1 | /* emacs edit mode for this file is -*- C++ -*- */ |
---|
2 | |
---|
3 | /** |
---|
4 | * |
---|
5 | * @file gengftables-conway.cc |
---|
6 | * |
---|
7 | * generate addition tables used by Factory |
---|
8 | * to calculate in GF(q). |
---|
9 | * |
---|
10 | * @note This may take quite a while ... |
---|
11 | * |
---|
12 | **/ |
---|
13 | |
---|
14 | |
---|
15 | #include "config.h" |
---|
16 | |
---|
17 | |
---|
18 | #ifdef HAVE_IOSTREAM |
---|
19 | #include <iostream> |
---|
20 | #include <fstream> |
---|
21 | #include <strstream> |
---|
22 | #include <string> |
---|
23 | #else |
---|
24 | #include <iostream> |
---|
25 | #include <fstream> |
---|
26 | #include <strstream> |
---|
27 | #include <string> |
---|
28 | #endif |
---|
29 | |
---|
30 | |
---|
31 | #include <stdlib.h> |
---|
32 | |
---|
33 | #include "cf_assert.h" |
---|
34 | #include "gf_tabutil.h" |
---|
35 | #include "cf_algorithm.h" |
---|
36 | #include "cf_iter.h" |
---|
37 | |
---|
38 | using namespace std; |
---|
39 | |
---|
40 | int gf_tab_numdigits62 ( int q ); |
---|
41 | /** |
---|
42 | * |
---|
43 | * constants. |
---|
44 | * |
---|
45 | * maxtable: maximal size of a gf_table |
---|
46 | * |
---|
47 | **/ |
---|
48 | const int maxtable = 65536; |
---|
49 | |
---|
50 | /** |
---|
51 | * primes, primes_len: |
---|
52 | * used to step through possible extensions |
---|
53 | **/ |
---|
54 | const int primes_len = 54; |
---|
55 | |
---|
56 | /** |
---|
57 | * primes, primes_len: |
---|
58 | * used to step through possible extensions |
---|
59 | **/ |
---|
60 | STATIC_VAR unsigned short primes [] = |
---|
61 | { |
---|
62 | 2, 3, 5, 7, 11, 13, 17, 19, |
---|
63 | 23, 29, 31, 37, 41, 43, 47, 53, |
---|
64 | 59, 61, 67, 71, 73, 79, 83, 89, |
---|
65 | 97, 101, 103, 107, 109, 113, 127, 131, |
---|
66 | 137, 139, 149, 151, 157, 163, 167, 173, |
---|
67 | 179, 181, 191, 193, 197, 199, 211, 223, |
---|
68 | 227, 229, 233, 239, 241, 251 |
---|
69 | }; |
---|
70 | |
---|
71 | /** bool isIrreducible ( const CanonicalForm & f ) |
---|
72 | * |
---|
73 | * isIrreducible() - return true iff f is irreducible. |
---|
74 | * |
---|
75 | **/ |
---|
76 | bool |
---|
77 | isIrreducible ( const CanonicalForm & f ) |
---|
78 | { |
---|
79 | CFFList F = factorize( f ); |
---|
80 | if (F.getFirst().factor().inCoeffDomain()) |
---|
81 | F.removeFirst(); |
---|
82 | return F.length() == 1 && F.getFirst().exp() == 1; |
---|
83 | } |
---|
84 | |
---|
85 | /** int exponent ( const CanonicalForm & f, int q ) |
---|
86 | * |
---|
87 | * exponent() - return e > 0 such that x^e == 1 mod f. |
---|
88 | * |
---|
89 | * q: upper limit for e (?) |
---|
90 | * |
---|
91 | **/ |
---|
92 | int |
---|
93 | exponent ( const CanonicalForm & f, int q ) |
---|
94 | { |
---|
95 | Variable x = f.mvar(); |
---|
96 | int e = 1; |
---|
97 | CanonicalForm prod = x; |
---|
98 | while ( e <= q && ! prod.isOne() ) { |
---|
99 | e++; |
---|
100 | prod = ( prod * x ) % f; |
---|
101 | } |
---|
102 | return e; |
---|
103 | } |
---|
104 | |
---|
105 | /** bool findGenRec ( int d, int n, int q, const CanonicalForm & m, const Variable & x, CanonicalForm & result ) |
---|
106 | * |
---|
107 | * findGenRec() - find a generator of GF(q). |
---|
108 | * |
---|
109 | * Returns true iff result is a valid generator. |
---|
110 | * |
---|
111 | * d: degree of extension |
---|
112 | * q: the q in GF(q) (q == p^d) |
---|
113 | * x: generator should be a poly in x |
---|
114 | * n, m: used to step recursively through all polys in FF(p) |
---|
115 | * Initially, n == d and m == 0. If 0 <= n <= d we are |
---|
116 | * in the process of building m, if n < 0 we built m and |
---|
117 | * may test whether it generates GF(q). |
---|
118 | * result: generator found |
---|
119 | * |
---|
120 | * i: used to step through GF(p) |
---|
121 | * p: current characteristic |
---|
122 | * |
---|
123 | **/ |
---|
124 | bool |
---|
125 | findGenRec ( int d, int n, int q, |
---|
126 | const CanonicalForm & m, const Variable & x, |
---|
127 | CanonicalForm & result ) |
---|
128 | { |
---|
129 | int i, p = getCharacteristic(); |
---|
130 | if ( n < 0 ) { |
---|
131 | cerr << "."; cerr.flush(); |
---|
132 | // check whether m is irreducible |
---|
133 | if ( isIrreducible( m ) ) { |
---|
134 | cerr << "*"; cerr.flush(); |
---|
135 | // check whether m generates multiplicative group |
---|
136 | if ( exponent( m, q ) == q - 1 ) { |
---|
137 | result = m; |
---|
138 | return true; |
---|
139 | } |
---|
140 | else |
---|
141 | return false; |
---|
142 | } |
---|
143 | else |
---|
144 | return false; |
---|
145 | } |
---|
146 | // for each monomial x^0, ..., x^n, ..., x^d, try all possible coefficients |
---|
147 | else if ( n == d || n == 0 ) { |
---|
148 | // we want to have a leading coefficient and a constant term, |
---|
149 | // so start with coefficient >= 1 |
---|
150 | for ( i = 1; i < p; i++ ) |
---|
151 | if ( findGenRec( d, n-1, q, m + i * power( x, n ), x, result ) ) |
---|
152 | return true; |
---|
153 | } |
---|
154 | else { |
---|
155 | for ( i = 0; i < p; i++ ) |
---|
156 | if ( findGenRec( d, n-1, q, m + i * power( x, n ), x, result ) ) |
---|
157 | return true; |
---|
158 | } |
---|
159 | return false; |
---|
160 | } |
---|
161 | |
---|
162 | /** CanonicalForm findGen ( int d, int q ) |
---|
163 | * |
---|
164 | * findGen() - find and return a generator of GF(q). |
---|
165 | * |
---|
166 | * d: degree of extension |
---|
167 | * q: the q in GF(q) |
---|
168 | * |
---|
169 | **/ |
---|
170 | CanonicalForm |
---|
171 | findGen ( int d, int q ) |
---|
172 | { |
---|
173 | Variable x( 1 ); |
---|
174 | CanonicalForm result; |
---|
175 | cerr << "testing p = " << getCharacteristic() << ", d = " << d << " ... "; |
---|
176 | cerr.flush(); |
---|
177 | bool ok = findGenRec( d, d, q, 0, x, result ); |
---|
178 | cerr << endl; |
---|
179 | if ( ! ok ) |
---|
180 | return 0; |
---|
181 | else |
---|
182 | return result; |
---|
183 | } |
---|
184 | |
---|
185 | /** void printTable ( int d, int q, CanonicalForm mipo ) |
---|
186 | * |
---|
187 | * printTable - print +1 table of field GF(q). |
---|
188 | * |
---|
189 | * d: degree of extension |
---|
190 | * q: the q in GF(q) |
---|
191 | * mipo: the minimal polynomial of the extension |
---|
192 | * |
---|
193 | * p: current characteristic |
---|
194 | * |
---|
195 | **/ |
---|
196 | void |
---|
197 | printTable ( int d, int q, CanonicalForm mipo ) |
---|
198 | { |
---|
199 | int i, p = getCharacteristic(); |
---|
200 | |
---|
201 | // open file to write to |
---|
202 | ostrstream fname; |
---|
203 | fname << "gftables/" << q << '\0'; |
---|
204 | char * fn = fname.str(); |
---|
205 | ofstream outfile; |
---|
206 | outfile.open( fn, ios::out ); |
---|
207 | STICKYASSERT1( outfile, "can not open GF(q) table %s for writing", fn ); |
---|
208 | delete fn; |
---|
209 | |
---|
210 | cerr << "mipo = " << mipo << ": "; |
---|
211 | cerr << "generating multiplicative group ... "; |
---|
212 | cerr.flush(); |
---|
213 | |
---|
214 | CanonicalForm * T = new CanonicalForm[maxtable]; |
---|
215 | Variable x( 1 ); |
---|
216 | |
---|
217 | // fill T with powers of x |
---|
218 | T[0] = 1; |
---|
219 | for ( i = 1; i < q; i++ ) |
---|
220 | T[i] = ( T[i-1] * x ) % mipo; |
---|
221 | |
---|
222 | cerr << "generating addition table ... "; |
---|
223 | cerr.flush(); |
---|
224 | |
---|
225 | // brute force method |
---|
226 | int * table = new int[maxtable]; |
---|
227 | CanonicalForm f; |
---|
228 | |
---|
229 | for ( i = 0; i < q; i++ ) { |
---|
230 | f = T[i] + 1; |
---|
231 | int j = 0; |
---|
232 | while ( j < q && T[j] != f ) j++; |
---|
233 | table[i] = j; |
---|
234 | } |
---|
235 | |
---|
236 | cerr << "writing table ... "; |
---|
237 | cerr.flush(); |
---|
238 | |
---|
239 | outfile << "@@ factory GF(q) table @@" << endl; |
---|
240 | outfile << p << " " << d << " " << mipo << "; "; |
---|
241 | |
---|
242 | // print simple reprenstation of mipo |
---|
243 | outfile << d; |
---|
244 | CFIterator MiPo = mipo; |
---|
245 | for ( i = d; MiPo.hasTerms(); i--, MiPo++ ) { |
---|
246 | int exp; |
---|
247 | for ( exp = MiPo.exp(); exp < i; i-- ) |
---|
248 | outfile << " 0"; |
---|
249 | outfile << " " << MiPo.coeff(); |
---|
250 | } |
---|
251 | // since mipo is irreducible, it has a constant term, |
---|
252 | // so i == 0 at this point |
---|
253 | outfile << endl; |
---|
254 | |
---|
255 | int m = gf_tab_numdigits62( q ); |
---|
256 | char * outstr = new char[30*m+1]; |
---|
257 | outstr[30*m] = '\0'; |
---|
258 | i = 1; |
---|
259 | while ( i < q ) { |
---|
260 | int k = 0; |
---|
261 | char * sptr = outstr; |
---|
262 | while ( i < q && k < 30 ) { |
---|
263 | convert62( table[i], m, sptr ); |
---|
264 | sptr += m; |
---|
265 | k++; i++; |
---|
266 | } |
---|
267 | while ( k < 30 ) { |
---|
268 | convert62( 0, m, sptr ); |
---|
269 | sptr += m; |
---|
270 | k++; |
---|
271 | } |
---|
272 | outfile << outstr << endl; |
---|
273 | } |
---|
274 | outfile.close(); |
---|
275 | |
---|
276 | delete [] outstr; |
---|
277 | delete [] T; |
---|
278 | delete [] table; |
---|
279 | |
---|
280 | cerr << endl; |
---|
281 | } |
---|
282 | |
---|
283 | /** |
---|
284 | * The new function for getting the minimal polynomials. |
---|
285 | * It uses the Conway polynomials. |
---|
286 | * It reads the polynomials from a file. |
---|
287 | * The file contains all polynomials with p^k <= 2^16 |
---|
288 | * but currently only polynomials with p^k <= 2^14 are used. |
---|
289 | **/ |
---|
290 | static CanonicalForm findGenNew(int n, ///< n is the exponent |
---|
291 | int q ///< parameter q is not used. It is added to respect the old version |
---|
292 | ) |
---|
293 | { |
---|
294 | CanonicalForm conway = 0; |
---|
295 | Variable x( 1 ); |
---|
296 | int p = getCharacteristic(); |
---|
297 | int ntmp,ptmp,pos1,pos2,ii; |
---|
298 | string ns, ps; |
---|
299 | string LineSe,coef,PC; |
---|
300 | int flag=1; |
---|
301 | ifstream in("./ConwayList.txt"); |
---|
302 | getline(in,LineSe); // For the first line |
---|
303 | |
---|
304 | string err="END"; //to check if we are at the end of the file |
---|
305 | while((flag) && (err != LineSe)) |
---|
306 | { |
---|
307 | getline(in,LineSe); //for the line: allConwayPolynomials := [ |
---|
308 | if(LineSe == err){ |
---|
309 | break; |
---|
310 | } |
---|
311 | pos1 = LineSe.find( ",", 0 ); |
---|
312 | pos2 = LineSe.find( ",", pos1 + 1); // we check where are the "," to now p and n of this line |
---|
313 | ps = LineSe.substr(0, pos1); |
---|
314 | ns = LineSe.substr(pos1 + 1,pos2 - pos1); |
---|
315 | ptmp = atoi(ps.c_str()); //we have the value of p and n of these line |
---|
316 | ntmp = atoi(ns.c_str()); |
---|
317 | |
---|
318 | if((ntmp==n)&&(ptmp==p)){flag=0;} // we check if they are our p and n to stop the search |
---|
319 | |
---|
320 | } |
---|
321 | |
---|
322 | if (err==LineSe) // If the Conway Polynomial is not in the list, there is an error. |
---|
323 | { |
---|
324 | //cout << "Error: This Conway polinomial is not in the list" << endl; |
---|
325 | return(0); |
---|
326 | } |
---|
327 | |
---|
328 | // Read the polynomial from the file |
---|
329 | pos1 = pos2 + 1; |
---|
330 | pos2 = LineSe.find(",", pos1 + 1); |
---|
331 | conway = atoi(LineSe.substr(pos1, pos2 - pos1).c_str()); // value of the constant term in PC=Conway Polynomial |
---|
332 | pos1 = pos2; |
---|
333 | pos2 = LineSe.find(",", pos1 + 1); |
---|
334 | |
---|
335 | for(ii = 2; ii <= n; ii++) |
---|
336 | { |
---|
337 | coef = LineSe.substr(pos1 + 1,pos2 - pos1 - 1); //Coefficient of the monomial of degree ii-1 |
---|
338 | if(coef != "0") |
---|
339 | { |
---|
340 | conway = conway + atoi(coef.c_str()) * power(x, ii - 1) ; //We add this monomial to the Conway Polynomial |
---|
341 | } |
---|
342 | pos1 = pos2; |
---|
343 | pos2 = LineSe.find( ",", pos1+1); |
---|
344 | } |
---|
345 | |
---|
346 | pos2 = LineSe.find( ",END", pos1 + 1); // To obtain the last coefficient we search "END" instead of "," |
---|
347 | coef = LineSe.substr(pos1 + 1,pos2 - pos1 - 1); |
---|
348 | conway = conway + atoi(coef.c_str()) * power(x, ii - 1) ; //We add the last monomial to the Conway Polynomial |
---|
349 | |
---|
350 | in.close(); |
---|
351 | |
---|
352 | return(conway); |
---|
353 | |
---|
354 | } |
---|
355 | |
---|
356 | |
---|
357 | int |
---|
358 | main() |
---|
359 | { |
---|
360 | int i, p, q, n; |
---|
361 | for ( i = 0; i < primes_len; i++ ) { |
---|
362 | p = primes[i]; |
---|
363 | q = p; |
---|
364 | n = 1; |
---|
365 | setCharacteristic( p ); |
---|
366 | while ( q < maxtable ) { |
---|
367 | CanonicalForm f = findGenNew( n, q ); |
---|
368 | ASSERT( f != 0, "no generator found" ); |
---|
369 | printTable( n, q, f ); |
---|
370 | n++; q *= p; |
---|
371 | } |
---|
372 | } |
---|
373 | } |
---|
374 | |
---|