1 | /*****************************************************************************\ |
---|
2 | * Computer Algebra System SINGULAR |
---|
3 | \*****************************************************************************/ |
---|
4 | /** @file facMul.cc |
---|
5 | * |
---|
6 | * This file implements functions for fast multiplication and division with |
---|
7 | * remainder |
---|
8 | * |
---|
9 | * @author Martin Lee |
---|
10 | * |
---|
11 | **/ |
---|
12 | /*****************************************************************************/ |
---|
13 | |
---|
14 | #include "debug.h" |
---|
15 | #include "config.h" |
---|
16 | |
---|
17 | #include "canonicalform.h" |
---|
18 | #include "facMul.h" |
---|
19 | #include "algext.h" |
---|
20 | #include "cf_util.h" |
---|
21 | #include "templates/ftmpl_functions.h" |
---|
22 | |
---|
23 | #ifdef HAVE_NTL |
---|
24 | #include <NTL/lzz_pEX.h> |
---|
25 | #include "NTLconvert.h" |
---|
26 | |
---|
27 | #ifdef HAVE_FLINT |
---|
28 | #include "FLINTconvert.h" |
---|
29 | #endif |
---|
30 | |
---|
31 | // univariate polys |
---|
32 | |
---|
33 | #ifdef HAVE_FLINT |
---|
34 | void kronSub (fmpz_poly_t result, const CanonicalForm& A, int d) |
---|
35 | { |
---|
36 | int degAy= degree (A); |
---|
37 | fmpz_poly_init2 (result, d*(degAy + 1)); |
---|
38 | _fmpz_poly_set_length (result, d*(degAy + 1)); |
---|
39 | CFIterator j; |
---|
40 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
41 | { |
---|
42 | if (i.coeff().inBaseDomain()) |
---|
43 | convertCF2Fmpz (fmpz_poly_get_coeff_ptr (result, i.exp()*d), i.coeff()); |
---|
44 | else |
---|
45 | for (j= i.coeff(); j.hasTerms(); j++) |
---|
46 | convertCF2Fmpz (fmpz_poly_get_coeff_ptr (result, i.exp()*d+j.exp()), |
---|
47 | j.coeff()); |
---|
48 | } |
---|
49 | _fmpz_poly_normalise(result); |
---|
50 | } |
---|
51 | |
---|
52 | |
---|
53 | CanonicalForm |
---|
54 | reverseSubstQa (const fmpz_poly_t F, int d, const Variable& x, |
---|
55 | const Variable& alpha, const CanonicalForm& den) |
---|
56 | { |
---|
57 | |
---|
58 | CanonicalForm result= 0; |
---|
59 | int i= 0; |
---|
60 | int degf= fmpz_poly_degree (F); |
---|
61 | int k= 0; |
---|
62 | int degfSubK; |
---|
63 | int repLength, j; |
---|
64 | CanonicalForm coeff, ff; |
---|
65 | fmpz* tmp; |
---|
66 | while (degf >= k) |
---|
67 | { |
---|
68 | coeff= 0; |
---|
69 | degfSubK= degf - k; |
---|
70 | if (degfSubK >= d) |
---|
71 | repLength= d; |
---|
72 | else |
---|
73 | repLength= degfSubK + 1; |
---|
74 | |
---|
75 | for (j= 0; j < repLength; j++) |
---|
76 | { |
---|
77 | tmp= fmpz_poly_get_coeff_ptr (F, j+k); |
---|
78 | if (!fmpz_is_zero (tmp)) |
---|
79 | { |
---|
80 | ff= convertFmpz2CF (tmp); |
---|
81 | coeff += ff*power (alpha, j); //TODO faster reduction mod alpha |
---|
82 | } |
---|
83 | } |
---|
84 | result += coeff*power (x, i); |
---|
85 | i++; |
---|
86 | k= d*i; |
---|
87 | } |
---|
88 | result /= den; |
---|
89 | return result; |
---|
90 | } |
---|
91 | |
---|
92 | CanonicalForm |
---|
93 | mulFLINTQa (const CanonicalForm& F, const CanonicalForm& G, |
---|
94 | const Variable& alpha) |
---|
95 | { |
---|
96 | CanonicalForm A= F; |
---|
97 | CanonicalForm B= G; |
---|
98 | |
---|
99 | CanonicalForm denA= bCommonDen (A); |
---|
100 | CanonicalForm denB= bCommonDen (B); |
---|
101 | |
---|
102 | A *= denA; |
---|
103 | B *= denB; |
---|
104 | int degAa= degree (A, alpha); |
---|
105 | int degBa= degree (B, alpha); |
---|
106 | int d= degAa + 1 + degBa; |
---|
107 | |
---|
108 | fmpz_poly_t FLINTA,FLINTB; |
---|
109 | kronSub (FLINTA, A, d); |
---|
110 | kronSub (FLINTB, B, d); |
---|
111 | |
---|
112 | fmpz_poly_mul (FLINTA, FLINTA, FLINTB); |
---|
113 | |
---|
114 | denA *= denB; |
---|
115 | A= reverseSubstQa (FLINTA, d, F.mvar(), alpha, denA); |
---|
116 | |
---|
117 | fmpz_poly_clear (FLINTA); |
---|
118 | fmpz_poly_clear (FLINTB); |
---|
119 | return A; |
---|
120 | } |
---|
121 | |
---|
122 | CanonicalForm |
---|
123 | mulFLINTQ (const CanonicalForm& F, const CanonicalForm& G) |
---|
124 | { |
---|
125 | CanonicalForm A= F; |
---|
126 | CanonicalForm B= G; |
---|
127 | |
---|
128 | CanonicalForm denA= bCommonDen (A); |
---|
129 | CanonicalForm denB= bCommonDen (B); |
---|
130 | |
---|
131 | A *= denA; |
---|
132 | B *= denB; |
---|
133 | fmpz_poly_t FLINTA,FLINTB; |
---|
134 | convertFacCF2Fmpz_poly_t (FLINTA, A); |
---|
135 | convertFacCF2Fmpz_poly_t (FLINTB, B); |
---|
136 | fmpz_poly_mul (FLINTA, FLINTA, FLINTB); |
---|
137 | denA *= denB; |
---|
138 | A= convertFmpz_poly_t2FacCF (FLINTA, F.mvar()); |
---|
139 | A /= denA; |
---|
140 | fmpz_poly_clear (FLINTA); |
---|
141 | fmpz_poly_clear (FLINTB); |
---|
142 | |
---|
143 | return A; |
---|
144 | } |
---|
145 | |
---|
146 | /*CanonicalForm |
---|
147 | mulFLINTQ2 (const CanonicalForm& F, const CanonicalForm& G) |
---|
148 | { |
---|
149 | CanonicalForm A= F; |
---|
150 | CanonicalForm B= G; |
---|
151 | |
---|
152 | fmpq_poly_t FLINTA,FLINTB; |
---|
153 | convertFacCF2Fmpq_poly_t (FLINTA, A); |
---|
154 | convertFacCF2Fmpq_poly_t (FLINTB, B); |
---|
155 | |
---|
156 | fmpq_poly_mul (FLINTA, FLINTA, FLINTB); |
---|
157 | A= convertFmpq_poly_t2FacCF (FLINTA, F.mvar()); |
---|
158 | fmpq_poly_clear (FLINTA); |
---|
159 | fmpq_poly_clear (FLINTB); |
---|
160 | return A; |
---|
161 | }*/ |
---|
162 | |
---|
163 | CanonicalForm |
---|
164 | divFLINTQ (const CanonicalForm& F, const CanonicalForm& G) |
---|
165 | { |
---|
166 | CanonicalForm A= F; |
---|
167 | CanonicalForm B= G; |
---|
168 | |
---|
169 | fmpq_poly_t FLINTA,FLINTB; |
---|
170 | convertFacCF2Fmpq_poly_t (FLINTA, A); |
---|
171 | convertFacCF2Fmpq_poly_t (FLINTB, B); |
---|
172 | |
---|
173 | fmpq_poly_div (FLINTA, FLINTA, FLINTB); |
---|
174 | A= convertFmpq_poly_t2FacCF (FLINTA, F.mvar()); |
---|
175 | |
---|
176 | fmpq_poly_clear (FLINTA); |
---|
177 | fmpq_poly_clear (FLINTB); |
---|
178 | return A; |
---|
179 | } |
---|
180 | |
---|
181 | CanonicalForm |
---|
182 | modFLINTQ (const CanonicalForm& F, const CanonicalForm& G) |
---|
183 | { |
---|
184 | CanonicalForm A= F; |
---|
185 | CanonicalForm B= G; |
---|
186 | |
---|
187 | fmpq_poly_t FLINTA,FLINTB; |
---|
188 | convertFacCF2Fmpq_poly_t (FLINTA, A); |
---|
189 | convertFacCF2Fmpq_poly_t (FLINTB, B); |
---|
190 | |
---|
191 | fmpq_poly_rem (FLINTA, FLINTA, FLINTB); |
---|
192 | A= convertFmpq_poly_t2FacCF (FLINTA, F.mvar()); |
---|
193 | |
---|
194 | fmpq_poly_clear (FLINTA); |
---|
195 | fmpq_poly_clear (FLINTB); |
---|
196 | return A; |
---|
197 | } |
---|
198 | |
---|
199 | CanonicalForm |
---|
200 | mulFLINTQaTrunc (const CanonicalForm& F, const CanonicalForm& G, |
---|
201 | const Variable& alpha, int m) |
---|
202 | { |
---|
203 | CanonicalForm A= F; |
---|
204 | CanonicalForm B= G; |
---|
205 | |
---|
206 | CanonicalForm denA= bCommonDen (A); |
---|
207 | CanonicalForm denB= bCommonDen (B); |
---|
208 | |
---|
209 | A *= denA; |
---|
210 | B *= denB; |
---|
211 | |
---|
212 | int degAa= degree (A, alpha); |
---|
213 | int degBa= degree (B, alpha); |
---|
214 | int d= degAa + 1 + degBa; |
---|
215 | |
---|
216 | fmpz_poly_t FLINTA,FLINTB; |
---|
217 | kronSub (FLINTA, A, d); |
---|
218 | kronSub (FLINTB, B, d); |
---|
219 | |
---|
220 | int k= d*m; |
---|
221 | fmpz_poly_mullow (FLINTA, FLINTA, FLINTB, k); |
---|
222 | |
---|
223 | denA *= denB; |
---|
224 | A= reverseSubstQa (FLINTA, d, F.mvar(), alpha, denA); |
---|
225 | fmpz_poly_clear (FLINTA); |
---|
226 | fmpz_poly_clear (FLINTB); |
---|
227 | return A; |
---|
228 | } |
---|
229 | |
---|
230 | CanonicalForm |
---|
231 | mulFLINTQTrunc (const CanonicalForm& F, const CanonicalForm& G, int m) |
---|
232 | { |
---|
233 | if (F.inCoeffDomain() || G.inCoeffDomain()) |
---|
234 | return mod (F*G, power (Variable (1), m)); |
---|
235 | Variable alpha; |
---|
236 | if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) |
---|
237 | return mulFLINTQaTrunc (F, G, alpha, m); |
---|
238 | |
---|
239 | CanonicalForm A= F; |
---|
240 | CanonicalForm B= G; |
---|
241 | |
---|
242 | CanonicalForm denA= bCommonDen (A); |
---|
243 | CanonicalForm denB= bCommonDen (B); |
---|
244 | |
---|
245 | A *= denA; |
---|
246 | B *= denB; |
---|
247 | fmpz_poly_t FLINTA,FLINTB; |
---|
248 | convertFacCF2Fmpz_poly_t (FLINTA, A); |
---|
249 | convertFacCF2Fmpz_poly_t (FLINTB, B); |
---|
250 | fmpz_poly_mullow (FLINTA, FLINTA, FLINTB, m); |
---|
251 | denA *= denB; |
---|
252 | A= convertFmpz_poly_t2FacCF (FLINTA, F.mvar()); |
---|
253 | A /= denA; |
---|
254 | fmpz_poly_clear (FLINTA); |
---|
255 | fmpz_poly_clear (FLINTB); |
---|
256 | |
---|
257 | return A; |
---|
258 | } |
---|
259 | |
---|
260 | CanonicalForm uniReverse (const CanonicalForm& F, int d) |
---|
261 | { |
---|
262 | if (d == 0) |
---|
263 | return F; |
---|
264 | if (F.inCoeffDomain()) |
---|
265 | return F*power (Variable (1),d); |
---|
266 | Variable x= Variable (1); |
---|
267 | CanonicalForm result= 0; |
---|
268 | CFIterator i= F; |
---|
269 | while (d - i.exp() < 0) |
---|
270 | i++; |
---|
271 | |
---|
272 | for (; i.hasTerms() && (d - i.exp() >= 0); i++) |
---|
273 | result += i.coeff()*power (x, d - i.exp()); |
---|
274 | return result; |
---|
275 | } |
---|
276 | |
---|
277 | CanonicalForm |
---|
278 | newtonInverse (const CanonicalForm& F, const int n) |
---|
279 | { |
---|
280 | int l= ilog2(n); |
---|
281 | |
---|
282 | CanonicalForm g= F [0]; |
---|
283 | |
---|
284 | ASSERT (!g.isZero(), "expected a unit"); |
---|
285 | |
---|
286 | if (!g.isOne()) |
---|
287 | g = 1/g; |
---|
288 | Variable x= Variable (1); |
---|
289 | CanonicalForm result; |
---|
290 | int exp= 0; |
---|
291 | if (n & 1) |
---|
292 | { |
---|
293 | result= g; |
---|
294 | exp= 1; |
---|
295 | } |
---|
296 | CanonicalForm h; |
---|
297 | |
---|
298 | for (int i= 1; i <= l; i++) |
---|
299 | { |
---|
300 | h= mulNTL (g, mod (F, power (x, (1 << i)))); |
---|
301 | h= mod (h, power (x, (1 << i)) - 1); |
---|
302 | h= div (h, power (x, (1 << (i - 1)))); |
---|
303 | g -= power (x, (1 << (i - 1)))* |
---|
304 | mulFLINTQTrunc (g, h, 1 << (i-1)); |
---|
305 | |
---|
306 | if (n & (1 << i)) |
---|
307 | { |
---|
308 | if (exp) |
---|
309 | { |
---|
310 | h= mulNTL (result, mod (F, power (x, exp + (1 << i)))); |
---|
311 | h= mod (h, power (x, exp + (1 << i)) - 1); |
---|
312 | h= div (h, power (x, exp)); |
---|
313 | result -= power(x, exp)*mulFLINTQTrunc (g, h, 1 << i); |
---|
314 | exp += (1 << i); |
---|
315 | } |
---|
316 | else |
---|
317 | { |
---|
318 | exp= (1 << i); |
---|
319 | result= g; |
---|
320 | } |
---|
321 | } |
---|
322 | } |
---|
323 | |
---|
324 | return result; |
---|
325 | } |
---|
326 | |
---|
327 | void |
---|
328 | newtonDivrem (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
329 | CanonicalForm& R) |
---|
330 | { |
---|
331 | CanonicalForm A= F; |
---|
332 | CanonicalForm B= G; |
---|
333 | Variable x= Variable (1); |
---|
334 | int degA= degree (A, x); |
---|
335 | int degB= degree (B, x); |
---|
336 | int m= degA - degB; |
---|
337 | |
---|
338 | if (m < 0) |
---|
339 | { |
---|
340 | R= A; |
---|
341 | Q= 0; |
---|
342 | return; |
---|
343 | } |
---|
344 | |
---|
345 | if (degB <= 1) |
---|
346 | divrem (A, B, Q, R); |
---|
347 | else |
---|
348 | { |
---|
349 | R= uniReverse (A, degA); |
---|
350 | |
---|
351 | CanonicalForm revB= uniReverse (B, degB); |
---|
352 | CanonicalForm buf= revB; |
---|
353 | revB= newtonInverse (revB, m + 1); |
---|
354 | Q= mulFLINTQTrunc (R, revB, m + 1); |
---|
355 | Q= uniReverse (Q, m); |
---|
356 | |
---|
357 | R= A - mulNTL (Q, B); |
---|
358 | } |
---|
359 | } |
---|
360 | |
---|
361 | void |
---|
362 | newtonDiv (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q) |
---|
363 | { |
---|
364 | CanonicalForm A= F; |
---|
365 | CanonicalForm B= G; |
---|
366 | Variable x= Variable (1); |
---|
367 | int degA= degree (A, x); |
---|
368 | int degB= degree (B, x); |
---|
369 | int m= degA - degB; |
---|
370 | |
---|
371 | if (m < 0) |
---|
372 | { |
---|
373 | Q= 0; |
---|
374 | return; |
---|
375 | } |
---|
376 | |
---|
377 | if (degB <= 1) |
---|
378 | Q= div (A, B); |
---|
379 | else |
---|
380 | { |
---|
381 | CanonicalForm R= uniReverse (A, degA); |
---|
382 | |
---|
383 | CanonicalForm revB= uniReverse (B, degB); |
---|
384 | revB= newtonInverse (revB, m + 1); |
---|
385 | Q= mulFLINTQTrunc (R, revB, m + 1); |
---|
386 | Q= uniReverse (Q, m); |
---|
387 | } |
---|
388 | } |
---|
389 | |
---|
390 | #endif |
---|
391 | |
---|
392 | CanonicalForm |
---|
393 | mulNTL (const CanonicalForm& F, const CanonicalForm& G, const modpk& b) |
---|
394 | { |
---|
395 | if (CFFactory::gettype() == GaloisFieldDomain) |
---|
396 | return F*G; |
---|
397 | if (getCharacteristic() == 0) |
---|
398 | { |
---|
399 | Variable alpha; |
---|
400 | if ((!F.inCoeffDomain() && !G.inCoeffDomain()) && |
---|
401 | (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha))) |
---|
402 | { |
---|
403 | if (b.getp() != 0) |
---|
404 | { |
---|
405 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
406 | CanonicalForm mipo= getMipo (alpha); |
---|
407 | bool is_rat= isOn (SW_RATIONAL); |
---|
408 | if (!is_rat) |
---|
409 | On (SW_RATIONAL); |
---|
410 | mipo *=bCommonDen (mipo); |
---|
411 | if (!is_rat) |
---|
412 | Off (SW_RATIONAL); |
---|
413 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (mipo)); |
---|
414 | ZZ_pE::init (NTLmipo); |
---|
415 | ZZ_pEX NTLg= convertFacCF2NTLZZ_pEX (G, NTLmipo); |
---|
416 | ZZ_pEX NTLf= convertFacCF2NTLZZ_pEX (F, NTLmipo); |
---|
417 | mul (NTLf, NTLf, NTLg); |
---|
418 | return b (convertNTLZZ_pEX2CF (NTLf, F.mvar(), alpha)); |
---|
419 | } |
---|
420 | #ifdef HAVE_FLINT |
---|
421 | CanonicalForm result= mulFLINTQa (F, G, alpha); |
---|
422 | return result; |
---|
423 | #else |
---|
424 | return F*G; |
---|
425 | #endif |
---|
426 | } |
---|
427 | else if (!F.inCoeffDomain() && !G.inCoeffDomain()) |
---|
428 | { |
---|
429 | #ifdef HAVE_FLINT |
---|
430 | if (b.getp() != 0) |
---|
431 | { |
---|
432 | fmpz_t FLINTpk; |
---|
433 | fmpz_init (FLINTpk); |
---|
434 | convertCF2Fmpz (FLINTpk, b.getpk()); |
---|
435 | fmpz_mod_poly_t FLINTF, FLINTG; |
---|
436 | convertFacCF2Fmpz_mod_poly_t (FLINTF, F, FLINTpk); |
---|
437 | convertFacCF2Fmpz_mod_poly_t (FLINTG, G, FLINTpk); |
---|
438 | fmpz_mod_poly_mul (FLINTF, FLINTF, FLINTG); |
---|
439 | CanonicalForm result= convertFmpz_mod_poly_t2FacCF (FLINTF, F.mvar(), b); |
---|
440 | fmpz_mod_poly_clear (FLINTG); |
---|
441 | fmpz_mod_poly_clear (FLINTF); |
---|
442 | fmpz_clear (FLINTpk); |
---|
443 | return result; |
---|
444 | } |
---|
445 | return mulFLINTQ (F, G); |
---|
446 | #else |
---|
447 | if (b.getp() != 0) |
---|
448 | { |
---|
449 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
450 | ZZX ZZf= convertFacCF2NTLZZX (F); |
---|
451 | ZZX ZZg= convertFacCF2NTLZZX (G); |
---|
452 | ZZ_pX NTLf= to_ZZ_pX (ZZf); |
---|
453 | ZZ_pX NTLg= to_ZZ_pX (ZZg); |
---|
454 | mul (NTLf, NTLf, NTLg); |
---|
455 | return b (convertNTLZZX2CF (to_ZZX (NTLf), F.mvar())); |
---|
456 | } |
---|
457 | return F*G; |
---|
458 | #endif |
---|
459 | } |
---|
460 | if (b.getp() != 0) |
---|
461 | { |
---|
462 | if (!F.inBaseDomain() && !G.inBaseDomain()) |
---|
463 | { |
---|
464 | if (hasFirstAlgVar (G, alpha) || hasFirstAlgVar (F, alpha)) |
---|
465 | { |
---|
466 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
467 | if (F.inCoeffDomain() && !G.inCoeffDomain()) |
---|
468 | { |
---|
469 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
470 | ZZ_pE::init (NTLmipo); |
---|
471 | ZZ_pEX NTLg= convertFacCF2NTLZZ_pEX (G, NTLmipo); |
---|
472 | ZZ_pX NTLf= convertFacCF2NTLZZpX (F); |
---|
473 | mul (NTLg, to_ZZ_pE (NTLf), NTLg); |
---|
474 | return b (convertNTLZZ_pEX2CF (NTLg, G.mvar(), alpha)); |
---|
475 | } |
---|
476 | else if (!F.inCoeffDomain() && G.inCoeffDomain()) |
---|
477 | { |
---|
478 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
479 | ZZ_pE::init (NTLmipo); |
---|
480 | ZZ_pX NTLg= convertFacCF2NTLZZpX (G); |
---|
481 | ZZ_pEX NTLf= convertFacCF2NTLZZ_pEX (F, NTLmipo); |
---|
482 | mul (NTLf, NTLf, to_ZZ_pE (NTLg)); |
---|
483 | return b (convertNTLZZ_pEX2CF (NTLf, F.mvar(), alpha)); |
---|
484 | } |
---|
485 | else |
---|
486 | { |
---|
487 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
488 | ZZ_pE::init (NTLmipo); |
---|
489 | ZZ_pX NTLg= convertFacCF2NTLZZpX (G); |
---|
490 | ZZ_pX NTLf= convertFacCF2NTLZZpX (F); |
---|
491 | ZZ_pE result; |
---|
492 | mul (result, to_ZZ_pE (NTLg), to_ZZ_pE (NTLf)); |
---|
493 | return b (convertNTLZZpX2CF (rep (result), alpha)); |
---|
494 | } |
---|
495 | } |
---|
496 | } |
---|
497 | return b (F*G); |
---|
498 | } |
---|
499 | return F*G; |
---|
500 | } |
---|
501 | else if (F.inCoeffDomain() || G.inCoeffDomain()) |
---|
502 | return F*G; |
---|
503 | ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); |
---|
504 | ASSERT (F.level() == G.level(), "expected polys of same level"); |
---|
505 | if (fac_NTL_char != getCharacteristic()) |
---|
506 | { |
---|
507 | fac_NTL_char= getCharacteristic(); |
---|
508 | zz_p::init (getCharacteristic()); |
---|
509 | } |
---|
510 | Variable alpha; |
---|
511 | CanonicalForm result; |
---|
512 | if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) |
---|
513 | { |
---|
514 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
515 | zz_pE::init (NTLMipo); |
---|
516 | zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); |
---|
517 | zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); |
---|
518 | mul (NTLF, NTLF, NTLG); |
---|
519 | result= convertNTLzz_pEX2CF(NTLF, F.mvar(), alpha); |
---|
520 | } |
---|
521 | else |
---|
522 | { |
---|
523 | #ifdef HAVE_FLINT |
---|
524 | nmod_poly_t FLINTF, FLINTG; |
---|
525 | convertFacCF2nmod_poly_t (FLINTF, F); |
---|
526 | convertFacCF2nmod_poly_t (FLINTG, G); |
---|
527 | nmod_poly_mul (FLINTF, FLINTF, FLINTG); |
---|
528 | result= convertnmod_poly_t2FacCF (FLINTF, F.mvar()); |
---|
529 | nmod_poly_clear (FLINTF); |
---|
530 | nmod_poly_clear (FLINTG); |
---|
531 | #else |
---|
532 | zz_pX NTLF= convertFacCF2NTLzzpX (F); |
---|
533 | zz_pX NTLG= convertFacCF2NTLzzpX (G); |
---|
534 | mul (NTLF, NTLF, NTLG); |
---|
535 | result= convertNTLzzpX2CF(NTLF, F.mvar()); |
---|
536 | #endif |
---|
537 | } |
---|
538 | return result; |
---|
539 | } |
---|
540 | |
---|
541 | CanonicalForm |
---|
542 | modNTL (const CanonicalForm& F, const CanonicalForm& G, const modpk& b) |
---|
543 | { |
---|
544 | if (CFFactory::gettype() == GaloisFieldDomain) |
---|
545 | return mod (F, G); |
---|
546 | if (F.inCoeffDomain() && G.isUnivariate() && !G.inCoeffDomain()) |
---|
547 | { |
---|
548 | if (b.getp() != 0) |
---|
549 | return b(F); |
---|
550 | return F; |
---|
551 | } |
---|
552 | else if (F.inCoeffDomain() && G.inCoeffDomain()) |
---|
553 | { |
---|
554 | if (b.getp() != 0) |
---|
555 | return b(F%G); |
---|
556 | return mod (F, G); |
---|
557 | } |
---|
558 | else if (F.isUnivariate() && G.inCoeffDomain()) |
---|
559 | { |
---|
560 | if (b.getp() != 0) |
---|
561 | return b(F%G); |
---|
562 | return mod (F,G); |
---|
563 | } |
---|
564 | |
---|
565 | if (getCharacteristic() == 0) |
---|
566 | { |
---|
567 | Variable alpha; |
---|
568 | if (!hasFirstAlgVar (F, alpha) && !hasFirstAlgVar (G, alpha)) |
---|
569 | { |
---|
570 | #ifdef HAVE_FLINT |
---|
571 | if (b.getp() != 0) |
---|
572 | { |
---|
573 | fmpz_t FLINTpk; |
---|
574 | fmpz_init (FLINTpk); |
---|
575 | convertCF2Fmpz (FLINTpk, b.getpk()); |
---|
576 | fmpz_mod_poly_t FLINTF, FLINTG; |
---|
577 | convertFacCF2Fmpz_mod_poly_t (FLINTF, F, FLINTpk); |
---|
578 | convertFacCF2Fmpz_mod_poly_t (FLINTG, G, FLINTpk); |
---|
579 | fmpz_mod_poly_divrem (FLINTG, FLINTF, FLINTF, FLINTG); |
---|
580 | CanonicalForm result= convertFmpz_mod_poly_t2FacCF (FLINTF,F.mvar(),b); |
---|
581 | fmpz_mod_poly_clear (FLINTG); |
---|
582 | fmpz_mod_poly_clear (FLINTF); |
---|
583 | fmpz_clear (FLINTpk); |
---|
584 | return result; |
---|
585 | } |
---|
586 | return modFLINTQ (F, G); |
---|
587 | #else |
---|
588 | if (b.getp() != 0) |
---|
589 | { |
---|
590 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
591 | ZZX ZZf= convertFacCF2NTLZZX (F); |
---|
592 | ZZX ZZg= convertFacCF2NTLZZX (G); |
---|
593 | ZZ_pX NTLf= to_ZZ_pX (ZZf); |
---|
594 | ZZ_pX NTLg= to_ZZ_pX (ZZg); |
---|
595 | rem (NTLf, NTLf, NTLg); |
---|
596 | return b (convertNTLZZX2CF (to_ZZX (NTLf), F.mvar())); |
---|
597 | } |
---|
598 | return mod (F, G); |
---|
599 | #endif |
---|
600 | } |
---|
601 | else |
---|
602 | { |
---|
603 | if (b.getp() != 0) |
---|
604 | { |
---|
605 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
606 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
607 | ZZ_pE::init (NTLmipo); |
---|
608 | ZZ_pEX NTLg= convertFacCF2NTLZZ_pEX (G, NTLmipo); |
---|
609 | ZZ_pEX NTLf= convertFacCF2NTLZZ_pEX (F, NTLmipo); |
---|
610 | rem (NTLf, NTLf, NTLg); |
---|
611 | return b (convertNTLZZ_pEX2CF (NTLf, F.mvar(), alpha)); |
---|
612 | } |
---|
613 | #ifdef HAVE_FLINT |
---|
614 | CanonicalForm Q, R; |
---|
615 | newtonDivrem (F, G, Q, R); |
---|
616 | return R; |
---|
617 | #else |
---|
618 | return mod (F,G); |
---|
619 | #endif |
---|
620 | } |
---|
621 | } |
---|
622 | |
---|
623 | ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); |
---|
624 | ASSERT (F.level() == G.level(), "expected polys of same level"); |
---|
625 | if (fac_NTL_char != getCharacteristic()) |
---|
626 | { |
---|
627 | fac_NTL_char= getCharacteristic(); |
---|
628 | zz_p::init (getCharacteristic()); |
---|
629 | } |
---|
630 | Variable alpha; |
---|
631 | CanonicalForm result; |
---|
632 | if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) |
---|
633 | { |
---|
634 | zz_pX NTLMipo= convertFacCF2NTLzzpX(getMipo (alpha)); |
---|
635 | zz_pE::init (NTLMipo); |
---|
636 | zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); |
---|
637 | zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); |
---|
638 | rem (NTLF, NTLF, NTLG); |
---|
639 | result= convertNTLzz_pEX2CF(NTLF, F.mvar(), alpha); |
---|
640 | } |
---|
641 | else |
---|
642 | { |
---|
643 | #ifdef HAVE_FLINT |
---|
644 | nmod_poly_t FLINTF, FLINTG; |
---|
645 | convertFacCF2nmod_poly_t (FLINTF, F); |
---|
646 | convertFacCF2nmod_poly_t (FLINTG, G); |
---|
647 | nmod_poly_divrem (FLINTG, FLINTF, FLINTF, FLINTG); |
---|
648 | result= convertnmod_poly_t2FacCF (FLINTF, F.mvar()); |
---|
649 | nmod_poly_clear (FLINTF); |
---|
650 | nmod_poly_clear (FLINTG); |
---|
651 | #else |
---|
652 | zz_pX NTLF= convertFacCF2NTLzzpX (F); |
---|
653 | zz_pX NTLG= convertFacCF2NTLzzpX (G); |
---|
654 | rem (NTLF, NTLF, NTLG); |
---|
655 | result= convertNTLzzpX2CF(NTLF, F.mvar()); |
---|
656 | #endif |
---|
657 | } |
---|
658 | return result; |
---|
659 | } |
---|
660 | |
---|
661 | CanonicalForm |
---|
662 | divNTL (const CanonicalForm& F, const CanonicalForm& G, const modpk& b) |
---|
663 | { |
---|
664 | if (CFFactory::gettype() == GaloisFieldDomain) |
---|
665 | return div (F, G); |
---|
666 | if (F.inCoeffDomain() && G.isUnivariate() && !G.inCoeffDomain()) |
---|
667 | { |
---|
668 | return 0; |
---|
669 | } |
---|
670 | else if (F.inCoeffDomain() && G.inCoeffDomain()) |
---|
671 | { |
---|
672 | if (b.getp() != 0) |
---|
673 | { |
---|
674 | if (!F.inBaseDomain() || !G.inBaseDomain()) |
---|
675 | { |
---|
676 | Variable alpha; |
---|
677 | hasFirstAlgVar (F, alpha); |
---|
678 | hasFirstAlgVar (G, alpha); |
---|
679 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
680 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
681 | ZZ_pE::init (NTLmipo); |
---|
682 | ZZ_pX NTLg= convertFacCF2NTLZZpX (G); |
---|
683 | ZZ_pX NTLf= convertFacCF2NTLZZpX (F); |
---|
684 | ZZ_pE result; |
---|
685 | div (result, to_ZZ_pE (NTLf), to_ZZ_pE (NTLg)); |
---|
686 | return b (convertNTLZZpX2CF (rep (result), alpha)); |
---|
687 | } |
---|
688 | return b(div (F,G)); |
---|
689 | } |
---|
690 | return div (F, G); |
---|
691 | } |
---|
692 | else if (F.isUnivariate() && G.inCoeffDomain()) |
---|
693 | { |
---|
694 | if (b.getp() != 0) |
---|
695 | { |
---|
696 | if (!G.inBaseDomain()) |
---|
697 | { |
---|
698 | Variable alpha; |
---|
699 | hasFirstAlgVar (G, alpha); |
---|
700 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
701 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
702 | ZZ_pE::init (NTLmipo); |
---|
703 | ZZ_pX NTLg= convertFacCF2NTLZZpX (G); |
---|
704 | ZZ_pEX NTLf= convertFacCF2NTLZZ_pEX (F, NTLmipo); |
---|
705 | div (NTLf, NTLf, to_ZZ_pE (NTLg)); |
---|
706 | return b (convertNTLZZ_pEX2CF (NTLf, F.mvar(), alpha)); |
---|
707 | } |
---|
708 | return b(div (F,G)); |
---|
709 | } |
---|
710 | return div (F, G); |
---|
711 | } |
---|
712 | |
---|
713 | if (getCharacteristic() == 0) |
---|
714 | { |
---|
715 | |
---|
716 | Variable alpha; |
---|
717 | if (!hasFirstAlgVar (F, alpha) && !hasFirstAlgVar (G, alpha)) |
---|
718 | { |
---|
719 | #ifdef HAVE_FLINT |
---|
720 | if (b.getp() != 0) |
---|
721 | { |
---|
722 | fmpz_t FLINTpk; |
---|
723 | fmpz_init (FLINTpk); |
---|
724 | convertCF2Fmpz (FLINTpk, b.getpk()); |
---|
725 | fmpz_mod_poly_t FLINTF, FLINTG; |
---|
726 | convertFacCF2Fmpz_mod_poly_t (FLINTF, F, FLINTpk); |
---|
727 | convertFacCF2Fmpz_mod_poly_t (FLINTG, G, FLINTpk); |
---|
728 | fmpz_mod_poly_divrem (FLINTF, FLINTG, FLINTF, FLINTG); |
---|
729 | CanonicalForm result= convertFmpz_mod_poly_t2FacCF (FLINTF,F.mvar(),b); |
---|
730 | fmpz_mod_poly_clear (FLINTG); |
---|
731 | fmpz_mod_poly_clear (FLINTF); |
---|
732 | fmpz_clear (FLINTpk); |
---|
733 | return result; |
---|
734 | } |
---|
735 | return divFLINTQ (F,G); |
---|
736 | #else |
---|
737 | if (b.getp() != 0) |
---|
738 | { |
---|
739 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
740 | ZZX ZZf= convertFacCF2NTLZZX (F); |
---|
741 | ZZX ZZg= convertFacCF2NTLZZX (G); |
---|
742 | ZZ_pX NTLf= to_ZZ_pX (ZZf); |
---|
743 | ZZ_pX NTLg= to_ZZ_pX (ZZg); |
---|
744 | div (NTLf, NTLf, NTLg); |
---|
745 | return b (convertNTLZZX2CF (to_ZZX (NTLf), F.mvar())); |
---|
746 | } |
---|
747 | return div (F, G); |
---|
748 | #endif |
---|
749 | } |
---|
750 | else |
---|
751 | { |
---|
752 | if (b.getp() != 0) |
---|
753 | { |
---|
754 | ZZ_p::init (convertFacCF2NTLZZ (b.getpk())); |
---|
755 | ZZ_pX NTLmipo= to_ZZ_pX (convertFacCF2NTLZZX (getMipo (alpha))); |
---|
756 | ZZ_pE::init (NTLmipo); |
---|
757 | ZZ_pEX NTLg= convertFacCF2NTLZZ_pEX (G, NTLmipo); |
---|
758 | ZZ_pEX NTLf= convertFacCF2NTLZZ_pEX (F, NTLmipo); |
---|
759 | div (NTLf, NTLf, NTLg); |
---|
760 | return b (convertNTLZZ_pEX2CF (NTLf, F.mvar(), alpha)); |
---|
761 | } |
---|
762 | #ifdef HAVE_FLINT |
---|
763 | CanonicalForm Q; |
---|
764 | newtonDiv (F, G, Q); |
---|
765 | return Q; |
---|
766 | #else |
---|
767 | return div (F,G); |
---|
768 | #endif |
---|
769 | } |
---|
770 | } |
---|
771 | |
---|
772 | ASSERT (F.isUnivariate() && G.isUnivariate(), "expected univariate polys"); |
---|
773 | ASSERT (F.level() == G.level(), "expected polys of same level"); |
---|
774 | if (fac_NTL_char != getCharacteristic()) |
---|
775 | { |
---|
776 | fac_NTL_char= getCharacteristic(); |
---|
777 | zz_p::init (getCharacteristic()); |
---|
778 | } |
---|
779 | Variable alpha; |
---|
780 | CanonicalForm result; |
---|
781 | if (hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha)) |
---|
782 | { |
---|
783 | zz_pX NTLMipo= convertFacCF2NTLzzpX(getMipo (alpha)); |
---|
784 | zz_pE::init (NTLMipo); |
---|
785 | zz_pEX NTLF= convertFacCF2NTLzz_pEX (F, NTLMipo); |
---|
786 | zz_pEX NTLG= convertFacCF2NTLzz_pEX (G, NTLMipo); |
---|
787 | div (NTLF, NTLF, NTLG); |
---|
788 | result= convertNTLzz_pEX2CF(NTLF, F.mvar(), alpha); |
---|
789 | } |
---|
790 | else |
---|
791 | { |
---|
792 | #ifdef HAVE_FLINT |
---|
793 | nmod_poly_t FLINTF, FLINTG; |
---|
794 | convertFacCF2nmod_poly_t (FLINTF, F); |
---|
795 | convertFacCF2nmod_poly_t (FLINTG, G); |
---|
796 | nmod_poly_div (FLINTF, FLINTF, FLINTG); |
---|
797 | result= convertnmod_poly_t2FacCF (FLINTF, F.mvar()); |
---|
798 | nmod_poly_clear (FLINTF); |
---|
799 | nmod_poly_clear (FLINTG); |
---|
800 | #else |
---|
801 | zz_pX NTLF= convertFacCF2NTLzzpX (F); |
---|
802 | zz_pX NTLG= convertFacCF2NTLzzpX (G); |
---|
803 | div (NTLF, NTLF, NTLG); |
---|
804 | result= convertNTLzzpX2CF(NTLF, F.mvar()); |
---|
805 | #endif |
---|
806 | } |
---|
807 | return result; |
---|
808 | } |
---|
809 | |
---|
810 | // end univariate polys |
---|
811 | //************************* |
---|
812 | // bivariate polys |
---|
813 | |
---|
814 | #ifdef HAVE_FLINT |
---|
815 | void kronSubFp (nmod_poly_t result, const CanonicalForm& A, int d) |
---|
816 | { |
---|
817 | int degAy= degree (A); |
---|
818 | nmod_poly_init2 (result, getCharacteristic(), d*(degAy + 1)); |
---|
819 | |
---|
820 | nmod_poly_t buf; |
---|
821 | |
---|
822 | int j, k, bufRepLength; |
---|
823 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
824 | { |
---|
825 | convertFacCF2nmod_poly_t (buf, i.coeff()); |
---|
826 | |
---|
827 | k= i.exp()*d; |
---|
828 | bufRepLength= (int) nmod_poly_length (buf); |
---|
829 | for (j= 0; j < bufRepLength; j++) |
---|
830 | nmod_poly_set_coeff_ui (result, j + k, nmod_poly_get_coeff_ui (buf, j)); |
---|
831 | nmod_poly_clear (buf); |
---|
832 | } |
---|
833 | _nmod_poly_normalise (result); |
---|
834 | } |
---|
835 | |
---|
836 | void kronSubQa (fmpq_poly_t result, const CanonicalForm& A, int d1, int d2) |
---|
837 | { |
---|
838 | int degAy= degree (A); |
---|
839 | fmpq_poly_init2 (result, d1*(degAy + 1)); |
---|
840 | |
---|
841 | fmpq_poly_t buf; |
---|
842 | fmpq_t coeff; |
---|
843 | |
---|
844 | int k, l, bufRepLength; |
---|
845 | CFIterator j; |
---|
846 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
847 | { |
---|
848 | if (i.coeff().inCoeffDomain()) |
---|
849 | { |
---|
850 | k= d1*i.exp(); |
---|
851 | convertFacCF2Fmpq_poly_t (buf, i.coeff()); |
---|
852 | bufRepLength= (int) fmpq_poly_length(buf); |
---|
853 | for (l= 0; l < bufRepLength; l++) |
---|
854 | { |
---|
855 | fmpq_poly_get_coeff_fmpq (coeff, buf, l); |
---|
856 | fmpq_poly_set_coeff_fmpq (result, l + k, coeff); |
---|
857 | } |
---|
858 | fmpq_poly_clear (buf); |
---|
859 | } |
---|
860 | else |
---|
861 | { |
---|
862 | for (j= i.coeff(); j.hasTerms(); j++) |
---|
863 | { |
---|
864 | k= d1*i.exp(); |
---|
865 | k += d2*j.exp(); |
---|
866 | convertFacCF2Fmpq_poly_t (buf, j.coeff()); |
---|
867 | bufRepLength= (int) fmpq_poly_length(buf); |
---|
868 | for (l= 0; l < bufRepLength; l++) |
---|
869 | { |
---|
870 | fmpq_poly_get_coeff_fmpq (coeff, buf, l); |
---|
871 | fmpq_poly_set_coeff_fmpq (result, k + l, coeff); |
---|
872 | } |
---|
873 | fmpq_poly_clear (buf); |
---|
874 | } |
---|
875 | } |
---|
876 | } |
---|
877 | fmpq_clear (coeff); |
---|
878 | _fmpq_poly_normalise (result); |
---|
879 | } |
---|
880 | |
---|
881 | void |
---|
882 | kronSubReciproFp (nmod_poly_t subA1, nmod_poly_t subA2, const CanonicalForm& A, |
---|
883 | int d) |
---|
884 | { |
---|
885 | int degAy= degree (A); |
---|
886 | mp_limb_t ninv= n_preinvert_limb (getCharacteristic()); |
---|
887 | nmod_poly_init2_preinv (subA1, getCharacteristic(), ninv, d*(degAy + 2)); |
---|
888 | nmod_poly_init2_preinv (subA2, getCharacteristic(), ninv, d*(degAy + 2)); |
---|
889 | |
---|
890 | nmod_poly_t buf; |
---|
891 | |
---|
892 | int k, kk, j, bufRepLength; |
---|
893 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
894 | { |
---|
895 | convertFacCF2nmod_poly_t (buf, i.coeff()); |
---|
896 | |
---|
897 | k= i.exp()*d; |
---|
898 | kk= (degAy - i.exp())*d; |
---|
899 | bufRepLength= (int) nmod_poly_length (buf); |
---|
900 | for (j= 0; j < bufRepLength; j++) |
---|
901 | { |
---|
902 | nmod_poly_set_coeff_ui (subA1, j + k, |
---|
903 | n_addmod (nmod_poly_get_coeff_ui (subA1, j+k), |
---|
904 | nmod_poly_get_coeff_ui (buf, j), |
---|
905 | getCharacteristic() |
---|
906 | ) |
---|
907 | ); |
---|
908 | nmod_poly_set_coeff_ui (subA2, j + kk, |
---|
909 | n_addmod (nmod_poly_get_coeff_ui (subA2, j + kk), |
---|
910 | nmod_poly_get_coeff_ui (buf, j), |
---|
911 | getCharacteristic() |
---|
912 | ) |
---|
913 | ); |
---|
914 | } |
---|
915 | nmod_poly_clear (buf); |
---|
916 | } |
---|
917 | _nmod_poly_normalise (subA1); |
---|
918 | _nmod_poly_normalise (subA2); |
---|
919 | } |
---|
920 | |
---|
921 | void |
---|
922 | kronSubReciproQ (fmpz_poly_t subA1, fmpz_poly_t subA2, const CanonicalForm& A, |
---|
923 | int d) |
---|
924 | { |
---|
925 | int degAy= degree (A); |
---|
926 | fmpz_poly_init2 (subA1, d*(degAy + 2)); |
---|
927 | fmpz_poly_init2 (subA2, d*(degAy + 2)); |
---|
928 | |
---|
929 | fmpz_poly_t buf; |
---|
930 | fmpz_t coeff1, coeff2; |
---|
931 | |
---|
932 | int k, kk, j, bufRepLength; |
---|
933 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
934 | { |
---|
935 | convertFacCF2Fmpz_poly_t (buf, i.coeff()); |
---|
936 | |
---|
937 | k= i.exp()*d; |
---|
938 | kk= (degAy - i.exp())*d; |
---|
939 | bufRepLength= (int) fmpz_poly_length (buf); |
---|
940 | for (j= 0; j < bufRepLength; j++) |
---|
941 | { |
---|
942 | fmpz_poly_get_coeff_fmpz (coeff1, subA1, j+k); |
---|
943 | fmpz_poly_get_coeff_fmpz (coeff2, buf, j); |
---|
944 | fmpz_add (coeff1, coeff1, coeff2); |
---|
945 | fmpz_poly_set_coeff_fmpz (subA1, j + k, coeff1); |
---|
946 | fmpz_poly_get_coeff_fmpz (coeff1, subA2, j + kk); |
---|
947 | fmpz_add (coeff1, coeff1, coeff2); |
---|
948 | fmpz_poly_set_coeff_fmpz (subA2, j + kk, coeff1); |
---|
949 | } |
---|
950 | fmpz_poly_clear (buf); |
---|
951 | } |
---|
952 | fmpz_clear (coeff1); |
---|
953 | fmpz_clear (coeff2); |
---|
954 | _fmpz_poly_normalise (subA1); |
---|
955 | _fmpz_poly_normalise (subA2); |
---|
956 | } |
---|
957 | |
---|
958 | CanonicalForm reverseSubstQ (const fmpz_poly_t F, int d) |
---|
959 | { |
---|
960 | Variable y= Variable (2); |
---|
961 | Variable x= Variable (1); |
---|
962 | |
---|
963 | fmpz_poly_t f; |
---|
964 | fmpz_poly_init (f); |
---|
965 | fmpz_poly_set (f, F); |
---|
966 | |
---|
967 | fmpz_poly_t buf; |
---|
968 | CanonicalForm result= 0; |
---|
969 | int i= 0; |
---|
970 | int degf= fmpz_poly_degree(f); |
---|
971 | int k= 0; |
---|
972 | int degfSubK, repLength, j; |
---|
973 | fmpz_t coeff; |
---|
974 | while (degf >= k) |
---|
975 | { |
---|
976 | degfSubK= degf - k; |
---|
977 | if (degfSubK >= d) |
---|
978 | repLength= d; |
---|
979 | else |
---|
980 | repLength= degfSubK + 1; |
---|
981 | |
---|
982 | fmpz_poly_init2 (buf, repLength); |
---|
983 | fmpz_init (coeff); |
---|
984 | for (j= 0; j < repLength; j++) |
---|
985 | { |
---|
986 | fmpz_poly_get_coeff_fmpz (coeff, f, j + k); |
---|
987 | fmpz_poly_set_coeff_fmpz (buf, j, coeff); |
---|
988 | } |
---|
989 | _fmpz_poly_normalise (buf); |
---|
990 | |
---|
991 | result += convertFmpz_poly_t2FacCF (buf, x)*power (y, i); |
---|
992 | i++; |
---|
993 | k= d*i; |
---|
994 | fmpz_poly_clear (buf); |
---|
995 | fmpz_clear (coeff); |
---|
996 | } |
---|
997 | fmpz_poly_clear (f); |
---|
998 | |
---|
999 | return result; |
---|
1000 | } |
---|
1001 | |
---|
1002 | CanonicalForm |
---|
1003 | reverseSubstQa (const fmpq_poly_t F, int d1, int d2, const Variable& alpha, |
---|
1004 | const fmpq_poly_t mipo) |
---|
1005 | { |
---|
1006 | Variable y= Variable (2); |
---|
1007 | Variable x= Variable (1); |
---|
1008 | |
---|
1009 | fmpq_poly_t f; |
---|
1010 | fmpq_poly_init (f); |
---|
1011 | fmpq_poly_set (f, F); |
---|
1012 | |
---|
1013 | fmpq_poly_t buf; |
---|
1014 | CanonicalForm result= 0, result2; |
---|
1015 | int i= 0; |
---|
1016 | int degf= fmpq_poly_degree(f); |
---|
1017 | int k= 0; |
---|
1018 | int degfSubK; |
---|
1019 | int repLength; |
---|
1020 | fmpq_t coeff; |
---|
1021 | while (degf >= k) |
---|
1022 | { |
---|
1023 | degfSubK= degf - k; |
---|
1024 | if (degfSubK >= d1) |
---|
1025 | repLength= d1; |
---|
1026 | else |
---|
1027 | repLength= degfSubK + 1; |
---|
1028 | |
---|
1029 | fmpq_init (coeff); |
---|
1030 | int j= 0; |
---|
1031 | int l; |
---|
1032 | result2= 0; |
---|
1033 | while (j*d2 < repLength) |
---|
1034 | { |
---|
1035 | fmpq_poly_init2 (buf, d2); |
---|
1036 | for (l= 0; l < d2; l++) |
---|
1037 | { |
---|
1038 | fmpq_poly_get_coeff_fmpq (coeff, f, k + j*d2 + l); |
---|
1039 | fmpq_poly_set_coeff_fmpq (buf, l, coeff); |
---|
1040 | } |
---|
1041 | _fmpq_poly_normalise (buf); |
---|
1042 | fmpq_poly_rem (buf, buf, mipo); |
---|
1043 | result2 += convertFmpq_poly_t2FacCF (buf, alpha)*power (x, j); |
---|
1044 | j++; |
---|
1045 | fmpq_poly_clear (buf); |
---|
1046 | } |
---|
1047 | if (repLength - j*d2 != 0 && j*d2 - repLength < d2) |
---|
1048 | { |
---|
1049 | j--; |
---|
1050 | repLength -= j*d2; |
---|
1051 | fmpq_poly_init2 (buf, repLength); |
---|
1052 | j++; |
---|
1053 | for (l= 0; l < repLength; l++) |
---|
1054 | { |
---|
1055 | fmpq_poly_get_coeff_fmpq (coeff, f, k + j*d2 + l); |
---|
1056 | fmpq_poly_set_coeff_fmpq (buf, l, coeff); |
---|
1057 | } |
---|
1058 | _fmpq_poly_normalise (buf); |
---|
1059 | fmpq_poly_rem (buf, buf, mipo); |
---|
1060 | result2 += convertFmpq_poly_t2FacCF (buf, alpha)*power (x, j); |
---|
1061 | fmpq_poly_clear (buf); |
---|
1062 | } |
---|
1063 | fmpq_clear (coeff); |
---|
1064 | |
---|
1065 | result += result2*power (y, i); |
---|
1066 | i++; |
---|
1067 | k= d1*i; |
---|
1068 | } |
---|
1069 | |
---|
1070 | fmpq_poly_clear (f); |
---|
1071 | return result; |
---|
1072 | } |
---|
1073 | |
---|
1074 | CanonicalForm |
---|
1075 | reverseSubstReciproFp (const nmod_poly_t F, const nmod_poly_t G, int d, int k) |
---|
1076 | { |
---|
1077 | Variable y= Variable (2); |
---|
1078 | Variable x= Variable (1); |
---|
1079 | |
---|
1080 | nmod_poly_t f, g; |
---|
1081 | mp_limb_t ninv= n_preinvert_limb (getCharacteristic()); |
---|
1082 | nmod_poly_init_preinv (f, getCharacteristic(), ninv); |
---|
1083 | nmod_poly_init_preinv (g, getCharacteristic(), ninv); |
---|
1084 | nmod_poly_set (f, F); |
---|
1085 | nmod_poly_set (g, G); |
---|
1086 | int degf= nmod_poly_degree(f); |
---|
1087 | int degg= nmod_poly_degree(g); |
---|
1088 | |
---|
1089 | |
---|
1090 | nmod_poly_t buf1,buf2, buf3; |
---|
1091 | |
---|
1092 | if (nmod_poly_length (f) < (long) d*(k+1)) //zero padding |
---|
1093 | nmod_poly_fit_length (f,(long)d*(k+1)); |
---|
1094 | |
---|
1095 | CanonicalForm result= 0; |
---|
1096 | int i= 0; |
---|
1097 | int lf= 0; |
---|
1098 | int lg= d*k; |
---|
1099 | int degfSubLf= degf; |
---|
1100 | int deggSubLg= degg-lg; |
---|
1101 | int repLengthBuf2, repLengthBuf1, ind, tmp; |
---|
1102 | while (degf >= lf || lg >= 0) |
---|
1103 | { |
---|
1104 | if (degfSubLf >= d) |
---|
1105 | repLengthBuf1= d; |
---|
1106 | else if (degfSubLf < 0) |
---|
1107 | repLengthBuf1= 0; |
---|
1108 | else |
---|
1109 | repLengthBuf1= degfSubLf + 1; |
---|
1110 | nmod_poly_init2_preinv (buf1, getCharacteristic(), ninv, repLengthBuf1); |
---|
1111 | |
---|
1112 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1113 | nmod_poly_set_coeff_ui (buf1, ind, nmod_poly_get_coeff_ui (f, ind+lf)); |
---|
1114 | _nmod_poly_normalise (buf1); |
---|
1115 | |
---|
1116 | repLengthBuf1= nmod_poly_length (buf1); |
---|
1117 | |
---|
1118 | if (deggSubLg >= d - 1) |
---|
1119 | repLengthBuf2= d - 1; |
---|
1120 | else if (deggSubLg < 0) |
---|
1121 | repLengthBuf2= 0; |
---|
1122 | else |
---|
1123 | repLengthBuf2= deggSubLg + 1; |
---|
1124 | |
---|
1125 | nmod_poly_init2_preinv (buf2, getCharacteristic(), ninv, repLengthBuf2); |
---|
1126 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1127 | nmod_poly_set_coeff_ui (buf2, ind, nmod_poly_get_coeff_ui (g, ind + lg)); |
---|
1128 | |
---|
1129 | _nmod_poly_normalise (buf2); |
---|
1130 | repLengthBuf2= nmod_poly_length (buf2); |
---|
1131 | |
---|
1132 | nmod_poly_init2_preinv (buf3, getCharacteristic(), ninv, repLengthBuf2 + d); |
---|
1133 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1134 | nmod_poly_set_coeff_ui (buf3, ind, nmod_poly_get_coeff_ui (buf1, ind)); |
---|
1135 | for (ind= repLengthBuf1; ind < d; ind++) |
---|
1136 | nmod_poly_set_coeff_ui (buf3, ind, 0); |
---|
1137 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1138 | nmod_poly_set_coeff_ui (buf3, ind+d, nmod_poly_get_coeff_ui (buf2, ind)); |
---|
1139 | _nmod_poly_normalise (buf3); |
---|
1140 | |
---|
1141 | result += convertnmod_poly_t2FacCF (buf3, x)*power (y, i); |
---|
1142 | i++; |
---|
1143 | |
---|
1144 | |
---|
1145 | lf= i*d; |
---|
1146 | degfSubLf= degf - lf; |
---|
1147 | |
---|
1148 | lg= d*(k-i); |
---|
1149 | deggSubLg= degg - lg; |
---|
1150 | |
---|
1151 | if (lg >= 0 && deggSubLg > 0) |
---|
1152 | { |
---|
1153 | if (repLengthBuf2 > degfSubLf + 1) |
---|
1154 | degfSubLf= repLengthBuf2 - 1; |
---|
1155 | tmp= tmin (repLengthBuf1, deggSubLg + 1); |
---|
1156 | for (ind= 0; ind < tmp; ind++) |
---|
1157 | nmod_poly_set_coeff_ui (g, ind + lg, |
---|
1158 | n_submod (nmod_poly_get_coeff_ui (g, ind + lg), |
---|
1159 | nmod_poly_get_coeff_ui (buf1, ind), |
---|
1160 | getCharacteristic() |
---|
1161 | ) |
---|
1162 | ); |
---|
1163 | } |
---|
1164 | if (lg < 0) |
---|
1165 | { |
---|
1166 | nmod_poly_clear (buf1); |
---|
1167 | nmod_poly_clear (buf2); |
---|
1168 | nmod_poly_clear (buf3); |
---|
1169 | break; |
---|
1170 | } |
---|
1171 | if (degfSubLf >= 0) |
---|
1172 | { |
---|
1173 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1174 | nmod_poly_set_coeff_ui (f, ind + lf, |
---|
1175 | n_submod (nmod_poly_get_coeff_ui (f, ind + lf), |
---|
1176 | nmod_poly_get_coeff_ui (buf2, ind), |
---|
1177 | getCharacteristic() |
---|
1178 | ) |
---|
1179 | ); |
---|
1180 | } |
---|
1181 | nmod_poly_clear (buf1); |
---|
1182 | nmod_poly_clear (buf2); |
---|
1183 | nmod_poly_clear (buf3); |
---|
1184 | } |
---|
1185 | |
---|
1186 | nmod_poly_clear (f); |
---|
1187 | nmod_poly_clear (g); |
---|
1188 | |
---|
1189 | return result; |
---|
1190 | } |
---|
1191 | |
---|
1192 | CanonicalForm |
---|
1193 | reverseSubstReciproQ (const fmpz_poly_t F, const fmpz_poly_t G, int d, int k) |
---|
1194 | { |
---|
1195 | Variable y= Variable (2); |
---|
1196 | Variable x= Variable (1); |
---|
1197 | |
---|
1198 | fmpz_poly_t f, g; |
---|
1199 | fmpz_poly_init (f); |
---|
1200 | fmpz_poly_init (g); |
---|
1201 | fmpz_poly_set (f, F); |
---|
1202 | fmpz_poly_set (g, G); |
---|
1203 | int degf= fmpz_poly_degree(f); |
---|
1204 | int degg= fmpz_poly_degree(g); |
---|
1205 | |
---|
1206 | |
---|
1207 | fmpz_poly_t buf1,buf2, buf3; |
---|
1208 | |
---|
1209 | if (fmpz_poly_length (f) < (long) d*(k+1)) //zero padding |
---|
1210 | fmpz_poly_fit_length (f,(long)d*(k+1)); |
---|
1211 | |
---|
1212 | CanonicalForm result= 0; |
---|
1213 | int i= 0; |
---|
1214 | int lf= 0; |
---|
1215 | int lg= d*k; |
---|
1216 | int degfSubLf= degf; |
---|
1217 | int deggSubLg= degg-lg; |
---|
1218 | int repLengthBuf2, repLengthBuf1, ind, tmp; |
---|
1219 | fmpz_t tmp1, tmp2; |
---|
1220 | while (degf >= lf || lg >= 0) |
---|
1221 | { |
---|
1222 | if (degfSubLf >= d) |
---|
1223 | repLengthBuf1= d; |
---|
1224 | else if (degfSubLf < 0) |
---|
1225 | repLengthBuf1= 0; |
---|
1226 | else |
---|
1227 | repLengthBuf1= degfSubLf + 1; |
---|
1228 | |
---|
1229 | fmpz_poly_init2 (buf1, repLengthBuf1); |
---|
1230 | |
---|
1231 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1232 | { |
---|
1233 | fmpz_poly_get_coeff_fmpz (tmp1, f, ind + lf); |
---|
1234 | fmpz_poly_set_coeff_fmpz (buf1, ind, tmp1); |
---|
1235 | } |
---|
1236 | _fmpz_poly_normalise (buf1); |
---|
1237 | |
---|
1238 | repLengthBuf1= fmpz_poly_length (buf1); |
---|
1239 | |
---|
1240 | if (deggSubLg >= d - 1) |
---|
1241 | repLengthBuf2= d - 1; |
---|
1242 | else if (deggSubLg < 0) |
---|
1243 | repLengthBuf2= 0; |
---|
1244 | else |
---|
1245 | repLengthBuf2= deggSubLg + 1; |
---|
1246 | |
---|
1247 | fmpz_poly_init2 (buf2, repLengthBuf2); |
---|
1248 | |
---|
1249 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1250 | { |
---|
1251 | fmpz_poly_get_coeff_fmpz (tmp1, g, ind + lg); |
---|
1252 | fmpz_poly_set_coeff_fmpz (buf2, ind, tmp1); |
---|
1253 | } |
---|
1254 | |
---|
1255 | _fmpz_poly_normalise (buf2); |
---|
1256 | repLengthBuf2= fmpz_poly_length (buf2); |
---|
1257 | |
---|
1258 | fmpz_poly_init2 (buf3, repLengthBuf2 + d); |
---|
1259 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1260 | { |
---|
1261 | fmpz_poly_get_coeff_fmpz (tmp1, buf1, ind); |
---|
1262 | fmpz_poly_set_coeff_fmpz (buf3, ind, tmp1); |
---|
1263 | } |
---|
1264 | for (ind= repLengthBuf1; ind < d; ind++) |
---|
1265 | fmpz_poly_set_coeff_ui (buf3, ind, 0); |
---|
1266 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1267 | { |
---|
1268 | fmpz_poly_get_coeff_fmpz (tmp1, buf2, ind); |
---|
1269 | fmpz_poly_set_coeff_fmpz (buf3, ind + d, tmp1); |
---|
1270 | } |
---|
1271 | _fmpz_poly_normalise (buf3); |
---|
1272 | |
---|
1273 | result += convertFmpz_poly_t2FacCF (buf3, x)*power (y, i); |
---|
1274 | i++; |
---|
1275 | |
---|
1276 | |
---|
1277 | lf= i*d; |
---|
1278 | degfSubLf= degf - lf; |
---|
1279 | |
---|
1280 | lg= d*(k-i); |
---|
1281 | deggSubLg= degg - lg; |
---|
1282 | |
---|
1283 | if (lg >= 0 && deggSubLg > 0) |
---|
1284 | { |
---|
1285 | if (repLengthBuf2 > degfSubLf + 1) |
---|
1286 | degfSubLf= repLengthBuf2 - 1; |
---|
1287 | tmp= tmin (repLengthBuf1, deggSubLg + 1); |
---|
1288 | for (ind= 0; ind < tmp; ind++) |
---|
1289 | { |
---|
1290 | fmpz_poly_get_coeff_fmpz (tmp1, g, ind + lg); |
---|
1291 | fmpz_poly_get_coeff_fmpz (tmp2, buf1, ind); |
---|
1292 | fmpz_sub (tmp1, tmp1, tmp2); |
---|
1293 | fmpz_poly_set_coeff_fmpz (g, ind + lg, tmp1); |
---|
1294 | } |
---|
1295 | } |
---|
1296 | if (lg < 0) |
---|
1297 | { |
---|
1298 | fmpz_poly_clear (buf1); |
---|
1299 | fmpz_poly_clear (buf2); |
---|
1300 | fmpz_poly_clear (buf3); |
---|
1301 | break; |
---|
1302 | } |
---|
1303 | if (degfSubLf >= 0) |
---|
1304 | { |
---|
1305 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1306 | { |
---|
1307 | fmpz_poly_get_coeff_fmpz (tmp1, f, ind + lf); |
---|
1308 | fmpz_poly_get_coeff_fmpz (tmp2, buf2, ind); |
---|
1309 | fmpz_sub (tmp1, tmp1, tmp2); |
---|
1310 | fmpz_poly_set_coeff_fmpz (f, ind + lf, tmp1); |
---|
1311 | } |
---|
1312 | } |
---|
1313 | fmpz_poly_clear (buf1); |
---|
1314 | fmpz_poly_clear (buf2); |
---|
1315 | fmpz_poly_clear (buf3); |
---|
1316 | } |
---|
1317 | |
---|
1318 | fmpz_poly_clear (f); |
---|
1319 | fmpz_poly_clear (g); |
---|
1320 | fmpz_clear (tmp1); |
---|
1321 | fmpz_clear (tmp2); |
---|
1322 | |
---|
1323 | return result; |
---|
1324 | } |
---|
1325 | |
---|
1326 | CanonicalForm reverseSubstFp (const nmod_poly_t F, int d) |
---|
1327 | { |
---|
1328 | Variable y= Variable (2); |
---|
1329 | Variable x= Variable (1); |
---|
1330 | |
---|
1331 | nmod_poly_t f; |
---|
1332 | mp_limb_t ninv= n_preinvert_limb (getCharacteristic()); |
---|
1333 | nmod_poly_init_preinv (f, getCharacteristic(), ninv); |
---|
1334 | nmod_poly_set (f, F); |
---|
1335 | |
---|
1336 | nmod_poly_t buf; |
---|
1337 | CanonicalForm result= 0; |
---|
1338 | int i= 0; |
---|
1339 | int degf= nmod_poly_degree(f); |
---|
1340 | int k= 0; |
---|
1341 | int degfSubK, repLength, j; |
---|
1342 | while (degf >= k) |
---|
1343 | { |
---|
1344 | degfSubK= degf - k; |
---|
1345 | if (degfSubK >= d) |
---|
1346 | repLength= d; |
---|
1347 | else |
---|
1348 | repLength= degfSubK + 1; |
---|
1349 | |
---|
1350 | nmod_poly_init2_preinv (buf, getCharacteristic(), ninv, repLength); |
---|
1351 | for (j= 0; j < repLength; j++) |
---|
1352 | nmod_poly_set_coeff_ui (buf, j, nmod_poly_get_coeff_ui (f, j + k)); |
---|
1353 | _nmod_poly_normalise (buf); |
---|
1354 | |
---|
1355 | result += convertnmod_poly_t2FacCF (buf, x)*power (y, i); |
---|
1356 | i++; |
---|
1357 | k= d*i; |
---|
1358 | nmod_poly_clear (buf); |
---|
1359 | } |
---|
1360 | nmod_poly_clear (f); |
---|
1361 | |
---|
1362 | return result; |
---|
1363 | } |
---|
1364 | |
---|
1365 | CanonicalForm |
---|
1366 | mulMod2FLINTFpReci (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1367 | CanonicalForm& M) |
---|
1368 | { |
---|
1369 | int d1= degree (F, 1) + degree (G, 1) + 1; |
---|
1370 | d1 /= 2; |
---|
1371 | d1 += 1; |
---|
1372 | |
---|
1373 | nmod_poly_t F1, F2; |
---|
1374 | kronSubReciproFp (F1, F2, F, d1); |
---|
1375 | |
---|
1376 | nmod_poly_t G1, G2; |
---|
1377 | kronSubReciproFp (G1, G2, G, d1); |
---|
1378 | |
---|
1379 | int k= d1*degree (M); |
---|
1380 | nmod_poly_mullow (F1, F1, G1, (long) k); |
---|
1381 | |
---|
1382 | int degtailF= degree (tailcoeff (F), 1);; |
---|
1383 | int degtailG= degree (tailcoeff (G), 1); |
---|
1384 | int taildegF= taildegree (F); |
---|
1385 | int taildegG= taildegree (G); |
---|
1386 | |
---|
1387 | int b= nmod_poly_degree (F2) + nmod_poly_degree (G2) - k - degtailF - degtailG |
---|
1388 | + d1*(2+taildegF + taildegG); |
---|
1389 | nmod_poly_mulhigh (F2, F2, G2, b); |
---|
1390 | nmod_poly_shift_right (F2, F2, b); |
---|
1391 | int d2= tmax (nmod_poly_degree (F2)/d1, nmod_poly_degree (F1)/d1); |
---|
1392 | |
---|
1393 | |
---|
1394 | CanonicalForm result= reverseSubstReciproFp (F1, F2, d1, d2); |
---|
1395 | |
---|
1396 | nmod_poly_clear (F1); |
---|
1397 | nmod_poly_clear (F2); |
---|
1398 | nmod_poly_clear (G1); |
---|
1399 | nmod_poly_clear (G2); |
---|
1400 | return result; |
---|
1401 | } |
---|
1402 | |
---|
1403 | CanonicalForm |
---|
1404 | mulMod2FLINTFp (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1405 | CanonicalForm& M) |
---|
1406 | { |
---|
1407 | CanonicalForm A= F; |
---|
1408 | CanonicalForm B= G; |
---|
1409 | |
---|
1410 | int degAx= degree (A, 1); |
---|
1411 | int degAy= degree (A, 2); |
---|
1412 | int degBx= degree (B, 1); |
---|
1413 | int degBy= degree (B, 2); |
---|
1414 | int d1= degAx + 1 + degBx; |
---|
1415 | int d2= tmax (degAy, degBy); |
---|
1416 | |
---|
1417 | if (d1 > 128 && d2 > 160 && (degAy == degBy) && (2*degAy > degree (M))) |
---|
1418 | return mulMod2FLINTFpReci (A, B, M); |
---|
1419 | |
---|
1420 | nmod_poly_t FLINTA, FLINTB; |
---|
1421 | kronSubFp (FLINTA, A, d1); |
---|
1422 | kronSubFp (FLINTB, B, d1); |
---|
1423 | |
---|
1424 | int k= d1*degree (M); |
---|
1425 | nmod_poly_mullow (FLINTA, FLINTA, FLINTB, (long) k); |
---|
1426 | |
---|
1427 | A= reverseSubstFp (FLINTA, d1); |
---|
1428 | |
---|
1429 | nmod_poly_clear (FLINTA); |
---|
1430 | nmod_poly_clear (FLINTB); |
---|
1431 | return A; |
---|
1432 | } |
---|
1433 | |
---|
1434 | CanonicalForm |
---|
1435 | mulMod2FLINTQReci (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1436 | CanonicalForm& M) |
---|
1437 | { |
---|
1438 | int d1= degree (F, 1) + degree (G, 1) + 1; |
---|
1439 | d1 /= 2; |
---|
1440 | d1 += 1; |
---|
1441 | |
---|
1442 | fmpz_poly_t F1, F2; |
---|
1443 | kronSubReciproQ (F1, F2, F, d1); |
---|
1444 | |
---|
1445 | fmpz_poly_t G1, G2; |
---|
1446 | kronSubReciproQ (G1, G2, G, d1); |
---|
1447 | |
---|
1448 | int k= d1*degree (M); |
---|
1449 | fmpz_poly_mullow (F1, F1, G1, (long) k); |
---|
1450 | |
---|
1451 | int degtailF= degree (tailcoeff (F), 1);; |
---|
1452 | int degtailG= degree (tailcoeff (G), 1); |
---|
1453 | int taildegF= taildegree (F); |
---|
1454 | int taildegG= taildegree (G); |
---|
1455 | |
---|
1456 | int b= fmpz_poly_degree (F2) + fmpz_poly_degree (G2) - k - degtailF - degtailG |
---|
1457 | + d1*(2+taildegF + taildegG); |
---|
1458 | fmpz_poly_mulhigh_n (F2, F2, G2, b); |
---|
1459 | fmpz_poly_shift_right (F2, F2, b); |
---|
1460 | int d2= tmax (fmpz_poly_degree (F2)/d1, fmpz_poly_degree (F1)/d1); |
---|
1461 | |
---|
1462 | CanonicalForm result= reverseSubstReciproQ (F1, F2, d1, d2); |
---|
1463 | |
---|
1464 | fmpz_poly_clear (F1); |
---|
1465 | fmpz_poly_clear (F2); |
---|
1466 | fmpz_poly_clear (G1); |
---|
1467 | fmpz_poly_clear (G2); |
---|
1468 | return result; |
---|
1469 | } |
---|
1470 | |
---|
1471 | CanonicalForm |
---|
1472 | mulMod2FLINTQ (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1473 | CanonicalForm& M) |
---|
1474 | { |
---|
1475 | CanonicalForm A= F; |
---|
1476 | CanonicalForm B= G; |
---|
1477 | |
---|
1478 | int degAx= degree (A, 1); |
---|
1479 | int degBx= degree (B, 1); |
---|
1480 | int d1= degAx + 1 + degBx; |
---|
1481 | |
---|
1482 | CanonicalForm f= bCommonDen (F); |
---|
1483 | CanonicalForm g= bCommonDen (G); |
---|
1484 | A *= f; |
---|
1485 | B *= g; |
---|
1486 | |
---|
1487 | fmpz_poly_t FLINTA, FLINTB; |
---|
1488 | kronSub (FLINTA, A, d1); |
---|
1489 | kronSub (FLINTB, B, d1); |
---|
1490 | int k= d1*degree (M); |
---|
1491 | |
---|
1492 | fmpz_poly_mullow (FLINTA, FLINTA, FLINTB, (long) k); |
---|
1493 | A= reverseSubstQ (FLINTA, d1); |
---|
1494 | fmpz_poly_clear (FLINTA); |
---|
1495 | fmpz_poly_clear (FLINTB); |
---|
1496 | return A/(f*g); |
---|
1497 | } |
---|
1498 | |
---|
1499 | CanonicalForm |
---|
1500 | mulMod2FLINTQa (const CanonicalForm& F, const CanonicalForm& G, |
---|
1501 | const CanonicalForm& M) |
---|
1502 | { |
---|
1503 | Variable a; |
---|
1504 | if (!hasFirstAlgVar (F,a) && !hasFirstAlgVar (G, a)) |
---|
1505 | return mulMod2FLINTQ (F, G, M); |
---|
1506 | CanonicalForm A= F; |
---|
1507 | |
---|
1508 | int degFx= degree (F, 1); |
---|
1509 | int degFa= degree (F, a); |
---|
1510 | int degGx= degree (G, 1); |
---|
1511 | int degGa= degree (G, a); |
---|
1512 | |
---|
1513 | int d2= degFa+degGa+1; |
---|
1514 | int d1= degFx + 1 + degGx; |
---|
1515 | d1 *= d2; |
---|
1516 | |
---|
1517 | fmpq_poly_t FLINTF, FLINTG; |
---|
1518 | kronSubQa (FLINTF, F, d1, d2); |
---|
1519 | kronSubQa (FLINTG, G, d1, d2); |
---|
1520 | |
---|
1521 | fmpq_poly_mullow (FLINTF, FLINTF, FLINTG, d1*degree (M)); |
---|
1522 | |
---|
1523 | fmpq_poly_t mipo; |
---|
1524 | convertFacCF2Fmpq_poly_t (mipo, getMipo (a)); |
---|
1525 | CanonicalForm result= reverseSubstQa (FLINTF, d1, d2, a, mipo); |
---|
1526 | fmpq_poly_clear (FLINTF); |
---|
1527 | fmpq_poly_clear (FLINTG); |
---|
1528 | return result; |
---|
1529 | } |
---|
1530 | |
---|
1531 | #endif |
---|
1532 | |
---|
1533 | zz_pX kronSubFp (const CanonicalForm& A, int d) |
---|
1534 | { |
---|
1535 | int degAy= degree (A); |
---|
1536 | zz_pX result; |
---|
1537 | result.rep.SetLength (d*(degAy + 1)); |
---|
1538 | |
---|
1539 | zz_p *resultp; |
---|
1540 | resultp= result.rep.elts(); |
---|
1541 | zz_pX buf; |
---|
1542 | zz_p *bufp; |
---|
1543 | int j, k, bufRepLength; |
---|
1544 | |
---|
1545 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
1546 | { |
---|
1547 | if (i.coeff().inCoeffDomain()) |
---|
1548 | buf= convertFacCF2NTLzzpX (i.coeff()); |
---|
1549 | else |
---|
1550 | buf= convertFacCF2NTLzzpX (i.coeff()); |
---|
1551 | |
---|
1552 | k= i.exp()*d; |
---|
1553 | bufp= buf.rep.elts(); |
---|
1554 | bufRepLength= (int) buf.rep.length(); |
---|
1555 | for (j= 0; j < bufRepLength; j++) |
---|
1556 | resultp [j + k]= bufp [j]; |
---|
1557 | } |
---|
1558 | result.normalize(); |
---|
1559 | |
---|
1560 | return result; |
---|
1561 | } |
---|
1562 | |
---|
1563 | zz_pEX kronSubFq (const CanonicalForm& A, int d, const Variable& alpha) |
---|
1564 | { |
---|
1565 | int degAy= degree (A); |
---|
1566 | zz_pEX result; |
---|
1567 | result.rep.SetLength (d*(degAy + 1)); |
---|
1568 | |
---|
1569 | Variable v; |
---|
1570 | zz_pE *resultp; |
---|
1571 | resultp= result.rep.elts(); |
---|
1572 | zz_pEX buf1; |
---|
1573 | zz_pE *buf1p; |
---|
1574 | zz_pX buf2; |
---|
1575 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
1576 | int j, k, buf1RepLength; |
---|
1577 | |
---|
1578 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
1579 | { |
---|
1580 | if (i.coeff().inCoeffDomain()) |
---|
1581 | { |
---|
1582 | buf2= convertFacCF2NTLzzpX (i.coeff()); |
---|
1583 | buf1= to_zz_pEX (to_zz_pE (buf2)); |
---|
1584 | } |
---|
1585 | else |
---|
1586 | buf1= convertFacCF2NTLzz_pEX (i.coeff(), NTLMipo); |
---|
1587 | |
---|
1588 | k= i.exp()*d; |
---|
1589 | buf1p= buf1.rep.elts(); |
---|
1590 | buf1RepLength= (int) buf1.rep.length(); |
---|
1591 | for (j= 0; j < buf1RepLength; j++) |
---|
1592 | resultp [j + k]= buf1p [j]; |
---|
1593 | } |
---|
1594 | result.normalize(); |
---|
1595 | |
---|
1596 | return result; |
---|
1597 | } |
---|
1598 | |
---|
1599 | void |
---|
1600 | kronSubReciproFq (zz_pEX& subA1, zz_pEX& subA2,const CanonicalForm& A, int d, |
---|
1601 | const Variable& alpha) |
---|
1602 | { |
---|
1603 | int degAy= degree (A); |
---|
1604 | subA1.rep.SetLength ((long) d*(degAy + 2)); |
---|
1605 | subA2.rep.SetLength ((long) d*(degAy + 2)); |
---|
1606 | |
---|
1607 | Variable v; |
---|
1608 | zz_pE *subA1p; |
---|
1609 | zz_pE *subA2p; |
---|
1610 | subA1p= subA1.rep.elts(); |
---|
1611 | subA2p= subA2.rep.elts(); |
---|
1612 | zz_pEX buf; |
---|
1613 | zz_pE *bufp; |
---|
1614 | zz_pX buf2; |
---|
1615 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
1616 | int j, k, kk, bufRepLength; |
---|
1617 | |
---|
1618 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
1619 | { |
---|
1620 | if (i.coeff().inCoeffDomain()) |
---|
1621 | { |
---|
1622 | buf2= convertFacCF2NTLzzpX (i.coeff()); |
---|
1623 | buf= to_zz_pEX (to_zz_pE (buf2)); |
---|
1624 | } |
---|
1625 | else |
---|
1626 | buf= convertFacCF2NTLzz_pEX (i.coeff(), NTLMipo); |
---|
1627 | |
---|
1628 | k= i.exp()*d; |
---|
1629 | kk= (degAy - i.exp())*d; |
---|
1630 | bufp= buf.rep.elts(); |
---|
1631 | bufRepLength= (int) buf.rep.length(); |
---|
1632 | for (j= 0; j < bufRepLength; j++) |
---|
1633 | { |
---|
1634 | subA1p [j + k] += bufp [j]; |
---|
1635 | subA2p [j + kk] += bufp [j]; |
---|
1636 | } |
---|
1637 | } |
---|
1638 | subA1.normalize(); |
---|
1639 | subA2.normalize(); |
---|
1640 | } |
---|
1641 | |
---|
1642 | void |
---|
1643 | kronSubReciproFp (zz_pX& subA1, zz_pX& subA2, const CanonicalForm& A, int d) |
---|
1644 | { |
---|
1645 | int degAy= degree (A); |
---|
1646 | subA1.rep.SetLength ((long) d*(degAy + 2)); |
---|
1647 | subA2.rep.SetLength ((long) d*(degAy + 2)); |
---|
1648 | |
---|
1649 | zz_p *subA1p; |
---|
1650 | zz_p *subA2p; |
---|
1651 | subA1p= subA1.rep.elts(); |
---|
1652 | subA2p= subA2.rep.elts(); |
---|
1653 | zz_pX buf; |
---|
1654 | zz_p *bufp; |
---|
1655 | int j, k, kk, bufRepLength; |
---|
1656 | |
---|
1657 | for (CFIterator i= A; i.hasTerms(); i++) |
---|
1658 | { |
---|
1659 | buf= convertFacCF2NTLzzpX (i.coeff()); |
---|
1660 | |
---|
1661 | k= i.exp()*d; |
---|
1662 | kk= (degAy - i.exp())*d; |
---|
1663 | bufp= buf.rep.elts(); |
---|
1664 | bufRepLength= (int) buf.rep.length(); |
---|
1665 | for (j= 0; j < bufRepLength; j++) |
---|
1666 | { |
---|
1667 | subA1p [j + k] += bufp [j]; |
---|
1668 | subA2p [j + kk] += bufp [j]; |
---|
1669 | } |
---|
1670 | } |
---|
1671 | subA1.normalize(); |
---|
1672 | subA2.normalize(); |
---|
1673 | } |
---|
1674 | |
---|
1675 | CanonicalForm |
---|
1676 | reverseSubstReciproFq (const zz_pEX& F, const zz_pEX& G, int d, int k, |
---|
1677 | const Variable& alpha) |
---|
1678 | { |
---|
1679 | Variable y= Variable (2); |
---|
1680 | Variable x= Variable (1); |
---|
1681 | |
---|
1682 | zz_pEX f= F; |
---|
1683 | zz_pEX g= G; |
---|
1684 | int degf= deg(f); |
---|
1685 | int degg= deg(g); |
---|
1686 | |
---|
1687 | zz_pEX buf1; |
---|
1688 | zz_pEX buf2; |
---|
1689 | zz_pEX buf3; |
---|
1690 | |
---|
1691 | zz_pE *buf1p; |
---|
1692 | zz_pE *buf2p; |
---|
1693 | zz_pE *buf3p; |
---|
1694 | if (f.rep.length() < (long) d*(k+1)) //zero padding |
---|
1695 | f.rep.SetLength ((long)d*(k+1)); |
---|
1696 | |
---|
1697 | zz_pE *gp= g.rep.elts(); |
---|
1698 | zz_pE *fp= f.rep.elts(); |
---|
1699 | CanonicalForm result= 0; |
---|
1700 | int i= 0; |
---|
1701 | int lf= 0; |
---|
1702 | int lg= d*k; |
---|
1703 | int degfSubLf= degf; |
---|
1704 | int deggSubLg= degg-lg; |
---|
1705 | int repLengthBuf2, repLengthBuf1, ind, tmp; |
---|
1706 | zz_pE zzpEZero= zz_pE(); |
---|
1707 | |
---|
1708 | while (degf >= lf || lg >= 0) |
---|
1709 | { |
---|
1710 | if (degfSubLf >= d) |
---|
1711 | repLengthBuf1= d; |
---|
1712 | else if (degfSubLf < 0) |
---|
1713 | repLengthBuf1= 0; |
---|
1714 | else |
---|
1715 | repLengthBuf1= degfSubLf + 1; |
---|
1716 | buf1.rep.SetLength((long) repLengthBuf1); |
---|
1717 | |
---|
1718 | buf1p= buf1.rep.elts(); |
---|
1719 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1720 | buf1p [ind]= fp [ind + lf]; |
---|
1721 | buf1.normalize(); |
---|
1722 | |
---|
1723 | repLengthBuf1= buf1.rep.length(); |
---|
1724 | |
---|
1725 | if (deggSubLg >= d - 1) |
---|
1726 | repLengthBuf2= d - 1; |
---|
1727 | else if (deggSubLg < 0) |
---|
1728 | repLengthBuf2= 0; |
---|
1729 | else |
---|
1730 | repLengthBuf2= deggSubLg + 1; |
---|
1731 | |
---|
1732 | buf2.rep.SetLength ((long) repLengthBuf2); |
---|
1733 | buf2p= buf2.rep.elts(); |
---|
1734 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1735 | buf2p [ind]= gp [ind + lg]; |
---|
1736 | buf2.normalize(); |
---|
1737 | |
---|
1738 | repLengthBuf2= buf2.rep.length(); |
---|
1739 | |
---|
1740 | buf3.rep.SetLength((long) repLengthBuf2 + d); |
---|
1741 | buf3p= buf3.rep.elts(); |
---|
1742 | buf2p= buf2.rep.elts(); |
---|
1743 | buf1p= buf1.rep.elts(); |
---|
1744 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1745 | buf3p [ind]= buf1p [ind]; |
---|
1746 | for (ind= repLengthBuf1; ind < d; ind++) |
---|
1747 | buf3p [ind]= zzpEZero; |
---|
1748 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1749 | buf3p [ind + d]= buf2p [ind]; |
---|
1750 | buf3.normalize(); |
---|
1751 | |
---|
1752 | result += convertNTLzz_pEX2CF (buf3, x, alpha)*power (y, i); |
---|
1753 | i++; |
---|
1754 | |
---|
1755 | |
---|
1756 | lf= i*d; |
---|
1757 | degfSubLf= degf - lf; |
---|
1758 | |
---|
1759 | lg= d*(k-i); |
---|
1760 | deggSubLg= degg - lg; |
---|
1761 | |
---|
1762 | buf1p= buf1.rep.elts(); |
---|
1763 | |
---|
1764 | if (lg >= 0 && deggSubLg > 0) |
---|
1765 | { |
---|
1766 | if (repLengthBuf2 > degfSubLf + 1) |
---|
1767 | degfSubLf= repLengthBuf2 - 1; |
---|
1768 | tmp= tmin (repLengthBuf1, deggSubLg + 1); |
---|
1769 | for (ind= 0; ind < tmp; ind++) |
---|
1770 | gp [ind + lg] -= buf1p [ind]; |
---|
1771 | } |
---|
1772 | |
---|
1773 | if (lg < 0) |
---|
1774 | break; |
---|
1775 | |
---|
1776 | buf2p= buf2.rep.elts(); |
---|
1777 | if (degfSubLf >= 0) |
---|
1778 | { |
---|
1779 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1780 | fp [ind + lf] -= buf2p [ind]; |
---|
1781 | } |
---|
1782 | } |
---|
1783 | |
---|
1784 | return result; |
---|
1785 | } |
---|
1786 | |
---|
1787 | CanonicalForm |
---|
1788 | reverseSubstReciproFp (const zz_pX& F, const zz_pX& G, int d, int k) |
---|
1789 | { |
---|
1790 | Variable y= Variable (2); |
---|
1791 | Variable x= Variable (1); |
---|
1792 | |
---|
1793 | zz_pX f= F; |
---|
1794 | zz_pX g= G; |
---|
1795 | int degf= deg(f); |
---|
1796 | int degg= deg(g); |
---|
1797 | |
---|
1798 | zz_pX buf1; |
---|
1799 | zz_pX buf2; |
---|
1800 | zz_pX buf3; |
---|
1801 | |
---|
1802 | zz_p *buf1p; |
---|
1803 | zz_p *buf2p; |
---|
1804 | zz_p *buf3p; |
---|
1805 | |
---|
1806 | if (f.rep.length() < (long) d*(k+1)) //zero padding |
---|
1807 | f.rep.SetLength ((long)d*(k+1)); |
---|
1808 | |
---|
1809 | zz_p *gp= g.rep.elts(); |
---|
1810 | zz_p *fp= f.rep.elts(); |
---|
1811 | CanonicalForm result= 0; |
---|
1812 | int i= 0; |
---|
1813 | int lf= 0; |
---|
1814 | int lg= d*k; |
---|
1815 | int degfSubLf= degf; |
---|
1816 | int deggSubLg= degg-lg; |
---|
1817 | int repLengthBuf2, repLengthBuf1, ind, tmp; |
---|
1818 | zz_p zzpZero= zz_p(); |
---|
1819 | while (degf >= lf || lg >= 0) |
---|
1820 | { |
---|
1821 | if (degfSubLf >= d) |
---|
1822 | repLengthBuf1= d; |
---|
1823 | else if (degfSubLf < 0) |
---|
1824 | repLengthBuf1= 0; |
---|
1825 | else |
---|
1826 | repLengthBuf1= degfSubLf + 1; |
---|
1827 | buf1.rep.SetLength((long) repLengthBuf1); |
---|
1828 | |
---|
1829 | buf1p= buf1.rep.elts(); |
---|
1830 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1831 | buf1p [ind]= fp [ind + lf]; |
---|
1832 | buf1.normalize(); |
---|
1833 | |
---|
1834 | repLengthBuf1= buf1.rep.length(); |
---|
1835 | |
---|
1836 | if (deggSubLg >= d - 1) |
---|
1837 | repLengthBuf2= d - 1; |
---|
1838 | else if (deggSubLg < 0) |
---|
1839 | repLengthBuf2= 0; |
---|
1840 | else |
---|
1841 | repLengthBuf2= deggSubLg + 1; |
---|
1842 | |
---|
1843 | buf2.rep.SetLength ((long) repLengthBuf2); |
---|
1844 | buf2p= buf2.rep.elts(); |
---|
1845 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1846 | buf2p [ind]= gp [ind + lg]; |
---|
1847 | |
---|
1848 | buf2.normalize(); |
---|
1849 | |
---|
1850 | repLengthBuf2= buf2.rep.length(); |
---|
1851 | |
---|
1852 | |
---|
1853 | buf3.rep.SetLength((long) repLengthBuf2 + d); |
---|
1854 | buf3p= buf3.rep.elts(); |
---|
1855 | buf2p= buf2.rep.elts(); |
---|
1856 | buf1p= buf1.rep.elts(); |
---|
1857 | for (ind= 0; ind < repLengthBuf1; ind++) |
---|
1858 | buf3p [ind]= buf1p [ind]; |
---|
1859 | for (ind= repLengthBuf1; ind < d; ind++) |
---|
1860 | buf3p [ind]= zzpZero; |
---|
1861 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1862 | buf3p [ind + d]= buf2p [ind]; |
---|
1863 | buf3.normalize(); |
---|
1864 | |
---|
1865 | result += convertNTLzzpX2CF (buf3, x)*power (y, i); |
---|
1866 | i++; |
---|
1867 | |
---|
1868 | |
---|
1869 | lf= i*d; |
---|
1870 | degfSubLf= degf - lf; |
---|
1871 | |
---|
1872 | lg= d*(k-i); |
---|
1873 | deggSubLg= degg - lg; |
---|
1874 | |
---|
1875 | buf1p= buf1.rep.elts(); |
---|
1876 | |
---|
1877 | if (lg >= 0 && deggSubLg > 0) |
---|
1878 | { |
---|
1879 | if (repLengthBuf2 > degfSubLf + 1) |
---|
1880 | degfSubLf= repLengthBuf2 - 1; |
---|
1881 | tmp= tmin (repLengthBuf1, deggSubLg + 1); |
---|
1882 | for (ind= 0; ind < tmp; ind++) |
---|
1883 | gp [ind + lg] -= buf1p [ind]; |
---|
1884 | } |
---|
1885 | if (lg < 0) |
---|
1886 | break; |
---|
1887 | |
---|
1888 | buf2p= buf2.rep.elts(); |
---|
1889 | if (degfSubLf >= 0) |
---|
1890 | { |
---|
1891 | for (ind= 0; ind < repLengthBuf2; ind++) |
---|
1892 | fp [ind + lf] -= buf2p [ind]; |
---|
1893 | } |
---|
1894 | } |
---|
1895 | |
---|
1896 | return result; |
---|
1897 | } |
---|
1898 | |
---|
1899 | CanonicalForm reverseSubstFq (const zz_pEX& F, int d, const Variable& alpha) |
---|
1900 | { |
---|
1901 | Variable y= Variable (2); |
---|
1902 | Variable x= Variable (1); |
---|
1903 | |
---|
1904 | zz_pEX f= F; |
---|
1905 | zz_pE *fp= f.rep.elts(); |
---|
1906 | |
---|
1907 | zz_pEX buf; |
---|
1908 | zz_pE *bufp; |
---|
1909 | CanonicalForm result= 0; |
---|
1910 | int i= 0; |
---|
1911 | int degf= deg(f); |
---|
1912 | int k= 0; |
---|
1913 | int degfSubK, repLength, j; |
---|
1914 | while (degf >= k) |
---|
1915 | { |
---|
1916 | degfSubK= degf - k; |
---|
1917 | if (degfSubK >= d) |
---|
1918 | repLength= d; |
---|
1919 | else |
---|
1920 | repLength= degfSubK + 1; |
---|
1921 | |
---|
1922 | buf.rep.SetLength ((long) repLength); |
---|
1923 | bufp= buf.rep.elts(); |
---|
1924 | for (j= 0; j < repLength; j++) |
---|
1925 | bufp [j]= fp [j + k]; |
---|
1926 | buf.normalize(); |
---|
1927 | |
---|
1928 | result += convertNTLzz_pEX2CF (buf, x, alpha)*power (y, i); |
---|
1929 | i++; |
---|
1930 | k= d*i; |
---|
1931 | } |
---|
1932 | |
---|
1933 | return result; |
---|
1934 | } |
---|
1935 | |
---|
1936 | CanonicalForm reverseSubstFp (const zz_pX& F, int d) |
---|
1937 | { |
---|
1938 | Variable y= Variable (2); |
---|
1939 | Variable x= Variable (1); |
---|
1940 | |
---|
1941 | zz_pX f= F; |
---|
1942 | zz_p *fp= f.rep.elts(); |
---|
1943 | |
---|
1944 | zz_pX buf; |
---|
1945 | zz_p *bufp; |
---|
1946 | CanonicalForm result= 0; |
---|
1947 | int i= 0; |
---|
1948 | int degf= deg(f); |
---|
1949 | int k= 0; |
---|
1950 | int degfSubK, repLength, j; |
---|
1951 | while (degf >= k) |
---|
1952 | { |
---|
1953 | degfSubK= degf - k; |
---|
1954 | if (degfSubK >= d) |
---|
1955 | repLength= d; |
---|
1956 | else |
---|
1957 | repLength= degfSubK + 1; |
---|
1958 | |
---|
1959 | buf.rep.SetLength ((long) repLength); |
---|
1960 | bufp= buf.rep.elts(); |
---|
1961 | for (j= 0; j < repLength; j++) |
---|
1962 | bufp [j]= fp [j + k]; |
---|
1963 | buf.normalize(); |
---|
1964 | |
---|
1965 | result += convertNTLzzpX2CF (buf, x)*power (y, i); |
---|
1966 | i++; |
---|
1967 | k= d*i; |
---|
1968 | } |
---|
1969 | |
---|
1970 | return result; |
---|
1971 | } |
---|
1972 | |
---|
1973 | // assumes input to be reduced mod M and to be an element of Fq not Fp |
---|
1974 | CanonicalForm |
---|
1975 | mulMod2NTLFpReci (const CanonicalForm& F, const CanonicalForm& G, const |
---|
1976 | CanonicalForm& M) |
---|
1977 | { |
---|
1978 | int d1= degree (F, 1) + degree (G, 1) + 1; |
---|
1979 | d1 /= 2; |
---|
1980 | d1 += 1; |
---|
1981 | |
---|
1982 | zz_pX F1, F2; |
---|
1983 | kronSubReciproFp (F1, F2, F, d1); |
---|
1984 | zz_pX G1, G2; |
---|
1985 | kronSubReciproFp (G1, G2, G, d1); |
---|
1986 | |
---|
1987 | int k= d1*degree (M); |
---|
1988 | MulTrunc (F1, F1, G1, (long) k); |
---|
1989 | |
---|
1990 | int degtailF= degree (tailcoeff (F), 1); |
---|
1991 | int degtailG= degree (tailcoeff (G), 1); |
---|
1992 | int taildegF= taildegree (F); |
---|
1993 | int taildegG= taildegree (G); |
---|
1994 | int b= k + degtailF + degtailG - d1*(2+taildegF+taildegG); |
---|
1995 | |
---|
1996 | reverse (F2, F2); |
---|
1997 | reverse (G2, G2); |
---|
1998 | MulTrunc (F2, F2, G2, b + 1); |
---|
1999 | reverse (F2, F2, b); |
---|
2000 | |
---|
2001 | int d2= tmax (deg (F2)/d1, deg (F1)/d1); |
---|
2002 | return reverseSubstReciproFp (F1, F2, d1, d2); |
---|
2003 | } |
---|
2004 | |
---|
2005 | //Kronecker substitution |
---|
2006 | CanonicalForm |
---|
2007 | mulMod2NTLFp (const CanonicalForm& F, const CanonicalForm& G, const |
---|
2008 | CanonicalForm& M) |
---|
2009 | { |
---|
2010 | CanonicalForm A= F; |
---|
2011 | CanonicalForm B= G; |
---|
2012 | |
---|
2013 | int degAx= degree (A, 1); |
---|
2014 | int degAy= degree (A, 2); |
---|
2015 | int degBx= degree (B, 1); |
---|
2016 | int degBy= degree (B, 2); |
---|
2017 | int d1= degAx + 1 + degBx; |
---|
2018 | int d2= tmax (degAy, degBy); |
---|
2019 | |
---|
2020 | if (d1 > 128 && d2 > 160 && (degAy == degBy) && (2*degAy > degree (M))) |
---|
2021 | return mulMod2NTLFpReci (A, B, M); |
---|
2022 | |
---|
2023 | zz_pX NTLA= kronSubFp (A, d1); |
---|
2024 | zz_pX NTLB= kronSubFp (B, d1); |
---|
2025 | |
---|
2026 | int k= d1*degree (M); |
---|
2027 | MulTrunc (NTLA, NTLA, NTLB, (long) k); |
---|
2028 | |
---|
2029 | A= reverseSubstFp (NTLA, d1); |
---|
2030 | |
---|
2031 | return A; |
---|
2032 | } |
---|
2033 | |
---|
2034 | // assumes input to be reduced mod M and to be an element of Fq not Fp |
---|
2035 | CanonicalForm |
---|
2036 | mulMod2NTLFqReci (const CanonicalForm& F, const CanonicalForm& G, const |
---|
2037 | CanonicalForm& M, const Variable& alpha) |
---|
2038 | { |
---|
2039 | int d1= degree (F, 1) + degree (G, 1) + 1; |
---|
2040 | d1 /= 2; |
---|
2041 | d1 += 1; |
---|
2042 | |
---|
2043 | zz_pEX F1, F2; |
---|
2044 | kronSubReciproFq (F1, F2, F, d1, alpha); |
---|
2045 | zz_pEX G1, G2; |
---|
2046 | kronSubReciproFq (G1, G2, G, d1, alpha); |
---|
2047 | |
---|
2048 | int k= d1*degree (M); |
---|
2049 | MulTrunc (F1, F1, G1, (long) k); |
---|
2050 | |
---|
2051 | int degtailF= degree (tailcoeff (F), 1); |
---|
2052 | int degtailG= degree (tailcoeff (G), 1); |
---|
2053 | int taildegF= taildegree (F); |
---|
2054 | int taildegG= taildegree (G); |
---|
2055 | int b= k + degtailF + degtailG - d1*(2+taildegF+taildegG); |
---|
2056 | |
---|
2057 | reverse (F2, F2); |
---|
2058 | reverse (G2, G2); |
---|
2059 | MulTrunc (F2, F2, G2, b + 1); |
---|
2060 | reverse (F2, F2, b); |
---|
2061 | |
---|
2062 | int d2= tmax (deg (F2)/d1, deg (F1)/d1); |
---|
2063 | return reverseSubstReciproFq (F1, F2, d1, d2, alpha); |
---|
2064 | } |
---|
2065 | |
---|
2066 | #ifdef HAVE_FLINT |
---|
2067 | CanonicalForm |
---|
2068 | mulMod2FLINTFp (const CanonicalForm& F, const CanonicalForm& G, const |
---|
2069 | CanonicalForm& M); |
---|
2070 | #endif |
---|
2071 | |
---|
2072 | CanonicalForm |
---|
2073 | mulMod2NTLFq (const CanonicalForm& F, const CanonicalForm& G, const |
---|
2074 | CanonicalForm& M) |
---|
2075 | { |
---|
2076 | Variable alpha; |
---|
2077 | CanonicalForm A= F; |
---|
2078 | CanonicalForm B= G; |
---|
2079 | |
---|
2080 | if (hasFirstAlgVar (A, alpha) || hasFirstAlgVar (B, alpha)) |
---|
2081 | { |
---|
2082 | int degAx= degree (A, 1); |
---|
2083 | int degAy= degree (A, 2); |
---|
2084 | int degBx= degree (B, 1); |
---|
2085 | int degBy= degree (B, 2); |
---|
2086 | int d1= degAx + degBx + 1; |
---|
2087 | int d2= tmax (degAy, degBy); |
---|
2088 | if (fac_NTL_char != getCharacteristic()) |
---|
2089 | { |
---|
2090 | fac_NTL_char= getCharacteristic(); |
---|
2091 | zz_p::init (getCharacteristic()); |
---|
2092 | } |
---|
2093 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
2094 | zz_pE::init (NTLMipo); |
---|
2095 | |
---|
2096 | int degMipo= degree (getMipo (alpha)); |
---|
2097 | if ((d1 > 128/degMipo) && (d2 > 160/degMipo) && (degAy == degBy) && |
---|
2098 | (2*degAy > degree (M))) |
---|
2099 | return mulMod2NTLFqReci (A, B, M, alpha); |
---|
2100 | |
---|
2101 | zz_pEX NTLA= kronSubFq (A, d1, alpha); |
---|
2102 | zz_pEX NTLB= kronSubFq (B, d1, alpha); |
---|
2103 | |
---|
2104 | int k= d1*degree (M); |
---|
2105 | |
---|
2106 | MulTrunc (NTLA, NTLA, NTLB, (long) k); |
---|
2107 | |
---|
2108 | A= reverseSubstFq (NTLA, d1, alpha); |
---|
2109 | |
---|
2110 | return A; |
---|
2111 | } |
---|
2112 | else |
---|
2113 | #ifdef HAVE_FLINT |
---|
2114 | return mulMod2FLINTFp (A, B, M); |
---|
2115 | #else |
---|
2116 | return mulMod2NTLFp (A, B, M); |
---|
2117 | #endif |
---|
2118 | } |
---|
2119 | |
---|
2120 | CanonicalForm mulMod2 (const CanonicalForm& A, const CanonicalForm& B, |
---|
2121 | const CanonicalForm& M) |
---|
2122 | { |
---|
2123 | if (A.isZero() || B.isZero()) |
---|
2124 | return 0; |
---|
2125 | |
---|
2126 | ASSERT (M.isUnivariate(), "M must be univariate"); |
---|
2127 | |
---|
2128 | CanonicalForm F= mod (A, M); |
---|
2129 | CanonicalForm G= mod (B, M); |
---|
2130 | if (F.inCoeffDomain() || G.inCoeffDomain()) |
---|
2131 | return F*G; |
---|
2132 | Variable y= M.mvar(); |
---|
2133 | int degF= degree (F, y); |
---|
2134 | int degG= degree (G, y); |
---|
2135 | |
---|
2136 | if ((degF < 1 && degG < 1) && (F.isUnivariate() && G.isUnivariate()) && |
---|
2137 | (F.level() == G.level())) |
---|
2138 | { |
---|
2139 | CanonicalForm result= mulNTL (F, G); |
---|
2140 | return mod (result, M); |
---|
2141 | } |
---|
2142 | else if (degF <= 1 && degG <= 1) |
---|
2143 | { |
---|
2144 | CanonicalForm result= F*G; |
---|
2145 | return mod (result, M); |
---|
2146 | } |
---|
2147 | |
---|
2148 | int sizeF= size (F); |
---|
2149 | int sizeG= size (G); |
---|
2150 | |
---|
2151 | int fallBackToNaive= 50; |
---|
2152 | if (sizeF < fallBackToNaive || sizeG < fallBackToNaive) |
---|
2153 | return mod (F*G, M); |
---|
2154 | |
---|
2155 | #ifdef HAVE_FLINT |
---|
2156 | if (getCharacteristic() == 0) |
---|
2157 | return mulMod2FLINTQa (F, G, M); |
---|
2158 | #endif |
---|
2159 | |
---|
2160 | if (getCharacteristic() > 0 && CFFactory::gettype() != GaloisFieldDomain && |
---|
2161 | (((degF-degG) < 50 && degF > degG) || ((degG-degF) < 50 && degF <= degG))) |
---|
2162 | return mulMod2NTLFq (F, G, M); |
---|
2163 | |
---|
2164 | int m= (int) ceil (degree (M)/2.0); |
---|
2165 | if (degF >= m || degG >= m) |
---|
2166 | { |
---|
2167 | CanonicalForm MLo= power (y, m); |
---|
2168 | CanonicalForm MHi= power (y, degree (M) - m); |
---|
2169 | CanonicalForm F0= mod (F, MLo); |
---|
2170 | CanonicalForm F1= div (F, MLo); |
---|
2171 | CanonicalForm G0= mod (G, MLo); |
---|
2172 | CanonicalForm G1= div (G, MLo); |
---|
2173 | CanonicalForm F0G1= mulMod2 (F0, G1, MHi); |
---|
2174 | CanonicalForm F1G0= mulMod2 (F1, G0, MHi); |
---|
2175 | CanonicalForm F0G0= mulMod2 (F0, G0, M); |
---|
2176 | return F0G0 + MLo*(F0G1 + F1G0); |
---|
2177 | } |
---|
2178 | else |
---|
2179 | { |
---|
2180 | m= (int) ceil (tmax (degF, degG)/2.0); |
---|
2181 | CanonicalForm yToM= power (y, m); |
---|
2182 | CanonicalForm F0= mod (F, yToM); |
---|
2183 | CanonicalForm F1= div (F, yToM); |
---|
2184 | CanonicalForm G0= mod (G, yToM); |
---|
2185 | CanonicalForm G1= div (G, yToM); |
---|
2186 | CanonicalForm H00= mulMod2 (F0, G0, M); |
---|
2187 | CanonicalForm H11= mulMod2 (F1, G1, M); |
---|
2188 | CanonicalForm H01= mulMod2 (F0 + F1, G0 + G1, M); |
---|
2189 | return H11*yToM*yToM + (H01 - H11 - H00)*yToM + H00; |
---|
2190 | } |
---|
2191 | DEBOUTLN (cerr, "fatal end in mulMod2"); |
---|
2192 | } |
---|
2193 | |
---|
2194 | // end bivariate polys |
---|
2195 | //********************** |
---|
2196 | // multivariate polys |
---|
2197 | |
---|
2198 | CanonicalForm mod (const CanonicalForm& F, const CFList& M) |
---|
2199 | { |
---|
2200 | CanonicalForm A= F; |
---|
2201 | for (CFListIterator i= M; i.hasItem(); i++) |
---|
2202 | A= mod (A, i.getItem()); |
---|
2203 | return A; |
---|
2204 | } |
---|
2205 | |
---|
2206 | CanonicalForm mulMod (const CanonicalForm& A, const CanonicalForm& B, |
---|
2207 | const CFList& MOD) |
---|
2208 | { |
---|
2209 | if (A.isZero() || B.isZero()) |
---|
2210 | return 0; |
---|
2211 | |
---|
2212 | if (MOD.length() == 1) |
---|
2213 | return mulMod2 (A, B, MOD.getLast()); |
---|
2214 | |
---|
2215 | CanonicalForm M= MOD.getLast(); |
---|
2216 | CanonicalForm F= mod (A, M); |
---|
2217 | CanonicalForm G= mod (B, M); |
---|
2218 | if (F.inCoeffDomain() || G.inCoeffDomain()) |
---|
2219 | return F*G; |
---|
2220 | |
---|
2221 | if (size (F) / MOD.length() < 100 || size (G) / MOD.length() < 100) |
---|
2222 | return mod (F*G, MOD); |
---|
2223 | |
---|
2224 | Variable y= M.mvar(); |
---|
2225 | int degF= degree (F, y); |
---|
2226 | int degG= degree (G, y); |
---|
2227 | |
---|
2228 | if ((degF <= 1 && F.level() <= M.level()) && |
---|
2229 | (degG <= 1 && G.level() <= M.level())) |
---|
2230 | { |
---|
2231 | CFList buf= MOD; |
---|
2232 | buf.removeLast(); |
---|
2233 | if (degF == 1 && degG == 1) |
---|
2234 | { |
---|
2235 | CanonicalForm F0= mod (F, y); |
---|
2236 | CanonicalForm F1= div (F, y); |
---|
2237 | CanonicalForm G0= mod (G, y); |
---|
2238 | CanonicalForm G1= div (G, y); |
---|
2239 | if (degree (M) > 2) |
---|
2240 | { |
---|
2241 | CanonicalForm H00= mulMod (F0, G0, buf); |
---|
2242 | CanonicalForm H11= mulMod (F1, G1, buf); |
---|
2243 | CanonicalForm H01= mulMod (F0 + F1, G0 + G1, buf); |
---|
2244 | return H11*y*y + (H01 - H00 - H11)*y + H00; |
---|
2245 | } |
---|
2246 | else //here degree (M) == 2 |
---|
2247 | { |
---|
2248 | buf.append (y); |
---|
2249 | CanonicalForm F0G1= mulMod (F0, G1, buf); |
---|
2250 | CanonicalForm F1G0= mulMod (F1, G0, buf); |
---|
2251 | CanonicalForm F0G0= mulMod (F0, G0, MOD); |
---|
2252 | CanonicalForm result= F0G0 + y*(F0G1 + F1G0); |
---|
2253 | return result; |
---|
2254 | } |
---|
2255 | } |
---|
2256 | else if (degF == 1 && degG == 0) |
---|
2257 | return mulMod (div (F, y), G, buf)*y + mulMod (mod (F, y), G, buf); |
---|
2258 | else if (degF == 0 && degG == 1) |
---|
2259 | return mulMod (div (G, y), F, buf)*y + mulMod (mod (G, y), F, buf); |
---|
2260 | else |
---|
2261 | return mulMod (F, G, buf); |
---|
2262 | } |
---|
2263 | int m= (int) ceil (degree (M)/2.0); |
---|
2264 | if (degF >= m || degG >= m) |
---|
2265 | { |
---|
2266 | CanonicalForm MLo= power (y, m); |
---|
2267 | CanonicalForm MHi= power (y, degree (M) - m); |
---|
2268 | CanonicalForm F0= mod (F, MLo); |
---|
2269 | CanonicalForm F1= div (F, MLo); |
---|
2270 | CanonicalForm G0= mod (G, MLo); |
---|
2271 | CanonicalForm G1= div (G, MLo); |
---|
2272 | CFList buf= MOD; |
---|
2273 | buf.removeLast(); |
---|
2274 | buf.append (MHi); |
---|
2275 | CanonicalForm F0G1= mulMod (F0, G1, buf); |
---|
2276 | CanonicalForm F1G0= mulMod (F1, G0, buf); |
---|
2277 | CanonicalForm F0G0= mulMod (F0, G0, MOD); |
---|
2278 | return F0G0 + MLo*(F0G1 + F1G0); |
---|
2279 | } |
---|
2280 | else |
---|
2281 | { |
---|
2282 | m= (int) ceil (tmax (degF, degG)/2.0); |
---|
2283 | CanonicalForm yToM= power (y, m); |
---|
2284 | CanonicalForm F0= mod (F, yToM); |
---|
2285 | CanonicalForm F1= div (F, yToM); |
---|
2286 | CanonicalForm G0= mod (G, yToM); |
---|
2287 | CanonicalForm G1= div (G, yToM); |
---|
2288 | CanonicalForm H00= mulMod (F0, G0, MOD); |
---|
2289 | CanonicalForm H11= mulMod (F1, G1, MOD); |
---|
2290 | CanonicalForm H01= mulMod (F0 + F1, G0 + G1, MOD); |
---|
2291 | return H11*yToM*yToM + (H01 - H11 - H00)*yToM + H00; |
---|
2292 | } |
---|
2293 | DEBOUTLN (cerr, "fatal end in mulMod"); |
---|
2294 | } |
---|
2295 | |
---|
2296 | CanonicalForm prodMod (const CFList& L, const CanonicalForm& M) |
---|
2297 | { |
---|
2298 | if (L.isEmpty()) |
---|
2299 | return 1; |
---|
2300 | int l= L.length(); |
---|
2301 | if (l == 1) |
---|
2302 | return mod (L.getFirst(), M); |
---|
2303 | else if (l == 2) { |
---|
2304 | CanonicalForm result= mulMod2 (L.getFirst(), L.getLast(), M); |
---|
2305 | return result; |
---|
2306 | } |
---|
2307 | else |
---|
2308 | { |
---|
2309 | l /= 2; |
---|
2310 | CFList tmp1, tmp2; |
---|
2311 | CFListIterator i= L; |
---|
2312 | CanonicalForm buf1, buf2; |
---|
2313 | for (int j= 1; j <= l; j++, i++) |
---|
2314 | tmp1.append (i.getItem()); |
---|
2315 | tmp2= Difference (L, tmp1); |
---|
2316 | buf1= prodMod (tmp1, M); |
---|
2317 | buf2= prodMod (tmp2, M); |
---|
2318 | CanonicalForm result= mulMod2 (buf1, buf2, M); |
---|
2319 | return result; |
---|
2320 | } |
---|
2321 | } |
---|
2322 | |
---|
2323 | CanonicalForm prodMod (const CFList& L, const CFList& M) |
---|
2324 | { |
---|
2325 | if (L.isEmpty()) |
---|
2326 | return 1; |
---|
2327 | else if (L.length() == 1) |
---|
2328 | return L.getFirst(); |
---|
2329 | else if (L.length() == 2) |
---|
2330 | return mulMod (L.getFirst(), L.getLast(), M); |
---|
2331 | else |
---|
2332 | { |
---|
2333 | int l= L.length()/2; |
---|
2334 | CFListIterator i= L; |
---|
2335 | CFList tmp1, tmp2; |
---|
2336 | CanonicalForm buf1, buf2; |
---|
2337 | for (int j= 1; j <= l; j++, i++) |
---|
2338 | tmp1.append (i.getItem()); |
---|
2339 | tmp2= Difference (L, tmp1); |
---|
2340 | buf1= prodMod (tmp1, M); |
---|
2341 | buf2= prodMod (tmp2, M); |
---|
2342 | return mulMod (buf1, buf2, M); |
---|
2343 | } |
---|
2344 | } |
---|
2345 | |
---|
2346 | // end multivariate polys |
---|
2347 | //*************************** |
---|
2348 | // division |
---|
2349 | |
---|
2350 | CanonicalForm reverse (const CanonicalForm& F, int d) |
---|
2351 | { |
---|
2352 | if (d == 0) |
---|
2353 | return F; |
---|
2354 | CanonicalForm A= F; |
---|
2355 | Variable y= Variable (2); |
---|
2356 | Variable x= Variable (1); |
---|
2357 | if (degree (A, x) > 0) |
---|
2358 | { |
---|
2359 | A= swapvar (A, x, y); |
---|
2360 | CanonicalForm result= 0; |
---|
2361 | CFIterator i= A; |
---|
2362 | while (d - i.exp() < 0) |
---|
2363 | i++; |
---|
2364 | |
---|
2365 | for (; i.hasTerms() && (d - i.exp() >= 0); i++) |
---|
2366 | result += swapvar (i.coeff(),x,y)*power (x, d - i.exp()); |
---|
2367 | return result; |
---|
2368 | } |
---|
2369 | else |
---|
2370 | return A*power (x, d); |
---|
2371 | } |
---|
2372 | |
---|
2373 | CanonicalForm |
---|
2374 | newtonInverse (const CanonicalForm& F, const int n, const CanonicalForm& M) |
---|
2375 | { |
---|
2376 | int l= ilog2(n); |
---|
2377 | |
---|
2378 | CanonicalForm g= mod (F, M)[0] [0]; |
---|
2379 | |
---|
2380 | ASSERT (!g.isZero(), "expected a unit"); |
---|
2381 | |
---|
2382 | Variable alpha; |
---|
2383 | |
---|
2384 | if (!g.isOne()) |
---|
2385 | g = 1/g; |
---|
2386 | Variable x= Variable (1); |
---|
2387 | CanonicalForm result; |
---|
2388 | int exp= 0; |
---|
2389 | if (n & 1) |
---|
2390 | { |
---|
2391 | result= g; |
---|
2392 | exp= 1; |
---|
2393 | } |
---|
2394 | CanonicalForm h; |
---|
2395 | |
---|
2396 | for (int i= 1; i <= l; i++) |
---|
2397 | { |
---|
2398 | h= mulMod2 (g, mod (F, power (x, (1 << i))), M); |
---|
2399 | h= mod (h, power (x, (1 << i)) - 1); |
---|
2400 | h= div (h, power (x, (1 << (i - 1)))); |
---|
2401 | h= mod (h, M); |
---|
2402 | g -= power (x, (1 << (i - 1)))* |
---|
2403 | mod (mulMod2 (g, h, M), power (x, (1 << (i - 1)))); |
---|
2404 | |
---|
2405 | if (n & (1 << i)) |
---|
2406 | { |
---|
2407 | if (exp) |
---|
2408 | { |
---|
2409 | h= mulMod2 (result, mod (F, power (x, exp + (1 << i))), M); |
---|
2410 | h= mod (h, power (x, exp + (1 << i)) - 1); |
---|
2411 | h= div (h, power (x, exp)); |
---|
2412 | h= mod (h, M); |
---|
2413 | result -= power(x, exp)*mod (mulMod2 (g, h, M), |
---|
2414 | power (x, (1 << i))); |
---|
2415 | exp += (1 << i); |
---|
2416 | } |
---|
2417 | else |
---|
2418 | { |
---|
2419 | exp= (1 << i); |
---|
2420 | result= g; |
---|
2421 | } |
---|
2422 | } |
---|
2423 | } |
---|
2424 | |
---|
2425 | return result; |
---|
2426 | } |
---|
2427 | |
---|
2428 | CanonicalForm |
---|
2429 | newtonDiv (const CanonicalForm& F, const CanonicalForm& G, const CanonicalForm& |
---|
2430 | M) |
---|
2431 | { |
---|
2432 | ASSERT (getCharacteristic() > 0, "positive characteristic expected"); |
---|
2433 | |
---|
2434 | CanonicalForm A= mod (F, M); |
---|
2435 | CanonicalForm B= mod (G, M); |
---|
2436 | |
---|
2437 | Variable x= Variable (1); |
---|
2438 | int degA= degree (A, x); |
---|
2439 | int degB= degree (B, x); |
---|
2440 | int m= degA - degB; |
---|
2441 | if (m < 0) |
---|
2442 | return 0; |
---|
2443 | |
---|
2444 | Variable v; |
---|
2445 | CanonicalForm Q; |
---|
2446 | if (degB < 1 || CFFactory::gettype() == GaloisFieldDomain) |
---|
2447 | { |
---|
2448 | CanonicalForm R; |
---|
2449 | divrem2 (A, B, Q, R, M); |
---|
2450 | } |
---|
2451 | else |
---|
2452 | { |
---|
2453 | if (hasFirstAlgVar (A, v) || hasFirstAlgVar (B, v)) |
---|
2454 | { |
---|
2455 | CanonicalForm R= reverse (A, degA); |
---|
2456 | CanonicalForm revB= reverse (B, degB); |
---|
2457 | revB= newtonInverse (revB, m + 1, M); |
---|
2458 | Q= mulMod2 (R, revB, M); |
---|
2459 | Q= mod (Q, power (x, m + 1)); |
---|
2460 | Q= reverse (Q, m); |
---|
2461 | } |
---|
2462 | else |
---|
2463 | { |
---|
2464 | bool zz_pEbak= zz_pE::initialized(); |
---|
2465 | zz_pEBak bak; |
---|
2466 | if (zz_pEbak) |
---|
2467 | bak.save(); |
---|
2468 | zz_pX mipo= convertFacCF2NTLzzpX (M); |
---|
2469 | Variable y= Variable (2); |
---|
2470 | zz_pEX NTLA, NTLB; |
---|
2471 | NTLA= convertFacCF2NTLzz_pEX (swapvar (A, x, y), mipo); |
---|
2472 | NTLB= convertFacCF2NTLzz_pEX (swapvar (B, x, y), mipo); |
---|
2473 | div (NTLA, NTLA, NTLB); |
---|
2474 | Q= convertNTLzz_pEX2CF (NTLA, x, y); |
---|
2475 | if (zz_pEbak) |
---|
2476 | bak.restore(); |
---|
2477 | } |
---|
2478 | } |
---|
2479 | |
---|
2480 | return Q; |
---|
2481 | } |
---|
2482 | |
---|
2483 | void |
---|
2484 | newtonDivrem (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
2485 | CanonicalForm& R, const CanonicalForm& M) |
---|
2486 | { |
---|
2487 | CanonicalForm A= mod (F, M); |
---|
2488 | CanonicalForm B= mod (G, M); |
---|
2489 | Variable x= Variable (1); |
---|
2490 | int degA= degree (A, x); |
---|
2491 | int degB= degree (B, x); |
---|
2492 | int m= degA - degB; |
---|
2493 | |
---|
2494 | if (m < 0) |
---|
2495 | { |
---|
2496 | R= A; |
---|
2497 | Q= 0; |
---|
2498 | return; |
---|
2499 | } |
---|
2500 | |
---|
2501 | Variable v; |
---|
2502 | if (degB <= 1 || CFFactory::gettype() == GaloisFieldDomain) |
---|
2503 | { |
---|
2504 | divrem2 (A, B, Q, R, M); |
---|
2505 | } |
---|
2506 | else |
---|
2507 | { |
---|
2508 | if (hasFirstAlgVar (A, v) || hasFirstAlgVar (B, v)) |
---|
2509 | { |
---|
2510 | R= reverse (A, degA); |
---|
2511 | |
---|
2512 | CanonicalForm revB= reverse (B, degB); |
---|
2513 | revB= newtonInverse (revB, m + 1, M); |
---|
2514 | Q= mulMod2 (R, revB, M); |
---|
2515 | |
---|
2516 | Q= mod (Q, power (x, m + 1)); |
---|
2517 | Q= reverse (Q, m); |
---|
2518 | |
---|
2519 | R= A - mulMod2 (Q, B, M); |
---|
2520 | } |
---|
2521 | else |
---|
2522 | { |
---|
2523 | zz_pX mipo= convertFacCF2NTLzzpX (M); |
---|
2524 | Variable y= Variable (2); |
---|
2525 | zz_pEX NTLA, NTLB; |
---|
2526 | NTLA= convertFacCF2NTLzz_pEX (swapvar (A, x, y), mipo); |
---|
2527 | NTLB= convertFacCF2NTLzz_pEX (swapvar (B, x, y), mipo); |
---|
2528 | zz_pEX NTLQ, NTLR; |
---|
2529 | DivRem (NTLQ, NTLR, NTLA, NTLB); |
---|
2530 | Q= convertNTLzz_pEX2CF (NTLQ, x, y); |
---|
2531 | R= convertNTLzz_pEX2CF (NTLR, x, y); |
---|
2532 | } |
---|
2533 | } |
---|
2534 | } |
---|
2535 | |
---|
2536 | static inline |
---|
2537 | CFList split (const CanonicalForm& F, const int m, const Variable& x) |
---|
2538 | { |
---|
2539 | CanonicalForm A= F; |
---|
2540 | CanonicalForm buf= 0; |
---|
2541 | bool swap= false; |
---|
2542 | if (degree (A, x) <= 0) |
---|
2543 | return CFList(A); |
---|
2544 | else if (x.level() != A.level()) |
---|
2545 | { |
---|
2546 | swap= true; |
---|
2547 | A= swapvar (A, x, A.mvar()); |
---|
2548 | } |
---|
2549 | |
---|
2550 | int j= (int) floor ((double) degree (A)/ m); |
---|
2551 | CFList result; |
---|
2552 | CFIterator i= A; |
---|
2553 | for (; j >= 0; j--) |
---|
2554 | { |
---|
2555 | while (i.hasTerms() && i.exp() - j*m >= 0) |
---|
2556 | { |
---|
2557 | if (swap) |
---|
2558 | buf += i.coeff()*power (A.mvar(), i.exp() - j*m); |
---|
2559 | else |
---|
2560 | buf += i.coeff()*power (x, i.exp() - j*m); |
---|
2561 | i++; |
---|
2562 | } |
---|
2563 | if (swap) |
---|
2564 | result.append (swapvar (buf, x, F.mvar())); |
---|
2565 | else |
---|
2566 | result.append (buf); |
---|
2567 | buf= 0; |
---|
2568 | } |
---|
2569 | return result; |
---|
2570 | } |
---|
2571 | |
---|
2572 | static inline |
---|
2573 | void divrem32 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
2574 | CanonicalForm& R, const CFList& M); |
---|
2575 | |
---|
2576 | static inline |
---|
2577 | void divrem21 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
2578 | CanonicalForm& R, const CFList& M) |
---|
2579 | { |
---|
2580 | CanonicalForm A= mod (F, M); |
---|
2581 | CanonicalForm B= mod (G, M); |
---|
2582 | Variable x= Variable (1); |
---|
2583 | int degB= degree (B, x); |
---|
2584 | int degA= degree (A, x); |
---|
2585 | if (degA < degB) |
---|
2586 | { |
---|
2587 | Q= 0; |
---|
2588 | R= A; |
---|
2589 | return; |
---|
2590 | } |
---|
2591 | if (degB < 1) |
---|
2592 | { |
---|
2593 | divrem (A, B, Q, R); |
---|
2594 | Q= mod (Q, M); |
---|
2595 | R= mod (R, M); |
---|
2596 | return; |
---|
2597 | } |
---|
2598 | int m= (int) ceil ((double) (degB + 1)/2.0) + 1; |
---|
2599 | ASSERT (4*m >= degA, "expected degree (F, 1) < 2*degree (G, 1)"); |
---|
2600 | CFList splitA= split (A, m, x); |
---|
2601 | if (splitA.length() == 3) |
---|
2602 | splitA.insert (0); |
---|
2603 | if (splitA.length() == 2) |
---|
2604 | { |
---|
2605 | splitA.insert (0); |
---|
2606 | splitA.insert (0); |
---|
2607 | } |
---|
2608 | if (splitA.length() == 1) |
---|
2609 | { |
---|
2610 | splitA.insert (0); |
---|
2611 | splitA.insert (0); |
---|
2612 | splitA.insert (0); |
---|
2613 | } |
---|
2614 | |
---|
2615 | CanonicalForm xToM= power (x, m); |
---|
2616 | |
---|
2617 | CFListIterator i= splitA; |
---|
2618 | CanonicalForm H= i.getItem(); |
---|
2619 | i++; |
---|
2620 | H *= xToM; |
---|
2621 | H += i.getItem(); |
---|
2622 | i++; |
---|
2623 | H *= xToM; |
---|
2624 | H += i.getItem(); |
---|
2625 | i++; |
---|
2626 | |
---|
2627 | divrem32 (H, B, Q, R, M); |
---|
2628 | |
---|
2629 | CFList splitR= split (R, m, x); |
---|
2630 | if (splitR.length() == 1) |
---|
2631 | splitR.insert (0); |
---|
2632 | |
---|
2633 | H= splitR.getFirst(); |
---|
2634 | H *= xToM; |
---|
2635 | H += splitR.getLast(); |
---|
2636 | H *= xToM; |
---|
2637 | H += i.getItem(); |
---|
2638 | |
---|
2639 | CanonicalForm bufQ; |
---|
2640 | divrem32 (H, B, bufQ, R, M); |
---|
2641 | |
---|
2642 | Q *= xToM; |
---|
2643 | Q += bufQ; |
---|
2644 | return; |
---|
2645 | } |
---|
2646 | |
---|
2647 | static inline |
---|
2648 | void divrem32 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
2649 | CanonicalForm& R, const CFList& M) |
---|
2650 | { |
---|
2651 | CanonicalForm A= mod (F, M); |
---|
2652 | CanonicalForm B= mod (G, M); |
---|
2653 | Variable x= Variable (1); |
---|
2654 | int degB= degree (B, x); |
---|
2655 | int degA= degree (A, x); |
---|
2656 | if (degA < degB) |
---|
2657 | { |
---|
2658 | Q= 0; |
---|
2659 | R= A; |
---|
2660 | return; |
---|
2661 | } |
---|
2662 | if (degB < 1) |
---|
2663 | { |
---|
2664 | divrem (A, B, Q, R); |
---|
2665 | Q= mod (Q, M); |
---|
2666 | R= mod (R, M); |
---|
2667 | return; |
---|
2668 | } |
---|
2669 | int m= (int) ceil ((double) (degB + 1)/ 2.0); |
---|
2670 | ASSERT (3*m > degA, "expected degree (F, 1) < 3*degree (G, 1)"); |
---|
2671 | CFList splitA= split (A, m, x); |
---|
2672 | CFList splitB= split (B, m, x); |
---|
2673 | |
---|
2674 | if (splitA.length() == 2) |
---|
2675 | { |
---|
2676 | splitA.insert (0); |
---|
2677 | } |
---|
2678 | if (splitA.length() == 1) |
---|
2679 | { |
---|
2680 | splitA.insert (0); |
---|
2681 | splitA.insert (0); |
---|
2682 | } |
---|
2683 | CanonicalForm xToM= power (x, m); |
---|
2684 | |
---|
2685 | CanonicalForm H; |
---|
2686 | CFListIterator i= splitA; |
---|
2687 | i++; |
---|
2688 | |
---|
2689 | if (degree (splitA.getFirst(), x) < degree (splitB.getFirst(), x)) |
---|
2690 | { |
---|
2691 | H= splitA.getFirst()*xToM + i.getItem(); |
---|
2692 | divrem21 (H, splitB.getFirst(), Q, R, M); |
---|
2693 | } |
---|
2694 | else |
---|
2695 | { |
---|
2696 | R= splitA.getFirst()*xToM + i.getItem() + splitB.getFirst() - |
---|
2697 | splitB.getFirst()*xToM; |
---|
2698 | Q= xToM - 1; |
---|
2699 | } |
---|
2700 | |
---|
2701 | H= mulMod (Q, splitB.getLast(), M); |
---|
2702 | |
---|
2703 | R= R*xToM + splitA.getLast() - H; |
---|
2704 | |
---|
2705 | while (degree (R, x) >= degB) |
---|
2706 | { |
---|
2707 | xToM= power (x, degree (R, x) - degB); |
---|
2708 | Q += LC (R, x)*xToM; |
---|
2709 | R -= mulMod (LC (R, x), B, M)*xToM; |
---|
2710 | Q= mod (Q, M); |
---|
2711 | R= mod (R, M); |
---|
2712 | } |
---|
2713 | |
---|
2714 | return; |
---|
2715 | } |
---|
2716 | |
---|
2717 | void divrem2 (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
2718 | CanonicalForm& R, const CanonicalForm& M) |
---|
2719 | { |
---|
2720 | CanonicalForm A= mod (F, M); |
---|
2721 | CanonicalForm B= mod (G, M); |
---|
2722 | |
---|
2723 | if (B.inCoeffDomain()) |
---|
2724 | { |
---|
2725 | divrem (A, B, Q, R); |
---|
2726 | return; |
---|
2727 | } |
---|
2728 | if (A.inCoeffDomain() && !B.inCoeffDomain()) |
---|
2729 | { |
---|
2730 | Q= 0; |
---|
2731 | R= A; |
---|
2732 | return; |
---|
2733 | } |
---|
2734 | |
---|
2735 | if (B.level() < A.level()) |
---|
2736 | { |
---|
2737 | divrem (A, B, Q, R); |
---|
2738 | return; |
---|
2739 | } |
---|
2740 | if (A.level() > B.level()) |
---|
2741 | { |
---|
2742 | R= A; |
---|
2743 | Q= 0; |
---|
2744 | return; |
---|
2745 | } |
---|
2746 | if (B.level() == 1 && B.isUnivariate()) |
---|
2747 | { |
---|
2748 | divrem (A, B, Q, R); |
---|
2749 | return; |
---|
2750 | } |
---|
2751 | if (!(B.level() == 1 && B.isUnivariate()) && |
---|
2752 | (A.level() == 1 && A.isUnivariate())) |
---|
2753 | { |
---|
2754 | Q= 0; |
---|
2755 | R= A; |
---|
2756 | return; |
---|
2757 | } |
---|
2758 | |
---|
2759 | Variable x= Variable (1); |
---|
2760 | int degB= degree (B, x); |
---|
2761 | if (degB > degree (A, x)) |
---|
2762 | { |
---|
2763 | Q= 0; |
---|
2764 | R= A; |
---|
2765 | return; |
---|
2766 | } |
---|
2767 | |
---|
2768 | CFList splitA= split (A, degB, x); |
---|
2769 | |
---|
2770 | CanonicalForm xToDegB= power (x, degB); |
---|
2771 | CanonicalForm H, bufQ; |
---|
2772 | Q= 0; |
---|
2773 | CFListIterator i= splitA; |
---|
2774 | H= i.getItem()*xToDegB; |
---|
2775 | i++; |
---|
2776 | H += i.getItem(); |
---|
2777 | CFList buf; |
---|
2778 | while (i.hasItem()) |
---|
2779 | { |
---|
2780 | buf= CFList (M); |
---|
2781 | divrem21 (H, B, bufQ, R, buf); |
---|
2782 | i++; |
---|
2783 | if (i.hasItem()) |
---|
2784 | H= R*xToDegB + i.getItem(); |
---|
2785 | Q *= xToDegB; |
---|
2786 | Q += bufQ; |
---|
2787 | } |
---|
2788 | return; |
---|
2789 | } |
---|
2790 | |
---|
2791 | void divrem (const CanonicalForm& F, const CanonicalForm& G, CanonicalForm& Q, |
---|
2792 | CanonicalForm& R, const CFList& MOD) |
---|
2793 | { |
---|
2794 | CanonicalForm A= mod (F, MOD); |
---|
2795 | CanonicalForm B= mod (G, MOD); |
---|
2796 | Variable x= Variable (1); |
---|
2797 | int degB= degree (B, x); |
---|
2798 | if (degB > degree (A, x)) |
---|
2799 | { |
---|
2800 | Q= 0; |
---|
2801 | R= A; |
---|
2802 | return; |
---|
2803 | } |
---|
2804 | |
---|
2805 | if (degB <= 0) |
---|
2806 | { |
---|
2807 | divrem (A, B, Q, R); |
---|
2808 | Q= mod (Q, MOD); |
---|
2809 | R= mod (R, MOD); |
---|
2810 | return; |
---|
2811 | } |
---|
2812 | CFList splitA= split (A, degB, x); |
---|
2813 | |
---|
2814 | CanonicalForm xToDegB= power (x, degB); |
---|
2815 | CanonicalForm H, bufQ; |
---|
2816 | Q= 0; |
---|
2817 | CFListIterator i= splitA; |
---|
2818 | H= i.getItem()*xToDegB; |
---|
2819 | i++; |
---|
2820 | H += i.getItem(); |
---|
2821 | while (i.hasItem()) |
---|
2822 | { |
---|
2823 | divrem21 (H, B, bufQ, R, MOD); |
---|
2824 | i++; |
---|
2825 | if (i.hasItem()) |
---|
2826 | H= R*xToDegB + i.getItem(); |
---|
2827 | Q *= xToDegB; |
---|
2828 | Q += bufQ; |
---|
2829 | } |
---|
2830 | return; |
---|
2831 | } |
---|
2832 | |
---|
2833 | bool |
---|
2834 | uniFdivides (const CanonicalForm& A, const CanonicalForm& B) |
---|
2835 | { |
---|
2836 | if (B.isZero()) |
---|
2837 | return true; |
---|
2838 | if (A.isZero()) |
---|
2839 | return false; |
---|
2840 | if (CFFactory::gettype() == GaloisFieldDomain) |
---|
2841 | return fdivides (A, B); |
---|
2842 | int p= getCharacteristic(); |
---|
2843 | if (A.inCoeffDomain() || B.inCoeffDomain()) |
---|
2844 | { |
---|
2845 | if (A.inCoeffDomain()) |
---|
2846 | return true; |
---|
2847 | else |
---|
2848 | return false; |
---|
2849 | } |
---|
2850 | if (p > 0) |
---|
2851 | { |
---|
2852 | if (fac_NTL_char != p) |
---|
2853 | { |
---|
2854 | fac_NTL_char= p; |
---|
2855 | zz_p::init (p); |
---|
2856 | } |
---|
2857 | Variable alpha; |
---|
2858 | if (hasFirstAlgVar (A, alpha) || hasFirstAlgVar (B, alpha)) |
---|
2859 | { |
---|
2860 | zz_pX NTLMipo= convertFacCF2NTLzzpX (getMipo (alpha)); |
---|
2861 | zz_pE::init (NTLMipo); |
---|
2862 | zz_pEX NTLA= convertFacCF2NTLzz_pEX (A, NTLMipo); |
---|
2863 | zz_pEX NTLB= convertFacCF2NTLzz_pEX (B, NTLMipo); |
---|
2864 | return divide (NTLB, NTLA); |
---|
2865 | } |
---|
2866 | #ifdef HAVE_FLINT |
---|
2867 | nmod_poly_t FLINTA, FLINTB; |
---|
2868 | convertFacCF2nmod_poly_t (FLINTA, A); |
---|
2869 | convertFacCF2nmod_poly_t (FLINTB, B); |
---|
2870 | nmod_poly_divrem (FLINTB, FLINTA, FLINTB, FLINTA); |
---|
2871 | bool result= nmod_poly_is_zero (FLINTA); |
---|
2872 | nmod_poly_clear (FLINTA); |
---|
2873 | nmod_poly_clear (FLINTB); |
---|
2874 | return result; |
---|
2875 | #else |
---|
2876 | zz_pX NTLA= convertFacCF2NTLzzpX (A); |
---|
2877 | zz_pX NTLB= convertFacCF2NTLzzpX (B); |
---|
2878 | return divide (NTLB, NTLA); |
---|
2879 | #endif |
---|
2880 | } |
---|
2881 | #ifdef HAVE_FLINT |
---|
2882 | Variable alpha; |
---|
2883 | bool isRat= isOn (SW_RATIONAL); |
---|
2884 | if (!isRat) |
---|
2885 | On (SW_RATIONAL); |
---|
2886 | if (!hasFirstAlgVar (A, alpha) && !hasFirstAlgVar (B, alpha)) |
---|
2887 | { |
---|
2888 | fmpq_poly_t FLINTA,FLINTB; |
---|
2889 | convertFacCF2Fmpq_poly_t (FLINTA, A); |
---|
2890 | convertFacCF2Fmpq_poly_t (FLINTB, B); |
---|
2891 | fmpq_poly_rem (FLINTA, FLINTB, FLINTA); |
---|
2892 | bool result= fmpq_poly_is_zero (FLINTA); |
---|
2893 | fmpq_poly_clear (FLINTA); |
---|
2894 | fmpq_poly_clear (FLINTB); |
---|
2895 | if (!isRat) |
---|
2896 | Off (SW_RATIONAL); |
---|
2897 | return result; |
---|
2898 | } |
---|
2899 | CanonicalForm Q, R; |
---|
2900 | Variable x= Variable (1); |
---|
2901 | Variable y= Variable (2); |
---|
2902 | newtonDivrem (swapvar (B, y, x), swapvar (A, y, x), Q, R); |
---|
2903 | if (!isRat) |
---|
2904 | Off (SW_RATIONAL); |
---|
2905 | return R.isZero(); |
---|
2906 | #else |
---|
2907 | bool isRat= isOn (SW_RATIONAL); |
---|
2908 | if (!isRat) |
---|
2909 | On (SW_RATIONAL); |
---|
2910 | bool result= fdivides (A, B); |
---|
2911 | if (!isRat) |
---|
2912 | Off (SW_RATIONAL); |
---|
2913 | return result; //maybe NTL? |
---|
2914 | #endif |
---|
2915 | } |
---|
2916 | |
---|
2917 | // end division |
---|
2918 | |
---|
2919 | #endif |
---|