return A; |
---|
2083 | } |
---|
2084 | else |
---|
2085 | #ifdef HAVE_FLINT |
---|
2086 | return mulMod2FLINTFp (A, B, M); |
---|
2087 | #else |
---|
2088 | return mulMod2NTLFp (A, B, M); |
---|
2089 | #endif |
---|
2090 | } |
---|
2091 | |
---|
2092 | CanonicalForm mulMod2 (const CanonicalForm& A, const CanonicalForm& B, |
---|
2093 | const CanonicalForm& M) |
---|
2094 | { |
---|
2095 | if (A.isZero() || B.isZero()) |
---|
2096 | return 0; |
---|
2097 | |
---|
2098 | ASSERT (M.isUnivariate(), "M must be univariate"); |
---|
2099 | |
---|
2100 | CanonicalForm F= mod (A, M); |
---|
2101 | CanonicalForm G= mod (B, M); |
---|
2102 | if (F.inCoeffDomain() || G.inCoeffDomain()) |
---|
2103 | return F*G; |
---|
2104 | Variable y= M.mvar(); |
---|
2105 | int degF= degree (F, y); |
---|
2106 | int degG= degree (G, y); |
---|
2107 | |
---|
2108 | if ((degF < 1 && degG < 1) && (F.isUnivariate() && G.isUnivariate()) && |
---|
2109 | (F.level() == G.level())) |
---|
2110 | { |
---|
2111 | CanonicalForm result= mulNTL (F, G); |
---|
2112 | return mod (result, M); |
---|
2113 | } |
---|
2114 | else if (degF <= 1 && degG <= 1) |
---|
2115 | { |
---|
2116 | CanonicalForm result= F*G; |
---|
2117 | return mod (result, M); |
---|
2118 | } |
---|
2119 | |
---|
2120 | int sizeF= size (F); |
---|
2121 | int sizeG= size (G); |
---|
2122 | |
---|
2123 | int fallBackToNaive= 50; |
---|
2124 | if (sizeF < fallBackToNaive || sizeG < fallBackToNaive) |
---|
2125 | return mod (F*G, M); |
---|
2126 | |
---|
2127 | #ifdef HAVE_FLINT |
---|
2128 | if (getCharacteristic() == 0) |
---|
2129 | return mulMod2FLINTQa (F, G, M); |
---|
2130 | #endif |
---|
2131 | |
---|
2132 | if (getCharacteristic() > 0 && CFFactory::gettype() != GaloisFieldDomain && |
---|
2133 | (((degF-degG) < 50 && degF > degG) || ((degG-degF) < 50 && degF <= degG))) |
---|
2134 | return mulMod2NTLFq (F, G, M); |
---|
2135 | |
---|
2136 | int m= (int) ceil (degree (M)/2.0); |
---|
2137 | if (degF >= m || degG >= m) |
---|
2138 | { |
---|
2139 | CanonicalForm MLo= power (y, m); |
---|
2140 | CanonicalForm MHi= power (y, degree (M) - m); |
---|
2141 | CanonicalForm F0= mod (F, MLo); |
---|
2142 | CanonicalForm F1= div (F, MLo); |
---|
2143 | CanonicalForm G0= mod (G, MLo); |
---|
2144 | CanonicalForm G1= div (G, MLo); |
---|
2145 | CanonicalForm F0G1= mulMod2 (F0, G1, MHi); |
---|
2146 | CanonicalForm F1G0= mulMod2 (F1, G0, MHi); |
---|
2147 | CanonicalForm F0G0= mulMod2 (F0, G0, M); |
---|
2148 | return F0G0 + MLo*(F0G1 + F1G0); |
---|
2149 | } |
---|
2150 | else |
---|
2151 | { |
---|
2152 | m= (int) ceil (tmax (degF, degG)/2.0); |
---|
2153 | CanonicalForm yToM= power (y, m); |
---|
2154 | CanonicalForm F0= mod (F, yToM); |
---|
2155 | CanonicalForm F1= div (F, yToM); |
---|
2156 | CanonicalForm G0= mod (G, yToM); |
---|
2157 | CanonicalForm G1= div (G, yToM); |
---|
2158 | CanonicalForm H00= mulMod2 (F0, G0, M); |
---|
2159 | CanonicalForm H11= mulMod2 (F1, G1, M); |
---|
2160 | CanonicalForm H01= mulMod2 (F0 + F1, G0 + G1, M); |
---|
2161 | return H11*yToM*yToM + (H01 - H11 - H00)*yToM + H00; |
---|
2162 | } |
---|
2163 | DEBOUTLN (cerr, "fatal end in mulMod2"); |
---|
2164 | } |
---|
2165 | |
---|
2166 | // end bivariate polys |
---|
2167 | //********************** |
---|
2168 | // multivariate polys |
---|
2169 | |
---|
2170 | CanonicalForm mod (const CanonicalForm& F, const CFList& M) |
---|
2171 | { |
---|
2172 | CanonicalForm A= F; |
---|
2173 | for (CFListIterator i= M; i.hasItem(); i++) |
---|
2174 | A= mod (A, i.getItem()); |
---|
2175 | return A; |
---|
2176 | } |
---|
2177 | |
---|
2178 | CanonicalForm mulMod (const CanonicalForm& A, const CanonicalForm& B, |
---|
2179 | const CFList& MOD) |
---|
2180 | { |
---|
2181 | if (A.isZero() || B.isZero()) |
---|
2182 | return 0; |
---|
2183 | |
---|
2184 | if (MOD.length() == 1) |
---|
2185 | return mulMod2 (A, B, MOD.getLast()); |
---|
2186 | |
---|
2187 | CanonicalForm M= MOD.getLast(); |
---|
2188 | CanonicalForm F= mod (A, M); |
---|
2189 | CanonicalForm G= mod (B, M); |
---|
2190 | if (F.inCoeffDomain() || G.inCoeffDomain()) |
---|
2191 | return F*G; |
---|
2192 | Variable y= M.mvar(); |
---|
2193 | int degF= degree (F, y); |
---|
2194 | int degG= degree (G, y); |
---|
2195 | |
---|
2196 | if ((degF <= 1 && F.level() <= M.level()) && |
---|
2197 | (degG <= 1 && G.level() <= M.level())) |
---|
2198 | { |
---|
2199 | CFList buf= MOD; |
---|
2200 | buf.removeLast(); |
---|
2201 | if (degF == 1 && degG == 1) |
---|
2202 | { |
---|
2203 | CanonicalForm F0= mod (F, y); |
---|
2204 | CanonicalForm F1= div (F, y); |
---|
2205 | CanonicalForm G0= mod (G, y); |
---|
2206 | CanonicalForm G1= div (G, y); |
---|
2207 | if (degree (M) > 2) |
---|
2208 | { |
---|
2209 | CanonicalForm H00= mulMod (F0, G0, buf); |
---|
2210 | CanonicalForm H11= mulMod (F1, G1, buf); |
---|
2211 | CanonicalForm H01= mulMod (F0 + F1, G0 + G1, buf); |
---|
2212 | return H11*y*y + (H01 - H00 - H11)*y + H00; |
---|
2213 | } |
---|
2214 | else //here degree (M) == 2 |
---|
2215 | { |
---|
2216 | buf.append (y); |
---|
2217 | CanonicalForm F0G1= mulMod (F0, G1, buf); |
---|
2218 | CanonicalForm F1G0= mulMod (F1, G0, buf); |
---|
2219 | CanonicalForm F0G0= mulMod (F0, G0, MOD); |
---|
2220 | CanonicalForm result= F0G0 + y*(F0G1 + F1G0); |
---|
2221 | return result; |
---|
2222 | } |
---|
2223 | } |
---|
2224 | else if (degF == 1 && degG == 0) |
---|
2225 | return mulMod (div (F, y), G, buf)*y + mulMod (mod (F, y), G, buf); |
---|
2226 | else if (degF == 0 && degG == 1) |
---|
2227 | return mulMod (div (G, y), F, buf)*y + mulMod (mod (G, y), F, buf); |
---|
2228 | else |
---|
2229 | return mulMod (F, G, buf); |
---|
2230 | } |
---|
2231 | int m= (int) ceil (degree (M)/2.0); |
---|
2232 | if (degF >= m || degG >= m) |
---|
2233 | { |
---|
2234 | CanonicalForm MLo= power (y, m); |
---|
2235 | CanonicalForm MHi= power (y, degree (M) - m); |
---|
2236 | CanonicalForm F0= mod (F, MLo); |
---|
2237 | CanonicalForm F1= div (F, MLo); |
---|
2238 | CanonicalForm G0= mod (G, MLo); |
---|
2239 | CanonicalForm G1= div (G, MLo); |
---|
2240 | CFList buf= MOD; |
---|
2241 | buf.removeLast(); |
---|
2242 | buf.append (MHi); |
---|
2243 | CanonicalForm F0G1= mulMod (F0, G1, buf); |
---|
2244 | CanonicalForm F1G0= mulMod (F1, G0, buf); |
---|
2245 | CanonicalForm F0G0= mulMod (F0, G0, MOD); |
---|
2246 | return F0G0 + MLo*(F0G1 + F1G0); |
---|
2247 | } |
---|
2248 | else |
---|
2249 | { |
---|
2250 | m= (int) ceil (tmax (degF, degG)/2.0); |
---|
2251 | CanonicalForm yToM= power (y, m); |
---|
2252 | CanonicalForm F0= mod (F, yToM); |
---|
2253 | CanonicalForm F1= div (F, yToM); |
---|
2254 | CanonicalForm G0= mod (G, yToM); |
---|
2255 | CanonicalForm G1= div (G, yToM); |
---|
2256 | CanonicalForm H00= mulMod (F0, G0, MOD); |
---|
2257 | CanonicalForm H11= mulMod (F1, G1, MOD); |
---|
2258 | CanonicalForm H01= mulMod (F0 + F1, G0 + G1, MOD); |
---|
2259 | return H11*yToM*yToM + (H01 - H11 - H00)*yToM + H00; |
---|
2260 | } |
---|
2261 | DEBOUTLN (cerr, "fatal end in mulMod"); |
---|
2262 | } |
---|
2263 | |
---|
2264 | CanonicalForm prodMod (const CFList& L, const CanonicalForm& M) |
---|
2265 | { |
---|
2266 | if (L.isEmpty()) |
---|
2267 | return 1; |
---|
2268 | int l= L.length(); |
---|
2269 | if (l == 1) |
---|
2270 | return mod (L.getFirst(), M); |
---|
2271 | else if (l == 2) { |
---|
2272 | CanonicalForm result= mulMod2 (L.getFirst(), L.getLast(), M); |
---|
2273 | return result; |
---|
2274 | } |
---|
2275 | else |
---|
2276 | { |
---|
2277 | l /= 2; |
---|
2278 | CFList tmp1, tmp2; |
---|
2279 | CFListIterator i= L; |
---|
2280 | CanonicalForm buf1, buf2; |
---|
2281 | for (int j= 1; j <= l; j++, i++) |
---|
2282 | tmp1.append (i.getItem()); |
---|
2283 | tmp2= Difference (L, tmp1); |
---|
2284 | buf1= prodMod (tmp1, M); |
---|
2285 | buf2= prodMod (tmp2, M); |
---|
2286 | CanonicalForm result= mulMod2 (buf1, buf2, M); |
---|
2287 | return result; |
---|
2288 | } |
---|
2289 | } |
---|
2290 | |
---|
2291 | CanonicalForm prodMod (const CFList& L, const CFList& M) |
---|
2292 | { |
---|
2293 | if (L.isEmpty()) |
---|
2294 | return 1; |
---|
2295 | else if (L.length() == 1) |
---|
2296 | return L.getFirst(); |
---|
2297 | else if (L.length() == 2) |
---|
2298 | return mulMod (L.getFirst(), L.getLast(), M); |
---|
2299 | else |
---|
2300 | { |
---|
2301 | int l= L.length()/2; |
---|
2302 | CFListIterator i= L; |
---|
2303 | CFList tmp1, tmp2; |
---|
2304 | CanonicalForm buf1, buf2; |
---|
2305 | for (int j= 1; j <= l; j++, i++) |
---|
2306 | tmp1.append (i.getItem()); |
---|
2307 | tmp2= Difference (L, tmp1); |
---|
2308 | buf1= prodMod (tmp1, M); |
---|
2309 | buf2= prodMod (tmp2, M); |
---|
2310 | return mulMod (buf1, buf2, M); |
---|
2311 | } |
---|
2312 | } |
---|
2313 | |
---|
2314 | // end multivariate polys |
---|
2315 | //*************************** |
---|
2316 | // division |
---|
2317 | |
---|
2318 | CanonicalForm reverse (const CanonicalForm& F, int d) |
---|
2319 | { |
---|
2320 | if (d == 0) |
---|
2321 | return F; |
---|
2322 | CanonicalForm A= F; |
---|
2323 | Variable y= Variable (2); |
---|
2324 | Variable x= Variable (1); |
---|
2325 | if (degree (A, x) > 0) |
---|
2326 | { |
---|
2327 | A= swapvar (A, x, y); |
---|
2328 | CanonicalForm result= 0; |
---|
2329 | CFIterator i= A; |
---|
2330 | while (d - i.exp() < 0) |
---|
2331 | i++; |
---|
2332 | |
---|
2333 | for (; i.hasTerms() && (d - i.exp() >= 0); i++) |
---|
2334 | result += swapvar (i.coeff(),x,y)*power (x, d - i.exp()); |
---|
2335 | return result; |
---|
2336 | } |
---|
2337 | else |
---|
2338 | return A*power (x, d); |
---|
2339 | } |
---|
2340 | |
---|
2341 | CanonicalForm |
---|
2342 | newtonInverse (const CanonicalForm& F, const int n, const CanonicalForm& M) |
---|
2343 | { |
---|
2344 | int l= ilog2(n); |
---|
2345 | |
---|
2346 | CanonicalForm g= mod (F, M)[0] [0]; |
---|
2347 | |
---|
2348 | ASSERT (!g.isZero(), "expected a unit"); |
---|
2349 | |
---|
2350 | Variable alpha; |
---|
2351 | |
---|
2352 | if (!g.isOne()) |
---|
2353 | g = 1/g; |
---|
2354 | Variable x= Variable (1); |
---|
2355 | CanonicalForm result; |
---|
2356 | int exp= 0; |
---|
2357 | if (n & 1) |
---|
2358 | { |
---|
2359 | result= g; |
---|
2360 | exp= 1; |
---|
2361 | } |
---|
2362 | CanonicalForm h; |
---|
2363 | |
---|
2364 | for (int i= 1; i <= l; i++) |
---|
2365 | { |
---|
2366 | h= mulMod2 (g, mod (F, power (x, (1 << i))), M); |
---|
2367 | h= mod (h, power (x, (1 << i)) - 1); |
---|
2368 | h= div (h, power (x, (1 << (i - 1)))); |
---|
2369 | h= mod (h, M); |
---|
2370 | g -= power (x, (1 << (i - 1)))* |
---|
2371 | mod (mulMod2 (g, h, M), power (x, (1 << (i - 1)))); |
---|
2372 | |
---|
2373 | if (n & (1 << i)) |
---|
2374 | { |
---|
2375 | if (exp) |
---|
2376 | { |
---|
2377 | h= mulMod2 (result, mod (F, power (x, exp + (1 << i))), M); |
---|
2378 | h= mod (h, power (x, exp + (1 << i)) - 1); |
---|
2379 | h= div (h, power (x, exp)); |
---|
2380 | h= mod (h, M); |
---|
2381 | result -= power(x, exp)*mod (mulMod2 (g, h, M), |
---|
2382 | power (x, (1 << i))); |
---|
2383 | exp += (1 << i); |
---|
2384 | } |
---|
2385 | else |
---|
2386 | { |
---|
2387 | exp= (1 << i); |
---|
2388 | result= g; |
---|
2389 | } |
---|
2390 | } |
---|
2391 | } |
---|
2392 | |
---|
2393 | return result; |
---|
2394 | } |
---|
2395 | |
---|
2396 | CanonicalForm |
---|
2397 | newtonDiv (const CanonicalForm& F, const CanonicalForm& G, const CanonicalForm& |
---|
2398 | M) |
---|
2399 | { |
---|
2400 | ASSERT (getCharacteristic() > 0, "positive characteristic expected"); |
---|
2401 | ASSERT (CFFactory::gettype() != GaloisFieldDomain, "no GF expected"); |
---|
2402 | |
---|
2403 | CanonicalForm A= mod (F, M); |
---|
2404 | CanonicalForm B= mod (G, M); |
---|
2405 | |
---|
2406 | Variable x= Variable (1); |
---|
2407 | int degA= degree (A, x); |
---|
2408 | int degB= degree (B, x); |
---|
2409 | int m= degA - degB; |
---|
2410 | if (m < 0) |
---|
2411 | return 0; |
---|
2412 | |
---|
2413 | Variable v; |
---|
2414 | CanonicalForm Q; |
---|
2415 | if (degB < 1 || CFFactory::gettype() == GaloisFieldDomain) |
---|
2416 | { |
---|
2417 | CanonicalForm R; |
---|
2418 | divrem2 (A, B, Q, R, M); |
---|
2419 | } |
---|
2420 | else |
---|
2421 | { |
---|
2422 | if (hasFirstAlgVar (A, v) || hasFirstAlgVar (B, v)) |
---|
2423 | { |
---|
2424 | CanonicalForm R= reverse (A, degA); |
---|
2425 | CanonicalForm revB= reverse (B, degB); |
---|
2426 | revB= newtonInverse (revB, m + 1, M); |
---|
2427 | Q= mulMod2 (R, revB, M); |
---|
2428 | Q= mod (Q, power (x, m + 1)); |
---|
2429 | Q= reverse (Q, m); |
---|
2430 | } |
---|
2431 | else |
---|
2432 | { |
---|
2433 | zz_pX mipo= convertFacCF2NTLzzpX (M); |
---|
2434 | Variable y= Variable (2); |
---|
2435 | zz_pEX NTLA, NTLB; |
---|
2436 | NTLA= convertFacCF2NTLzz_pEX (swapvar (A, x, y), mipo); |
---|
2437 | NTLB= convertFacCF2NTLzz_pEX (swapvar (B, x, y), mipo); |
---|
2438 | div (NTLA, NTLA, NTLB); |
---|
2439 | Q= convertNTLzz_pEX2CF (NTLA, x, y); |
---|
2440 | } |
---|
2441 | } |
---|
2442 | |
---|
2443 | return Q; |
---|
2444 | } |
---|
2445 | |
---|
2446 | void |
---|
2447 | newtonDivrem (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
2448 | CanonicalForm& R, const CanonicalForm& M) |
---|
2449 | { |
---|
2450 | CanonicalForm A= mod (F, M); |
---|
2451 | CanonicalForm B= mod (G, M); |
---|
2452 | Variable x= Variable (1); |
---|
2453 | int degA= degree (A, x); |
---|
2454 | int degB= degree (B, x); |
---|
2455 | int m= degA - degB; |
---|
2456 | |
---|
2457 | if (m < 0) |
---|
2458 | { |
---|
2459 | R= A; |
---|
2460 | Q= 0; |
---|
2461 | return; |
---|
2462 | } |
---|
2463 | |
---|
2464 | Variable v; |
---|
2465 | if (degB <= 1 || CFFactory::gettype() == GaloisFieldDomain) |
---|
2466 | { |
---|
2467 | divrem2 (A, B, Q, R, M); |
---|
2468 | } |
---|
2469 | else |
---|
2470 | { |
---|
2471 | if (hasFirstAlgVar (A, v) || hasFirstAlgVar (B, v)) |
---|
2472 | { |
---|
2473 | R= reverse (A, degA); |
---|
2474 | |
---|
2475 | CanonicalForm revB= reverse (B, degB); |
---|
2476 | revB= newtonInverse (revB, m + 1, M); |
---|
2477 | Q= mulMod2 (R, revB, M); |
---|
2478 | |
---|
2479 | Q= mod (Q, power (x, m + 1)); |
---|
2480 | Q= reverse (Q, m); |
---|
2481 | |
---|
2482 | R= A - mulMod2 (Q, B, M); |
---|
2483 | } |
---|
2484 | else |
---|
2485 | { |
---|
2486 | zz_pX mipo= convertFacCF2NTLzzpX (M); |
---|
2487 | Variable y= Variable (2); |
---|
2488 | zz_pEX NTLA, NTLB; |
---|
2489 | NTLA= convertFacCF2NTLzz_pEX (swapvar (A, x, y), mipo); |
---|
2490 | NTLB= convertFacCF2NTLzz_pEX (swapvar (B, x, y), mipo); |
---|
2491 | zz_pEX NTLQ, NTLR; |
---|
2492 | DivRem (NTLQ, NTLR, NTLA, NTLB); |
---|
2493 | Q= convertNTLzz_pEX2CF (NTLQ, x, y); |
---|
2494 | R= convertNTLzz_pEX2CF (NTLR, x, y); |
---|
2495 | } |
---|
2496 | } |
---|
2497 | } |
---|
2498 | |
---|
2499 | static inline |
---|
2500 | CFList split (const CanonicalForm& F, const int m, const Variable& x) |
---|
2501 | { |
---|
2502 | CanonicalForm A= F; |
---|
2503 | CanonicalForm buf= 0; |
---|
2504 | bool swap= false; |
---|
2505 | if (degree (A, x) <= 0) |
---|
2506 | return CFList(A); |
---|
2507 | else if (x.level() != A.level()) |
---|
2508 | { |
---|
2509 | swap= true; |
---|
2510 | A= swapvar (A, x, A.mvar()); |
---|
2511 | } |
---|
2512 | |
---|
2513 | int j= (int) floor ((double) degree (A)/ m); |
---|
2514 | CFList result; |
---|
2515 | CFIterator i= A; |
---|
2516 | for (; j >= 0; j--) |
---|
2517 | { |
---|
2518 | while (i.hasTerms() && i.exp() - j*m >= 0) |
---|
2519 | { |
---|
2520 | if (swap) |
---|
2521 | buf += i.coeff()*power (A.mvar(), i.exp() - j*m); |
---|
2522 | else |
---|
2523 | buf += i.coeff()*power (x, i.exp() - j*m); |
---|
2524 | i++; |
---|
2525 | } |
---|
2526 | if (swap) |
---|
2527 | result.append (swapvar (buf, x, F.mvar())); |
---|
2528 | else |
---|
2529 | result.append (buf); |
---|
2530 | buf= 0; |
---|
2531 | } |
---|
2532 | return result; |
---|
2533 | } |
---|
2534 | |
---|
2535 | static inline |
---|
2536 | void divrem32 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
2537 | CanonicalForm& R, const CFList& M); |
---|
2538 | |
---|
2539 | static inline |
---|
2540 | void divrem21 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
2541 | CanonicalForm& R, const CFList& M) |
---|
2542 | { |
---|
2543 | CanonicalForm A= mod (F, M); |
---|
2544 | CanonicalForm B= mod (G, M); |
---|
2545 | Variable x= Variable (1); |
---|
2546 | int degB= degree (B, x); |
---|
2547 | int degA= degree (A, x); |
---|
2548 | if (degA < degB) |
---|
2549 | { |
---|
2550 | Q= 0; |
---|
2551 | R= A; |
---|
2552 | return; |
---|
2553 | } |
---|
2554 | ASSERT (2*degB > degA, "expected degree (F, 1) < 2*degree (G, 1)"); |
---|
2555 | if (degB < 1) |
---|
2556 | { |
---|
2557 | divrem (A, B, Q, R); |
---|
2558 | Q= mod (Q, M); |
---|
2559 | R= mod (R, M); |
---|
2560 | return; |
---|
2561 | } |
---|
2562 | |
---|
2563 | int m= (int) ceil ((double) (degB + 1)/2.0) + 1; |
---|
2564 | CFList splitA= split (A, m, x); |
---|
2565 | if (splitA.length() == 3) |
---|
2566 | splitA.insert (0); |
---|
2567 | if (splitA.length() == 2) |
---|
2568 | { |
---|
2569 | splitA.insert (0); |
---|
2570 | splitA.insert (0); |
---|
2571 | } |
---|
2572 | if (splitA.length() == 1) |
---|
2573 | { |
---|
2574 | splitA.insert (0); |
---|
2575 | splitA.insert (0); |
---|
2576 | splitA.insert (0); |
---|
2577 | } |
---|
2578 | |
---|
2579 | CanonicalForm xToM= power (x, m); |
---|
2580 | |
---|
2581 | CFListIterator i= splitA; |
---|
2582 | CanonicalForm H= i.getItem(); |
---|
2583 | i++; |
---|
2584 | H *= xToM; |
---|
2585 | H += i.getItem(); |
---|
2586 | i++; |
---|
2587 | H *= xToM; |
---|
2588 | H += i.getItem(); |
---|
2589 | i++; |
---|
2590 | |
---|
2591 | divrem32 (H, B, Q, R, M); |
---|
2592 | |
---|
2593 | CFList splitR= split (R, m, x); |
---|
2594 | if (splitR.length() == 1) |
---|
2595 | splitR.insert (0); |
---|
2596 | |
---|
2597 | H= splitR.getFirst(); |
---|
2598 | H *= xToM; |
---|
2599 | H += splitR.getLast(); |
---|
2600 | H *= xToM; |
---|
2601 | H += i.getItem(); |
---|
2602 | |
---|
2603 | CanonicalForm bufQ; |
---|
2604 | divrem32 (H, B, bufQ, R, M); |
---|
2605 | |
---|
2606 | Q *= xToM; |
---|
2607 | Q += bufQ; |
---|
2608 | return; |
---|
2609 | } |
---|
2610 | |
---|
2611 | static inline |
---|
2612 | void divrem32 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
2613 | CanonicalForm& R, const CFList& M) |
---|
2614 | { |
---|
2615 | CanonicalForm A= mod (F, M); |
---|
2616 | CanonicalForm B= mod (G, M); |
---|
2617 | Variable x= Variable (1); |
---|
2618 | int degB= degree (B, x); |
---|
2619 | int degA= degree (A, x); |
---|
2620 | if (degA < degB) |
---|
2621 | { |
---|
2622 | Q= 0; |
---|
2623 | R= A; |
---|
2624 | return; |
---|
2625 | } |
---|
2626 | ASSERT (3*(degB/2) > degA, "expected degree (F, 1) < 3*(degree (G, 1)/2)"); |
---|
2627 | if (degB < 1) |
---|
2628 | { |
---|
2629 | divrem (A, B, Q, R); |
---|
2630 | Q= mod (Q, M); |
---|
2631 | R= mod (R, M); |
---|
2632 | return; |
---|
2633 | } |
---|
2634 | int m= (int) ceil ((double) (degB + 1)/ 2.0); |
---|
2635 | |
---|
2636 | CFList splitA= split (A, m, x); |
---|
2637 | CFList splitB= split (B, m, x); |
---|
2638 | |
---|
2639 | if (splitA.length() == 2) |
---|
2640 | { |
---|
2641 | splitA.insert (0); |
---|
2642 | } |
---|
2643 | if (splitA.length() == 1) |
---|
2644 | { |
---|
2645 | splitA.insert (0); |
---|
2646 | splitA.insert (0); |
---|
2647 | } |
---|
2648 | CanonicalForm xToM= power (x, m); |
---|
2649 | |
---|
2650 | CanonicalForm H; |
---|
2651 | CFListIterator i= splitA; |
---|
2652 | i++; |
---|
2653 | |
---|
2654 | if (degree (splitA.getFirst(), x) < degree (splitB.getFirst(), x)) |
---|
2655 | { |
---|
2656 | H= splitA.getFirst()*xToM + i.getItem(); |
---|
2657 | divrem21 (H, splitB.getFirst(), Q, R, M); |
---|
2658 | } |
---|
2659 | else |
---|
2660 | { |
---|
2661 | R= splitA.getFirst()*xToM + i.getItem() + splitB.getFirst() - |
---|
2662 | splitB.getFirst()*xToM; |
---|
2663 | Q= xToM - 1; |
---|
2664 | } |
---|
2665 | |
---|
2666 | H= mulMod (Q, splitB.getLast(), M); |
---|
2667 | |
---|
2668 | R= R*xToM + splitA.getLast() - H; |
---|
2669 | |
---|
2670 | while (degree (R, x) >= degB) |
---|
2671 | { |
---|
2672 | xToM= power (x, degree (R, x) - degB); |
---|
2673 | Q += LC (R, x)*xToM; |
---|
2674 | R -= mulMod (LC (R, x), B, M)*xToM; |
---|
2675 | Q= mod (Q, M); |
---|
2676 | R= mod (R, M); |
---|
2677 | } |
---|
2678 | |
---|
2679 | return; |
---|
2680 | } |
---|
2681 | |
---|
2682 | void divrem2 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
2683 | CanonicalForm& R, const CanonicalForm& M) |
---|
2684 | { |
---|
2685 | CanonicalForm A= mod (F, M); |
---|
2686 | CanonicalForm B= mod (G, M); |
---|
2687 | |
---|
2688 | if (B.inCoeffDomain()) |
---|
2689 | { |
---|
2690 | divrem (A, B, Q, R); |
---|
2691 | return; |
---|
2692 | } |
---|
2693 | if (A.inCoeffDomain() && !B.inCoeffDomain()) |
---|
2694 | { |
---|
2695 | Q= 0; |
---|
2696 | R= A; |
---|
2697 | return; |
---|
2698 | } |
---|
2699 | |
---|
2700 | if (B.level() < A.level()) |
---|
2701 | { |
---|
2702 | divrem (A, B, Q, R); |
---|
2703 | return; |
---|
2704 | } |
---|
2705 | if (A.level() > B.level()) |
---|
2706 | { |
---|
2707 | R= A; |
---|
2708 | Q= 0; |
---|
2709 | return; |
---|
2710 | } |
---|
2711 | if (B.level() == 1 && B.isUnivariate()) |
---|
2712 | { |
---|
2713 | divrem (A, B, Q, R); |
---|
2714 | return; |
---|
2715 | } |
---|
2716 | if (!(B.level() == 1 && B.isUnivariate()) && |
---|
2717 | (A.level() == 1 && A.isUnivariate())) |
---|
2718 | { |
---|
2719 | Q= 0; |
---|
2720 | R= A; |
---|
2721 | return; |
---|
2722 | } |
---|
2723 | |
---|
2724 | Variable x= Variable (1); |
---|
2725 | int degB= degree (B, x); |
---|
2726 | if (degB > degree (A, x)) |
---|
2727 | { |
---|
2728 | Q= 0; |
---|
2729 | R= A; |
---|
2730 | return; |
---|
2731 | } |
---|
2732 | |
---|
2733 | CFList splitA= split (A, degB, x); |
---|
2734 | |
---|
2735 | CanonicalForm xToDegB= power (x, degB); |
---|
2736 | CanonicalForm H, bufQ; |
---|
2737 | Q= 0; |
---|
2738 | CFListIterator i= splitA; |
---|
2739 | H= i.getItem()*xToDegB; |
---|
2740 | i++; |
---|
2741 | H += i.getItem(); |
---|
2742 | CFList buf; |
---|
2743 | while (i.hasItem()) |
---|
2744 | { |
---|
2745 | buf= CFList (M); |
---|
2746 | divrem21 (H, B, bufQ, R, buf); |
---|
2747 | i++; |
---|
2748 | if (i.hasItem()) |
---|
2749 | H= R*xToDegB + i.getItem(); |
---|
2750 | Q *= xToDegB; |
---|
2751 | Q += bufQ; |
---|
2752 | } |
---|
2753 | return; |
---|
2754 | } |
---|
2755 | |
---|
2756 | void divrem (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
2757 | CanonicalForm& R, const CFList& MOD) |
---|
2758 | { |
---|
2759 | CanonicalForm A= mod (F, MOD); |
---|
2760 | CanonicalForm B= mod (G, MOD); |
---|
2761 | Variable x= Variable (1); |
---|
2762 | int degB= degree (B, x); |
---|
2763 | if (degB > degree (A, x)) |
---|
2764 | { |
---|
2765 | Q= 0; |
---|
2766 | R= A; |
---|
2767 | return; |
---|
2768 | } |
---|
2769 | |
---|
2770 | if (degB <= 0) |
---|
2771 | { |
---|
2772 | divrem (A, B, Q, R); |
---|
2773 | Q= mod (Q, MOD); |
---|
2774 | R= mod (R, MOD); |
---|
2775 | return; |
---|
2776 | } |
---|
2777 | CFList splitA= split (A, degB, x); |
---|
2778 | |
---|
2779 | CanonicalForm xToDegB= power (x, degB); |
---|
2780 | CanonicalForm H, bufQ; |
---|
2781 | Q= 0; |
---|
2782 | CFListIterator i= splitA; |
---|
2783 | H= i.getItem()*xToDegB; |
---|
2784 | i++; |
---|
2785 | H += i.getItem(); |
---|
2786 | while (i.hasItem()) |
---|
2787 | { |
---|
2788 | divrem21 (H, B, bufQ, R, MOD); |
---|
2789 | i++; |
---|
2790 | if (i.hasItem()) |
---|
2791 | H= R*xToDegB + i.getItem(); |
---|
2792 | Q *= xToDegB; |
---|
2793 | Q += bufQ; |
---|
2794 | } |
---|
2795 | return; |
---|
2796 | } |
---|
2797 | |
---|
2798 | bool |
---|
2799 | uniFdivides (const CanonicalForm& A, const CanonicalForm& B) |
---|
2800 | { |
---|
2801 | if (B.isZero()) |
---|
2802 | return true; |
---|
2803 | if (A.isZero()) |
---|
2804 | return false; |
---|
2805 | if (CFFactory::gettype() == GaloisFieldDomain) |
---|
2806 | return fdivides (A, B); |
---|
2807 | int p= getCharacteristic(); |
---|
2808 | if (p > 0) |
---|
2809 | { |
---|
2810 | zz_p::init (p); |
---|
2811 | Variable alpha; |
---|
2812 | if (hasFirstAlgVar (A, alpha) || hasFirstAlgVar (B, alpha)) |
---|
2813 | { |
---|
2814 | if (A.inCoeffDomain() || B.inCoeffDomain()) |
---|
2815 | { |
---|
2816 | if (A.inCoeffDomain()) |
---|
2817 | return true; |
---|
2818 | else |
---|
2819 | return false; |
---|
2820 | } |
---|
2821 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
2822 | zz_pE::init (NTLMipo); |
---|
2823 | zz_pEX NTLA= convertFacCF2NTLzz_pEX (A, NTLMipo); |
---|
2824 | zz_pEX NTLB= convertFacCF2NTLzz_pEX (B, NTLMipo); |
---|
2825 | return divide (NTLB, NTLA); |
---|
2826 | } |
---|
2827 | #ifdef HAVE_FLINT |
---|
2828 | nmod_poly_t FLINTA, FLINTB; |
---|
2829 | convertFacCF2nmod_poly_t (FLINTA, A); |
---|
2830 | convertFacCF2nmod_poly_t (FLINTB, B); |
---|
2831 | nmod_poly_rem (FLINTA, FLINTB, FLINTA); |
---|
2832 | bool result= nmod_poly_is_zero (FLINTA); |
---|
2833 | nmod_poly_clear (FLINTA); |
---|
2834 | nmod_poly_clear (FLINTB); |
---|
2835 | return result; |
---|
2836 | #else |
---|
2837 | zz_pX NTLA= convertFacCF2NTLzzpX (A); |
---|
2838 | zz_pX NTLB= convertFacCF2NTLzzpX (B); |
---|
2839 | return divide (NTLB, NTLA); |
---|
2840 | #endif |
---|
2841 | } |
---|
2842 | #ifdef HAVE_FLINT |
---|
2843 | Variable alpha; |
---|
2844 | if (!hasFirstAlgVar (A, alpha) && !hasFirstAlgVar (B, alpha)) |
---|
2845 | { |
---|
2846 | fmpq_poly_t FLINTA,FLINTB; |
---|
2847 | convertFacCF2Fmpq_poly_t (FLINTA, A); |
---|
2848 | convertFacCF2Fmpq_poly_t (FLINTB, B); |
---|
2849 | fmpq_poly_rem (FLINTA, FLINTB, FLINTA); |
---|
2850 | bool result= fmpq_poly_is_zero (FLINTA); |
---|
2851 | fmpq_poly_clear (FLINTA); |
---|
2852 | fmpq_poly_clear (FLINTB); |
---|
2853 | return result; |
---|
2854 | } |
---|
2855 | bool isRat= isOn (SW_RATIONAL); |
---|
2856 | if (!isRat) |
---|
2857 | On (SW_RATIONAL); |
---|
2858 | CanonicalForm Q, R; |
---|
2859 | Variable x= Variable (1); |
---|
2860 | Variable y= Variable (2); |
---|
2861 | newtonDivrem (swapvar (B, y, x), swapvar (A, y, x), Q, R); |
---|
2862 | if (!isRat) |
---|
2863 | Off (SW_RATIONAL); |
---|
2864 | return R.isZero(); |
---|
2865 | #else |
---|
2866 | bool isRat= isOn (SW_RATIONAL); |
---|
2867 | if (!isRat) |
---|
2868 | On (SW_RATIONAL); |
---|
2869 | bool result= fdivides (A, B); |
---|
2870 | if (!isRat) |
---|
2871 | Off (SW_RATIONAL); |
---|
2872 | return result; //maybe NTL? |
---|
2873 | #endif |
---|
2874 | } |
---|
2875 | |
---|
2876 | // end division |
---|
2877 | |
---|
2878 | #endif |
---|