1 | /*****************************************************************************\ |
---|
2 | * Computer Algebra System SINGULAR |
---|
3 | \*****************************************************************************/ |
---|
4 | /** @file facMul.cc |
---|
5 | * |
---|
6 | * This file implements functions for fast multiplication and division with |
---|
7 | * remainder |
---|
8 | * |
---|
9 | * @author Martin Lee |
---|
10 | * |
---|
11 | **/ |
---|
12 | /*****************************************************************************/ |
---|
13 | |
---|
14 | #include "debug.h" |
---|
15 | |
---|
16 | #include "canonicalform.h" |
---|
17 | #include "facMul.h" |
---|
18 | #include "algext.h" |
---|
19 | #include "cf_util.h" |
---|
20 | #include "templates/ftmpl_functions.h" |
---|
21 | |
---|
22 | #ifdef HAVE_NTL |
---|
23 | #include <NTL/lzz_pEX.h> |
---|
24 | #include "NTLconvert.h" |
---|
25 | |
---|
26 | #ifdef HAVE_FLINT |
---|
27 | #include "FLINTconvert.h" |
---|
28 | #endif |
---|
29 | |
---|
30 | // univariate polys |
---|
31 | |
---|
32 | #ifdef HAVE_FLINT |
---|
33 | void kronSub (fmpz_poly_t result, const CanonicalForm& A, int d) |
---|
34 | { |
---|
35 | int degAy= degree (A); |
---|
36 | fmpz_poly_init2 (result, d*(degAy + 1)); |
---|
37 | _fmpz_poly_set_length (result, d*(degAy + 1)); |
---|
38 | CFIterator j; |
---|
39 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
40 | { |
---|
41 | if (i.coeff().inBaseDomain()) |
---|
42 | convertCF2Fmpz (fmpz_poly_get_coeff_ptr (result, i.exp()*d), i.coeff()); |
---|
43 | else |
---|
44 | for (j= i.coeff(); j.hasTerms(); j++) |
---|
45 | convertCF2Fmpz (fmpz_poly_get_coeff_ptr (result, i.exp()*d+j.exp()), |
---|
46 | j.coeff()); |
---|
47 | } |
---|
48 | _fmpz_poly_normalise(result); |
---|
49 | } |
---|
50 | |
---|
51 | |
---|
52 | CanonicalForm |
---|
53 | reverseSubstQa (const fmpz_poly_t F, int d, const Variable& alpha, |
---|
54 | const CanonicalForm& den) |
---|
55 | { |
---|
56 | Variable x= Variable (1); |
---|
57 | |
---|
58 | CanonicalForm result= 0; |
---|
59 | int i= 0; |
---|
60 | int degf= fmpz_poly_degree (F); |
---|
61 | int k= 0; |
---|
62 | int degfSubK; |
---|
63 | int repLength, j; |
---|
64 | CanonicalForm coeff, ff; |
---|
65 | fmpz* tmp; |
---|
66 | while (degf >= k) |
---|
67 | { |
---|
68 | coeff= 0; |
---|
69 | degfSubK= degf - k; |
---|
70 | if (degfSubK >= d) |
---|
71 | repLength= d; |
---|
72 | else |
---|
73 | repLength= degfSubK + 1; |
---|
74 | |
---|
75 | for (j= 0; j < repLength; j++) |
---|
76 | { |
---|
77 | tmp= fmpz_poly_get_coeff_ptr (F, j+k); |
---|
78 | if (!fmpz_is_zero (tmp)) |
---|
79 | { |
---|
80 | ff= convertFmpz2CF (tmp); |
---|
81 | coeff += ff*power (alpha, j); //TODO faster reduction mod alpha |
---|
82 | } |
---|
83 | } |
---|
84 | result += coeff*power (x, i); |
---|
85 | i++; |
---|
86 | k= d*i; |
---|
87 | } |
---|
88 | result /= den; |
---|
89 | return result; |
---|
90 | } |
---|
91 | |
---|
92 | CanonicalForm |
---|
93 | mulFLINTQa (const CanonicalForm& F, const CanonicalForm& G, |
---|
94 | const Variable& alpha) |
---|
95 | { |
---|
96 | CanonicalForm A= F; |
---|
97 | CanonicalForm B= G; |
---|
98 | |
---|
99 | CanonicalForm denA= bCommonDen (A); |
---|
100 | CanonicalForm denB= bCommonDen (B); |
---|
101 | |
---|
102 | A *= denA; |
---|
103 | B *= denB; |
---|
104 | int degAa= degree (A, alpha); |
---|
105 | int degBa= degree (B, alpha); |
---|
106 | int d= degAa + 1 + degBa; |
---|
107 | |
---|
108 | fmpz_poly_t FLINTA,FLINTB; |
---|
109 | fmpz_poly_init (FLINTA); |
---|
110 | fmpz_poly_init (FLINTB); |
---|
111 | kronSub (FLINTA, A, d); |
---|
112 | kronSub (FLINTB, B, d); |
---|
113 | |
---|
114 | fmpz_poly_mul (FLINTA, FLINTA, FLINTB); |
---|
115 | |
---|
116 | denA *= denB; |
---|
117 | A= reverseSubstQa (FLINTA, d, alpha, denA); |
---|
118 | |
---|
119 | fmpz_poly_clear (FLINTA); |
---|
120 | fmpz_poly_clear (FLINTB); |
---|
121 | return A; |
---|
122 | } |
---|
123 | |
---|
124 | CanonicalForm |
---|
125 | mulFLINTQ (const CanonicalForm& F, const CanonicalForm& G) |
---|
126 | { |
---|
127 | CanonicalForm A= F; |
---|
128 | CanonicalForm B= G; |
---|
129 | |
---|
130 | CanonicalForm denA= bCommonDen (A); |
---|
131 | CanonicalForm denB= bCommonDen (B); |
---|
132 | |
---|
133 | A *= denA; |
---|
134 | B *= denB; |
---|
135 | fmpz_poly_t FLINTA,FLINTB; |
---|
136 | convertFacCF2Fmpz_poly_t (FLINTA, A); |
---|
137 | convertFacCF2Fmpz_poly_t (FLINTB, B); |
---|
138 | fmpz_poly_mul (FLINTA, FLINTA, FLINTB); |
---|
139 | denA *= denB; |
---|
140 | A= convertFmpz_poly_t2FacCF (FLINTA, F.mvar()); |
---|
141 | A /= denA; |
---|
142 | fmpz_poly_clear (FLINTA); |
---|
143 | fmpz_poly_clear (FLINTB); |
---|
144 | |
---|
145 | return A; |
---|
146 | } |
---|
147 | |
---|
148 | /*CanonicalForm |
---|
149 | mulFLINTQ2 (const CanonicalForm& F, const CanonicalForm& G) |
---|
150 | { |
---|
151 | CanonicalForm A= F; |
---|
152 | CanonicalForm B= G; |
---|
153 | |
---|
154 | fmpq_poly_t FLINTA,FLINTB; |
---|
155 | convertFacCF2Fmpq_poly_t (FLINTA, A); |
---|
156 | convertFacCF2Fmpq_poly_t (FLINTB, B); |
---|
157 | |
---|
158 | fmpq_poly_mul (FLINTA, FLINTA, FLINTB); |
---|
159 | A= convertFmpq_poly_t2FacCF (FLINTA, F.mvar()); |
---|
160 | fmpq_poly_clear (FLINTA); |
---|
161 | fmpq_poly_clear (FLINTB); |
---|
162 | return A; |
---|
163 | }*/ |
---|
164 | |
---|
165 | CanonicalForm |
---|
166 | divFLINTQ (const CanonicalForm& F, const CanonicalForm& G) |
---|
167 | { |
---|
168 | CanonicalForm A= F; |
---|
169 | CanonicalForm B= G; |
---|
170 | |
---|
171 | fmpq_poly_t FLINTA,FLINTB; |
---|
172 | convertFacCF2Fmpq_poly_t (FLINTA, A); |
---|
173 | convertFacCF2Fmpq_poly_t (FLINTB, B); |
---|
174 | |
---|
175 | fmpq_poly_div (FLINTA, FLINTA, FLINTB); |
---|
176 | A= convertFmpq_poly_t2FacCF (FLINTA, F.mvar()); |
---|
177 | |
---|
178 | fmpq_poly_clear (FLINTA); |
---|
179 | fmpq_poly_clear (FLINTB); |
---|
180 | return A; |
---|
181 | } |
---|
182 | |
---|
183 | CanonicalForm |
---|
184 | modFLINTQ (const CanonicalForm& F, const CanonicalForm& G) |
---|
185 | { |
---|
186 | CanonicalForm A= F; |
---|
187 | CanonicalForm B= G; |
---|
188 | |
---|
189 | fmpq_poly_t FLINTA,FLINTB; |
---|
190 | convertFacCF2Fmpq_poly_t (FLINTA, A); |
---|
191 | convertFacCF2Fmpq_poly_t (FLINTB, B); |
---|
192 | |
---|
193 | fmpq_poly_rem (FLINTA, FLINTA, FLINTB); |
---|
194 | A= convertFmpq_poly_t2FacCF (FLINTA, F.mvar()); |
---|
195 | |
---|
196 | fmpq_poly_clear (FLINTA); |
---|
197 | fmpq_poly_clear (FLINTB); |
---|
198 | return A; |
---|
199 | } |
---|
200 | |
---|
201 | CanonicalForm |
---|
202 | mulFLINTQaTrunc (const CanonicalForm& F, const CanonicalForm& G, |
---|
203 | const Variable& alpha, int m) |
---|
204 | { |
---|
205 | CanonicalForm A= F; |
---|
206 | CanonicalForm B= G; |
---|
207 | |
---|
208 | CanonicalForm denA= bCommonDen (A); |
---|
209 | CanonicalForm denB= bCommonDen (B); |
---|
210 | |
---|
211 | A *= denA; |
---|
212 | B *= denB; |
---|
213 | |
---|
214 | int degAa= degree (A, alpha); |
---|
215 | int degBa= degree (B, alpha); |
---|
216 | int d= degAa + 1 + degBa; |
---|
217 | |
---|
218 | fmpz_poly_t FLINTA,FLINTB; |
---|
219 | fmpz_poly_init (FLINTA); |
---|
220 | fmpz_poly_init (FLINTB); |
---|
221 | kronSub (FLINTA, A, d); |
---|
222 | kronSub (FLINTB, B, d); |
---|
223 | |
---|
224 | int k= d*m; |
---|
225 | fmpz_poly_mullow (FLINTA, FLINTA, FLINTB, k); |
---|
226 | |
---|
227 | denA *= denB; |
---|
228 | A= reverseSubstQa (FLINTA, d, alpha, denA); |
---|
229 | fmpz_poly_clear (FLINTA); |
---|
230 | fmpz_poly_clear (FLINTB); |
---|
231 | return A; |
---|
232 | } |
---|
233 | |
---|
234 | CanonicalForm |
---|
235 | mulFLINTQTrunc (const CanonicalForm& F, const CanonicalForm& G, int m) |
---|
236 | { |
---|
237 | if (F.inCoeffDomain() || G.inCoeffDomain()) |
---|
238 | return mod (F*G, power (Variable (1), m)); |
---|
239 | Variable alpha; |
---|
240 | if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) |
---|
241 | return mulFLINTQaTrunc (F, G, alpha, m); |
---|
242 | |
---|
243 | CanonicalForm A= F; |
---|
244 | CanonicalForm B= G; |
---|
245 | |
---|
246 | CanonicalForm denA= bCommonDen (A); |
---|
247 | CanonicalForm denB= bCommonDen (B); |
---|
248 | |
---|
249 | A *= denA; |
---|
250 | B *= denB; |
---|
251 | fmpz_poly_t FLINTA,FLINTB; |
---|
252 | convertFacCF2Fmpz_poly_t (FLINTA, A); |
---|
253 | convertFacCF2Fmpz_poly_t (FLINTB, B); |
---|
254 | fmpz_poly_mullow (FLINTA, FLINTA, FLINTB, m); |
---|
255 | denA *= denB; |
---|
256 | A= convertFmpz_poly_t2FacCF (FLINTA, F.mvar()); |
---|
257 | A /= denA; |
---|
258 | fmpz_poly_clear (FLINTA); |
---|
259 | fmpz_poly_clear (FLINTB); |
---|
260 | |
---|
261 | return A; |
---|
262 | } |
---|
263 | |
---|
264 | CanonicalForm uniReverse (const CanonicalForm& F, int d) |
---|
265 | { |
---|
266 | if (d == 0) |
---|
267 | return F; |
---|
268 | if (F.inCoeffDomain()) |
---|
269 | return F*power (Variable (1),d); |
---|
270 | Variable x= Variable (1); |
---|
271 | CanonicalForm result= 0; |
---|
272 | CFIterator i= F; |
---|
273 | while (d - i.exp() < 0) |
---|
274 | i++; |
---|
275 | |
---|
276 | for (; i.hasTerms() && (d - i.exp() >= 0); i++) |
---|
277 | result += i.coeff()*power (x, d - i.exp()); |
---|
278 | return result; |
---|
279 | } |
---|
280 | |
---|
281 | CanonicalForm |
---|
282 | newtonInverse (const CanonicalForm& F, const int n) |
---|
283 | { |
---|
284 | int l= ilog2(n); |
---|
285 | |
---|
286 | CanonicalForm g= F [0]; |
---|
287 | |
---|
288 | ASSERT (!g.isZero(), "expected a unit"); |
---|
289 | |
---|
290 | if (!g.isOne()) |
---|
291 | g = 1/g; |
---|
292 | Variable x= Variable (1); |
---|
293 | CanonicalForm result; |
---|
294 | int exp= 0; |
---|
295 | if (n & 1) |
---|
296 | { |
---|
297 | result= g; |
---|
298 | exp= 1; |
---|
299 | } |
---|
300 | CanonicalForm h; |
---|
301 | |
---|
302 | for (int i= 1; i <= l; i++) |
---|
303 | { |
---|
304 | h= mulNTL (g, mod (F, power (x, (1 << i)))); |
---|
305 | h= mod (h, power (x, (1 << i)) - 1); |
---|
306 | h= div (h, power (x, (1 << (i - 1)))); |
---|
307 | g -= power (x, (1 << (i - 1)))* |
---|
308 | mulFLINTQTrunc (g, h, 1 << (i-1)); |
---|
309 | |
---|
310 | if (n & (1 << i)) |
---|
311 | { |
---|
312 | if (exp) |
---|
313 | { |
---|
314 | h= mulNTL (result, mod (F, power (x, exp + (1 << i)))); |
---|
315 | h= mod (h, power (x, exp + (1 << i)) - 1); |
---|
316 | h= div (h, power (x, exp)); |
---|
317 | result -= power(x, exp)*mulFLINTQTrunc (g, h, 1 << i); |
---|
318 | exp += (1 << i); |
---|
319 | } |
---|
320 | else |
---|
321 | { |
---|
322 | exp= (1 << i); |
---|
323 | result= g; |
---|
324 | } |
---|
325 | } |
---|
326 | } |
---|
327 | |
---|
328 | return result; |
---|
329 | } |
---|
330 | |
---|
331 | void |
---|
332 | newtonDivrem (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
333 | CanonicalForm& R) |
---|
334 | { |
---|
335 | CanonicalForm A= F; |
---|
336 | CanonicalForm B= G; |
---|
337 | Variable x= Variable (1); |
---|
338 | int degA= degree (A, x); |
---|
339 | int degB= degree (B, x); |
---|
340 | int m= degA - degB; |
---|
341 | |
---|
342 | if (m < 0) |
---|
343 | { |
---|
344 | R= A; |
---|
345 | Q= 0; |
---|
346 | return; |
---|
347 | } |
---|
348 | |
---|
349 | if (degB <= 1) |
---|
350 | divrem (A, B, Q, R); |
---|
351 | else |
---|
352 | { |
---|
353 | R= uniReverse (A, degA); |
---|
354 | |
---|
355 | CanonicalForm revB= uniReverse (B, degB); |
---|
356 | CanonicalForm buf= revB; |
---|
357 | revB= newtonInverse (revB, m + 1); |
---|
358 | Q= mulFLINTQTrunc (R, revB, m + 1); |
---|
359 | Q= uniReverse (Q, m); |
---|
360 | |
---|
361 | R= A - mulNTL (Q, B); |
---|
362 | } |
---|
363 | } |
---|
364 | |
---|
365 | void |
---|
366 | newtonDiv (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q) |
---|
367 | { |
---|
368 | CanonicalForm A= F; |
---|
369 | CanonicalForm B= G; |
---|
370 | Variable x= Variable (1); |
---|
371 | int degA= degree (A, x); |
---|
372 | int degB= degree (B, x); |
---|
373 | int m= degA - degB; |
---|
374 | |
---|
375 | if (m < 0) |
---|
376 | { |
---|
377 | Q= 0; |
---|
378 | return; |
---|
379 | } |
---|
380 | |
---|
381 | if (degB <= 1) |
---|
382 | Q= div (A, B); |
---|
383 | else |
---|
384 | { |
---|
385 | CanonicalForm R= uniReverse (A, degA); |
---|
386 | |
---|
387 | CanonicalForm revB= uniReverse (B, degB); |
---|
388 | revB= newtonInverse (revB, m + 1); |
---|
389 | Q= mulFLINTQTrunc (R, revB, m + 1); |
---|
390 | Q= uniReverse (Q, m); |
---|
391 | } |
---|
392 | } |
---|
393 | |
---|
394 | #endif |
---|
395 | |
---|
396 | CanonicalForm |
---|
397 | mulNTL (const CanonicalForm& F, const CanonicalForm& G, const modpk& b) |
---|
398 | { |
---|
399 | if (F.inCoeffDomain() || G.inCoeffDomain() || getCharacteristic() == 0) |
---|
400 | { |
---|
401 | Variable alpha; |
---|
402 | #ifdef HAVE_FLINT |
---|
403 | if ((!F.inCoeffDomain() && !G.inCoeffDomain()) && |
---|
404 | (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha))) |
---|
405 | { |
---|
406 | CanonicalForm result= mulFLINTQa (F, G, alpha); |
---|
407 | return result; |
---|
408 | } |
---|
409 | else if (!F.inCoeffDomain() && !G.inCoeffDomain()) |
---|
410 | { |
---|
411 | if (b.getp() != 0) |
---|
412 | { |
---|
413 | fmpz_t FLINTpk; |
---|
414 | fmpz_init_set_ui (FLINTpk, b.getp()); |
---|
415 | fmpz_pow_ui (FLINTpk, FLINTpk, b.getk()); |
---|
416 | fmpz_mod_poly_t FLINTF, FLINTG; |
---|
417 | convertFacCF2Fmpz_mod_poly_t (FLINTF, F, FLINTpk); |
---|
418 | convertFacCF2Fmpz_mod_poly_t (FLINTG, G, FLINTpk); |
---|
419 | fmpz_mod_poly_mul (FLINTF, FLINTF, FLINTG); |
---|
420 | CanonicalForm result= convertFmpz_mod_poly_t2FacCF (FLINTF, F.mvar(), b); |
---|
421 | fmpz_mod_poly_clear (FLINTG); |
---|
422 | fmpz_mod_poly_clear (FLINTF); |
---|
423 | return result; |
---|
424 | } |
---|
425 | return mulFLINTQ (F, G); |
---|
426 | } |
---|
427 | #endif |
---|
428 | if (b.getp() != 0) |
---|
429 | return b (F*G); |
---|
430 | return F*G; |
---|
431 | } |
---|
432 | ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); |
---|
433 | ASSERT (F.level() == G.level(), "expected polys of same level"); |
---|
434 | if (CFFactory::gettype() == GaloisFieldDomain) |
---|
435 | return F*G; |
---|
436 | zz_p::init (getCharacteristic()); |
---|
437 | Variable alpha; |
---|
438 | CanonicalForm result; |
---|
439 | if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) |
---|
440 | { |
---|
441 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
442 | zz_pE::init (NTLMipo); |
---|
443 | zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); |
---|
444 | zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); |
---|
445 | mul (NTLF, NTLF, NTLG); |
---|
446 | result= convertNTLzz_pEX2CF(NTLF, F.mvar(), alpha); |
---|
447 | } |
---|
448 | else |
---|
449 | { |
---|
450 | #ifdef HAVE_FLINT |
---|
451 | nmod_poly_t FLINTF, FLINTG; |
---|
452 | convertFacCF2nmod_poly_t (FLINTF, F); |
---|
453 | convertFacCF2nmod_poly_t (FLINTG, G); |
---|
454 | nmod_poly_mul (FLINTF, FLINTF, FLINTG); |
---|
455 | result= convertnmod_poly_t2FacCF (FLINTF, F.mvar()); |
---|
456 | nmod_poly_clear (FLINTF); |
---|
457 | nmod_poly_clear (FLINTG); |
---|
458 | #else |
---|
459 | zz_pX NTLF= convertFacCF2NTLzzpX (F); |
---|
460 | zz_pX NTLG= convertFacCF2NTLzzpX (G); |
---|
461 | mul (NTLF, NTLF, NTLG); |
---|
462 | result= convertNTLzzpX2CF(NTLF, F.mvar()); |
---|
463 | #endif |
---|
464 | } |
---|
465 | return result; |
---|
466 | } |
---|
467 | |
---|
468 | CanonicalForm |
---|
469 | modNTL (const CanonicalForm& F, const CanonicalForm& G, const modpk& b) |
---|
470 | { |
---|
471 | if (F.inCoeffDomain() && G.isUnivariate()) |
---|
472 | { |
---|
473 | if (b.getp() != 0) |
---|
474 | return b(F); |
---|
475 | return F; |
---|
476 | } |
---|
477 | else if (F.inCoeffDomain() && G.inCoeffDomain()) |
---|
478 | { |
---|
479 | if (b.getp() != 0) |
---|
480 | return b(F%G); |
---|
481 | return mod (F, G); |
---|
482 | } |
---|
483 | else if (F.isUnivariate() && G.inCoeffDomain()) |
---|
484 | { |
---|
485 | if (b.getp() != 0) |
---|
486 | return b(F%G); |
---|
487 | return mod (F,G); |
---|
488 | } |
---|
489 | |
---|
490 | if (getCharacteristic() == 0) |
---|
491 | { |
---|
492 | #ifdef HAVE_FLINT |
---|
493 | Variable alpha; |
---|
494 | if (!hasFirstAlgVar (F, alpha) && !hasFirstAlgVar (G, alpha)) |
---|
495 | { |
---|
496 | if (b.getp() != 0) |
---|
497 | { |
---|
498 | fmpz_t FLINTpk; |
---|
499 | fmpz_init_set_ui (FLINTpk, b.getp()); |
---|
500 | fmpz_pow_ui (FLINTpk, FLINTpk, b.getk()); |
---|
501 | fmpz_mod_poly_t FLINTF, FLINTG; |
---|
502 | convertFacCF2Fmpz_mod_poly_t (FLINTF, F, FLINTpk); |
---|
503 | convertFacCF2Fmpz_mod_poly_t (FLINTG, G, FLINTpk); |
---|
504 | fmpz_mod_poly_rem (FLINTF, FLINTF, FLINTG); |
---|
505 | CanonicalForm result= convertFmpz_mod_poly_t2FacCF (FLINTF,F.mvar(),b); |
---|
506 | fmpz_mod_poly_clear (FLINTG); |
---|
507 | fmpz_mod_poly_clear (FLINTF); |
---|
508 | return result; |
---|
509 | } |
---|
510 | return modFLINTQ (F, G); |
---|
511 | } |
---|
512 | else |
---|
513 | { |
---|
514 | CanonicalForm Q, R; |
---|
515 | newtonDivrem (F, G, Q, R); |
---|
516 | return R; |
---|
517 | } |
---|
518 | #else |
---|
519 | if (b.getp() != 0) |
---|
520 | { |
---|
521 | ZZ NTLpk= power_ZZ (b.getp(), b.getk()); |
---|
522 | ZZ_p::init (NTLpk); |
---|
523 | ZZX ZZf= convertFacCF2NTLZZX (F); |
---|
524 | ZZX ZZg= convertFacCF2NTLZZX (G); |
---|
525 | ZZ_pX NTLf= to_ZZ_pX (ZZf); |
---|
526 | ZZ_pX NTLg= to_ZZ_pX (ZZg); |
---|
527 | rem (NTLf, NTLf, NTLg); |
---|
528 | return b (convertNTLZZX2CF (to_ZZX (NTLf), F.mvar())); |
---|
529 | } |
---|
530 | return mod (F, G); |
---|
531 | #endif |
---|
532 | } |
---|
533 | |
---|
534 | ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); |
---|
535 | ASSERT (F.level() == G.level(), "expected polys of same level"); |
---|
536 | if (CFFactory::gettype() == GaloisFieldDomain) |
---|
537 | return mod (F, G); |
---|
538 | zz_p::init (getCharacteristic()); |
---|
539 | Variable alpha; |
---|
540 | CanonicalForm result; |
---|
541 | if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) |
---|
542 | { |
---|
543 | zz_pX NTLMipo= convertFacCF2NTLzzpX(getMipo (alpha)); |
---|
544 | zz_pE::init (NTLMipo); |
---|
545 | zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); |
---|
546 | zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); |
---|
547 | rem (NTLF, NTLF, NTLG); |
---|
548 | result= convertNTLzz_pEX2CF(NTLF, F.mvar(), alpha); |
---|
549 | } |
---|
550 | else |
---|
551 | { |
---|
552 | #ifdef HAVE_FLINT |
---|
553 | nmod_poly_t FLINTF, FLINTG; |
---|
554 | convertFacCF2nmod_poly_t (FLINTF, F); |
---|
555 | convertFacCF2nmod_poly_t (FLINTG, G); |
---|
556 | nmod_poly_divrem (FLINTG, FLINTF, FLINTF, FLINTG); |
---|
557 | result= convertnmod_poly_t2FacCF (FLINTF, F.mvar()); |
---|
558 | nmod_poly_clear (FLINTF); |
---|
559 | nmod_poly_clear (FLINTG); |
---|
560 | #else |
---|
561 | zz_pX NTLF= convertFacCF2NTLzzpX (F); |
---|
562 | zz_pX NTLG= convertFacCF2NTLzzpX (G); |
---|
563 | rem (NTLF, NTLF, NTLG); |
---|
564 | result= convertNTLzzpX2CF(NTLF, F.mvar()); |
---|
565 | #endif |
---|
566 | } |
---|
567 | return result; |
---|
568 | } |
---|
569 | |
---|
570 | CanonicalForm |
---|
571 | divNTL (const CanonicalForm& F, const CanonicalForm& G, const modpk& b) |
---|
572 | { |
---|
573 | if (F.inCoeffDomain() && G.isUnivariate()) |
---|
574 | { |
---|
575 | if (b.getp() != 0) |
---|
576 | return b(F); |
---|
577 | return F; |
---|
578 | } |
---|
579 | else if (F.inCoeffDomain() && G.inCoeffDomain()) |
---|
580 | { |
---|
581 | if (b.getp() != 0) |
---|
582 | return b(div (F,G)); |
---|
583 | return div (F, G); |
---|
584 | } |
---|
585 | else if (F.isUnivariate() && G.inCoeffDomain()) |
---|
586 | { |
---|
587 | if (b.getp() != 0) |
---|
588 | return b(div (F,G)); |
---|
589 | return div (F, G); |
---|
590 | } |
---|
591 | |
---|
592 | if (getCharacteristic() == 0) |
---|
593 | { |
---|
594 | #ifdef HAVE_FLINT |
---|
595 | Variable alpha; |
---|
596 | if (!hasFirstAlgVar (F, alpha) && !hasFirstAlgVar (G, alpha)) |
---|
597 | { |
---|
598 | if (b.getp() != 0) |
---|
599 | { |
---|
600 | fmpz_t FLINTpk; |
---|
601 | fmpz_init_set_ui (FLINTpk, b.getp()); |
---|
602 | fmpz_pow_ui (FLINTpk, FLINTpk, b.getk()); |
---|
603 | fmpz_mod_poly_t FLINTF, FLINTG; |
---|
604 | convertFacCF2Fmpz_mod_poly_t (FLINTF, F, FLINTpk); |
---|
605 | convertFacCF2Fmpz_mod_poly_t (FLINTG, G, FLINTpk); |
---|
606 | fmpz_mod_poly_divrem (FLINTF, FLINTG, FLINTF, FLINTG); |
---|
607 | CanonicalForm result= convertFmpz_mod_poly_t2FacCF (FLINTF,F.mvar(),b); |
---|
608 | fmpz_mod_poly_clear (FLINTG); |
---|
609 | fmpz_mod_poly_clear (FLINTF); |
---|
610 | return result; |
---|
611 | } |
---|
612 | return divFLINTQ (F,G); |
---|
613 | } |
---|
614 | else |
---|
615 | { |
---|
616 | CanonicalForm Q; |
---|
617 | newtonDiv (F, G, Q); |
---|
618 | return Q; |
---|
619 | } |
---|
620 | #else |
---|
621 | if (b.getp() != 0) |
---|
622 | { |
---|
623 | ZZ NTLpk= power_ZZ (b.getp(), b.getk()); |
---|
624 | ZZ_p::init (NTLpk); |
---|
625 | ZZX ZZf= convertFacCF2NTLZZX (F); |
---|
626 | ZZX ZZg= convertFacCF2NTLZZX (G); |
---|
627 | ZZ_pX NTLf= to_ZZ_pX (ZZf); |
---|
628 | ZZ_pX NTLg= to_ZZ_pX (ZZg); |
---|
629 | div (NTLf, NTLf, NTLg); |
---|
630 | return b (convertNTLZZX2CF (to_ZZX (NTLf), F.mvar())); |
---|
631 | } |
---|
632 | return div (F, G); |
---|
633 | #endif |
---|
634 | } |
---|
635 | |
---|
636 | ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); |
---|
637 | ASSERT (F.level() == G.level(), "expected polys of same level"); |
---|
638 | if (CFFactory::gettype() == GaloisFieldDomain) |
---|
639 | return div (F, G); |
---|
640 | zz_p::init (getCharacteristic()); |
---|
641 | Variable alpha; |
---|
642 | CanonicalForm result; |
---|
643 | if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) |
---|
644 | { |
---|
645 | zz_pX NTLMipo= convertFacCF2NTLzzpX(getMipo (alpha)); |
---|
646 | zz_pE::init (NTLMipo); |
---|
647 | zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); |
---|
648 | zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); |
---|
649 | div (NTLF, NTLF, NTLG); |
---|
650 | result= convertNTLzz_pEX2CF(NTLF, F.mvar(), alpha); |
---|
651 | } |
---|
652 | else |
---|
653 | { |
---|
654 | #ifdef HAVE_FLINT |
---|
655 | nmod_poly_t FLINTF, FLINTG; |
---|
656 | convertFacCF2nmod_poly_t (FLINTF, F); |
---|
657 | convertFacCF2nmod_poly_t (FLINTG, G); |
---|
658 | nmod_poly_div (FLINTF, FLINTF, FLINTG); |
---|
659 | result= convertnmod_poly_t2FacCF (FLINTF, F.mvar()); |
---|
660 | nmod_poly_clear (FLINTF); |
---|
661 | nmod_poly_clear (FLINTG); |
---|
662 | #else |
---|
663 | zz_pX NTLF= convertFacCF2NTLzzpX (F); |
---|
664 | zz_pX NTLG= convertFacCF2NTLzzpX (G); |
---|
665 | div (NTLF, NTLF, NTLG); |
---|
666 | result= convertNTLzzpX2CF(NTLF, F.mvar()); |
---|
667 | #endif |
---|
668 | } |
---|
669 | return result; |
---|
670 | } |
---|
671 | |
---|
672 | // end univariate polys |
---|
673 | //************************* |
---|
674 | // bivariate polys |
---|
675 | |
---|
676 | #ifdef HAVE_FLINT |
---|
677 | void kronSubFp (nmod_poly_t result, const CanonicalForm& A, int d) |
---|
678 | { |
---|
679 | int degAy= degree (A); |
---|
680 | nmod_poly_init2 (result, getCharacteristic(), d*(degAy + 1)); |
---|
681 | |
---|
682 | nmod_poly_t buf; |
---|
683 | |
---|
684 | int j, k, bufRepLength; |
---|
685 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
686 | { |
---|
687 | convertFacCF2nmod_poly_t (buf, i.coeff()); |
---|
688 | |
---|
689 | k= i.exp()*d; |
---|
690 | bufRepLength= (int) nmod_poly_length (buf); |
---|
691 | for (j= 0; j < bufRepLength; j++) |
---|
692 | nmod_poly_set_coeff_ui (result, j + k, nmod_poly_get_coeff_ui (buf, j)); |
---|
693 | nmod_poly_clear (buf); |
---|
694 | } |
---|
695 | _nmod_poly_normalise (result); |
---|
696 | } |
---|
697 | |
---|
698 | void kronSubQa (fmpq_poly_t result, const CanonicalForm& A, int d1, int d2) |
---|
699 | { |
---|
700 | int degAy= degree (A); |
---|
701 | fmpq_poly_init2 (result, d1*(degAy + 1)); |
---|
702 | |
---|
703 | fmpq_poly_t buf; |
---|
704 | fmpq_t coeff; |
---|
705 | |
---|
706 | int k, l, bufRepLength; |
---|
707 | CFIterator j; |
---|
708 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
709 | { |
---|
710 | if (i.coeff().inCoeffDomain()) |
---|
711 | { |
---|
712 | k= d1*i.exp(); |
---|
713 | convertFacCF2Fmpq_poly_t (buf, i.coeff()); |
---|
714 | bufRepLength= (int) fmpq_poly_length(buf); |
---|
715 | for (l= 0; l < bufRepLength; l++) |
---|
716 | { |
---|
717 | fmpq_poly_get_coeff_fmpq (coeff, buf, l); |
---|
718 | fmpq_poly_set_coeff_fmpq (result, l + k, coeff); |
---|
719 | } |
---|
720 | fmpq_poly_clear (buf); |
---|
721 | } |
---|
722 | else |
---|
723 | { |
---|
724 | for (j= i.coeff(); j.hasTerms(); j++) |
---|
725 | { |
---|
726 | k= d1*i.exp(); |
---|
727 | k += d2*j.exp(); |
---|
728 | convertFacCF2Fmpq_poly_t (buf, j.coeff()); |
---|
729 | bufRepLength= (int) fmpq_poly_length(buf); |
---|
730 | for (l= 0; l < bufRepLength; l++) |
---|
731 | { |
---|
732 | fmpq_poly_get_coeff_fmpq (coeff, buf, l); |
---|
733 | fmpq_poly_set_coeff_fmpq (result, k + l, coeff); |
---|
734 | } |
---|
735 | fmpq_poly_clear (buf); |
---|
736 | } |
---|
737 | } |
---|
738 | } |
---|
739 | fmpq_clear (coeff); |
---|
740 | _fmpq_poly_normalise (result); |
---|
741 | } |
---|
742 | |
---|
743 | void |
---|
744 | kronSubReciproFp (nmod_poly_t subA1, nmod_poly_t subA2, const CanonicalForm& A, |
---|
745 | int d) |
---|
746 | { |
---|
747 | int degAy= degree (A); |
---|
748 | mp_limb_t ninv= n_preinvert_limb (getCharacteristic()); |
---|
749 | nmod_poly_init2_preinv (subA1, getCharacteristic(), ninv, d*(degAy + 2)); |
---|
750 | nmod_poly_init2_preinv (subA2, getCharacteristic(), ninv, d*(degAy + 2)); |
---|
751 | |
---|
752 | nmod_poly_t buf; |
---|
753 | |
---|
754 | int k, kk, j, bufRepLength; |
---|
755 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
756 | { |
---|
757 | convertFacCF2nmod_poly_t (buf, i.coeff()); |
---|
758 | |
---|
759 | k= i.exp()*d; |
---|
760 | kk= (degAy - i.exp())*d; |
---|
761 | bufRepLength= (int) nmod_poly_length (buf); |
---|
762 | for (j= 0; j < bufRepLength; j++) |
---|
763 | { |
---|
764 | nmod_poly_set_coeff_ui (subA1, j + k, |
---|
765 | n_addmod (nmod_poly_get_coeff_ui (subA1, j+k), |
---|
766 | nmod_poly_get_coeff_ui (buf, j), |
---|
767 | getCharacteristic() |
---|
768 | ) |
---|
769 | ); |
---|
770 | nmod_poly_set_coeff_ui (subA2, j + kk, |
---|
771 | n_addmod (nmod_poly_get_coeff_ui (subA2, j + kk), |
---|
772 | nmod_poly_get_coeff_ui (buf, j), |
---|
773 | getCharacteristic() |
---|
774 | ) |
---|
775 | ); |
---|
776 | } |
---|
777 | nmod_poly_clear (buf); |
---|
778 | } |
---|
779 | _nmod_poly_normalise (subA1); |
---|
780 | _nmod_poly_normalise (subA2); |
---|
781 | } |
---|
782 | |
---|
783 | void |
---|
784 | kronSubReciproQ (fmpz_poly_t subA1, fmpz_poly_t subA2, const CanonicalForm& A, |
---|
785 | int d) |
---|
786 | { |
---|
787 | int degAy= degree (A); |
---|
788 | fmpz_poly_init2 (subA1, d*(degAy + 2)); |
---|
789 | fmpz_poly_init2 (subA2, d*(degAy + 2)); |
---|
790 | |
---|
791 | fmpz_poly_t buf; |
---|
792 | fmpz_t coeff1, coeff2; |
---|
793 | |
---|
794 | int k, kk, j, bufRepLength; |
---|
795 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
796 | { |
---|
797 | convertFacCF2Fmpz_poly_t (buf, i.coeff()); |
---|
798 | |
---|
799 | k= i.exp()*d; |
---|
800 | kk= (degAy - i.exp())*d; |
---|
801 | bufRepLength= (int) fmpz_poly_length (buf); |
---|
802 | for (j= 0; j < bufRepLength; j++) |
---|
803 | { |
---|
804 | fmpz_poly_get_coeff_fmpz (coeff1, subA1, j+k); |
---|
805 | fmpz_poly_get_coeff_fmpz (coeff2, buf, j); |
---|
806 | fmpz_add (coeff1, coeff1, coeff2); |
---|
807 | fmpz_poly_set_coeff_fmpz (subA1, j + k, coeff1); |
---|
808 | fmpz_poly_get_coeff_fmpz (coeff1, subA2, j + kk); |
---|
809 | fmpz_add (coeff1, coeff1, coeff2); |
---|
810 | fmpz_poly_set_coeff_fmpz (subA2, j + kk, coeff1); |
---|
811 | } |
---|
812 | fmpz_poly_clear (buf); |
---|
813 | } |
---|
814 | fmpz_clear (coeff1); |
---|
815 | fmpz_clear (coeff2); |
---|
816 | _fmpz_poly_normalise (subA1); |
---|
817 | _fmpz_poly_normalise (subA2); |
---|
818 | } |
---|
819 | |
---|
820 | CanonicalForm reverseSubstQ (const fmpz_poly_t F, int d) |
---|
821 | { |
---|
822 | Variable y= Variable (2); |
---|
823 | Variable x= Variable (1); |
---|
824 | |
---|
825 | fmpz_poly_t f; |
---|
826 | fmpz_poly_init (f); |
---|
827 | fmpz_poly_set (f, F); |
---|
828 | |
---|
829 | fmpz_poly_t buf; |
---|
830 | CanonicalForm result= 0; |
---|
831 | int i= 0; |
---|
832 | int degf= fmpz_poly_degree(f); |
---|
833 | int k= 0; |
---|
834 | int degfSubK, repLength, j; |
---|
835 | fmpz_t coeff; |
---|
836 | while (degf >= k) |
---|
837 | { |
---|
838 | degfSubK= degf - k; |
---|
839 | if (degfSubK >= d) |
---|
840 | repLength= d; |
---|
841 | else |
---|
842 | repLength= degfSubK + 1; |
---|
843 | |
---|
844 | fmpz_poly_init2 (buf, repLength); |
---|
845 | fmpz_init (coeff); |
---|
846 | for (j= 0; j < repLength; j++) |
---|
847 | { |
---|
848 | fmpz_poly_get_coeff_fmpz (coeff, f, j + k); |
---|
849 | fmpz_poly_set_coeff_fmpz (buf, j, coeff); |
---|
850 | } |
---|
851 | _fmpz_poly_normalise (buf); |
---|
852 | |
---|
853 | result += convertFmpz_poly_t2FacCF (buf, x)*power (y, i); |
---|
854 | i++; |
---|
855 | k= d*i; |
---|
856 | fmpz_poly_clear (buf); |
---|
857 | fmpz_clear (coeff); |
---|
858 | } |
---|
859 | fmpz_poly_clear (f); |
---|
860 | |
---|
861 | return result; |
---|
862 | } |
---|
863 | |
---|
864 | CanonicalForm |
---|
865 | reverseSubstQa (const fmpq_poly_t F, int d1, int d2, const Variable& alpha, |
---|
866 | const fmpq_poly_t mipo) |
---|
867 | { |
---|
868 | Variable y= Variable (2); |
---|
869 | Variable x= Variable (1); |
---|
870 | |
---|
871 | fmpq_poly_t f; |
---|
872 | fmpq_poly_init (f); |
---|
873 | fmpq_poly_set (f, F); |
---|
874 | |
---|
875 | fmpq_poly_t buf; |
---|
876 | CanonicalForm result= 0, result2; |
---|
877 | int i= 0; |
---|
878 | int degf= fmpq_poly_degree(f); |
---|
879 | int k= 0; |
---|
880 | int degfSubK; |
---|
881 | int repLength; |
---|
882 | fmpq_t coeff; |
---|
883 | while (degf >= k) |
---|
884 | { |
---|
885 | degfSubK= degf - k; |
---|
886 | if (degfSubK >= d1) |
---|
887 | repLength= d1; |
---|
888 | else |
---|
889 | repLength= degfSubK + 1; |
---|
890 | |
---|
891 | fmpq_init (coeff); |
---|
892 | int j= 0; |
---|
893 | int l; |
---|
894 | result2= 0; |
---|
895 | while (j*d2 < repLength) |
---|
896 | { |
---|
897 | fmpq_poly_init2 (buf, d2); |
---|
898 | for (l= 0; l < d2; l++) |
---|
899 | { |
---|
900 | fmpq_poly_get_coeff_fmpq (coeff, f, k + j*d2 + l); |
---|
901 | fmpq_poly_set_coeff_fmpq (buf, l, coeff); |
---|
902 | } |
---|
903 | _fmpq_poly_normalise (buf); |
---|
904 | fmpq_poly_rem (buf, buf, mipo); |
---|
905 | result2 += convertFmpq_poly_t2FacCF (buf, alpha)*power (x, j); |
---|
906 | j++; |
---|
907 | fmpq_poly_clear (buf); |
---|
908 | } |
---|
909 | if (repLength - j*d2 != 0 && j*d2 - repLength < d2) |
---|
910 | { |
---|
911 | j--; |
---|
912 | repLength -= j*d2; |
---|
913 | fmpq_poly_init2 (buf, repLength); |
---|
914 | j++; |
---|
915 | for (l= 0; l < repLength; l++) |
---|
916 | { |
---|
917 | fmpq_poly_get_coeff_fmpq (coeff, f, k + j*d2 + l); |
---|
918 | fmpq_poly_set_coeff_fmpq (buf, l, coeff); |
---|
919 | } |
---|
920 | _fmpq_poly_normalise (buf); |
---|
921 | fmpq_poly_rem (buf, buf, mipo); |
---|
922 | result2 += convertFmpq_poly_t2FacCF (buf, alpha)*power (x, j); |
---|
923 | fmpq_poly_clear (buf); |
---|
924 | } |
---|
925 | fmpq_clear (coeff); |
---|
926 | |
---|
927 | result += result2*power (y, i); |
---|
928 | i++; |
---|
929 | k= d1*i; |
---|
930 | } |
---|
931 | |
---|
932 | fmpq_poly_clear (f); |
---|
933 | return result; |
---|
934 | } |
---|
935 | |
---|
936 | CanonicalForm |
---|
937 | reverseSubstReciproFp (const nmod_poly_t F, const nmod_poly_t G, int d, int k) |
---|
938 | { |
---|
939 | Variable y= Variable (2); |
---|
940 | Variable x= Variable (1); |
---|
941 | |
---|
942 | nmod_poly_t f, g; |
---|
943 | mp_limb_t ninv= n_preinvert_limb (getCharacteristic()); |
---|
944 | nmod_poly_init_preinv (f, getCharacteristic(), ninv); |
---|
945 | nmod_poly_init_preinv (g, getCharacteristic(), ninv); |
---|
946 | nmod_poly_set (f, F); |
---|
947 | nmod_poly_set (g, G); |
---|
948 | int degf= nmod_poly_degree(f); |
---|
949 | int degg= nmod_poly_degree(g); |
---|
950 | |
---|
951 | |
---|
952 | nmod_poly_t buf1,buf2, buf3; |
---|
953 | |
---|
954 | if (nmod_poly_length (f) < (long) d*(k+1)) //zero padding |
---|
955 | nmod_poly_fit_length (f,(long)d*(k+1)); |
---|
956 | |
---|
957 | CanonicalForm result= 0; |
---|
958 | int i= 0; |
---|
959 | int lf= 0; |
---|
960 | int lg= d*k; |
---|
961 | int degfSubLf= degf; |
---|
962 | int deggSubLg= degg-lg; |
---|
963 | int repLengthBuf2, repLengthBuf1, ind, tmp; |
---|
964 | while (degf >= lf || lg >= 0) |
---|
965 | { |
---|
966 | if (degfSubLf >= d) |
---|
967 | repLengthBuf1= d; |
---|
968 | else if (degfSubLf < 0) |
---|
969 | repLengthBuf1= 0; |
---|
970 | else |
---|
971 | repLengthBuf1= degfSubLf + 1; |
---|
972 | nmod_poly_init2_preinv (buf1, getCharacteristic(), ninv, repLengthBuf1); |
---|
973 | |
---|
974 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
975 | nmod_poly_set_coeff_ui (buf1, ind, nmod_poly_get_coeff_ui (f, ind+lf)); |
---|
976 | _nmod_poly_normalise (buf1); |
---|
977 | |
---|
978 | repLengthBuf1= nmod_poly_length (buf1); |
---|
979 | |
---|
980 | if (deggSubLg >= d - 1) |
---|
981 | repLengthBuf2= d - 1; |
---|
982 | else if (deggSubLg < 0) |
---|
983 | repLengthBuf2= 0; |
---|
984 | else |
---|
985 | repLengthBuf2= deggSubLg + 1; |
---|
986 | |
---|
987 | nmod_poly_init2_preinv (buf2, getCharacteristic(), ninv, repLengthBuf2); |
---|
988 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
989 | nmod_poly_set_coeff_ui (buf2, ind, nmod_poly_get_coeff_ui (g, ind + lg)); |
---|
990 | |
---|
991 | _nmod_poly_normalise (buf2); |
---|
992 | repLengthBuf2= nmod_poly_length (buf2); |
---|
993 | |
---|
994 | nmod_poly_init2_preinv (buf3, getCharacteristic(), ninv, repLengthBuf2 + d); |
---|
995 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
996 | nmod_poly_set_coeff_ui (buf3, ind, nmod_poly_get_coeff_ui (buf1, ind)); |
---|
997 | for (ind= repLengthBuf1; ind < d; ind++) |
---|
998 | nmod_poly_set_coeff_ui (buf3, ind, 0); |
---|
999 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1000 | nmod_poly_set_coeff_ui (buf3, ind+d, nmod_poly_get_coeff_ui (buf2, ind)); |
---|
1001 | _nmod_poly_normalise (buf3); |
---|
1002 | |
---|
1003 | result += convertnmod_poly_t2FacCF (buf3, x)*power (y, i); |
---|
1004 | i++; |
---|
1005 | |
---|
1006 | |
---|
1007 | lf= i*d; |
---|
1008 | degfSubLf= degf - lf; |
---|
1009 | |
---|
1010 | lg= d*(k-i); |
---|
1011 | deggSubLg= degg - lg; |
---|
1012 | |
---|
1013 | if (lg >= 0 && deggSubLg > 0) |
---|
1014 | { |
---|
1015 | if (repLengthBuf2 > degfSubLf + 1) |
---|
1016 | degfSubLf= repLengthBuf2 - 1; |
---|
1017 | tmp= tmin (repLengthBuf1, deggSubLg + 1); |
---|
1018 | for (ind= 0; ind < tmp; ind++) |
---|
1019 | nmod_poly_set_coeff_ui (g, ind + lg, |
---|
1020 | n_submod (nmod_poly_get_coeff_ui (g, ind + lg), |
---|
1021 | nmod_poly_get_coeff_ui (buf1, ind), |
---|
1022 | getCharacteristic() |
---|
1023 | ) |
---|
1024 | ); |
---|
1025 | } |
---|
1026 | if (lg < 0) |
---|
1027 | { |
---|
1028 | nmod_poly_clear (buf1); |
---|
1029 | nmod_poly_clear (buf2); |
---|
1030 | nmod_poly_clear (buf3); |
---|
1031 | break; |
---|
1032 | } |
---|
1033 | if (degfSubLf >= 0) |
---|
1034 | { |
---|
1035 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1036 | nmod_poly_set_coeff_ui (f, ind + lf, |
---|
1037 | n_submod (nmod_poly_get_coeff_ui (f, ind + lf), |
---|
1038 | nmod_poly_get_coeff_ui (buf2, ind), |
---|
1039 | getCharacteristic() |
---|
1040 | ) |
---|
1041 | ); |
---|
1042 | } |
---|
1043 | nmod_poly_clear (buf1); |
---|
1044 | nmod_poly_clear (buf2); |
---|
1045 | nmod_poly_clear (buf3); |
---|
1046 | } |
---|
1047 | |
---|
1048 | nmod_poly_clear (f); |
---|
1049 | nmod_poly_clear (g); |
---|
1050 | |
---|
1051 | return result; |
---|
1052 | } |
---|
1053 | |
---|
1054 | CanonicalForm |
---|
1055 | reverseSubstReciproQ (const fmpz_poly_t F, const fmpz_poly_t G, int d, int k) |
---|
1056 | { |
---|
1057 | Variable y= Variable (2); |
---|
1058 | Variable x= Variable (1); |
---|
1059 | |
---|
1060 | fmpz_poly_t f, g; |
---|
1061 | fmpz_poly_init (f); |
---|
1062 | fmpz_poly_init (g); |
---|
1063 | fmpz_poly_set (f, F); |
---|
1064 | fmpz_poly_set (g, G); |
---|
1065 | int degf= fmpz_poly_degree(f); |
---|
1066 | int degg= fmpz_poly_degree(g); |
---|
1067 | |
---|
1068 | |
---|
1069 | fmpz_poly_t buf1,buf2, buf3; |
---|
1070 | |
---|
1071 | if (fmpz_poly_length (f) < (long) d*(k+1)) //zero padding |
---|
1072 | fmpz_poly_fit_length (f,(long)d*(k+1)); |
---|
1073 | |
---|
1074 | CanonicalForm result= 0; |
---|
1075 | int i= 0; |
---|
1076 | int lf= 0; |
---|
1077 | int lg= d*k; |
---|
1078 | int degfSubLf= degf; |
---|
1079 | int deggSubLg= degg-lg; |
---|
1080 | int repLengthBuf2, repLengthBuf1, ind, tmp; |
---|
1081 | fmpz_t tmp1, tmp2; |
---|
1082 | while (degf >= lf || lg >= 0) |
---|
1083 | { |
---|
1084 | if (degfSubLf >= d) |
---|
1085 | repLengthBuf1= d; |
---|
1086 | else if (degfSubLf < 0) |
---|
1087 | repLengthBuf1= 0; |
---|
1088 | else |
---|
1089 | repLengthBuf1= degfSubLf + 1; |
---|
1090 | |
---|
1091 | fmpz_poly_init2 (buf1, repLengthBuf1); |
---|
1092 | |
---|
1093 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1094 | { |
---|
1095 | fmpz_poly_get_coeff_fmpz (tmp1, f, ind + lf); |
---|
1096 | fmpz_poly_set_coeff_fmpz (buf1, ind, tmp1); |
---|
1097 | } |
---|
1098 | _fmpz_poly_normalise (buf1); |
---|
1099 | |
---|
1100 | repLengthBuf1= fmpz_poly_length (buf1); |
---|
1101 | |
---|
1102 | if (deggSubLg >= d - 1) |
---|
1103 | repLengthBuf2= d - 1; |
---|
1104 | else if (deggSubLg < 0) |
---|
1105 | repLengthBuf2= 0; |
---|
1106 | else |
---|
1107 | repLengthBuf2= deggSubLg + 1; |
---|
1108 | |
---|
1109 | fmpz_poly_init2 (buf2, repLengthBuf2); |
---|
1110 | |
---|
1111 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1112 | { |
---|
1113 | fmpz_poly_get_coeff_fmpz (tmp1, g, ind + lg); |
---|
1114 | fmpz_poly_set_coeff_fmpz (buf2, ind, tmp1); |
---|
1115 | } |
---|
1116 | |
---|
1117 | _fmpz_poly_normalise (buf2); |
---|
1118 | repLengthBuf2= fmpz_poly_length (buf2); |
---|
1119 | |
---|
1120 | fmpz_poly_init2 (buf3, repLengthBuf2 + d); |
---|
1121 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1122 | { |
---|
1123 | fmpz_poly_get_coeff_fmpz (tmp1, buf1, ind); |
---|
1124 | fmpz_poly_set_coeff_fmpz (buf3, ind, tmp1); |
---|
1125 | } |
---|
1126 | for (ind= repLengthBuf1; ind < d; ind++) |
---|
1127 | fmpz_poly_set_coeff_ui (buf3, ind, 0); |
---|
1128 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1129 | { |
---|
1130 | fmpz_poly_get_coeff_fmpz (tmp1, buf2, ind); |
---|
1131 | fmpz_poly_set_coeff_fmpz (buf3, ind + d, tmp1); |
---|
1132 | } |
---|
1133 | _fmpz_poly_normalise (buf3); |
---|
1134 | |
---|
1135 | result += convertFmpz_poly_t2FacCF (buf3, x)*power (y, i); |
---|
1136 | i++; |
---|
1137 | |
---|
1138 | |
---|
1139 | lf= i*d; |
---|
1140 | degfSubLf= degf - lf; |
---|
1141 | |
---|
1142 | lg= d*(k-i); |
---|
1143 | deggSubLg= degg - lg; |
---|
1144 | |
---|
1145 | if (lg >= 0 && deggSubLg > 0) |
---|
1146 | { |
---|
1147 | if (repLengthBuf2 > degfSubLf + 1) |
---|
1148 | degfSubLf= repLengthBuf2 - 1; |
---|
1149 | tmp= tmin (repLengthBuf1, deggSubLg + 1); |
---|
1150 | for (ind= 0; ind < tmp; ind++) |
---|
1151 | { |
---|
1152 | fmpz_poly_get_coeff_fmpz (tmp1, g, ind + lg); |
---|
1153 | fmpz_poly_get_coeff_fmpz (tmp2, buf1, ind); |
---|
1154 | fmpz_sub (tmp1, tmp1, tmp2); |
---|
1155 | fmpz_poly_set_coeff_fmpz (g, ind + lg, tmp1); |
---|
1156 | } |
---|
1157 | } |
---|
1158 | if (lg < 0) |
---|
1159 | { |
---|
1160 | fmpz_poly_clear (buf1); |
---|
1161 | fmpz_poly_clear (buf2); |
---|
1162 | fmpz_poly_clear (buf3); |
---|
1163 | break; |
---|
1164 | } |
---|
1165 | if (degfSubLf >= 0) |
---|
1166 | { |
---|
1167 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1168 | { |
---|
1169 | fmpz_poly_get_coeff_fmpz (tmp1, f, ind + lf); |
---|
1170 | fmpz_poly_get_coeff_fmpz (tmp2, buf2, ind); |
---|
1171 | fmpz_sub (tmp1, tmp1, tmp2); |
---|
1172 | fmpz_poly_set_coeff_fmpz (f, ind + lf, tmp1); |
---|
1173 | } |
---|
1174 | } |
---|
1175 | fmpz_poly_clear (buf1); |
---|
1176 | fmpz_poly_clear (buf2); |
---|
1177 | fmpz_poly_clear (buf3); |
---|
1178 | } |
---|
1179 | |
---|
1180 | fmpz_poly_clear (f); |
---|
1181 | fmpz_poly_clear (g); |
---|
1182 | fmpz_clear (tmp1); |
---|
1183 | fmpz_clear (tmp2); |
---|
1184 | |
---|
1185 | return result; |
---|
1186 | } |
---|
1187 | |
---|
1188 | CanonicalForm reverseSubstFp (const nmod_poly_t F, int d) |
---|
1189 | { |
---|
1190 | Variable y= Variable (2); |
---|
1191 | Variable x= Variable (1); |
---|
1192 | |
---|
1193 | nmod_poly_t f; |
---|
1194 | mp_limb_t ninv= n_preinvert_limb (getCharacteristic()); |
---|
1195 | nmod_poly_init_preinv (f, getCharacteristic(), ninv); |
---|
1196 | nmod_poly_set (f, F); |
---|
1197 | |
---|
1198 | nmod_poly_t buf; |
---|
1199 | CanonicalForm result= 0; |
---|
1200 | int i= 0; |
---|
1201 | int degf= nmod_poly_degree(f); |
---|
1202 | int k= 0; |
---|
1203 | int degfSubK, repLength, j; |
---|
1204 | while (degf >= k) |
---|
1205 | { |
---|
1206 | degfSubK= degf - k; |
---|
1207 | if (degfSubK >= d) |
---|
1208 | repLength= d; |
---|
1209 | else |
---|
1210 | repLength= degfSubK + 1; |
---|
1211 | |
---|
1212 | nmod_poly_init2_preinv (buf, getCharacteristic(), ninv, repLength); |
---|
1213 | for (j= 0; j < repLength; j++) |
---|
1214 | nmod_poly_set_coeff_ui (buf, j, nmod_poly_get_coeff_ui (f, j + k)); |
---|
1215 | _nmod_poly_normalise (buf); |
---|
1216 | |
---|
1217 | result += convertnmod_poly_t2FacCF (buf, x)*power (y, i); |
---|
1218 | i++; |
---|
1219 | k= d*i; |
---|
1220 | nmod_poly_clear (buf); |
---|
1221 | } |
---|
1222 | nmod_poly_clear (f); |
---|
1223 | |
---|
1224 | return result; |
---|
1225 | } |
---|
1226 | |
---|
1227 | CanonicalForm |
---|
1228 | mulMod2FLINTFpReci (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1229 | CanonicalForm& M) |
---|
1230 | { |
---|
1231 | int d1= tmax (degree (F, 1), degree (G, 1)) + 1; |
---|
1232 | d1 /= 2; |
---|
1233 | d1 += 1; |
---|
1234 | |
---|
1235 | nmod_poly_t F1, F2; |
---|
1236 | mp_limb_t ninv= n_preinvert_limb (getCharacteristic()); |
---|
1237 | nmod_poly_init_preinv (F1, getCharacteristic(), ninv); |
---|
1238 | nmod_poly_init_preinv (F2, getCharacteristic(), ninv); |
---|
1239 | kronSubReciproFp (F1, F2, F, d1); |
---|
1240 | |
---|
1241 | nmod_poly_t G1, G2; |
---|
1242 | nmod_poly_init_preinv (G1, getCharacteristic(), ninv); |
---|
1243 | nmod_poly_init_preinv (G2, getCharacteristic(), ninv); |
---|
1244 | kronSubReciproFp (G1, G2, G, d1); |
---|
1245 | |
---|
1246 | int k= d1*degree (M); |
---|
1247 | nmod_poly_mullow (F1, F1, G1, (long) k); |
---|
1248 | |
---|
1249 | int degtailF= degree (tailcoeff (F), 1);; |
---|
1250 | int degtailG= degree (tailcoeff (G), 1); |
---|
1251 | int taildegF= taildegree (F); |
---|
1252 | int taildegG= taildegree (G); |
---|
1253 | |
---|
1254 | int b= nmod_poly_degree (F2) + nmod_poly_degree (G2) - k - degtailF - degtailG |
---|
1255 | + d1*(2+taildegF + taildegG); |
---|
1256 | nmod_poly_mulhigh (F2, F2, G2, b); |
---|
1257 | nmod_poly_shift_right (F2, F2, b); |
---|
1258 | int d2= tmax (nmod_poly_degree (F2)/d1, nmod_poly_degree (F1)/d1); |
---|
1259 | |
---|
1260 | |
---|
1261 | CanonicalForm result= reverseSubstReciproFp (F1, F2, d1, d2); |
---|
1262 | |
---|
1263 | nmod_poly_clear (F1); |
---|
1264 | nmod_poly_clear (F2); |
---|
1265 | nmod_poly_clear (G1); |
---|
1266 | nmod_poly_clear (G2); |
---|
1267 | return result; |
---|
1268 | } |
---|
1269 | |
---|
1270 | CanonicalForm |
---|
1271 | mulMod2FLINTFp (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1272 | CanonicalForm& M) |
---|
1273 | { |
---|
1274 | CanonicalForm A= F; |
---|
1275 | CanonicalForm B= G; |
---|
1276 | |
---|
1277 | int degAx= degree (A, 1); |
---|
1278 | int degAy= degree (A, 2); |
---|
1279 | int degBx= degree (B, 1); |
---|
1280 | int degBy= degree (B, 2); |
---|
1281 | int d1= degAx + 1 + degBx; |
---|
1282 | int d2= tmax (degAy, degBy); |
---|
1283 | |
---|
1284 | if (d1 > 128 && d2 > 160 && (degAy == degBy) && (2*degAy > degree (M))) |
---|
1285 | return mulMod2FLINTFpReci (A, B, M); |
---|
1286 | |
---|
1287 | nmod_poly_t FLINTA, FLINTB; |
---|
1288 | mp_limb_t ninv= n_preinvert_limb (getCharacteristic()); |
---|
1289 | nmod_poly_init_preinv (FLINTA, getCharacteristic(), ninv); |
---|
1290 | nmod_poly_init_preinv (FLINTB, getCharacteristic(), ninv); |
---|
1291 | kronSubFp (FLINTA, A, d1); |
---|
1292 | kronSubFp (FLINTB, B, d1); |
---|
1293 | |
---|
1294 | int k= d1*degree (M); |
---|
1295 | nmod_poly_mullow (FLINTA, FLINTA, FLINTB, (long) k); |
---|
1296 | |
---|
1297 | A= reverseSubstFp (FLINTA, d1); |
---|
1298 | |
---|
1299 | nmod_poly_clear (FLINTA); |
---|
1300 | nmod_poly_clear (FLINTB); |
---|
1301 | return A; |
---|
1302 | } |
---|
1303 | |
---|
1304 | CanonicalForm |
---|
1305 | mulMod2FLINTQReci (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1306 | CanonicalForm& M) |
---|
1307 | { |
---|
1308 | int d1= tmax (degree (F, 1), degree (G, 1)) + 1; |
---|
1309 | d1 /= 2; |
---|
1310 | d1 += 1; |
---|
1311 | |
---|
1312 | fmpz_poly_t F1, F2; |
---|
1313 | fmpz_poly_init (F1); |
---|
1314 | fmpz_poly_init (F2); |
---|
1315 | kronSubReciproQ (F1, F2, F, d1); |
---|
1316 | |
---|
1317 | fmpz_poly_t G1, G2; |
---|
1318 | fmpz_poly_init (G1); |
---|
1319 | fmpz_poly_init (G2); |
---|
1320 | kronSubReciproQ (G1, G2, G, d1); |
---|
1321 | |
---|
1322 | int k= d1*degree (M); |
---|
1323 | fmpz_poly_mullow (F1, F1, G1, (long) k); |
---|
1324 | |
---|
1325 | int degtailF= degree (tailcoeff (F), 1);; |
---|
1326 | int degtailG= degree (tailcoeff (G), 1); |
---|
1327 | int taildegF= taildegree (F); |
---|
1328 | int taildegG= taildegree (G); |
---|
1329 | |
---|
1330 | int b= fmpz_poly_degree (F2) + fmpz_poly_degree (G2) - k - degtailF - degtailG |
---|
1331 | + d1*(2+taildegF + taildegG); |
---|
1332 | fmpz_poly_mulhigh_n (F2, F2, G2, b); |
---|
1333 | fmpz_poly_shift_right (F2, F2, b); |
---|
1334 | int d2= tmax (fmpz_poly_degree (F2)/d1, fmpz_poly_degree (F1)/d1); |
---|
1335 | |
---|
1336 | CanonicalForm result= reverseSubstReciproQ (F1, F2, d1, d2); |
---|
1337 | |
---|
1338 | fmpz_poly_clear (F1); |
---|
1339 | fmpz_poly_clear (F2); |
---|
1340 | fmpz_poly_clear (G1); |
---|
1341 | fmpz_poly_clear (G2); |
---|
1342 | return result; |
---|
1343 | } |
---|
1344 | |
---|
1345 | CanonicalForm |
---|
1346 | mulMod2FLINTQ (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1347 | CanonicalForm& M) |
---|
1348 | { |
---|
1349 | CanonicalForm A= F; |
---|
1350 | CanonicalForm B= G; |
---|
1351 | |
---|
1352 | int degAx= degree (A, 1); |
---|
1353 | int degBx= degree (B, 1); |
---|
1354 | int d1= degAx + 1 + degBx; |
---|
1355 | |
---|
1356 | CanonicalForm f= bCommonDen (F); |
---|
1357 | CanonicalForm g= bCommonDen (G); |
---|
1358 | A *= f; |
---|
1359 | B *= g; |
---|
1360 | |
---|
1361 | fmpz_poly_t FLINTA, FLINTB; |
---|
1362 | fmpz_poly_init (FLINTA); |
---|
1363 | fmpz_poly_init (FLINTB); |
---|
1364 | kronSub (FLINTA, A, d1); |
---|
1365 | kronSub (FLINTB, B, d1); |
---|
1366 | int k= d1*degree (M); |
---|
1367 | |
---|
1368 | fmpz_poly_mullow (FLINTA, FLINTA, FLINTB, (long) k); |
---|
1369 | A= reverseSubstQ (FLINTA, d1); |
---|
1370 | fmpz_poly_clear (FLINTA); |
---|
1371 | fmpz_poly_clear (FLINTB); |
---|
1372 | return A/(f*g); |
---|
1373 | } |
---|
1374 | |
---|
1375 | CanonicalForm |
---|
1376 | mulMod2FLINTQa (const CanonicalForm& F, const CanonicalForm& G, |
---|
1377 | const CanonicalForm& M) |
---|
1378 | { |
---|
1379 | Variable a; |
---|
1380 | if (!hasFirstAlgVar (F,a) && !hasFirstAlgVar (G, a)) |
---|
1381 | return mulMod2FLINTQ (F, G, M); |
---|
1382 | CanonicalForm A= F; |
---|
1383 | |
---|
1384 | int degFx= degree (F, 1); |
---|
1385 | int degFa= degree (F, a); |
---|
1386 | int degGx= degree (G, 1); |
---|
1387 | int degGa= degree (G, a); |
---|
1388 | |
---|
1389 | int d2= degFa+degGa+1; |
---|
1390 | int d1= degFx + 1 + degGx; |
---|
1391 | d1 *= d2; |
---|
1392 | |
---|
1393 | fmpq_poly_t FLINTF, FLINTG; |
---|
1394 | kronSubQa (FLINTF, F, d1, d2); |
---|
1395 | kronSubQa (FLINTG, G, d1, d2); |
---|
1396 | |
---|
1397 | fmpq_poly_mullow (FLINTF, FLINTF, FLINTG, d1*degree (M)); |
---|
1398 | |
---|
1399 | fmpq_poly_t mipo; |
---|
1400 | convertFacCF2Fmpq_poly_t (mipo, getMipo (a)); |
---|
1401 | CanonicalForm result= reverseSubstQa (FLINTF, d1, d2, a, mipo); |
---|
1402 | fmpq_poly_clear (FLINTF); |
---|
1403 | fmpq_poly_clear (FLINTG); |
---|
1404 | return result; |
---|
1405 | } |
---|
1406 | |
---|
1407 | #endif |
---|
1408 | |
---|
1409 | zz_pX kronSubFp (const CanonicalForm& A, int d) |
---|
1410 | { |
---|
1411 | int degAy= degree (A); |
---|
1412 | zz_pX result; |
---|
1413 | result.rep.SetLength (d*(degAy + 1)); |
---|
1414 | |
---|
1415 | zz_p *resultp; |
---|
1416 | resultp= result.rep.elts(); |
---|
1417 | zz_pX buf; |
---|
1418 | zz_p *bufp; |
---|
1419 | int j, k, bufRepLength; |
---|
1420 | |
---|
1421 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
1422 | { |
---|
1423 | if (i.coeff().inCoeffDomain()) |
---|
1424 | buf= convertFacCF2NTLzzpX (i.coeff()); |
---|
1425 | else |
---|
1426 | buf= convertFacCF2NTLzzpX (i.coeff()); |
---|
1427 | |
---|
1428 | k= i.exp()*d; |
---|
1429 | bufp= buf.rep.elts(); |
---|
1430 | bufRepLength= (int) buf.rep.length(); |
---|
1431 | for (j= 0; j < bufRepLength; j++) |
---|
1432 | resultp [j + k]= bufp [j]; |
---|
1433 | } |
---|
1434 | result.normalize(); |
---|
1435 | |
---|
1436 | return result; |
---|
1437 | } |
---|
1438 | |
---|
1439 | zz_pEX kronSubFq (const CanonicalForm& A, int d, const Variable& alpha) |
---|
1440 | { |
---|
1441 | int degAy= degree (A); |
---|
1442 | zz_pEX result; |
---|
1443 | result.rep.SetLength (d*(degAy + 1)); |
---|
1444 | |
---|
1445 | Variable v; |
---|
1446 | zz_pE *resultp; |
---|
1447 | resultp= result.rep.elts(); |
---|
1448 | zz_pEX buf1; |
---|
1449 | zz_pE *buf1p; |
---|
1450 | zz_pX buf2; |
---|
1451 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
1452 | int j, k, buf1RepLength; |
---|
1453 | |
---|
1454 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
1455 | { |
---|
1456 | if (i.coeff().inCoeffDomain()) |
---|
1457 | { |
---|
1458 | buf2= convertFacCF2NTLzzpX (i.coeff()); |
---|
1459 | buf1= to_zz_pEX (to_zz_pE (buf2)); |
---|
1460 | } |
---|
1461 | else |
---|
1462 | buf1= convertFacCF2NTLzz_pEX (i.coeff(), NTLMipo); |
---|
1463 | |
---|
1464 | k= i.exp()*d; |
---|
1465 | buf1p= buf1.rep.elts(); |
---|
1466 | buf1RepLength= (int) buf1.rep.length(); |
---|
1467 | for (j= 0; j < buf1RepLength; j++) |
---|
1468 | resultp [j + k]= buf1p [j]; |
---|
1469 | } |
---|
1470 | result.normalize(); |
---|
1471 | |
---|
1472 | return result; |
---|
1473 | } |
---|
1474 | |
---|
1475 | void |
---|
1476 | kronSubReciproFq (zz_pEX& subA1, zz_pEX& subA2,const CanonicalForm& A, int d, |
---|
1477 | const Variable& alpha) |
---|
1478 | { |
---|
1479 | int degAy= degree (A); |
---|
1480 | subA1.rep.SetLength ((long) d*(degAy + 2)); |
---|
1481 | subA2.rep.SetLength ((long) d*(degAy + 2)); |
---|
1482 | |
---|
1483 | Variable v; |
---|
1484 | zz_pE *subA1p; |
---|
1485 | zz_pE *subA2p; |
---|
1486 | subA1p= subA1.rep.elts(); |
---|
1487 | subA2p= subA2.rep.elts(); |
---|
1488 | zz_pEX buf; |
---|
1489 | zz_pE *bufp; |
---|
1490 | zz_pX buf2; |
---|
1491 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
1492 | int j, k, kk, bufRepLength; |
---|
1493 | |
---|
1494 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
1495 | { |
---|
1496 | if (i.coeff().inCoeffDomain()) |
---|
1497 | { |
---|
1498 | buf2= convertFacCF2NTLzzpX (i.coeff()); |
---|
1499 | buf= to_zz_pEX (to_zz_pE (buf2)); |
---|
1500 | } |
---|
1501 | else |
---|
1502 | buf= convertFacCF2NTLzz_pEX (i.coeff(), NTLMipo); |
---|
1503 | |
---|
1504 | k= i.exp()*d; |
---|
1505 | kk= (degAy - i.exp())*d; |
---|
1506 | bufp= buf.rep.elts(); |
---|
1507 | bufRepLength= (int) buf.rep.length(); |
---|
1508 | for (j= 0; j < bufRepLength; j++) |
---|
1509 | { |
---|
1510 | subA1p [j + k] += bufp [j]; |
---|
1511 | subA2p [j + kk] += bufp [j]; |
---|
1512 | } |
---|
1513 | } |
---|
1514 | subA1.normalize(); |
---|
1515 | subA2.normalize(); |
---|
1516 | } |
---|
1517 | |
---|
1518 | void |
---|
1519 | kronSubReciproFp (zz_pX& subA1, zz_pX& subA2, const CanonicalForm& A, int d) |
---|
1520 | { |
---|
1521 | int degAy= degree (A); |
---|
1522 | subA1.rep.SetLength ((long) d*(degAy + 2)); |
---|
1523 | subA2.rep.SetLength ((long) d*(degAy + 2)); |
---|
1524 | |
---|
1525 | zz_p *subA1p; |
---|
1526 | zz_p *subA2p; |
---|
1527 | subA1p= subA1.rep.elts(); |
---|
1528 | subA2p= subA2.rep.elts(); |
---|
1529 | zz_pX buf; |
---|
1530 | zz_p *bufp; |
---|
1531 | int j, k, kk, bufRepLength; |
---|
1532 | |
---|
1533 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
1534 | { |
---|
1535 | buf= convertFacCF2NTLzzpX (i.coeff()); |
---|
1536 | |
---|
1537 | k= i.exp()*d; |
---|
1538 | kk= (degAy - i.exp())*d; |
---|
1539 | bufp= buf.rep.elts(); |
---|
1540 | bufRepLength= (int) buf.rep.length(); |
---|
1541 | for (j= 0; j < bufRepLength; j++) |
---|
1542 | { |
---|
1543 | subA1p [j + k] += bufp [j]; |
---|
1544 | subA2p [j + kk] += bufp [j]; |
---|
1545 | } |
---|
1546 | } |
---|
1547 | subA1.normalize(); |
---|
1548 | subA2.normalize(); |
---|
1549 | } |
---|
1550 | |
---|
1551 | CanonicalForm |
---|
1552 | reverseSubstReciproFq (const zz_pEX& F, const zz_pEX& G, int d, int k, |
---|
1553 | const Variable& alpha) |
---|
1554 | { |
---|
1555 | Variable y= Variable (2); |
---|
1556 | Variable x= Variable (1); |
---|
1557 | |
---|
1558 | zz_pEX f= F; |
---|
1559 | zz_pEX g= G; |
---|
1560 | int degf= deg(f); |
---|
1561 | int degg= deg(g); |
---|
1562 | |
---|
1563 | zz_pEX buf1; |
---|
1564 | zz_pEX buf2; |
---|
1565 | zz_pEX buf3; |
---|
1566 | |
---|
1567 | zz_pE *buf1p; |
---|
1568 | zz_pE *buf2p; |
---|
1569 | zz_pE *buf3p; |
---|
1570 | if (f.rep.length() < (long) d*(k+1)) //zero padding |
---|
1571 | f.rep.SetLength ((long)d*(k+1)); |
---|
1572 | |
---|
1573 | zz_pE *gp= g.rep.elts(); |
---|
1574 | zz_pE *fp= f.rep.elts(); |
---|
1575 | CanonicalForm result= 0; |
---|
1576 | int i= 0; |
---|
1577 | int lf= 0; |
---|
1578 | int lg= d*k; |
---|
1579 | int degfSubLf= degf; |
---|
1580 | int deggSubLg= degg-lg; |
---|
1581 | int repLengthBuf2, repLengthBuf1, ind, tmp; |
---|
1582 | zz_pE zzpEZero= zz_pE(); |
---|
1583 | |
---|
1584 | while (degf >= lf || lg >= 0) |
---|
1585 | { |
---|
1586 | if (degfSubLf >= d) |
---|
1587 | repLengthBuf1= d; |
---|
1588 | else if (degfSubLf < 0) |
---|
1589 | repLengthBuf1= 0; |
---|
1590 | else |
---|
1591 | repLengthBuf1= degfSubLf + 1; |
---|
1592 | buf1.rep.SetLength((long) repLengthBuf1); |
---|
1593 | |
---|
1594 | buf1p= buf1.rep.elts(); |
---|
1595 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1596 | buf1p [ind]= fp [ind + lf]; |
---|
1597 | buf1.normalize(); |
---|
1598 | |
---|
1599 | repLengthBuf1= buf1.rep.length(); |
---|
1600 | |
---|
1601 | if (deggSubLg >= d - 1) |
---|
1602 | repLengthBuf2= d - 1; |
---|
1603 | else if (deggSubLg < 0) |
---|
1604 | repLengthBuf2= 0; |
---|
1605 | else |
---|
1606 | repLengthBuf2= deggSubLg + 1; |
---|
1607 | |
---|
1608 | buf2.rep.SetLength ((long) repLengthBuf2); |
---|
1609 | buf2p= buf2.rep.elts(); |
---|
1610 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1611 | buf2p [ind]= gp [ind + lg]; |
---|
1612 | buf2.normalize(); |
---|
1613 | |
---|
1614 | repLengthBuf2= buf2.rep.length(); |
---|
1615 | |
---|
1616 | buf3.rep.SetLength((long) repLengthBuf2 + d); |
---|
1617 | buf3p= buf3.rep.elts(); |
---|
1618 | buf2p= buf2.rep.elts(); |
---|
1619 | buf1p= buf1.rep.elts(); |
---|
1620 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1621 | buf3p [ind]= buf1p [ind]; |
---|
1622 | for (ind= repLengthBuf1; ind < d; ind++) |
---|
1623 | buf3p [ind]= zzpEZero; |
---|
1624 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1625 | buf3p [ind + d]= buf2p [ind]; |
---|
1626 | buf3.normalize(); |
---|
1627 | |
---|
1628 | result += convertNTLzz_pEX2CF (buf3, x, alpha)*power (y, i); |
---|
1629 | i++; |
---|
1630 | |
---|
1631 | |
---|
1632 | lf= i*d; |
---|
1633 | degfSubLf= degf - lf; |
---|
1634 | |
---|
1635 | lg= d*(k-i); |
---|
1636 | deggSubLg= degg - lg; |
---|
1637 | |
---|
1638 | buf1p= buf1.rep.elts(); |
---|
1639 | |
---|
1640 | if (lg >= 0 && deggSubLg > 0) |
---|
1641 | { |
---|
1642 | if (repLengthBuf2 > degfSubLf + 1) |
---|
1643 | degfSubLf= repLengthBuf2 - 1; |
---|
1644 | tmp= tmin (repLengthBuf1, deggSubLg + 1); |
---|
1645 | for (ind= 0; ind < tmp; ind++) |
---|
1646 | gp [ind + lg] -= buf1p [ind]; |
---|
1647 | } |
---|
1648 | |
---|
1649 | if (lg < 0) |
---|
1650 | break; |
---|
1651 | |
---|
1652 | buf2p= buf2.rep.elts(); |
---|
1653 | if (degfSubLf >= 0) |
---|
1654 | { |
---|
1655 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1656 | fp [ind + lf] -= buf2p [ind]; |
---|
1657 | } |
---|
1658 | } |
---|
1659 | |
---|
1660 | return result; |
---|
1661 | } |
---|
1662 | |
---|
1663 | CanonicalForm |
---|
1664 | reverseSubstReciproFp (const zz_pX& F, const zz_pX& G, int d, int k) |
---|
1665 | { |
---|
1666 | Variable y= Variable (2); |
---|
1667 | Variable x= Variable (1); |
---|
1668 | |
---|
1669 | zz_pX f= F; |
---|
1670 | zz_pX g= G; |
---|
1671 | int degf= deg(f); |
---|
1672 | int degg= deg(g); |
---|
1673 | |
---|
1674 | zz_pX buf1; |
---|
1675 | zz_pX buf2; |
---|
1676 | zz_pX buf3; |
---|
1677 | |
---|
1678 | zz_p *buf1p; |
---|
1679 | zz_p *buf2p; |
---|
1680 | zz_p *buf3p; |
---|
1681 | |
---|
1682 | if (f.rep.length() < (long) d*(k+1)) //zero padding |
---|
1683 | f.rep.SetLength ((long)d*(k+1)); |
---|
1684 | |
---|
1685 | zz_p *gp= g.rep.elts(); |
---|
1686 | zz_p *fp= f.rep.elts(); |
---|
1687 | CanonicalForm result= 0; |
---|
1688 | int i= 0; |
---|
1689 | int lf= 0; |
---|
1690 | int lg= d*k; |
---|
1691 | int degfSubLf= degf; |
---|
1692 | int deggSubLg= degg-lg; |
---|
1693 | int repLengthBuf2, repLengthBuf1, ind, tmp; |
---|
1694 | zz_p zzpZero= zz_p(); |
---|
1695 | while (degf >= lf || lg >= 0) |
---|
1696 | { |
---|
1697 | if (degfSubLf >= d) |
---|
1698 | repLengthBuf1= d; |
---|
1699 | else if (degfSubLf < 0) |
---|
1700 | repLengthBuf1= 0; |
---|
1701 | else |
---|
1702 | repLengthBuf1= degfSubLf + 1; |
---|
1703 | buf1.rep.SetLength((long) repLengthBuf1); |
---|
1704 | |
---|
1705 | buf1p= buf1.rep.elts(); |
---|
1706 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1707 | buf1p [ind]= fp [ind + lf]; |
---|
1708 | buf1.normalize(); |
---|
1709 | |
---|
1710 | repLengthBuf1= buf1.rep.length(); |
---|
1711 | |
---|
1712 | if (deggSubLg >= d - 1) |
---|
1713 | repLengthBuf2= d - 1; |
---|
1714 | else if (deggSubLg < 0) |
---|
1715 | repLengthBuf2= 0; |
---|
1716 | else |
---|
1717 | repLengthBuf2= deggSubLg + 1; |
---|
1718 | |
---|
1719 | buf2.rep.SetLength ((long) repLengthBuf2); |
---|
1720 | buf2p= buf2.rep.elts(); |
---|
1721 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1722 | buf2p [ind]= gp [ind + lg]; |
---|
1723 | |
---|
1724 | buf2.normalize(); |
---|
1725 | |
---|
1726 | repLengthBuf2= buf2.rep.length(); |
---|
1727 | |
---|
1728 | |
---|
1729 | buf3.rep.SetLength((long) repLengthBuf2 + d); |
---|
1730 | buf3p= buf3.rep.elts(); |
---|
1731 | buf2p= buf2.rep.elts(); |
---|
1732 | buf1p= buf1.rep.elts(); |
---|
1733 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1734 | buf3p [ind]= buf1p [ind]; |
---|
1735 | for (ind= repLengthBuf1; ind < d; ind++) |
---|
1736 | buf3p [ind]= zzpZero; |
---|
1737 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1738 | buf3p [ind + d]= buf2p [ind]; |
---|
1739 | buf3.normalize(); |
---|
1740 | |
---|
1741 | result += convertNTLzzpX2CF (buf3, x)*power (y, i); |
---|
1742 | i++; |
---|
1743 | |
---|
1744 | |
---|
1745 | lf= i*d; |
---|
1746 | degfSubLf= degf - lf; |
---|
1747 | |
---|
1748 | lg= d*(k-i); |
---|
1749 | deggSubLg= degg - lg; |
---|
1750 | |
---|
1751 | buf1p= buf1.rep.elts(); |
---|
1752 | |
---|
1753 | if (lg >= 0 && deggSubLg > 0) |
---|
1754 | { |
---|
1755 | if (repLengthBuf2 > degfSubLf + 1) |
---|
1756 | degfSubLf= repLengthBuf2 - 1; |
---|
1757 | tmp= tmin (repLengthBuf1, deggSubLg + 1); |
---|
1758 | for (ind= 0; ind < tmp; ind++) |
---|
1759 | gp [ind + lg] -= buf1p [ind]; |
---|
1760 | } |
---|
1761 | if (lg < 0) |
---|
1762 | break; |
---|
1763 | |
---|
1764 | buf2p= buf2.rep.elts(); |
---|
1765 | if (degfSubLf >= 0) |
---|
1766 | { |
---|
1767 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1768 | fp [ind + lf] -= buf2p [ind]; |
---|
1769 | } |
---|
1770 | } |
---|
1771 | |
---|
1772 | return result; |
---|
1773 | } |
---|
1774 | |
---|
1775 | CanonicalForm reverseSubstFq (const zz_pEX& F, int d, const Variable& alpha) |
---|
1776 | { |
---|
1777 | Variable y= Variable (2); |
---|
1778 | Variable x= Variable (1); |
---|
1779 | |
---|
1780 | zz_pEX f= F; |
---|
1781 | zz_pE *fp= f.rep.elts(); |
---|
1782 | |
---|
1783 | zz_pEX buf; |
---|
1784 | zz_pE *bufp; |
---|
1785 | CanonicalForm result= 0; |
---|
1786 | int i= 0; |
---|
1787 | int degf= deg(f); |
---|
1788 | int k= 0; |
---|
1789 | int degfSubK, repLength, j; |
---|
1790 | while (degf >= k) |
---|
1791 | { |
---|
1792 | degfSubK= degf - k; |
---|
1793 | if (degfSubK >= d) |
---|
1794 | repLength= d; |
---|
1795 | else |
---|
1796 | repLength= degfSubK + 1; |
---|
1797 | |
---|
1798 | buf.rep.SetLength ((long) repLength); |
---|
1799 | bufp= buf.rep.elts(); |
---|
1800 | for (j= 0; j < repLength; j++) |
---|
1801 | bufp [j]= fp [j + k]; |
---|
1802 | buf.normalize(); |
---|
1803 | |
---|
1804 | result += convertNTLzz_pEX2CF (buf, x, alpha)*power (y, i); |
---|
1805 | i++; |
---|
1806 | k= d*i; |
---|
1807 | } |
---|
1808 | |
---|
1809 | return result; |
---|
1810 | } |
---|
1811 | |
---|
1812 | CanonicalForm reverseSubstFp (const zz_pX& F, int d) |
---|
1813 | { |
---|
1814 | Variable y= Variable (2); |
---|
1815 | Variable x= Variable (1); |
---|
1816 | |
---|
1817 | zz_pX f= F; |
---|
1818 | zz_p *fp= f.rep.elts(); |
---|
1819 | |
---|
1820 | zz_pX buf; |
---|
1821 | zz_p *bufp; |
---|
1822 | CanonicalForm result= 0; |
---|
1823 | int i= 0; |
---|
1824 | int degf= deg(f); |
---|
1825 | int k= 0; |
---|
1826 | int degfSubK, repLength, j; |
---|
1827 | while (degf >= k) |
---|
1828 | { |
---|
1829 | degfSubK= degf - k; |
---|
1830 | if (degfSubK >= d) |
---|
1831 | repLength= d; |
---|
1832 | else |
---|
1833 | repLength= degfSubK + 1; |
---|
1834 | |
---|
1835 | buf.rep.SetLength ((long) repLength); |
---|
1836 | bufp= buf.rep.elts(); |
---|
1837 | for (j= 0; j < repLength; j++) |
---|
1838 | bufp [j]= fp [j + k]; |
---|
1839 | buf.normalize(); |
---|
1840 | |
---|
1841 | result += convertNTLzzpX2CF (buf, x)*power (y, i); |
---|
1842 | i++; |
---|
1843 | k= d*i; |
---|
1844 | } |
---|
1845 | |
---|
1846 | return result; |
---|
1847 | } |
---|
1848 | |
---|
1849 | // assumes input to be reduced mod M and to be an element of Fq not Fp |
---|
1850 | CanonicalForm |
---|
1851 | mulMod2NTLFpReci (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1852 | CanonicalForm& M) |
---|
1853 | { |
---|
1854 | int d1= degree (F, 1) + degree (G, 1) + 1; |
---|
1855 | d1 /= 2; |
---|
1856 | d1 += 1; |
---|
1857 | |
---|
1858 | zz_pX F1, F2; |
---|
1859 | kronSubReciproFp (F1, F2, F, d1); |
---|
1860 | zz_pX G1, G2; |
---|
1861 | kronSubReciproFp (G1, G2, G, d1); |
---|
1862 | |
---|
1863 | int k= d1*degree (M); |
---|
1864 | MulTrunc (F1, F1, G1, (long) k); |
---|
1865 | |
---|
1866 | int degtailF= degree (tailcoeff (F), 1); |
---|
1867 | int degtailG= degree (tailcoeff (G), 1); |
---|
1868 | int taildegF= taildegree (F); |
---|
1869 | int taildegG= taildegree (G); |
---|
1870 | int b= k + degtailF + degtailG - d1*(2+taildegF+taildegG); |
---|
1871 | |
---|
1872 | reverse (F2, F2); |
---|
1873 | reverse (G2, G2); |
---|
1874 | MulTrunc (F2, F2, G2, b + 1); |
---|
1875 | reverse (F2, F2, b); |
---|
1876 | |
---|
1877 | int d2= tmax (deg (F2)/d1, deg (F1)/d1); |
---|
1878 | return reverseSubstReciproFp (F1, F2, d1, d2); |
---|
1879 | } |
---|
1880 | |
---|
1881 | //Kronecker substitution |
---|
1882 | CanonicalForm |
---|
1883 | mulMod2NTLFp (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1884 | CanonicalForm& M) |
---|
1885 | { |
---|
1886 | CanonicalForm A= F; |
---|
1887 | CanonicalForm B= G; |
---|
1888 | |
---|
1889 | int degAx= degree (A, 1); |
---|
1890 | int degAy= degree (A, 2); |
---|
1891 | int degBx= degree (B, 1); |
---|
1892 | int degBy= degree (B, 2); |
---|
1893 | int d1= degAx + 1 + degBx; |
---|
1894 | int d2= tmax (degAy, degBy); |
---|
1895 | |
---|
1896 | if (d1 > 128 && d2 > 160 && (degAy == degBy) && (2*degAy > degree (M))) |
---|
1897 | return mulMod2NTLFpReci (A, B, M); |
---|
1898 | |
---|
1899 | zz_pX NTLA= kronSubFp (A, d1); |
---|
1900 | zz_pX NTLB= kronSubFp (B, d1); |
---|
1901 | |
---|
1902 | int k= d1*degree (M); |
---|
1903 | MulTrunc (NTLA, NTLA, NTLB, (long) k); |
---|
1904 | |
---|
1905 | A= reverseSubstFp (NTLA, d1); |
---|
1906 | |
---|
1907 | return A; |
---|
1908 | } |
---|
1909 | |
---|
1910 | // assumes input to be reduced mod M and to be an element of Fq not Fp |
---|
1911 | CanonicalForm |
---|
1912 | mulMod2NTLFqReci (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1913 | CanonicalForm& M, const Variable& alpha) |
---|
1914 | { |
---|
1915 | int d1= degree (F, 1) + degree (G, 1) + 1; |
---|
1916 | d1 /= 2; |
---|
1917 | d1 += 1; |
---|
1918 | |
---|
1919 | zz_pEX F1, F2; |
---|
1920 | kronSubReciproFq (F1, F2, F, d1, alpha); |
---|
1921 | zz_pEX G1, G2; |
---|
1922 | kronSubReciproFq (G1, G2, G, d1, alpha); |
---|
1923 | |
---|
1924 | int k= d1*degree (M); |
---|
1925 | MulTrunc (F1, F1, G1, (long) k); |
---|
1926 | |
---|
1927 | int degtailF= degree (tailcoeff (F), 1); |
---|
1928 | int degtailG= degree (tailcoeff (G), 1); |
---|
1929 | int taildegF= taildegree (F); |
---|
1930 | int taildegG= taildegree (G); |
---|
1931 | int b= k + degtailF + degtailG - d1*(2+taildegF+taildegG); |
---|
1932 | |
---|
1933 | reverse (F2, F2); |
---|
1934 | reverse (G2, G2); |
---|
1935 | MulTrunc (F2, F2, G2, b + 1); |
---|
1936 | reverse (F2, F2, b); |
---|
1937 | |
---|
1938 | int d2= tmax (deg (F2)/d1, deg (F1)/d1); |
---|
1939 | return reverseSubstReciproFq (F1, F2, d1, d2, alpha); |
---|
1940 | } |
---|
1941 | |
---|
1942 | #ifdef HAVE_FLINT |
---|
1943 | CanonicalForm |
---|
1944 | mulMod2FLINTFp (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1945 | CanonicalForm& M); |
---|
1946 | #endif |
---|
1947 | |
---|
1948 | CanonicalForm |
---|
1949 | mulMod2NTLFq (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1950 | CanonicalForm& M) |
---|
1951 | { |
---|
1952 | Variable alpha; |
---|
1953 | CanonicalForm A= F; |
---|
1954 | CanonicalForm B= G; |
---|
1955 | |
---|
1956 | if (hasFirstAlgVar (A, alpha) || hasFirstAlgVar (B, alpha)) |
---|
1957 | { |
---|
1958 | int degAx= degree (A, 1); |
---|
1959 | int degAy= degree (A, 2); |
---|
1960 | int degBx= degree (B, 1); |
---|
1961 | int degBy= degree (B, 2); |
---|
1962 | int d1= degAx + degBx + 1; |
---|
1963 | int d2= tmax (degAy, degBy); |
---|
1964 | zz_p::init (getCharacteristic()); |
---|
1965 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
1966 | zz_pE::init (NTLMipo); |
---|
1967 | |
---|
1968 | int degMipo= degree (getMipo (alpha)); |
---|
1969 | if ((d1 > 128/degMipo) && (d2 > 160/degMipo) && (degAy == degBy) && |
---|
1970 | (2*degAy > degree (M))) |
---|
1971 | return mulMod2NTLFqReci (A, B, M, alpha); |
---|
1972 | |
---|
1973 | zz_pEX NTLA= kronSubFq (A, d1, alpha); |
---|
1974 | zz_pEX NTLB= kronSubFq (B, d1, alpha); |
---|
1975 | |
---|
1976 | int k= d1*degree (M); |
---|
1977 | |
---|
1978 | MulTrunc (NTLA, NTLA, NTLB, (long) k); |
---|
1979 | |
---|
1980 | A= reverseSubstFq (NTLA, d1, alpha); |
---|
1981 | |
---|
1982 | return A; |
---|
1983 | } |
---|
1984 | else |
---|
1985 | #ifdef HAVE_FLINT |
---|
1986 | return mulMod2FLINTFp (A, B, M); |
---|
1987 | #else |
---|
1988 | return mulMod2NTLFp (A, B, M); |
---|
1989 | #endif |
---|
1990 | } |
---|
1991 | |
---|
1992 | CanonicalForm mulMod2 (const CanonicalForm& A, const CanonicalForm& B, |
---|
1993 | const CanonicalForm& M) |
---|
1994 | { |
---|
1995 | if (A.isZero() || B.isZero()) |
---|
1996 | return 0; |
---|
1997 | |
---|
1998 | ASSERT (M.isUnivariate(), "M must be univariate"); |
---|
1999 | |
---|
2000 | CanonicalForm F= mod (A, M); |
---|
2001 | CanonicalForm G= mod (B, M); |
---|
2002 | if (F.inCoeffDomain() || G.inCoeffDomain()) |
---|
2003 | return F*G; |
---|
2004 | Variable y= M.mvar(); |
---|
2005 | int degF= degree (F, y); |
---|
2006 | int degG= degree (G, y); |
---|
2007 | |
---|
2008 | if ((degF < 1 && degG < 1) && (F.isUnivariate() && G.isUnivariate()) && |
---|
2009 | (F.level() == G.level())) |
---|
2010 | { |
---|
2011 | CanonicalForm result= mulNTL (F, G); |
---|
2012 | return mod (result, M); |
---|
2013 | } |
---|
2014 | else if (degF <= 1 && degG <= 1) |
---|
2015 | { |
---|
2016 | CanonicalForm result= F*G; |
---|
2017 | return mod (result, M); |
---|
2018 | } |
---|
2019 | |
---|
2020 | int sizeF= size (F); |
---|
2021 | int sizeG= size (G); |
---|
2022 | |
---|
2023 | int fallBackToNaive= 50; |
---|
2024 | if (sizeF < fallBackToNaive || sizeG < fallBackToNaive) |
---|
2025 | return mod (F*G, M); |
---|
2026 | |
---|
2027 | #ifdef HAVE_FLINT |
---|
2028 | if (getCharacteristic() == 0) |
---|
2029 | return mulMod2FLINTQa (F, G, M); |
---|
2030 | #endif |
---|
2031 | |
---|
2032 | if (getCharacteristic() > 0 && CFFactory::gettype() != GaloisFieldDomain && |
---|
2033 | (((degF-degG) < 50 && degF > degG) || ((degG-degF) < 50 && degF <= degG))) |
---|
2034 | return mulMod2NTLFq (F, G, M); |
---|
2035 | |
---|
2036 | int m= (int) ceil (degree (M)/2.0); |
---|
2037 | if (degF >= m || degG >= m) |
---|
2038 | { |
---|
2039 | CanonicalForm MLo= power (y, m); |
---|
2040 | CanonicalForm MHi= power (y, degree (M) - m); |
---|
2041 | CanonicalForm F0= mod (F, MLo); |
---|
2042 | CanonicalForm F1= div (F, MLo); |
---|
2043 | CanonicalForm G0= mod (G, MLo); |
---|
2044 | CanonicalForm G1= div (G, MLo); |
---|
2045 | CanonicalForm F0G1= mulMod2 (F0, G1, MHi); |
---|
2046 | CanonicalForm F1G0= mulMod2 (F1, G0, MHi); |
---|
2047 | CanonicalForm F0G0= mulMod2 (F0, G0, M); |
---|
2048 | return F0G0 + MLo*(F0G1 + F1G0); |
---|
2049 | } |
---|
2050 | else |
---|
2051 | { |
---|
2052 | m= (int) ceil (tmax (degF, degG)/2.0); |
---|
2053 | CanonicalForm yToM= power (y, m); |
---|
2054 | CanonicalForm F0= mod (F, yToM); |
---|
2055 | CanonicalForm F1= div (F, yToM); |
---|
2056 | CanonicalForm G0= mod (G, yToM); |
---|
2057 | CanonicalForm G1= div (G, yToM); |
---|
2058 | CanonicalForm H00= mulMod2 (F0, G0, M); |
---|
2059 | CanonicalForm H11= mulMod2 (F1, G1, M); |
---|
2060 | CanonicalForm H01= mulMod2 (F0 + F1, G0 + G1, M); |
---|
2061 | return H11*yToM*yToM + (H01 - H11 - H00)*yToM + H00; |
---|
2062 | } |
---|
2063 | DEBOUTLN (cerr, "fatal end in mulMod2"); |
---|
2064 | } |
---|
2065 | |
---|
2066 | // end bivariate polys |
---|
2067 | //********************** |
---|
2068 | // multivariate polys |
---|
2069 | |
---|
2070 | CanonicalForm mod (const CanonicalForm& F, const CFList& M) |
---|
2071 | { |
---|
2072 | CanonicalForm A= F; |
---|
2073 | for (CFListIterator i= M; i.hasItem(); i++) |
---|
2074 | A= mod (A, i.getItem()); |
---|
2075 | return A; |
---|
2076 | } |
---|
2077 | |
---|
2078 | CanonicalForm mulMod (const CanonicalForm& A, const CanonicalForm& B, |
---|
2079 | const CFList& MOD) |
---|
2080 | { |
---|
2081 | if (A.isZero() || B.isZero()) |
---|
2082 | return 0; |
---|
2083 | |
---|
2084 | if (MOD.length() == 1) |
---|
2085 | return mulMod2 (A, B, MOD.getLast()); |
---|
2086 | |
---|
2087 | CanonicalForm M= MOD.getLast(); |
---|
2088 | CanonicalForm F= mod (A, M); |
---|
2089 | CanonicalForm G= mod (B, M); |
---|
2090 | if (F.inCoeffDomain() || G.inCoeffDomain()) |
---|
2091 | return F*G; |
---|
2092 | Variable y= M.mvar(); |
---|
2093 | int degF= degree (F, y); |
---|
2094 | int degG= degree (G, y); |
---|
2095 | |
---|
2096 | if ((degF <= 1 && F.level() <= M.level()) && |
---|
2097 | (degG <= 1 && G.level() <= M.level())) |
---|
2098 | { |
---|
2099 | CFList buf= MOD; |
---|
2100 | buf.removeLast(); |
---|
2101 | if (degF == 1 && degG == 1) |
---|
2102 | { |
---|
2103 | CanonicalForm F0= mod (F, y); |
---|
2104 | CanonicalForm F1= div (F, y); |
---|
2105 | CanonicalForm G0= mod (G, y); |
---|
2106 | CanonicalForm G1= div (G, y); |
---|
2107 | if (degree (M) > 2) |
---|
2108 | { |
---|
2109 | CanonicalForm H00= mulMod (F0, G0, buf); |
---|
2110 | CanonicalForm H11= mulMod (F1, G1, buf); |
---|
2111 | CanonicalForm H01= mulMod (F0 + F1, G0 + G1, buf); |
---|
2112 | return H11*y*y + (H01 - H00 - H11)*y + H00; |
---|
2113 | } |
---|
2114 | else //here degree (M) == 2 |
---|
2115 | { |
---|
2116 | buf.append (y); |
---|
2117 | CanonicalForm F0G1= mulMod (F0, G1, buf); |
---|
2118 | CanonicalForm F1G0= mulMod (F1, G0, buf); |
---|
2119 | CanonicalForm F0G0= mulMod (F0, G0, MOD); |
---|
2120 | CanonicalForm result= F0G0 + y*(F0G1 + F1G0); |
---|
2121 | return result; |
---|
2122 | } |
---|
2123 | } |
---|
2124 | else if (degF == 1 && degG == 0) |
---|
2125 | return mulMod (div (F, y), G, buf)*y + mulMod (mod (F, y), G, buf); |
---|
2126 | else if (degF == 0 && degG == 1) |
---|
2127 | return mulMod (div (G, y), F, buf)*y + mulMod (mod (G, y), F, buf); |
---|
2128 | else |
---|
2129 | return mulMod (F, G, buf); |
---|
2130 | } |
---|
2131 | int m= (int) ceil (degree (M)/2.0); |
---|
2132 | if (degF >= m || degG >= m) |
---|
2133 | { |
---|
2134 | CanonicalForm MLo= power (y, m); |
---|
2135 | CanonicalForm MHi= power (y, degree (M) - m); |
---|
2136 | CanonicalForm F0= mod (F, MLo); |
---|
2137 | CanonicalForm F1= div (F, MLo); |
---|
2138 | CanonicalForm G0= mod (G, MLo); |
---|
2139 | CanonicalForm G1= div (G, MLo); |
---|
2140 | CFList buf= MOD; |
---|
2141 | buf.removeLast(); |
---|
2142 | buf.append (MHi); |
---|
2143 | CanonicalForm F0G1= mulMod (F0, G1, buf); |
---|
2144 | CanonicalForm F1G0= mulMod (F1, G0, buf); |
---|
2145 | CanonicalForm F0G0= mulMod (F0, G0, MOD); |
---|
2146 | return F0G0 + MLo*(F0G1 + F1G0); |
---|
2147 | } |
---|
2148 | else |
---|
2149 | { |
---|
2150 | m= (int) ceil (tmax (degF, degG)/2.0); |
---|
2151 | CanonicalForm yToM= power (y, m); |
---|
2152 | CanonicalForm F0= mod (F, yToM); |
---|
2153 | CanonicalForm F1= div (F, yToM); |
---|
2154 | CanonicalForm G0= mod (G, yToM); |
---|
2155 | CanonicalForm G1= div (G, yToM); |
---|
2156 | CanonicalForm H00= mulMod (F0, G0, MOD); |
---|
2157 | CanonicalForm H11= mulMod (F1, G1, MOD); |
---|
2158 | CanonicalForm H01= mulMod (F0 + F1, G0 + G1, MOD); |
---|
2159 | return H11*yToM*yToM + (H01 - H11 - H00)*yToM + H00; |
---|
2160 | } |
---|
2161 | DEBOUTLN (cerr, "fatal end in mulMod"); |
---|
2162 | } |
---|
2163 | |
---|
2164 | CanonicalForm prodMod (const CFList& L, const CanonicalForm& M) |
---|
2165 | { |
---|
2166 | if (L.isEmpty()) |
---|
2167 | return 1; |
---|
2168 | int l= L.length(); |
---|
2169 | if (l == 1) |
---|
2170 | return mod (L.getFirst(), M); |
---|
2171 | else if (l == 2) { |
---|
2172 | CanonicalForm result= mulMod2 (L.getFirst(), L.getLast(), M); |
---|
2173 | return result; |
---|
2174 | } |
---|
2175 | else |
---|
2176 | { |
---|
2177 | l /= 2; |
---|
2178 | CFList tmp1, tmp2; |
---|
2179 | CFListIterator i= L; |
---|
2180 | CanonicalForm buf1, buf2; |
---|
2181 | for (int j= 1; j <= l; j++, i++) |
---|
2182 | tmp1.append (i.getItem()); |
---|
2183 | tmp2= Difference (L, tmp1); |
---|
2184 | buf1= prodMod (tmp1, M); |
---|
2185 | buf2= prodMod (tmp2, M); |
---|
2186 | CanonicalForm result= mulMod2 (buf1, buf2, M); |
---|
2187 | return result; |
---|
2188 | } |
---|
2189 | } |
---|
2190 | |
---|
2191 | CanonicalForm prodMod (const CFList& L, const CFList& M) |
---|
2192 | { |
---|
2193 | if (L.isEmpty()) |
---|
2194 | return 1; |
---|
2195 | else if (L.length() == 1) |
---|
2196 | return L.getFirst(); |
---|
2197 | else if (L.length() == 2) |
---|
2198 | return mulMod (L.getFirst(), L.getLast(), M); |
---|
2199 | else |
---|
2200 | { |
---|
2201 | int l= L.length()/2; |
---|
2202 | CFListIterator i= L; |
---|
2203 | CFList tmp1, tmp2; |
---|
2204 | CanonicalForm buf1, buf2; |
---|
2205 | for (int j= 1; j <= l; j++, i++) |
---|
2206 | tmp1.append (i.getItem()); |
---|
2207 | tmp2= Difference (L, tmp1); |
---|
2208 | buf1= prodMod (tmp1, M); |
---|
2209 | buf2= prodMod (tmp2, M); |
---|
2210 | return mulMod (buf1, buf2, M); |
---|
2211 | } |
---|
2212 | } |
---|
2213 | |
---|
2214 | // end multivariate polys |
---|
2215 | //*************************** |
---|
2216 | // division |
---|
2217 | |
---|
2218 | CanonicalForm reverse (const CanonicalForm& F, int d) |
---|
2219 | { |
---|
2220 | if (d == 0) |
---|
2221 | return F; |
---|
2222 | CanonicalForm A= F; |
---|
2223 | Variable y= Variable (2); |
---|
2224 | Variable x= Variable (1); |
---|
2225 | if (degree (A, x) > 0) |
---|
2226 | { |
---|
2227 | A= swapvar (A, x, y); |
---|
2228 | CanonicalForm result= 0; |
---|
2229 | CFIterator i= A; |
---|
2230 | while (d - i.exp() < 0) |
---|
2231 | i++; |
---|
2232 | |
---|
2233 | for (; i.hasTerms() && (d - i.exp() >= 0); i++) |
---|
2234 | result += swapvar (i.coeff(),x,y)*power (x, d - i.exp()); |
---|
2235 | return result; |
---|
2236 | } |
---|
2237 | else |
---|
2238 | return A*power (x, d); |
---|
2239 | } |
---|
2240 | |
---|
2241 | CanonicalForm |
---|
2242 | newtonInverse (const CanonicalForm& F, const int n, const CanonicalForm& M) |
---|
2243 | { |
---|
2244 | int l= ilog2(n); |
---|
2245 | |
---|
2246 | CanonicalForm g= mod (F, M)[0] [0]; |
---|
2247 | |
---|
2248 | ASSERT (!g.isZero(), "expected a unit"); |
---|
2249 | |
---|
2250 | Variable alpha; |
---|
2251 | |
---|
2252 | if (!g.isOne()) |
---|
2253 | g = 1/g; |
---|
2254 | Variable x= Variable (1); |
---|
2255 | CanonicalForm result; |
---|
2256 | int exp= 0; |
---|
2257 | if (n & 1) |
---|
2258 | { |
---|
2259 | result= g; |
---|
2260 | exp= 1; |
---|
2261 | } |
---|
2262 | CanonicalForm h; |
---|
2263 | |
---|
2264 | for (int i= 1; i <= l; i++) |
---|
2265 | { |
---|
2266 | h= mulMod2 (g, mod (F, power (x, (1 << i))), M); |
---|
2267 | h= mod (h, power (x, (1 << i)) - 1); |
---|
2268 | h= div (h, power (x, (1 << (i - 1)))); |
---|
2269 | h= mod (h, M); |
---|
2270 | g -= power (x, (1 << (i - 1)))* |
---|
2271 | mod (mulMod2 (g, h, M), power (x, (1 << (i - 1)))); |
---|
2272 | |
---|
2273 | if (n & (1 << i)) |
---|
2274 | { |
---|
2275 | if (exp) |
---|
2276 | { |
---|
2277 | h= mulMod2 (result, mod (F, power (x, exp + (1 << i))), M); |
---|
2278 | h= mod (h, power (x, exp + (1 << i)) - 1); |
---|
2279 | h= div (h, power (x, exp)); |
---|
2280 | h= mod (h, M); |
---|
2281 | result -= power(x, exp)*mod (mulMod2 (g, h, M), |
---|
2282 | power (x, (1 << i))); |
---|
2283 | exp += (1 << i); |
---|
2284 | } |
---|
2285 | else |
---|
2286 | { |
---|
2287 | exp= (1 << i); |
---|
2288 | result= g; |
---|
2289 | } |
---|
2290 | } |
---|
2291 | } |
---|
2292 | |
---|
2293 | return result; |
---|
2294 | } |
---|
2295 | |
---|
2296 | CanonicalForm |
---|
2297 | newtonDiv (const CanonicalForm& F, const CanonicalForm& G, const CanonicalForm& |
---|
2298 | M) |
---|
2299 | { |
---|
2300 | ASSERT (getCharacteristic() > 0, "positive characteristic expected"); |
---|
2301 | ASSERT (CFFactory::gettype() != GaloisFieldDomain, "no GF expected"); |
---|
2302 | |
---|
2303 | CanonicalForm A= mod (F, M); |
---|
2304 | CanonicalForm B= mod (G, M); |
---|
2305 | |
---|
2306 | Variable x= Variable (1); |
---|
2307 | int degA= degree (A, x); |
---|
2308 | int degB= degree (B, x); |
---|
2309 | int m= degA - degB; |
---|
2310 | if (m < 0) |
---|
2311 | return 0; |
---|
2312 | |
---|
2313 | Variable v; |
---|
2314 | CanonicalForm Q; |
---|
2315 | if (degB < 1 || CFFactory::gettype() == GaloisFieldDomain) |
---|
2316 | { |
---|
2317 | CanonicalForm R; |
---|
2318 | divrem2 (A, B, Q, R, M); |
---|
2319 | } |
---|
2320 | else |
---|
2321 | { |
---|
2322 | if (hasFirstAlgVar (A, v) || hasFirstAlgVar (B, v)) |
---|
2323 | { |
---|
2324 | CanonicalForm R= reverse (A, degA); |
---|
2325 | CanonicalForm revB= reverse (B, degB); |
---|
2326 | revB= newtonInverse (revB, m + 1, M); |
---|
2327 | Q= mulMod2 (R, revB, M); |
---|
2328 | Q= mod (Q, power (x, m + 1)); |
---|
2329 | Q= reverse (Q, m); |
---|
2330 | } |
---|
2331 | else |
---|
2332 | { |
---|
2333 | zz_pX mipo= convertFacCF2NTLzzpX (M); |
---|
2334 | Variable y= Variable (2); |
---|
2335 | zz_pEX NTLA, NTLB; |
---|
2336 | NTLA= convertFacCF2NTLzz_pEX (swapvar (A, x, y), mipo); |
---|
2337 | NTLB= convertFacCF2NTLzz_pEX (swapvar (B, x, y), mipo); |
---|
2338 | div (NTLA, NTLA, NTLB); |
---|
2339 | Q= convertNTLzz_pEX2CF (NTLA, x, y); |
---|
2340 | } |
---|
2341 | } |
---|
2342 | |
---|
2343 | return Q; |
---|
2344 | } |
---|
2345 | |
---|
2346 | void |
---|
2347 | newtonDivrem (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
2348 | CanonicalForm& R, const CanonicalForm& M) |
---|
2349 | { |
---|
2350 | CanonicalForm A= mod (F, M); |
---|
2351 | CanonicalForm B= mod (G, M); |
---|
2352 | Variable x= Variable (1); |
---|
2353 | int degA= degree (A, x); |
---|
2354 | int degB= degree (B, x); |
---|
2355 | int m= degA - degB; |
---|
2356 | |
---|
2357 | if (m < 0) |
---|
2358 | { |
---|
2359 | R= A; |
---|
2360 | Q= 0; |
---|
2361 | return; |
---|
2362 | } |
---|
2363 | |
---|
2364 | Variable v; |
---|
2365 | if (degB <= 1 || CFFactory::gettype() == GaloisFieldDomain) |
---|
2366 | { |
---|
2367 | divrem2 (A, B, Q, R, M); |
---|
2368 | } |
---|
2369 | else |
---|
2370 | { |
---|
2371 | if (hasFirstAlgVar (A, v) || hasFirstAlgVar (B, v)) |
---|
2372 | { |
---|
2373 | R= reverse (A, degA); |
---|
2374 | |
---|
2375 | CanonicalForm revB= reverse (B, degB); |
---|
2376 | revB= newtonInverse (revB, m + 1, M); |
---|
2377 | Q= mulMod2 (R, revB, M); |
---|
2378 | |
---|
2379 | Q= mod (Q, power (x, m + 1)); |
---|
2380 | Q= reverse (Q, m); |
---|
2381 | |
---|
2382 | R= A - mulMod2 (Q, B, M); |
---|
2383 | } |
---|
2384 | else |
---|
2385 | { |
---|
2386 | zz_pX mipo= convertFacCF2NTLzzpX (M); |
---|
2387 | Variable y= Variable (2); |
---|
2388 | zz_pEX NTLA, NTLB; |
---|
2389 | NTLA= convertFacCF2NTLzz_pEX (swapvar (A, x, y), mipo); |
---|
2390 | NTLB= convertFacCF2NTLzz_pEX (swapvar (B, x, y), mipo); |
---|
2391 | zz_pEX NTLQ, NTLR; |
---|
2392 | DivRem (NTLQ, NTLR, NTLA, NTLB); |
---|
2393 | Q= convertNTLzz_pEX2CF (NTLQ, x, y); |
---|
2394 | R= convertNTLzz_pEX2CF (NTLR, x, y); |
---|
2395 | } |
---|
2396 | } |
---|
2397 | } |
---|
2398 | |
---|
2399 | static inline |
---|
2400 | CFList split (const CanonicalForm& F, const int m, const Variable& x) |
---|
2401 | { |
---|
2402 | CanonicalForm A= F; |
---|
2403 | CanonicalForm buf= 0; |
---|
2404 | bool swap= false; |
---|
2405 | if (degree (A, x) <= 0) |
---|
2406 | return CFList(A); |
---|
2407 | else if (x.level() != A.level()) |
---|
2408 | { |
---|
2409 | swap= true; |
---|
2410 | A= swapvar (A, x, A.mvar()); |
---|
2411 | } |
---|
2412 | |
---|
2413 | int j= (int) floor ((double) degree (A)/ m); |
---|
2414 | CFList result; |
---|
2415 | CFIterator i= A; |
---|
2416 | for (; j >= 0; j--) |
---|
2417 | { |
---|
2418 | while (i.hasTerms() && i.exp() - j*m >= 0) |
---|
2419 | { |
---|
2420 | if (swap) |
---|
2421 | buf += i.coeff()*power (A.mvar(), i.exp() - j*m); |
---|
2422 | else |
---|
2423 | buf += i.coeff()*power (x, i.exp() - j*m); |
---|
2424 | i++; |
---|
2425 | } |
---|
2426 | if (swap) |
---|
2427 | result.append (swapvar (buf, x, F.mvar())); |
---|
2428 | else |
---|
2429 | result.append (buf); |
---|
2430 | buf= 0; |
---|
2431 | } |
---|
2432 | return result; |
---|
2433 | } |
---|
2434 | |
---|
2435 | static inline |
---|
2436 | void divrem32 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
2437 | CanonicalForm& R, const CFList& M); |
---|
2438 | |
---|
2439 | static inline |
---|
2440 | void divrem21 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
2441 | CanonicalForm& R, const CFList& M) |
---|
2442 | { |
---|
2443 | CanonicalForm A= mod (F, M); |
---|
2444 | CanonicalForm B= mod (G, M); |
---|
2445 | Variable x= Variable (1); |
---|
2446 | int degB= degree (B, x); |
---|
2447 | int degA= degree (A, x); |
---|
2448 | if (degA < degB) |
---|
2449 | { |
---|
2450 | Q= 0; |
---|
2451 | R= A; |
---|
2452 | return; |
---|
2453 | } |
---|
2454 | ASSERT (2*degB > degA, "expected degree (F, 1) < 2*degree (G, 1)"); |
---|
2455 | if (degB < 1) |
---|
2456 | { |
---|
2457 | divrem (A, B, Q, R); |
---|
2458 | Q= mod (Q, M); |
---|
2459 | R= mod (R, M); |
---|
2460 | return; |
---|
2461 | } |
---|
2462 | |
---|
2463 | int m= (int) ceil ((double) (degB + 1)/2.0) + 1; |
---|
2464 | CFList splitA= split (A, m, x); |
---|
2465 | if (splitA.length() == 3) |
---|
2466 | splitA.insert (0); |
---|
2467 | if (splitA.length() == 2) |
---|
2468 | { |
---|
2469 | splitA.insert (0); |
---|
2470 | splitA.insert (0); |
---|
2471 | } |
---|
2472 | if (splitA.length() == 1) |
---|
2473 | { |
---|
2474 | splitA.insert (0); |
---|
2475 | splitA.insert (0); |
---|
2476 | splitA.insert (0); |
---|
2477 | } |
---|
2478 | |
---|
2479 | CanonicalForm xToM= power (x, m); |
---|
2480 | |
---|
2481 | CFListIterator i= splitA; |
---|
2482 | CanonicalForm H= i.getItem(); |
---|
2483 | i++; |
---|
2484 | H *= xToM; |
---|
2485 | H += i.getItem(); |
---|
2486 | i++; |
---|
2487 | H *= xToM; |
---|
2488 | H += i.getItem(); |
---|
2489 | i++; |
---|
2490 | |
---|
2491 | divrem32 (H, B, Q, R, M); |
---|
2492 | |
---|
2493 | CFList splitR= split (R, m, x); |
---|
2494 | if (splitR.length() == 1) |
---|
2495 | splitR.insert (0); |
---|
2496 | |
---|
2497 | H= splitR.getFirst(); |
---|
2498 | H *= xToM; |
---|
2499 | H += splitR.getLast(); |
---|
2500 | H *= xToM; |
---|
2501 | H += i.getItem(); |
---|
2502 | |
---|
2503 | CanonicalForm bufQ; |
---|
2504 | divrem32 (H, B, bufQ, R, M); |
---|
2505 | |
---|
2506 | Q *= xToM; |
---|
2507 | Q += bufQ; |
---|
2508 | return; |
---|
2509 | } |
---|
2510 | |
---|
2511 | static inline |
---|
2512 | void divrem32 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
2513 | CanonicalForm& R, const CFList& M) |
---|
2514 | { |
---|
2515 | CanonicalForm A= mod (F, M); |
---|
2516 | CanonicalForm B= mod (G, M); |
---|
2517 | Variable x= Variable (1); |
---|
2518 | int degB= degree (B, x); |
---|
2519 | int degA= degree (A, x); |
---|
2520 | if (degA < degB) |
---|
2521 | { |
---|
2522 | Q= 0; |
---|
2523 | R= A; |
---|
2524 | return; |
---|
2525 | } |
---|
2526 | ASSERT (3*(degB/2) > degA, "expected degree (F, 1) < 3*(degree (G, 1)/2)"); |
---|
2527 | if (degB < 1) |
---|
2528 | { |
---|
2529 | divrem (A, B, Q, R); |
---|
2530 | Q= mod (Q, M); |
---|
2531 | R= mod (R, M); |
---|
2532 | return; |
---|
2533 | } |
---|
2534 | int m= (int) ceil ((double) (degB + 1)/ 2.0); |
---|
2535 | |
---|
2536 | CFList splitA= split (A, m, x); |
---|
2537 | CFList splitB= split (B, m, x); |
---|
2538 | |
---|
2539 | if (splitA.length() == 2) |
---|
2540 | { |
---|
2541 | splitA.insert (0); |
---|
2542 | } |
---|
2543 | if (splitA.length() == 1) |
---|
2544 | { |
---|
2545 | splitA.insert (0); |
---|
2546 | splitA.insert (0); |
---|
2547 | } |
---|
2548 | CanonicalForm xToM= power (x, m); |
---|
2549 | |
---|
2550 | CanonicalForm H; |
---|
2551 | CFListIterator i= splitA; |
---|
2552 | i++; |
---|
2553 | |
---|
2554 | if (degree (splitA.getFirst(), x) < degree (splitB.getFirst(), x)) |
---|
2555 | { |
---|
2556 | H= splitA.getFirst()*xToM + i.getItem(); |
---|
2557 | divrem21 (H, splitB.getFirst(), Q, R, M); |
---|
2558 | } |
---|
2559 | else |
---|
2560 | { |
---|
2561 | R= splitA.getFirst()*xToM + i.getItem() + splitB.getFirst() - |
---|
2562 | splitB.getFirst()*xToM; |
---|
2563 | Q= xToM - 1; |
---|
2564 | } |
---|
2565 | |
---|
2566 | H= mulMod (Q, splitB.getLast(), M); |
---|
2567 | |
---|
2568 | R= R*xToM + splitA.getLast() - H; |
---|
2569 | |
---|
2570 | while (degree (R, x) >= degB) |
---|
2571 | { |
---|
2572 | xToM= power (x, degree (R, x) - degB); |
---|
2573 | Q += LC (R, x)*xToM; |
---|
2574 | R -= mulMod (LC (R, x), B, M)*xToM; |
---|
2575 | Q= mod (Q, M); |
---|
2576 | R= mod (R, M); |
---|
2577 | } |
---|
2578 | |
---|
2579 | return; |
---|
2580 | } |
---|
2581 | |
---|
2582 | void divrem2 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
2583 | CanonicalForm& R, const CanonicalForm& M) |
---|
2584 | { |
---|
2585 | CanonicalForm A= mod (F, M); |
---|
2586 | CanonicalForm B= mod (G, M); |
---|
2587 | |
---|
2588 | if (B.inCoeffDomain()) |
---|
2589 | { |
---|
2590 | divrem (A, B, Q, R); |
---|
2591 | return; |
---|
2592 | } |
---|
2593 | if (A.inCoeffDomain() && !B.inCoeffDomain()) |
---|
2594 | { |
---|
2595 | Q= 0; |
---|
2596 | R= A; |
---|
2597 | return; |
---|
2598 | } |
---|
2599 | |
---|
2600 | if (B.level() < A.level()) |
---|
2601 | { |
---|
2602 | divrem (A, B, Q, R); |
---|
2603 | return; |
---|
2604 | } |
---|
2605 | if (A.level() > B.level()) |
---|
2606 | { |
---|
2607 | R= A; |
---|
2608 | Q= 0; |
---|
2609 | return; |
---|
2610 | } |
---|
2611 | if (B.level() == 1 && B.isUnivariate()) |
---|
2612 | { |
---|
2613 | divrem (A, B, Q, R); |
---|
2614 | return; |
---|
2615 | } |
---|
2616 | if (!(B.level() == 1 && B.isUnivariate()) && |
---|
2617 | (A.level() == 1 && A.isUnivariate())) |
---|
2618 | { |
---|
2619 | Q= 0; |
---|
2620 | R= A; |
---|
2621 | return; |
---|
2622 | } |
---|
2623 | |
---|
2624 | Variable x= Variable (1); |
---|
2625 | int degB= degree (B, x); |
---|
2626 | if (degB > degree (A, x)) |
---|
2627 | { |
---|
2628 | Q= 0; |
---|
2629 | R= A; |
---|
2630 | return; |
---|
2631 | } |
---|
2632 | |
---|
2633 | CFList splitA= split (A, degB, x); |
---|
2634 | |
---|
2635 | CanonicalForm xToDegB= power (x, degB); |
---|
2636 | CanonicalForm H, bufQ; |
---|
2637 | Q= 0; |
---|
2638 | CFListIterator i= splitA; |
---|
2639 | H= i.getItem()*xToDegB; |
---|
2640 | i++; |
---|
2641 | H += i.getItem(); |
---|
2642 | CFList buf; |
---|
2643 | while (i.hasItem()) |
---|
2644 | { |
---|
2645 | buf= CFList (M); |
---|
2646 | divrem21 (H, B, bufQ, R, buf); |
---|
2647 | i++; |
---|
2648 | if (i.hasItem()) |
---|
2649 | H= R*xToDegB + i.getItem(); |
---|
2650 | Q *= xToDegB; |
---|
2651 | Q += bufQ; |
---|
2652 | } |
---|
2653 | return; |
---|
2654 | } |
---|
2655 | |
---|
2656 | void divrem (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
2657 | CanonicalForm& R, const CFList& MOD) |
---|
2658 | { |
---|
2659 | CanonicalForm A= mod (F, MOD); |
---|
2660 | CanonicalForm B= mod (G, MOD); |
---|
2661 | Variable x= Variable (1); |
---|
2662 | int degB= degree (B, x); |
---|
2663 | if (degB > degree (A, x)) |
---|
2664 | { |
---|
2665 | Q= 0; |
---|
2666 | R= A; |
---|
2667 | return; |
---|
2668 | } |
---|
2669 | |
---|
2670 | if (degB <= 0) |
---|
2671 | { |
---|
2672 | divrem (A, B, Q, R); |
---|
2673 | Q= mod (Q, MOD); |
---|
2674 | R= mod (R, MOD); |
---|
2675 | return; |
---|
2676 | } |
---|
2677 | CFList splitA= split (A, degB, x); |
---|
2678 | |
---|
2679 | CanonicalForm xToDegB= power (x, degB); |
---|
2680 | CanonicalForm H, bufQ; |
---|
2681 | Q= 0; |
---|
2682 | CFListIterator i= splitA; |
---|
2683 | H= i.getItem()*xToDegB; |
---|
2684 | i++; |
---|
2685 | H += i.getItem(); |
---|
2686 | while (i.hasItem()) |
---|
2687 | { |
---|
2688 | divrem21 (H, B, bufQ, R, MOD); |
---|
2689 | i++; |
---|
2690 | if (i.hasItem()) |
---|
2691 | H= R*xToDegB + i.getItem(); |
---|
2692 | Q *= xToDegB; |
---|
2693 | Q += bufQ; |
---|
2694 | } |
---|
2695 | return; |
---|
2696 | } |
---|
2697 | |
---|
2698 | bool |
---|
2699 | uniFdivides (const CanonicalForm& A, const CanonicalForm& B) |
---|
2700 | { |
---|
2701 | int p= getCharacteristic(); |
---|
2702 | if (p > 0) |
---|
2703 | { |
---|
2704 | zz_p::init (p); |
---|
2705 | Variable alpha; |
---|
2706 | if (hasFirstAlgVar (A, alpha) || hasFirstAlgVar (B, alpha)) |
---|
2707 | { |
---|
2708 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
2709 | zz_pE::init (NTLMipo); |
---|
2710 | zz_pEX NTLA= convertFacCF2NTLzz_pEX (A, NTLMipo); |
---|
2711 | zz_pEX NTLB= convertFacCF2NTLzz_pEX (B, NTLMipo); |
---|
2712 | return divide (NTLB, NTLA); |
---|
2713 | } |
---|
2714 | #ifdef HAVE_FLINT |
---|
2715 | nmod_poly_t FLINTA, FLINTB; |
---|
2716 | convertFacCF2nmod_poly_t (FLINTA, A); |
---|
2717 | convertFacCF2nmod_poly_t (FLINTB, B); |
---|
2718 | nmod_poly_rem (FLINTA, FLINTB, FLINTA); |
---|
2719 | bool result= nmod_poly_is_zero (FLINTA); |
---|
2720 | nmod_poly_clear (FLINTA); |
---|
2721 | nmod_poly_clear (FLINTB); |
---|
2722 | return result; |
---|
2723 | #else |
---|
2724 | zz_pX NTLA= convertFacCF2NTLzzpX (A); |
---|
2725 | zz_pX NTLB= convertFacCF2NTLzzpX (B); |
---|
2726 | return divide (NTLB, NTLA); |
---|
2727 | #endif |
---|
2728 | } |
---|
2729 | #ifdef HAVE_FLINT |
---|
2730 | Variable alpha; |
---|
2731 | if (!hasFirstAlgVar (A, alpha) && !hasFirstAlgVar (B, alpha)) |
---|
2732 | { |
---|
2733 | fmpq_poly_t FLINTA,FLINTB; |
---|
2734 | fmpq_poly_init (FLINTA); |
---|
2735 | fmpq_poly_init (FLINTB); |
---|
2736 | convertFacCF2Fmpq_poly_t (FLINTA, A); |
---|
2737 | convertFacCF2Fmpq_poly_t (FLINTB, B); |
---|
2738 | fmpq_poly_rem (FLINTA, FLINTB, FLINTA); |
---|
2739 | bool result= fmpq_poly_is_zero (FLINTA); |
---|
2740 | fmpq_poly_clear (FLINTA); |
---|
2741 | fmpq_poly_clear (FLINTB); |
---|
2742 | return result; |
---|
2743 | } |
---|
2744 | else |
---|
2745 | return true; |
---|
2746 | //return fdivides (A, B); |
---|
2747 | #else |
---|
2748 | return fdivides (A, B); //maybe NTL? |
---|
2749 | #endif |
---|
2750 | } |
---|
2751 | |
---|
2752 | // end division |
---|
2753 | |
---|
2754 | #endif |
---|