1 | /* emacs edit mode for this file is -*- C++ -*- */ |
---|
2 | /* $Id: fac_univar.cc,v 1.17 1998-03-12 14:32:54 schmidt Exp $ */ |
---|
3 | |
---|
4 | #include <config.h> |
---|
5 | |
---|
6 | #include <math.h> |
---|
7 | |
---|
8 | #include "assert.h" |
---|
9 | #include "debug.h" |
---|
10 | #include "timing.h" |
---|
11 | |
---|
12 | #include "cf_defs.h" |
---|
13 | #include "cf_algorithm.h" |
---|
14 | #include "fac_util.h" |
---|
15 | #include "fac_univar.h" |
---|
16 | #include "fac_cantzass.h" |
---|
17 | #include "fac_berlekamp.h" |
---|
18 | #include "cf_iter.h" |
---|
19 | #include "cf_primes.h" |
---|
20 | #include "fac_sqrfree.h" |
---|
21 | |
---|
22 | TIMING_DEFINE_PRINT(fac_choosePrimes); |
---|
23 | TIMING_DEFINE_PRINT(fac_facModPrimes); |
---|
24 | TIMING_DEFINE_PRINT(fac_liftFactors); |
---|
25 | TIMING_DEFINE_PRINT(fac_combineFactors); |
---|
26 | |
---|
27 | |
---|
28 | const int max_fp_fac = 3; |
---|
29 | |
---|
30 | static modpk theModulus; |
---|
31 | |
---|
32 | #ifdef DEBUGOUTPUT |
---|
33 | #define DEBOUTHPRINT(stream, msg, hg) \ |
---|
34 | {stream << deb_level_msg << msg, stream.flush(); hprint( hg ); stream << endl;} |
---|
35 | |
---|
36 | static void |
---|
37 | hprint ( int * a ) |
---|
38 | { |
---|
39 | int n = a[0]; |
---|
40 | cerr << "( " << n << ": "; |
---|
41 | int i = 1; |
---|
42 | while ( i < n ) { |
---|
43 | if ( a[i] != 0 ) |
---|
44 | cerr << i << " "; |
---|
45 | i++; |
---|
46 | } |
---|
47 | cerr << ")"; |
---|
48 | } |
---|
49 | #else /* DEBUGOUTPUT */ |
---|
50 | #define DEBOUTHPRINT(stream, msg, hg) |
---|
51 | #endif /* DEBUGOUTPUT */ |
---|
52 | |
---|
53 | static void |
---|
54 | hgroup ( int * a ) |
---|
55 | { |
---|
56 | int n = a[0]; |
---|
57 | int i, j, k; |
---|
58 | for ( i = 1; i < n; i++ ) |
---|
59 | if ( a[i] != 0 ) |
---|
60 | for ( j = 1; j <= i; j++ ) |
---|
61 | if ( a[j] != 0 ) |
---|
62 | for ( k = i; k < n; k += j ) |
---|
63 | a[k] = 1; |
---|
64 | } |
---|
65 | |
---|
66 | static void |
---|
67 | hintersect( int * a, const int * const b ) |
---|
68 | { |
---|
69 | int i, n, na = a[0], nb = b[0]; |
---|
70 | if ( nb < na ) |
---|
71 | n = nb; |
---|
72 | else |
---|
73 | n = na; |
---|
74 | for ( i = 1; i < n; i++ ) |
---|
75 | if ( b[i] == 0 ) |
---|
76 | a[i] = 0; |
---|
77 | a[0] = n; |
---|
78 | } |
---|
79 | |
---|
80 | /* |
---|
81 | static int |
---|
82 | hcount ( const int * const a ) |
---|
83 | { |
---|
84 | int n = a[0], sum = 0, i; |
---|
85 | for ( i = 1; i < n; i++ ) |
---|
86 | if ( a[i] != 0 ) sum++; |
---|
87 | return sum; |
---|
88 | } |
---|
89 | */ |
---|
90 | |
---|
91 | static void |
---|
92 | initHG ( int * a, const CFFList & F ) |
---|
93 | { |
---|
94 | ListIterator<CFFactor> i; |
---|
95 | |
---|
96 | int n = a[0], k; |
---|
97 | for ( int j = 1; j < n; j++ ) a[j] = 0; |
---|
98 | for ( i = F; i.hasItem(); i++ ) |
---|
99 | if ( (k = i.getItem().factor().degree()) < n ) |
---|
100 | if ( k == -1 ) { |
---|
101 | STICKYWARN( k == -1, "there occured an error. factory was not able to factorize\n" |
---|
102 | "correctly mod p. Please send the example which caused\n" |
---|
103 | "this error to the authors. Nonetheless we will go on with the\n" |
---|
104 | "calculations hoping the result will be correct. Thank you." ); |
---|
105 | } |
---|
106 | else if ( k != 0 ) |
---|
107 | a[k] = 1; |
---|
108 | } |
---|
109 | |
---|
110 | static void |
---|
111 | initHG ( int * a, const Array<CanonicalForm> & F ) |
---|
112 | { |
---|
113 | int i, n = a[0], m = F.size(), k; |
---|
114 | for ( i = 1; i < n; i++ ) a[i] = 0; |
---|
115 | for ( i = 1; i < m; i++ ) |
---|
116 | if ( (k = F[i].degree()) < n ) |
---|
117 | if ( k == -1 ) { |
---|
118 | STICKYWARN( k == -1, "there occured an error. factory was not able to factorize\n" |
---|
119 | "correctly mod p. Please send the example which caused\n" |
---|
120 | "this error to the authors. Nonetheless we will go on with the\n" |
---|
121 | "calculations hoping the result will be correct. Thank you." ); |
---|
122 | } |
---|
123 | else if ( k != 0 ) |
---|
124 | a[k] = 1; |
---|
125 | } |
---|
126 | |
---|
127 | static int |
---|
128 | cmpFactor( const CFFactor & a, const CFFactor & b ) |
---|
129 | { |
---|
130 | CFFactor A( a ), B( b ); |
---|
131 | return degree( A.factor() ) > degree( B.factor() ); |
---|
132 | } |
---|
133 | |
---|
134 | static double |
---|
135 | cf2double ( const CanonicalForm & f ) |
---|
136 | { |
---|
137 | CanonicalForm a = f, q, r; |
---|
138 | double m = 1, res = 0; |
---|
139 | if ( a.sign() < 0 ) a = -a; |
---|
140 | while ( ! a.isZero() ) { |
---|
141 | divrem( a, 10, q, r ); |
---|
142 | res += m * (double)(r.intval()); |
---|
143 | m *= 10; |
---|
144 | a = q; |
---|
145 | } |
---|
146 | if ( f.sign() < 0 ) res = -res; |
---|
147 | return res; |
---|
148 | } |
---|
149 | |
---|
150 | //{{{ static int kBound ( const CanonicalForm & f, int p ) |
---|
151 | //{{{ docu |
---|
152 | // |
---|
153 | // kBound() - return bound of coefficients of factors of f. |
---|
154 | // |
---|
155 | // The bound is returned as an integer k such that p^k is larger |
---|
156 | // than all coefficients of all possible factors of f. f should |
---|
157 | // be an univariate polynomial over Z. |
---|
158 | // |
---|
159 | // For a discussion of the formula, see the article Mignotte - |
---|
160 | // 'Some Usefull Bounds' in Buchberger, Collins, Loos (eds.) - |
---|
161 | // 'Computer Algebra: Symbolic and Algebraic Computation', 2nd |
---|
162 | // ed. |
---|
163 | // |
---|
164 | // Use by ZFactorizeUnivariate(). |
---|
165 | // |
---|
166 | //}}} |
---|
167 | static int |
---|
168 | kBound ( const CanonicalForm & f, int p ) |
---|
169 | { |
---|
170 | return (int)(f.degree() + (double)(ilog2( euclideanNorm(f)+1 ) + 1) / (double)ilog2(p)) + 1; |
---|
171 | } |
---|
172 | //}}} |
---|
173 | |
---|
174 | modpk |
---|
175 | getZFacModulus() |
---|
176 | { |
---|
177 | return theModulus; |
---|
178 | } |
---|
179 | |
---|
180 | static bool |
---|
181 | liftDegreeFactRec( CFArray & theFactors, CanonicalForm & F, const CanonicalForm & recip_lf, const CanonicalForm & f, const modpk & pk, int i, int d, CFFList & ZF, int exp ) |
---|
182 | { |
---|
183 | if ( i >= theFactors.size() ) |
---|
184 | return false; |
---|
185 | else if ( degree( f ) + degree( theFactors[i] ) == d ) { |
---|
186 | DEBOUTLN( cerr, "ldfr (f) = " << f ); |
---|
187 | DEBOUTLN( cerr, "ldfr (g) = " << theFactors[i] ); |
---|
188 | CanonicalForm g = pp( pk( recip_lf * f * theFactors[i] ) ); |
---|
189 | DEBOUTLN( cerr, "ldfr (pk(f*g)) = " << g ); |
---|
190 | CanonicalForm gg, hh; |
---|
191 | DEBOUTLN( cerr, "F = " << F ); |
---|
192 | DEBOUTLN( cerr, "g = " << g ); |
---|
193 | if ( divremt( F, g, gg, hh ) && hh.isZero() ) { |
---|
194 | ZF.append( CFFactor( g, exp ) ); |
---|
195 | F = gg; |
---|
196 | theFactors[i] = 1; |
---|
197 | return true; |
---|
198 | } |
---|
199 | else { |
---|
200 | return liftDegreeFactRec( theFactors, F, recip_lf, f, pk, i+1, d, ZF, exp ); |
---|
201 | } |
---|
202 | } |
---|
203 | else if ( degree( f ) + degree( theFactors[i] ) > d ) |
---|
204 | return false; |
---|
205 | else { |
---|
206 | bool ok = liftDegreeFactRec( theFactors, F, recip_lf, pk( recip_lf * f * theFactors[i] ), pk, i+1, d, ZF, exp ); |
---|
207 | if ( ok ) |
---|
208 | theFactors[i] = 1; |
---|
209 | else |
---|
210 | ok = liftDegreeFactRec( theFactors, F, recip_lf, f, pk, i+1, d, ZF, exp ); |
---|
211 | return ok; |
---|
212 | } |
---|
213 | } |
---|
214 | |
---|
215 | |
---|
216 | static int |
---|
217 | choosePrimes ( int * p, const CanonicalForm & f ) |
---|
218 | { |
---|
219 | int ptr = 0; |
---|
220 | int i = 0; |
---|
221 | int maxp = cf_getNumPrimes(); |
---|
222 | int prime; |
---|
223 | |
---|
224 | while ( ptr < maxp && i < max_fp_fac ) { |
---|
225 | prime = cf_getPrime( ptr ); |
---|
226 | if ( mod( lc( f ), prime ) != 0 ) { |
---|
227 | setCharacteristic( prime ); |
---|
228 | if ( isSqrFreeFp( mapinto( f ) ) ) { |
---|
229 | p[i] = prime; |
---|
230 | i++; |
---|
231 | } |
---|
232 | setCharacteristic( 0 ); |
---|
233 | } |
---|
234 | ptr++; |
---|
235 | } |
---|
236 | return ( i == max_fp_fac ); |
---|
237 | } |
---|
238 | |
---|
239 | |
---|
240 | static int |
---|
241 | UnivariateQuadraticLift ( const CanonicalForm &F, const CanonicalForm & G, const CanonicalForm &H, const modpk & pk, const CanonicalForm & Gamma, CanonicalForm & gk, CanonicalForm & hk ) |
---|
242 | { |
---|
243 | CanonicalForm lf, f, gamma; |
---|
244 | CanonicalForm a, b, aa, bb, c, g, h, g1, h1, e, modulus, tmp, q, r; |
---|
245 | int i, j, save; |
---|
246 | int p = pk.getp(), k = pk.getk(); |
---|
247 | int no_iter = (int)(log( (double)k )/log(2)+2); |
---|
248 | int * kvals = new int[no_iter]; |
---|
249 | |
---|
250 | DEBOUTLN( cerr, "quadratic lift called with p = " << p << " and k = " << k ); |
---|
251 | for ( j = 0, i = k; i > 1; i = ( i+1 ) / 2, j++ ) kvals[j] = i; |
---|
252 | kvals[j] = 1; |
---|
253 | |
---|
254 | save = getCharacteristic(); setCharacteristic( 0 ); |
---|
255 | |
---|
256 | lf = lc( F ); |
---|
257 | f = lf * F; |
---|
258 | { |
---|
259 | setCharacteristic( p ); |
---|
260 | g1 = mapinto( lf ) / lc( G ) * G; |
---|
261 | h1 = mapinto( lf ) / lc( H ) * H; |
---|
262 | (void)extgcd( g1, h1, a, b ); |
---|
263 | setCharacteristic( 0 ); |
---|
264 | } |
---|
265 | a = mapinto( a ); b = mapinto( b ); |
---|
266 | g = mapinto( g1 ); h = mapinto( h1 ); |
---|
267 | g = replaceLc( g, lf ); h = replaceLc( h, lf ); |
---|
268 | e = f - g * h; |
---|
269 | modulus = p; |
---|
270 | i = 1; |
---|
271 | |
---|
272 | while ( ! e.isZero() && j > 0 ) { |
---|
273 | c = div( e, modulus ); |
---|
274 | { |
---|
275 | j--; |
---|
276 | setCharacteristic( p, kvals[j+1] ); |
---|
277 | DEBOUTLN( cerr, "lifting from p^" << kvals[j+1] << " to p^" << kvals[j] ); |
---|
278 | c = mapinto( c ); |
---|
279 | DEBOUTLN( cerr, " !!! g = " << mapinto( g ) ); |
---|
280 | g1 = mapinto( lf ) / mapinto( lc( g ) ) * mapinto( g ); |
---|
281 | h1 = mapinto( lf ) / mapinto( lc( h ) ) * mapinto( h ); |
---|
282 | // (void)extgcd( g1, h1, a, b ); |
---|
283 | // DEBOUTLN( cerr, " a = " << aa ); |
---|
284 | // DEBOUTLN( cerr, " b = " << bb ); |
---|
285 | a = mapinto( a ); b = mapinto( b ); |
---|
286 | a += ( ( 1 - a * g1 ) * a ) % h1; |
---|
287 | b += ( ( 1 - b * h1 ) * b ) % g1; |
---|
288 | DEBOUTLN( cerr, " a = " << a ); |
---|
289 | DEBOUTLN( cerr, " b = " << b ); |
---|
290 | divrem( a * c, h1, q, r ); |
---|
291 | tmp = b * c + q * g1; |
---|
292 | setCharacteristic( 0 ); |
---|
293 | } |
---|
294 | a = mapinto( a ); b = mapinto( b ); |
---|
295 | g += mapinto( tmp ) * modulus; |
---|
296 | h += mapinto( r ) * modulus; |
---|
297 | // g = replaceLc( g, lf ); h = replaceLc( h, lf ); |
---|
298 | e = f - g * h; |
---|
299 | modulus = power( CanonicalForm(p), kvals[j] ); |
---|
300 | if ( mod( f - g * h, modulus ) != 0 ) |
---|
301 | DEBOUTLN( cerr, "error at lift stage " << i ); |
---|
302 | i++; |
---|
303 | } |
---|
304 | if ( e.isZero() ) { |
---|
305 | tmp = content( g ); |
---|
306 | gk = g / tmp; hk = h / ( lf / tmp ); |
---|
307 | } |
---|
308 | else { |
---|
309 | gk = pk(g); hk = pk(h); |
---|
310 | } |
---|
311 | setCharacteristic( save ); |
---|
312 | return e.isZero(); |
---|
313 | } |
---|
314 | |
---|
315 | static int |
---|
316 | UnivariateLinearLift ( const CanonicalForm &F, const CanonicalForm & G, const CanonicalForm &H, const modpk & pk, const CanonicalForm & Gamma, CanonicalForm & gk, CanonicalForm & hk ) |
---|
317 | { |
---|
318 | CanonicalForm lf, f, gamma; |
---|
319 | CanonicalForm a, b, c, g, h, g1, h1, e, modulus, tmp, q, r; |
---|
320 | int i, save; |
---|
321 | int p = pk.getp(), k = pk.getk(); |
---|
322 | save = getCharacteristic(); setCharacteristic( 0 ); |
---|
323 | |
---|
324 | lf = lc( F ); |
---|
325 | f = lf * F; |
---|
326 | { |
---|
327 | setCharacteristic( p ); |
---|
328 | g1 = mapinto( lf ) / lc( G ) * G; |
---|
329 | h1 = mapinto( lf ) / lc( H ) * H; |
---|
330 | (void)extgcd( g1, h1, a, b ); |
---|
331 | setCharacteristic( 0 ); |
---|
332 | } |
---|
333 | g = mapinto( g1 ); h = mapinto( h1 ); |
---|
334 | g = replaceLc( g, lf ); h = replaceLc( h, lf ); |
---|
335 | e = f - g * h; |
---|
336 | modulus = p; |
---|
337 | i = 1; |
---|
338 | |
---|
339 | while ( ! e.isZero() && i <= k ) { |
---|
340 | c = div( e, modulus ); |
---|
341 | { |
---|
342 | setCharacteristic( p ); |
---|
343 | c = mapinto( c ); |
---|
344 | divrem( a * c, h1, q, r ); |
---|
345 | tmp = b * c + q * g1; |
---|
346 | setCharacteristic( 0 ); |
---|
347 | } |
---|
348 | g += mapinto( tmp ) * modulus; |
---|
349 | h += mapinto( r ) * modulus; |
---|
350 | // g = replaceLc( g, lf ); h = replaceLc( h, lf ); |
---|
351 | e = f - g * h; |
---|
352 | modulus *= p; |
---|
353 | ASSERT( mod( f - g * h, modulus ) == 0, "error at lift stage" ); |
---|
354 | i++; |
---|
355 | } |
---|
356 | if ( e.isZero() ) { |
---|
357 | tmp = content( g ); |
---|
358 | gk = g / tmp; hk = h / ( lf / tmp ); |
---|
359 | } |
---|
360 | else { |
---|
361 | gk = pk(g); hk = pk(h); |
---|
362 | } |
---|
363 | setCharacteristic( save ); |
---|
364 | // return e.isZero(); |
---|
365 | return (F-gk*hk).isZero(); |
---|
366 | } |
---|
367 | |
---|
368 | |
---|
369 | CFFList |
---|
370 | ZFactorizeUnivariate( const CanonicalForm& ff, bool issqrfree ) |
---|
371 | { |
---|
372 | bool symmsave = isOn( SW_SYMMETRIC_FF ); |
---|
373 | CanonicalForm cont = content( ff ); |
---|
374 | CanonicalForm lf, recip_lf, fp, f, g = ff / cont, dummy1, dummy2; |
---|
375 | int i, k, exp, n; |
---|
376 | bool ok; |
---|
377 | CFFList H, F[max_fp_fac]; |
---|
378 | CFFList ZF; |
---|
379 | int * p = new int [max_fp_fac]; |
---|
380 | int * D = 0; |
---|
381 | int * Dh = 0; |
---|
382 | ListIterator<CFFactor> J, I; |
---|
383 | |
---|
384 | DEBINCLEVEL( cerr, "ZFactorizeUnivariate" ); |
---|
385 | On( SW_SYMMETRIC_FF ); |
---|
386 | |
---|
387 | // get squarefree decomposition of f |
---|
388 | if ( issqrfree ) |
---|
389 | H.append( CFFactor( g, 1 ) ); |
---|
390 | else |
---|
391 | H = sqrFree( g ); |
---|
392 | |
---|
393 | DEBOUTLN( cerr, "H = " << H ); |
---|
394 | |
---|
395 | // cycle through squarefree factors of f |
---|
396 | for ( J = H; J.hasItem(); ++J ) { |
---|
397 | f = J.getItem().factor(); |
---|
398 | if ( f.inCoeffDomain() ) continue; |
---|
399 | n = f.degree() / 2 + 1; |
---|
400 | delete [] D; |
---|
401 | delete [] Dh; |
---|
402 | D = new int [n]; D[0] = n; |
---|
403 | Dh = new int [n]; Dh[0] = n; |
---|
404 | exp = J.getItem().exp(); |
---|
405 | |
---|
406 | // choose primes to factor f |
---|
407 | TIMING_START(fac_choosePrimes); |
---|
408 | ok = choosePrimes( p, f ); |
---|
409 | TIMING_END_AND_PRINT(fac_choosePrimes, "time to choose the primes: "); |
---|
410 | if ( ! ok ) { |
---|
411 | DEBOUTLN( cerr, "warning: no good prime found to factorize " << f ); |
---|
412 | STICKYWARN( ok, "there occured an error. We went out of primes p\n" |
---|
413 | "to factorize mod p. Please send the example which caused\n" |
---|
414 | "this error to the authors. Nonetheless we will go on with the\n" |
---|
415 | "calculations hoping the result will be correct. Thank you."); |
---|
416 | ZF.append( CFFactor( f, exp ) ); |
---|
417 | continue; |
---|
418 | } |
---|
419 | |
---|
420 | // factorize f modulo certain primes |
---|
421 | TIMING_START(fac_facModPrimes); |
---|
422 | for ( i = 0; i < max_fp_fac; i++ ) { |
---|
423 | setCharacteristic( p[i] ); |
---|
424 | fp = mapinto( f ); |
---|
425 | F[i] = FpFactorizeUnivariateCZ( fp, true, 0, Variable(), Variable() ); |
---|
426 | // if ( p[i] < 23 && fp.degree() < 10 ) |
---|
427 | // F[i] = FpFactorizeUnivariateB( fp, true ); |
---|
428 | // else |
---|
429 | // F[i] = FpFactorizeUnivariateCZ( fp, true, 0, Variable, Variable() ); |
---|
430 | DEBOUTLN( cerr, "F[i] = " << F[i] << ", p = " << p[i] ); |
---|
431 | } |
---|
432 | TIMING_END_AND_PRINT(fac_facModPrimes, "time to factorize mod primes: "); |
---|
433 | setCharacteristic( 0 ); |
---|
434 | |
---|
435 | // do some strange things with the D's |
---|
436 | initHG( D, F[0] ); |
---|
437 | hgroup( D ); |
---|
438 | DEBOUTHPRINT( cerr, "D = ", D ); |
---|
439 | for ( i = 1; i < max_fp_fac; i++ ) { |
---|
440 | initHG( Dh, F[i] ); |
---|
441 | hgroup( Dh ); |
---|
442 | DEBOUTHPRINT( cerr, "Dh = ", Dh ); |
---|
443 | hintersect( D, Dh ); |
---|
444 | DEBOUTHPRINT( cerr, "D = ", D ); |
---|
445 | } |
---|
446 | |
---|
447 | // look which p gives the shortest factorization of f mod p |
---|
448 | // j: index of that p in p[] |
---|
449 | int min, j; |
---|
450 | min = F[0].length(), j = 0; |
---|
451 | for ( i = 1; i < max_fp_fac; i++ ) { |
---|
452 | if ( min >= F[i].length() ) { |
---|
453 | j = i; min = F[i].length(); |
---|
454 | } |
---|
455 | } |
---|
456 | k = kBound( f, p[j] ); |
---|
457 | CFArray theFactors( F[j].length() ); |
---|
458 | // pk = power( CanonicalForm( p[j] ), k ); |
---|
459 | // pkhalf = pk / 2; |
---|
460 | modpk pk( p[j], k ); |
---|
461 | DEBOUTLN( cerr, "coeff bound = " << pk.getpk() ); |
---|
462 | theModulus = pk; |
---|
463 | setCharacteristic( p[j] ); |
---|
464 | fp = mapinto( f ); |
---|
465 | F[j].sort( cmpFactor ); |
---|
466 | I = F[j]; i = 0; |
---|
467 | TIMING_START(fac_liftFactors); |
---|
468 | while ( I.hasItem() ) { |
---|
469 | DEBOUTLN( cerr, "factor to lift = " << I.getItem().factor() ); |
---|
470 | if ( isOn( SW_FAC_QUADRATICLIFT ) ) |
---|
471 | ok = UnivariateQuadraticLift( f, I.getItem().factor(), fp / I.getItem().factor(), pk, lc( f ), dummy1, dummy2 ); |
---|
472 | else |
---|
473 | ok = UnivariateLinearLift( f, I.getItem().factor(), fp / I.getItem().factor(), pk, lc( f ), dummy1, dummy2 ); |
---|
474 | if ( ok ) { |
---|
475 | // should be done in a more efficient way |
---|
476 | DEBOUTLN( cerr, "dummy1 = " << dummy1 ); |
---|
477 | DEBOUTLN( cerr, "dummy2 = " << dummy2 ); |
---|
478 | f = dummy2; |
---|
479 | fp /= I.getItem().factor(); |
---|
480 | ZF.append( CFFactor( dummy1, exp ) ); |
---|
481 | I.remove( 0 ); |
---|
482 | I = F[j]; |
---|
483 | i = 0; |
---|
484 | DEBOUTLN( cerr, "F[j] = " << F[j] ); |
---|
485 | } |
---|
486 | else { |
---|
487 | DEBOUTLN( cerr, "i = " << i ); |
---|
488 | DEBOUTLN( cerr, "dummy1 = " << dummy1 ); |
---|
489 | setCharacteristic( 0 ); |
---|
490 | // theFactors[i] = pk( dummy1 * pk.inverse( lc( dummy1 ) ) ); |
---|
491 | theFactors[i] = pk( dummy1 ); |
---|
492 | setCharacteristic( p[j] ); |
---|
493 | i++; |
---|
494 | I++; |
---|
495 | } |
---|
496 | } |
---|
497 | TIMING_END_AND_PRINT(fac_liftFactors, "time to lift the factors: "); |
---|
498 | DEBOUTLN( cerr, "ZF = " << ZF ); |
---|
499 | initHG( Dh, theFactors ); |
---|
500 | hgroup( Dh ); |
---|
501 | DEBOUTHPRINT( cerr, "Dh = ", Dh ); |
---|
502 | hintersect( D, Dh ); |
---|
503 | setCharacteristic( 0 ); |
---|
504 | for ( int l = i; l < F[j].length(); l++ ) |
---|
505 | theFactors[l] = 1; |
---|
506 | DEBOUTLN( cerr, "theFactors = " << theFactors ); |
---|
507 | DEBOUTLN( cerr, "f = " << f ); |
---|
508 | DEBOUTLN( cerr, "p = " << pk.getp() << ", k = " << pk.getk() ); |
---|
509 | DEBOUTHPRINT( cerr, "D = ", D ); |
---|
510 | lf = lc( f ); |
---|
511 | (void)bextgcd( pk.getpk(), lf, dummy1, recip_lf ); |
---|
512 | DEBOUTLN( cerr, "recip_lf = " << recip_lf ); |
---|
513 | TIMING_START(fac_combineFactors); |
---|
514 | for ( i = 1; i < D[0]; i++ ) |
---|
515 | if ( D[i] != 0 ) |
---|
516 | while ( liftDegreeFactRec( theFactors, f, recip_lf, lf, pk, 0, i, ZF, exp ) ); |
---|
517 | if ( degree( f ) > 0 ) |
---|
518 | ZF.append( CFFactor( f, exp ) ); |
---|
519 | TIMING_END_AND_PRINT(fac_combineFactors, "time to combine the factors: "); |
---|
520 | } |
---|
521 | |
---|
522 | // brush up our result |
---|
523 | if ( ZF.getFirst().factor().inCoeffDomain() ) |
---|
524 | ZF.removeFirst(); |
---|
525 | if ( lc( ff ).sign() < 0 ) |
---|
526 | ZF.insert( CFFactor( -cont, 1 ) ); |
---|
527 | else |
---|
528 | ZF.insert( CFFactor( cont, 1 ) ); |
---|
529 | delete [] D; |
---|
530 | delete [] Dh; |
---|
531 | if ( ! symmsave ) |
---|
532 | Off( SW_SYMMETRIC_FF ); |
---|
533 | |
---|
534 | DEBDECLEVEL( cerr, "ZFactorizeUnivariate" ); |
---|
535 | return ZF; |
---|
536 | } |
---|