1 | //////////////////////////////////////////////////////////// |
---|
2 | // emacs edit mode for this file is -*- C++ -*- |
---|
3 | //////////////////////////////////////////////////////////// |
---|
4 | |
---|
5 | // FACTORY - Includes |
---|
6 | #include <factory.h> |
---|
7 | // Factor - Includes |
---|
8 | #include <tmpl_inst.h> |
---|
9 | #include <Factor.h> |
---|
10 | #include <SqrFree.h> |
---|
11 | #include <helpstuff.h> |
---|
12 | // Charset - Includes |
---|
13 | #include "csutil.h" |
---|
14 | #include "charset.h" |
---|
15 | #include "reorder.h" |
---|
16 | #include "algfactor.h" |
---|
17 | // some CC's need this: |
---|
18 | #include "alg_factor.h" |
---|
19 | |
---|
20 | void out_cf(const char *s1,const CanonicalForm &f,const char *s2); |
---|
21 | |
---|
22 | #ifdef ALGFACTORDEBUG |
---|
23 | # define DEBUGOUTPUT |
---|
24 | #else |
---|
25 | # undef DEBUGOUTPUT |
---|
26 | #endif |
---|
27 | |
---|
28 | #include <libfac/factor/debug.h> |
---|
29 | |
---|
30 | static Varlist |
---|
31 | Var_is_in_AS(const Varlist & uord, const CFList & Astar); |
---|
32 | |
---|
33 | int getAlgVar(const CanonicalForm &f, Variable &X) |
---|
34 | { |
---|
35 | if (f.inBaseDomain()) return 0; |
---|
36 | if (f.inCoeffDomain()) |
---|
37 | { |
---|
38 | if (f.level()!=0) |
---|
39 | { |
---|
40 | X= f.mvar(); |
---|
41 | return 1; |
---|
42 | } |
---|
43 | return getAlgVar(f.LC(),X); |
---|
44 | } |
---|
45 | if (f.inPolyDomain()) |
---|
46 | { |
---|
47 | if (getAlgVar(f.LC(),X)) return 1; |
---|
48 | for( CFIterator i=f; i.hasTerms(); i++) |
---|
49 | { |
---|
50 | if (getAlgVar(i.coeff(),X)) return 1; |
---|
51 | } |
---|
52 | } |
---|
53 | return 0; |
---|
54 | } |
---|
55 | |
---|
56 | //////////////////////////////////////////////////////////////////////// |
---|
57 | // This implements the algorithm of Trager for factorization of |
---|
58 | // (multivariate) polynomials over algebraic extensions and so called |
---|
59 | // function field extensions. |
---|
60 | //////////////////////////////////////////////////////////////////////// |
---|
61 | |
---|
62 | // // missing class: IntGenerator: |
---|
63 | bool IntGenerator::hasItems() const |
---|
64 | { |
---|
65 | return 1; |
---|
66 | } |
---|
67 | |
---|
68 | CanonicalForm IntGenerator::item() const |
---|
69 | //int IntGenerator::item() const |
---|
70 | { |
---|
71 | //return current; //CanonicalForm( current ); |
---|
72 | return mapinto(CanonicalForm( current )); |
---|
73 | } |
---|
74 | |
---|
75 | void IntGenerator::next() |
---|
76 | { |
---|
77 | current++; |
---|
78 | } |
---|
79 | |
---|
80 | static CanonicalForm |
---|
81 | resultante( const CanonicalForm & f, const CanonicalForm& g, const Variable & v ) |
---|
82 | { |
---|
83 | bool on_rational = isOn(SW_RATIONAL); |
---|
84 | On(SW_RATIONAL); |
---|
85 | CanonicalForm cd = bCommonDen( f ); |
---|
86 | CanonicalForm fz = f * cd; |
---|
87 | cd = bCommonDen( g ); |
---|
88 | CanonicalForm gz = g * cd; |
---|
89 | if (!on_rational) Off(SW_RATIONAL); |
---|
90 | CanonicalForm result; |
---|
91 | if (getCharacteristic() == 0) |
---|
92 | result= resultantZ (fz, gz,v); |
---|
93 | else |
---|
94 | result= resultant (fz,gz,v); |
---|
95 | |
---|
96 | return result; |
---|
97 | } |
---|
98 | |
---|
99 | // sqr-free routine for algebraic extensions |
---|
100 | // we need it! Ex.: f=c^2+2*a*c-1; as=[a^2+1]; f=(c+a)^2 |
---|
101 | //static CFFList alg_sqrfree( const CanonicalForm & f ) |
---|
102 | //{ |
---|
103 | // CFFList L; |
---|
104 | // |
---|
105 | // L.append(CFFactor(f,1)); |
---|
106 | // return L; |
---|
107 | //} |
---|
108 | |
---|
109 | // Calculates a square free norm |
---|
110 | // Input: f(x, alpha) a square free polynomial over K(alpha), |
---|
111 | // alpha is defined by the minimal polynomial Palpha |
---|
112 | // K has more than S elements (S is defined in thesis; look getextension) |
---|
113 | static void |
---|
114 | sqrf_norm_sub( const CanonicalForm & f, const CanonicalForm & PPalpha, |
---|
115 | CFGenerator & myrandom, CanonicalForm & s, CanonicalForm & g, |
---|
116 | CanonicalForm & R) |
---|
117 | { |
---|
118 | Variable y=PPalpha.mvar(),vf=f.mvar(); |
---|
119 | CanonicalForm temp, Palpha=PPalpha, t; |
---|
120 | int sqfreetest=0; |
---|
121 | CFFList testlist; |
---|
122 | CFFListIterator i; |
---|
123 | |
---|
124 | DEBOUTLN(CERR, "sqrf_norm_sub: f= ", f); |
---|
125 | DEBOUTLN(CERR, "sqrf_norm_sub: Palpha= ", Palpha); |
---|
126 | myrandom.reset(); s=myrandom.item(); g=f; |
---|
127 | R= CanonicalForm(0); |
---|
128 | DEBOUTLN(CERR, "sqrf_norm_sub: myrandom s= ", s); |
---|
129 | |
---|
130 | // Norm, resultante taken with respect to y |
---|
131 | while ( !sqfreetest ) |
---|
132 | { |
---|
133 | DEBOUTLN(CERR, "sqrf_norm_sub: Palpha= ", Palpha); |
---|
134 | R = resultante(Palpha, g, y); R= R* bCommonDen(R); |
---|
135 | DEBOUTLN(CERR, "sqrf_norm_sub: R= ", R); |
---|
136 | // sqfree check ; R is a polynomial in K[x] |
---|
137 | if ( getCharacteristic() == 0 ) |
---|
138 | { |
---|
139 | temp= gcd(R, R.deriv(vf)); |
---|
140 | DEBOUTLN(CERR, "sqrf_norm_sub: temp= ", temp); |
---|
141 | if (degree(temp,vf) != 0 || temp == temp.genZero() ) |
---|
142 | sqfreetest= 0; |
---|
143 | else |
---|
144 | sqfreetest= 1; |
---|
145 | DEBOUTLN(CERR, "sqrf_norm_sub: sqfreetest= ", sqfreetest); |
---|
146 | } |
---|
147 | else |
---|
148 | { |
---|
149 | DEBOUTMSG(CERR, "Starting SqrFreeTest(R)!"); |
---|
150 | // Look at SqrFreeTest! |
---|
151 | // (z+a^5+w)^4 with z<w<a should not give sqfreetest=1 ! |
---|
152 | // for now we use this workaround with Factorize... |
---|
153 | // ...but it should go away soon!!!! |
---|
154 | Variable X; |
---|
155 | if (getAlgVar(R,X)) |
---|
156 | testlist=factorize( R, X ); |
---|
157 | else |
---|
158 | testlist= factorize(R); |
---|
159 | DEBOUTLN(CERR, "testlist= ", testlist); |
---|
160 | if (testlist.getFirst().factor().inCoeffDomain()) |
---|
161 | testlist.removeFirst(); |
---|
162 | sqfreetest=1; |
---|
163 | for ( i=testlist; i.hasItem(); i++) |
---|
164 | { |
---|
165 | if ( i.getItem().exp() > 1 && degree(i.getItem().factor(), R.mvar()) > 0) |
---|
166 | { |
---|
167 | sqfreetest=0; |
---|
168 | break; |
---|
169 | } |
---|
170 | } |
---|
171 | DEBOUTLN(CERR, "SqrFreeTest(R)= ", sqfreetest); |
---|
172 | } |
---|
173 | if ( ! sqfreetest ) |
---|
174 | { |
---|
175 | myrandom.next(); |
---|
176 | DEBOUTLN(CERR, "sqrf_norm_sub generated new myrandom item: ", myrandom.item()); |
---|
177 | if ( getCharacteristic() == 0 ) |
---|
178 | t= CanonicalForm(mapinto(myrandom.item())); |
---|
179 | else |
---|
180 | t= CanonicalForm(myrandom.item()); |
---|
181 | s= t; |
---|
182 | DEBOUTLN(CERR, "sqrf_norm_sub: testing s= ", s); |
---|
183 | g= f(f.mvar()-t*Palpha.mvar(), f.mvar()); |
---|
184 | DEBOUTLN(CERR, " gives g= ", g); |
---|
185 | } |
---|
186 | } |
---|
187 | } |
---|
188 | static void |
---|
189 | sqrf_agnorm_sub( const CanonicalForm & f, const CanonicalForm & PPalpha, |
---|
190 | AlgExtGenerator & myrandom, CanonicalForm & s, CanonicalForm & g, |
---|
191 | CanonicalForm & R) |
---|
192 | { |
---|
193 | Variable y=PPalpha.mvar(),vf=f.mvar(); |
---|
194 | CanonicalForm temp, Palpha=PPalpha, t; |
---|
195 | int sqfreetest=0; |
---|
196 | CFFList testlist; |
---|
197 | CFFListIterator i; |
---|
198 | |
---|
199 | DEBOUTLN(CERR, "sqrf_norm_sub: f= ", f); |
---|
200 | DEBOUTLN(CERR, "sqrf_norm_sub: Palpha= ", Palpha); |
---|
201 | myrandom.reset(); s=myrandom.item(); g=f; |
---|
202 | R= CanonicalForm(0); |
---|
203 | DEBOUTLN(CERR, "sqrf_norm_sub: myrandom s= ", s); |
---|
204 | |
---|
205 | // Norm, resultante taken with respect to y |
---|
206 | while ( !sqfreetest ) |
---|
207 | { |
---|
208 | DEBOUTLN(CERR, "sqrf_norm_sub: Palpha= ", Palpha); |
---|
209 | R = resultante(Palpha, g, y); R= R* bCommonDen(R); |
---|
210 | DEBOUTLN(CERR, "sqrf_norm_sub: R= ", R); |
---|
211 | // sqfree check ; R is a polynomial in K[x] |
---|
212 | if ( getCharacteristic() == 0 ) |
---|
213 | { |
---|
214 | temp= gcd(R, R.deriv(vf)); |
---|
215 | DEBOUTLN(CERR, "sqrf_norm_sub: temp= ", temp); |
---|
216 | if (degree(temp,vf) != 0 || temp == temp.genZero() ) |
---|
217 | sqfreetest= 0; |
---|
218 | else |
---|
219 | sqfreetest= 1; |
---|
220 | DEBOUTLN(CERR, "sqrf_norm_sub: sqfreetest= ", sqfreetest); |
---|
221 | } |
---|
222 | else |
---|
223 | { |
---|
224 | DEBOUTMSG(CERR, "Starting SqrFreeTest(R)!"); |
---|
225 | // Look at SqrFreeTest! |
---|
226 | // (z+a^5+w)^4 with z<w<a should not give sqfreetest=1 ! |
---|
227 | // for now we use this workaround with Factorize... |
---|
228 | // ...but it should go away soon!!!! |
---|
229 | Variable X; |
---|
230 | if (getAlgVar(R,X)) |
---|
231 | testlist= factorize( R, X ); |
---|
232 | else |
---|
233 | testlist= factorize(R); |
---|
234 | DEBOUTLN(CERR, "testlist= ", testlist); |
---|
235 | if (testlist.getFirst().factor().inCoeffDomain()) |
---|
236 | testlist.removeFirst(); |
---|
237 | sqfreetest=1; |
---|
238 | for ( i=testlist; i.hasItem(); i++) |
---|
239 | { |
---|
240 | if ( i.getItem().exp() > 1 && degree(i.getItem().factor(), R.mvar()) > 0) |
---|
241 | { |
---|
242 | sqfreetest=0; |
---|
243 | break; |
---|
244 | } |
---|
245 | } |
---|
246 | DEBOUTLN(CERR, "SqrFreeTest(R)= ", sqfreetest); |
---|
247 | } |
---|
248 | if ( ! sqfreetest ) |
---|
249 | { |
---|
250 | myrandom.next(); |
---|
251 | DEBOUTLN(CERR, "sqrf_norm_sub generated new myrandom item: ", myrandom.item()); |
---|
252 | if ( getCharacteristic() == 0 ) |
---|
253 | t= CanonicalForm(mapinto(myrandom.item())); |
---|
254 | else |
---|
255 | t= CanonicalForm(myrandom.item()); |
---|
256 | s= t; |
---|
257 | DEBOUTLN(CERR, "sqrf_norm_sub: testing s= ", s); |
---|
258 | g= f(f.mvar()-t*Palpha.mvar(), f.mvar()); |
---|
259 | DEBOUTLN(CERR, " gives g= ", g); |
---|
260 | } |
---|
261 | } |
---|
262 | } |
---|
263 | |
---|
264 | static void |
---|
265 | sqrf_norm( const CanonicalForm & f, const CanonicalForm & PPalpha, |
---|
266 | const Variable & Extension, CanonicalForm & s, CanonicalForm & g, |
---|
267 | CanonicalForm & R) |
---|
268 | { |
---|
269 | DEBOUTLN(CERR, "sqrf_norm: f= ", f); |
---|
270 | DEBOUTLN(CERR, "sqrf_norm: Palpha= ", PPalpha); |
---|
271 | if ( getCharacteristic() == 0 ) |
---|
272 | { |
---|
273 | IntGenerator myrandom; |
---|
274 | DEBOUTMSG(CERR, "sqrf_norm: no extension, char=0"); |
---|
275 | sqrf_norm_sub(f,PPalpha, myrandom, s,g,R); |
---|
276 | DEBOUTLN(CERR, "sqrf_norm: f= ", f); |
---|
277 | DEBOUTLN(CERR, "sqrf_norm: Palpha= ", PPalpha); |
---|
278 | DEBOUTLN(CERR, "sqrf_norm: s= ", s); |
---|
279 | DEBOUTLN(CERR, "sqrf_norm: g= ", g); |
---|
280 | DEBOUTLN(CERR, "sqrf_norm: R= ", R); |
---|
281 | } |
---|
282 | else if ( degree(Extension) > 0 ) // working over Extensions |
---|
283 | { |
---|
284 | DEBOUTLN(CERR, "sqrf_norm: degree of extension is ", degree(Extension)); |
---|
285 | AlgExtGenerator myrandom(Extension); |
---|
286 | sqrf_agnorm_sub(f,PPalpha, myrandom, s,g,R); |
---|
287 | } |
---|
288 | else |
---|
289 | { |
---|
290 | FFGenerator myrandom; |
---|
291 | DEBOUTMSG(CERR, "sqrf_norm: degree of extension is 0"); |
---|
292 | sqrf_norm_sub(f,PPalpha, myrandom, s,g,R); |
---|
293 | } |
---|
294 | } |
---|
295 | |
---|
296 | static Varlist |
---|
297 | Var_is_in_AS(const Varlist & uord, const CFList & Astar){ |
---|
298 | Varlist output; |
---|
299 | CanonicalForm elem; |
---|
300 | Variable x; |
---|
301 | |
---|
302 | for ( VarlistIterator i=uord; i.hasItem(); i++) |
---|
303 | { |
---|
304 | x=i.getItem(); |
---|
305 | for ( CFListIterator j=Astar; j.hasItem(); j++ ) |
---|
306 | { |
---|
307 | elem= j.getItem(); |
---|
308 | if ( degree(elem,x) > 0 ) // x actually occures in Astar |
---|
309 | { |
---|
310 | output.append(x); |
---|
311 | break; |
---|
312 | } |
---|
313 | } |
---|
314 | } |
---|
315 | return output; |
---|
316 | } |
---|
317 | |
---|
318 | // Look if Minimalpolynomials in Astar define seperable Extensions |
---|
319 | // Must be a power of p: i.e. y^{p^e}-x |
---|
320 | static int |
---|
321 | inseperable(const CFList & Astar) |
---|
322 | { |
---|
323 | CanonicalForm elem; |
---|
324 | int Counter= 1; |
---|
325 | |
---|
326 | if ( Astar.length() == 0 ) return 0; |
---|
327 | for ( CFListIterator i=Astar; i.hasItem(); i++) |
---|
328 | { |
---|
329 | elem= i.getItem(); |
---|
330 | if ( elem.deriv() == elem.genZero() ) return Counter; |
---|
331 | else Counter += 1; |
---|
332 | } |
---|
333 | return 0; |
---|
334 | } |
---|
335 | |
---|
336 | // calculate gcd of f and g in char=0 |
---|
337 | static CanonicalForm |
---|
338 | gcd0( CanonicalForm f, CanonicalForm g ) |
---|
339 | { |
---|
340 | int charac= getCharacteristic(); |
---|
341 | int save=isOn(SW_RATIONAL); |
---|
342 | setCharacteristic(0); Off(SW_RATIONAL); |
---|
343 | CanonicalForm ff= mapinto(f), gg= mapinto(g); |
---|
344 | CanonicalForm result= gcd(ff,gg); |
---|
345 | setCharacteristic(charac); |
---|
346 | if (save) On(SW_RATIONAL); |
---|
347 | return mapinto(result); |
---|
348 | } |
---|
349 | |
---|
350 | // calculate big enough extension for finite fields |
---|
351 | // Idea: first calculate k, such that q^k > S (->thesis, -> getextension) |
---|
352 | // Second, search k with gcd(k,m_i)=1, where m_i is the degree of the i'th |
---|
353 | // minimal polynomial. Then the minpoly f_i remains irrd. over q^k and we |
---|
354 | // have enough elements to plug in. |
---|
355 | static int |
---|
356 | getextension( IntList & degreelist, int n) |
---|
357 | { |
---|
358 | int charac= getCharacteristic(); |
---|
359 | setCharacteristic(0); // need it for k ! |
---|
360 | int k=1, m=1, length=degreelist.length(); |
---|
361 | IntListIterator i; |
---|
362 | |
---|
363 | for (i=degreelist; i.hasItem(); i++) m= m*i.getItem(); |
---|
364 | int q=charac; |
---|
365 | while (q <= ((n*m)*(n*m)/2)) { k= k+1; q= q*charac;} |
---|
366 | int l=0; |
---|
367 | do { |
---|
368 | for (i=degreelist; i.hasItem(); i++){ |
---|
369 | l= l+1; |
---|
370 | if ( gcd0(k,i.getItem()) == 1){ |
---|
371 | DEBOUTLN(CERR, "getextension: gcd == 1, l=",l); |
---|
372 | if ( l==length ){ setCharacteristic(charac); return k; } |
---|
373 | } |
---|
374 | else { DEBOUTMSG(CERR, "getextension: Next iteration"); break; } |
---|
375 | } |
---|
376 | k= k+1; l=0; |
---|
377 | } |
---|
378 | while ( 1 ); |
---|
379 | } |
---|
380 | |
---|
381 | |
---|
382 | /// pseudo division of f and g wrt. x s.t. multiplier*f=q*g+r |
---|
383 | /// but only if the leading coefficient of g is of level lower than coeffLevel |
---|
384 | void |
---|
385 | psqr (const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & q, |
---|
386 | CanonicalForm & r, CanonicalForm& multiplier, const Variable& x, |
---|
387 | int coeffLevel) |
---|
388 | { |
---|
389 | ASSERT( x.level() > 0, "type error: polynomial variable expected" ); |
---|
390 | ASSERT( ! g.isZero(), "math error: division by zero" ); |
---|
391 | |
---|
392 | // swap variables such that x's level is larger or equal |
---|
393 | // than both f's and g's levels. |
---|
394 | Variable X; |
---|
395 | if (f.level() > g.level()) |
---|
396 | X= f.mvar(); |
---|
397 | else |
---|
398 | X= g.mvar(); |
---|
399 | if (X.level() < x.level()) |
---|
400 | X= x; |
---|
401 | CanonicalForm F= swapvar (f, x, X); |
---|
402 | CanonicalForm G= swapvar (g, x, X); |
---|
403 | |
---|
404 | // now, we have to calculate the pseudo remainder of F and G |
---|
405 | // w.r.t. X |
---|
406 | int fDegree= degree (F, X); |
---|
407 | int gDegree= degree (G, X); |
---|
408 | if (fDegree < 0 || fDegree < gDegree) |
---|
409 | { |
---|
410 | q= 0; |
---|
411 | r= f; |
---|
412 | } |
---|
413 | else |
---|
414 | { |
---|
415 | CanonicalForm LCG= LC (G, X); |
---|
416 | if (LCG.level() < coeffLevel) |
---|
417 | { |
---|
418 | multiplier= power (LCG, fDegree - gDegree + 1); |
---|
419 | divrem (multiplier*F, G, q, r); |
---|
420 | q= swapvar (q, x, X); |
---|
421 | r= swapvar (r, x, X); |
---|
422 | } |
---|
423 | else |
---|
424 | { |
---|
425 | q= 0; |
---|
426 | r= f; |
---|
427 | } |
---|
428 | } |
---|
429 | } |
---|
430 | |
---|
431 | /// pseudo division of f and g wrt. x s.t. multiplier*f=q*g+r |
---|
432 | void |
---|
433 | psqr (const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & q, |
---|
434 | CanonicalForm & r, CanonicalForm& multiplier, const Variable& x) |
---|
435 | { |
---|
436 | ASSERT( x.level() > 0, "type error: polynomial variable expected" ); |
---|
437 | ASSERT( ! g.isZero(), "math error: division by zero" ); |
---|
438 | |
---|
439 | // swap variables such that x's level is larger or equal |
---|
440 | // than both f's and g's levels. |
---|
441 | Variable X; |
---|
442 | if (f.level() > g.level()) |
---|
443 | X= f.mvar(); |
---|
444 | else |
---|
445 | X= g.mvar(); |
---|
446 | if (X.level() < x.level()) |
---|
447 | X= x; |
---|
448 | CanonicalForm F= swapvar (f, x, X); |
---|
449 | CanonicalForm G= swapvar (g, x, X); |
---|
450 | |
---|
451 | // now, we have to calculate the pseudo remainder of F and G |
---|
452 | // w.r.t. X |
---|
453 | int fDegree= degree (F, X); |
---|
454 | int gDegree= degree (G, X); |
---|
455 | if (fDegree < 0 || fDegree < gDegree) |
---|
456 | { |
---|
457 | q= 0; |
---|
458 | r= f; |
---|
459 | } |
---|
460 | else |
---|
461 | { |
---|
462 | CanonicalForm LCG= LC (G, X); |
---|
463 | multiplier= power (LCG, fDegree - gDegree + 1); |
---|
464 | divrem (multiplier*F, G, q, r); |
---|
465 | q= swapvar (q, x, X); |
---|
466 | r= swapvar (r, x, X); |
---|
467 | } |
---|
468 | } |
---|
469 | |
---|
470 | CanonicalForm |
---|
471 | QuasiInverse (const CanonicalForm& f, const CanonicalForm& g, |
---|
472 | const Variable& x) |
---|
473 | { |
---|
474 | CanonicalForm pi, pi1, q, t0, t1, Hi, bi, pi2; |
---|
475 | bool isRat= isOn (SW_RATIONAL); |
---|
476 | CanonicalForm m,tmp; |
---|
477 | if (isRat) |
---|
478 | Off (SW_RATIONAL); |
---|
479 | pi= f/content (f,x); |
---|
480 | pi1= g/content (g,x); |
---|
481 | |
---|
482 | t0= 0; |
---|
483 | t1= 1; |
---|
484 | bi= 1; |
---|
485 | |
---|
486 | int delta= degree (f, x) - degree (g, x); |
---|
487 | Hi= power (LC (pi1, x), delta); |
---|
488 | if ( (delta+1) % 2 ) |
---|
489 | bi = 1; |
---|
490 | else |
---|
491 | bi = -1; |
---|
492 | |
---|
493 | while (degree (pi1,x) > 0) |
---|
494 | { |
---|
495 | psqr( pi, pi1, q, pi2, m, x); |
---|
496 | pi2 /= bi; |
---|
497 | |
---|
498 | tmp= t1; |
---|
499 | t1= t0*m - t1*q; |
---|
500 | t0= tmp; |
---|
501 | t1 /= bi; |
---|
502 | pi = pi1; pi1 = pi2; |
---|
503 | if ( degree ( pi1, x ) > 0 ) |
---|
504 | { |
---|
505 | delta = degree( pi, x ) - degree( pi1, x ); |
---|
506 | if ( (delta+1) % 2 ) |
---|
507 | bi = LC( pi, x ) * power( Hi, delta ); |
---|
508 | else |
---|
509 | bi = -LC( pi, x ) * power( Hi, delta ); |
---|
510 | Hi = power( LC( pi1, x ), delta ) / power( Hi, delta-1 ); |
---|
511 | } |
---|
512 | } |
---|
513 | t1 /= gcd (pi1, t1); |
---|
514 | if (!isRat) |
---|
515 | Off (SW_RATIONAL); |
---|
516 | return t1; |
---|
517 | } |
---|
518 | |
---|
519 | CanonicalForm |
---|
520 | evaluate (const CanonicalForm& f, const CanonicalForm& g, const CanonicalForm& h, const CanonicalForm& powH) |
---|
521 | { |
---|
522 | if (f.inCoeffDomain()) |
---|
523 | return f; |
---|
524 | CFIterator i= f; |
---|
525 | int lastExp = i.exp(); |
---|
526 | CanonicalForm result = i.coeff()*powH; |
---|
527 | i++; |
---|
528 | while (i.hasTerms()) |
---|
529 | { |
---|
530 | int i_exp= i.exp(); |
---|
531 | if ((lastExp - i_exp) == 1) |
---|
532 | { |
---|
533 | result *= g; |
---|
534 | result /= h; |
---|
535 | } |
---|
536 | else |
---|
537 | { |
---|
538 | result *= power (g, lastExp - i_exp); |
---|
539 | result /= power (h, lastExp - i_exp); |
---|
540 | } |
---|
541 | result += i.coeff()*powH; |
---|
542 | lastExp = i_exp; |
---|
543 | i++; |
---|
544 | } |
---|
545 | if (lastExp != 0) |
---|
546 | { |
---|
547 | result *= power (g, lastExp); |
---|
548 | result /= power (h, lastExp); |
---|
549 | } |
---|
550 | return result; |
---|
551 | } |
---|
552 | |
---|
553 | |
---|
554 | /// evaluate f at g/h at v such that powH*f is integral i.e. powH is assumed to be h^degree(f,v) |
---|
555 | CanonicalForm |
---|
556 | evaluate (const CanonicalForm& f, const CanonicalForm& g, |
---|
557 | const CanonicalForm& h, const CanonicalForm& powH, |
---|
558 | const Variable& v) |
---|
559 | { |
---|
560 | if (f.inCoeffDomain()) |
---|
561 | { |
---|
562 | return f*powH; |
---|
563 | } |
---|
564 | |
---|
565 | Variable x = f.mvar(); |
---|
566 | if ( v > x ) |
---|
567 | return f*powH; |
---|
568 | else if ( v == x ) |
---|
569 | return evaluate (f, g, h, powH); |
---|
570 | |
---|
571 | // v is less than main variable of f |
---|
572 | CanonicalForm result= 0; |
---|
573 | for (CFIterator i= f; i.hasTerms(); i++) |
---|
574 | result += evaluate (i.coeff(), g, h, powH, v)*power (x, i.exp()); |
---|
575 | return result; |
---|
576 | } |
---|
577 | |
---|
578 | // calculate a "primitive element" |
---|
579 | // K must have more than S elements (->thesis, -> getextension) |
---|
580 | static CFList |
---|
581 | simpleextension(CFList& backSubst, const CFList & Astar, |
---|
582 | const Variable & Extension, bool& isFunctionField, |
---|
583 | CanonicalForm & R) |
---|
584 | { |
---|
585 | CFList Returnlist, Bstar=Astar; |
---|
586 | CanonicalForm s, g, ra, rb, oldR, h, denra, denrb=1; |
---|
587 | Variable alpha; |
---|
588 | CFList tmp; |
---|
589 | |
---|
590 | bool isRat= isOn (SW_RATIONAL); |
---|
591 | |
---|
592 | DEBOUTLN(CERR, "simpleextension: Astar= ", Astar); |
---|
593 | DEBOUTLN(CERR, "simpleextension: R= ", R); |
---|
594 | DEBOUTLN(CERR, "simpleextension: Extension= ", Extension); |
---|
595 | CFListIterator j; |
---|
596 | if (Astar.length() == 1) |
---|
597 | { |
---|
598 | R= Astar.getFirst(); |
---|
599 | rb= R.mvar(); |
---|
600 | } |
---|
601 | else |
---|
602 | { |
---|
603 | R=Bstar.getFirst(); |
---|
604 | Bstar.removeFirst(); |
---|
605 | for (CFListIterator i=Bstar; i.hasItem(); i++) |
---|
606 | { |
---|
607 | j= i; |
---|
608 | j++; |
---|
609 | Off (SW_RATIONAL); |
---|
610 | R /= icontent (R); |
---|
611 | On (SW_RATIONAL); |
---|
612 | oldR= R; |
---|
613 | sqrf_norm (i.getItem(), R, Extension, s, g, R); |
---|
614 | |
---|
615 | backSubst.insert (s); |
---|
616 | |
---|
617 | Off (SW_RATIONAL); |
---|
618 | R /= icontent (R); |
---|
619 | |
---|
620 | On (SW_RATIONAL); |
---|
621 | |
---|
622 | if (!isFunctionField) |
---|
623 | { |
---|
624 | alpha= rootOf (R); |
---|
625 | h= replacevar (g, g.mvar(), alpha); |
---|
626 | On (SW_RATIONAL); //needed for GCD |
---|
627 | h= gcd (h, oldR); |
---|
628 | h /= Lc (h); |
---|
629 | ra= -h[0]; |
---|
630 | ra= replacevar(ra, alpha, g.mvar()); |
---|
631 | rb= R.mvar()-s*ra; |
---|
632 | for (; j.hasItem(); j++) |
---|
633 | { |
---|
634 | j.getItem()= j.getItem() (ra, oldR.mvar()); |
---|
635 | j.getItem()= j.getItem() (rb, i.getItem().mvar()); |
---|
636 | } |
---|
637 | } |
---|
638 | else |
---|
639 | { |
---|
640 | On (SW_RATIONAL); |
---|
641 | h= swapvar (g, g.mvar(), oldR.mvar()); |
---|
642 | tmp= CFList (swapvar (R, g.mvar(), oldR.mvar())); |
---|
643 | h= alg_gcd (h, swapvar (oldR, g.mvar(), oldR.mvar()), tmp); |
---|
644 | CanonicalForm hh= replacevar (h, oldR.mvar(), alpha); |
---|
645 | |
---|
646 | CanonicalForm numinv, deninv; |
---|
647 | numinv= QuasiInverse (tmp.getFirst(), LC (h), tmp.getFirst().mvar()); |
---|
648 | |
---|
649 | Off (SW_RATIONAL); |
---|
650 | h *= numinv; |
---|
651 | h= reduce (h, tmp.getFirst()); |
---|
652 | deninv= LC(h); |
---|
653 | |
---|
654 | ra= -h[0]; |
---|
655 | denra= gcd (ra, deninv); |
---|
656 | ra /= denra; |
---|
657 | denra= deninv/denra; |
---|
658 | denra= replacevar (denra, ra.mvar(), g.mvar()); |
---|
659 | ra= replacevar(ra, ra.mvar(), g.mvar()); |
---|
660 | rb= R.mvar()*denra-s*ra; |
---|
661 | denrb= denra; |
---|
662 | for (; j.hasItem(); j++) |
---|
663 | { |
---|
664 | CanonicalForm powdenra= power (denra, degree (j.getItem(), oldR.mvar())); |
---|
665 | j.getItem()= evaluate (j.getItem(),ra, denra, powdenra, oldR.mvar()); |
---|
666 | powdenra= power (denra, degree (j.getItem(), i.getItem().mvar())); |
---|
667 | j.getItem()= evaluate (j.getItem(), rb, denrb, powdenra, i.getItem().mvar()); |
---|
668 | } |
---|
669 | } |
---|
670 | |
---|
671 | DEBOUTLN(CERR, "simpleextension: g= ", g); |
---|
672 | DEBOUTLN(CERR, "simpleextension: s= ", s); |
---|
673 | DEBOUTLN(CERR, "simpleextension: R= ", R); |
---|
674 | Returnlist.append (ra); |
---|
675 | if (isFunctionField) |
---|
676 | Returnlist.append (denra); |
---|
677 | } |
---|
678 | } |
---|
679 | Returnlist.append (rb); |
---|
680 | if (isFunctionField) |
---|
681 | Returnlist.append (denrb); |
---|
682 | |
---|
683 | if (isRat) |
---|
684 | On (SW_RATIONAL); |
---|
685 | else |
---|
686 | Off (SW_RATIONAL); |
---|
687 | |
---|
688 | return Returnlist; |
---|
689 | } |
---|
690 | |
---|
691 | CanonicalForm alg_lc(const CanonicalForm &f) |
---|
692 | { |
---|
693 | if (f.level()>0) |
---|
694 | { |
---|
695 | return alg_lc(f.LC()); |
---|
696 | } |
---|
697 | //assert(f.inCoeffDomain()); |
---|
698 | return f; |
---|
699 | } |
---|
700 | |
---|
701 | CanonicalForm alg_LC (const CanonicalForm& f, int lev) |
---|
702 | { |
---|
703 | CanonicalForm result= f; |
---|
704 | while (result.level() > lev) |
---|
705 | result= LC (result); |
---|
706 | return result; |
---|
707 | } |
---|
708 | |
---|
709 | CanonicalForm |
---|
710 | subst (const CanonicalForm& f, const CFList& a, const CFList& b, |
---|
711 | const CanonicalForm& Rstar, bool isFunctionField) |
---|
712 | { |
---|
713 | if (isFunctionField) |
---|
714 | ASSERT (2*a.length() == b.length(), "wrong length of lists"); |
---|
715 | else |
---|
716 | ASSERT (a.length() == b.length(), "lists of equal length expected"); |
---|
717 | CFListIterator j= b; |
---|
718 | CanonicalForm result= f, tmp, powj; |
---|
719 | for (CFListIterator i= a; i.hasItem() && j.hasItem(); i++, j++) |
---|
720 | { |
---|
721 | if (!isFunctionField) |
---|
722 | result= result (j.getItem(), i.getItem().mvar()); |
---|
723 | else |
---|
724 | { |
---|
725 | tmp= j.getItem(); |
---|
726 | j++; |
---|
727 | powj= power (j.getItem(), degree (result, i.getItem().mvar())); |
---|
728 | result= evaluate (result, tmp, j.getItem(), powj, i.getItem().mvar()); |
---|
729 | |
---|
730 | if (fdivides (powj, result, tmp)) |
---|
731 | result= tmp; |
---|
732 | |
---|
733 | result /= vcontent (result, Variable (i.getItem().level() + 1)); |
---|
734 | } |
---|
735 | } |
---|
736 | result= reduce (result, Rstar); |
---|
737 | result /= vcontent (result, Variable (Rstar.level() + 1)); |
---|
738 | return result; |
---|
739 | } |
---|
740 | |
---|
741 | CanonicalForm |
---|
742 | backSubst (const CanonicalForm& F, const CFList& a, const CFList& b) |
---|
743 | { |
---|
744 | ASSERT (a.length() == b.length() - 1, "wrong length of lists in backSubst"); |
---|
745 | CanonicalForm result= F; |
---|
746 | Variable tmp; |
---|
747 | CFList tmp2= b; |
---|
748 | tmp= tmp2.getLast().mvar(); |
---|
749 | tmp2.removeLast(); |
---|
750 | for (CFListIterator iter= a; iter.hasItem(); iter++) |
---|
751 | { |
---|
752 | result= result (tmp+iter.getItem()*tmp2.getLast().mvar(), tmp); |
---|
753 | tmp= tmp2.getLast().mvar(); |
---|
754 | tmp2.removeLast(); |
---|
755 | } |
---|
756 | return result; |
---|
757 | } |
---|
758 | |
---|
759 | // the heart of the algorithm: the one from Trager |
---|
760 | #ifndef DEBUGOUTPUT |
---|
761 | static CFFList |
---|
762 | alg_factor( const CanonicalForm & F, const CFList & Astar, const Variable & vminpoly, const Varlist /*& oldord*/, const CFList & as, bool isFunctionField) |
---|
763 | #else |
---|
764 | static CFFList |
---|
765 | alg_factor( const CanonicalForm & F, const CFList & Astar, const Variable & vminpoly, const Varlist & oldord, const CFList & as, bool isFunctionField) |
---|
766 | #endif |
---|
767 | { |
---|
768 | CFFList L, Factorlist; |
---|
769 | CanonicalForm R, Rstar, s, g, h, f= F; |
---|
770 | CFList substlist, backSubsts; |
---|
771 | |
---|
772 | DEBINCLEVEL(CERR,"alg_factor"); |
---|
773 | DEBOUTLN(CERR, "alg_factor: f= ", f); |
---|
774 | |
---|
775 | substlist= simpleextension (backSubsts, Astar, vminpoly, isFunctionField, Rstar); |
---|
776 | DEBOUTLN(CERR, "alg_factor: substlist= ", substlist); |
---|
777 | DEBOUTLN(CERR, "alg_factor: minpoly Rstar= ", Rstar); |
---|
778 | DEBOUTLN(CERR, "alg_factor: vminpoly= ", vminpoly); |
---|
779 | |
---|
780 | f= subst (f, Astar, substlist, Rstar, isFunctionField); |
---|
781 | |
---|
782 | Variable alpha; |
---|
783 | if (!isFunctionField) |
---|
784 | { |
---|
785 | alpha= rootOf (Rstar); |
---|
786 | g= replacevar (f, Rstar.mvar(), alpha); |
---|
787 | |
---|
788 | Factorlist= factorize (g, alpha); |
---|
789 | |
---|
790 | for (CFFListIterator i= Factorlist; i.hasItem(); i++) |
---|
791 | { |
---|
792 | h= i.getItem().factor(); |
---|
793 | if (!h.inCoeffDomain()) |
---|
794 | { |
---|
795 | h= replacevar (h, alpha, Rstar.mvar()); |
---|
796 | h *= bCommonDen(h); |
---|
797 | h= backSubst (h, backSubsts, Astar); |
---|
798 | h= Prem (h, as); |
---|
799 | L.append (CFFactor (h, i.getItem().exp())); |
---|
800 | } |
---|
801 | } |
---|
802 | return L; |
---|
803 | } |
---|
804 | // after here we are over an extension of a function field |
---|
805 | |
---|
806 | |
---|
807 | // make quasi monic |
---|
808 | CFList Rstarlist= CFList (Rstar); |
---|
809 | int algExtLevel= Astar.getLast().level(); //highest level of algebraic variables |
---|
810 | CanonicalForm numinv; |
---|
811 | On (SW_RATIONAL); |
---|
812 | numinv= QuasiInverse (Rstar, alg_LC(f, algExtLevel), Rstar.mvar()); |
---|
813 | |
---|
814 | f *= numinv; |
---|
815 | f= Prem (f, Rstarlist); |
---|
816 | f /= vcontent (f, Rstar.mvar()); |
---|
817 | // end quasi monic |
---|
818 | |
---|
819 | sqrf_norm(f, Rstar, vminpoly, s, g, R ); |
---|
820 | //out_cf("sqrf_norm R:",R,"\n"); |
---|
821 | //out_cf("sqrf_norm s:",s,"\n"); |
---|
822 | //out_cf("sqrf_norm g:",g,"\n"); |
---|
823 | DEBOUTLN(CERR, "alg_factor: g= ", g); |
---|
824 | DEBOUTLN(CERR, "alg_factor: s= ", s); |
---|
825 | DEBOUTLN(CERR, "alg_factor: R= ", R); |
---|
826 | Off(SW_RATIONAL); |
---|
827 | Variable X; |
---|
828 | if (getAlgVar(R,X)) |
---|
829 | { |
---|
830 | // factorize R over alg.extension with X |
---|
831 | //CERR << "alg: "<< X << " mipo=" << getMipo(X,Variable('X')) <<"\n"; |
---|
832 | DEBOUTLN(CERR, "alg_factor: factorize( ", R); |
---|
833 | Factorlist = factorize( R, X ); |
---|
834 | } |
---|
835 | else |
---|
836 | { |
---|
837 | // factor R over k |
---|
838 | DEBOUTLN(CERR, "alg_factor: Factorize( ", R); |
---|
839 | Factorlist = factorize(R); |
---|
840 | } |
---|
841 | |
---|
842 | On(SW_RATIONAL); |
---|
843 | DEBOUTLN(CERR, "alg_factor: Factorize(R)= ", Factorlist); |
---|
844 | if ( !Factorlist.getFirst().factor().inCoeffDomain() ) |
---|
845 | Factorlist.insert(CFFactor(1,1)); |
---|
846 | if ( Factorlist.length() == 2 && Factorlist.getLast().exp()== 1) |
---|
847 | { // irreduzibel (first entry is a constant) |
---|
848 | L.append(CFFactor(f,1)); |
---|
849 | } |
---|
850 | else |
---|
851 | { |
---|
852 | g= f; |
---|
853 | DEBOUTLN(CERR, "alg_factor: g= ", g); |
---|
854 | for ( CFFListIterator i=Factorlist; i.hasItem(); i++) |
---|
855 | { |
---|
856 | CanonicalForm fnew=i.getItem().factor(); |
---|
857 | if (fnew.level() < Rstar.level()) //factor is a constant from the function field |
---|
858 | continue; |
---|
859 | else |
---|
860 | { |
---|
861 | fnew= fnew (g.mvar()+s*Rstar.mvar(), g.mvar()); |
---|
862 | fnew= reduce (fnew, Rstar); |
---|
863 | } |
---|
864 | |
---|
865 | DEBOUTLN(CERR, "alg_factor: fnew= ", fnew); |
---|
866 | |
---|
867 | h= alg_gcd (g, fnew, Rstarlist); |
---|
868 | numinv= QuasiInverse(Rstar, alg_LC(h, algExtLevel), Rstar.mvar()); |
---|
869 | h *= numinv; |
---|
870 | h= Prem (h, Rstarlist); |
---|
871 | h /= vcontent (h, Rstar.mvar()); |
---|
872 | |
---|
873 | if (h.level() >= Rstar.level()) |
---|
874 | { |
---|
875 | g= divide (g, h, Rstarlist); |
---|
876 | h= backSubst (h, backSubsts, Astar); |
---|
877 | h= Prem (h, as); |
---|
878 | h *= bCommonDen (h); |
---|
879 | h /= vcontent (h, as.getFirst().mvar()); |
---|
880 | L.append (CFFactor (h, 1)); |
---|
881 | } |
---|
882 | } |
---|
883 | // we are not interested in a |
---|
884 | // constant (over K_r, which can be a polynomial!) |
---|
885 | if (degree(g, f.mvar())>0){ L.append(CFFactor(g,1)); } |
---|
886 | } |
---|
887 | CFFList LL; |
---|
888 | if (getCharacteristic()>0) |
---|
889 | { |
---|
890 | CFFListIterator i=L; |
---|
891 | CanonicalForm c_fac=1; |
---|
892 | CanonicalForm c; |
---|
893 | for(;i.hasItem(); i++ ) |
---|
894 | { |
---|
895 | CanonicalForm ff=i.getItem().factor(); |
---|
896 | c=alg_lc(ff); |
---|
897 | int e=i.getItem().exp(); |
---|
898 | ff/=c; |
---|
899 | if (!ff.isOne()) LL.append(CFFactor(ff,e)); |
---|
900 | while (e>0) { c_fac*=c;e--; } |
---|
901 | } |
---|
902 | if (!c_fac.isOne()) LL.insert(CFFactor(c_fac,1)); |
---|
903 | } |
---|
904 | else |
---|
905 | { |
---|
906 | LL=L; |
---|
907 | } |
---|
908 | //CFFListIterator i=LL; |
---|
909 | //for(;i.hasItem(); i++ ) |
---|
910 | // out_cf("end alg_f:",i.getItem().factor(),"\n"); |
---|
911 | //printf("end alg_factor\n"); |
---|
912 | DEBOUTLN(CERR, "alg_factor: L= ", LL); |
---|
913 | DEBDECLEVEL(CERR,"alg_factor"); |
---|
914 | return LL; |
---|
915 | } |
---|
916 | |
---|
917 | static CFFList |
---|
918 | endler( const CanonicalForm & f, const CFList & AS, const Varlist & uord ) |
---|
919 | { |
---|
920 | CanonicalForm F=f, g, q,r; |
---|
921 | CFFList Output; |
---|
922 | CFList One, Two, asnew, as=AS; |
---|
923 | CFListIterator i,ii; |
---|
924 | VarlistIterator j; |
---|
925 | Variable vg; |
---|
926 | |
---|
927 | for (i=as; i.hasItem(); i++) |
---|
928 | { |
---|
929 | g= i.getItem(); |
---|
930 | if (g.deriv() == 0 ) |
---|
931 | { |
---|
932 | DEBOUTLN(CERR, "Inseperable extension detected: ", g); |
---|
933 | for (j=uord; j.hasItem(); j++) |
---|
934 | { |
---|
935 | if ( degree(g,j.getItem()) > 0 ) vg= j.getItem(); |
---|
936 | } |
---|
937 | // Now we have the highest transzendental in vg; |
---|
938 | DEBOUTLN(CERR, "Transzendental is ", vg); |
---|
939 | CanonicalForm gg=-1*g[0]; |
---|
940 | divrem(gg,vg,q,r); r= gg-q*vg; gg= gg-r; |
---|
941 | //DEBOUTLN(CERR, "q= ", q); DEBOUTLN(CERR, "r= ", r); |
---|
942 | DEBOUTLN(CERR, " that is ", gg); |
---|
943 | DEBOUTLN(CERR, " maps to ", g+gg); |
---|
944 | One.insert(gg); Two.insert(g+gg); |
---|
945 | // Now transform all remaining polys in as: |
---|
946 | int x=0; |
---|
947 | for (ii=i; ii.hasItem(); ii++) |
---|
948 | { |
---|
949 | if ( x != 0 ) |
---|
950 | { |
---|
951 | divrem(ii.getItem(), gg, q,r); |
---|
952 | // CERR << ii.getItem() << " divided by " << gg << "\n"; |
---|
953 | DEBOUTLN(CERR, "q= ", q); DEBOUTLN(CERR, "r= ", r); |
---|
954 | ii.append(ii.getItem()+q*g); ii.remove(1); |
---|
955 | DEBOUTLN(CERR, "as= ", as); |
---|
956 | } |
---|
957 | x+= 1; |
---|
958 | } |
---|
959 | // Now transform F: |
---|
960 | divrem(F, gg, q,r); |
---|
961 | F= F+q*g; |
---|
962 | DEBOUTLN(CERR, "new F= ", F); |
---|
963 | } |
---|
964 | else{ asnew.append(i.getItem()); }// just the identity |
---|
965 | } |
---|
966 | // factor F with minimal polys given in asnew: |
---|
967 | DEBOUTLN(CERR, "Factor F= ", F); |
---|
968 | DEBOUTLN(CERR, " with as= ", asnew); |
---|
969 | int success=0; |
---|
970 | CFFList factorlist= newcfactor(F,asnew, success); |
---|
971 | DEBOUTLN(CERR, " gives = ", factorlist); |
---|
972 | DEBOUTLN(CERR, "One= ", One); |
---|
973 | DEBOUTLN(CERR, "Two= ", Two); |
---|
974 | |
---|
975 | // Transform back: |
---|
976 | for ( CFFListIterator k=factorlist; k.hasItem(); k++) |
---|
977 | { |
---|
978 | CanonicalForm factor= k.getItem().factor(); |
---|
979 | ii=One; |
---|
980 | for (i=Two; i.hasItem(); i++) |
---|
981 | { |
---|
982 | DEBOUTLN(CERR, "Mapping ", i.getItem()); |
---|
983 | DEBOUTLN(CERR, " to ", ii.getItem()); |
---|
984 | DEBOUTLN(CERR, " in ", factor); |
---|
985 | divrem(factor,i.getItem(),q,r); r=factor -q*i.getItem(); |
---|
986 | DEBOUTLN(CERR, "q= ", q); DEBOUTLN(CERR, "r= ", r); |
---|
987 | factor= ii.getItem()*q +r; // |
---|
988 | ii++; |
---|
989 | } |
---|
990 | Output.append(CFFactor(factor,k.getItem().exp())); |
---|
991 | } |
---|
992 | |
---|
993 | return Output; |
---|
994 | } |
---|
995 | |
---|
996 | void |
---|
997 | multiplicity (CFFList& factors, const CanonicalForm& F, const CFList& as) |
---|
998 | { |
---|
999 | CanonicalForm G= F; |
---|
1000 | Variable x= F.mvar(); |
---|
1001 | CanonicalForm q, r; |
---|
1002 | int count= -1; |
---|
1003 | On (SW_RATIONAL); |
---|
1004 | for (CFFListIterator iter=factors; iter.hasItem(); iter++) |
---|
1005 | { |
---|
1006 | count= -1; |
---|
1007 | if (iter.getItem().factor().inCoeffDomain()) |
---|
1008 | continue; |
---|
1009 | while (1) |
---|
1010 | { |
---|
1011 | psqr (G, iter.getItem().factor(), q, r, x); |
---|
1012 | |
---|
1013 | q= Prem (q, as); |
---|
1014 | r= Prem (r, as); |
---|
1015 | if (!r.isZero()) |
---|
1016 | break; |
---|
1017 | On (SW_RATIONAL); |
---|
1018 | count++; |
---|
1019 | G= q; |
---|
1020 | } |
---|
1021 | iter.getItem()= CFFactor (iter.getItem().factor(), iter.getItem().exp()+count); |
---|
1022 | } |
---|
1023 | } |
---|
1024 | |
---|
1025 | |
---|
1026 | // 1) prepares data |
---|
1027 | // 2) for char=p we distinguish 3 cases: |
---|
1028 | // no transcendentals, seperable and inseperable extensions |
---|
1029 | CFFList |
---|
1030 | newfactoras( const CanonicalForm & f, const CFList & as, int &success) |
---|
1031 | { |
---|
1032 | Variable vf=f.mvar(); |
---|
1033 | CFListIterator i; |
---|
1034 | CFFListIterator jj; |
---|
1035 | CFList reduceresult; |
---|
1036 | CFFList result; |
---|
1037 | |
---|
1038 | success=1; |
---|
1039 | DEBINCLEVEL(CERR, "newfactoras"); |
---|
1040 | DEBOUTLN(CERR, "newfactoras called with f= ", f); |
---|
1041 | DEBOUTLN(CERR, " content(f)= ", content(f)); |
---|
1042 | DEBOUTLN(CERR, " as= ", as); |
---|
1043 | DEBOUTLN(CERR, "newfactoras: cls(vf)= ", cls(vf)); |
---|
1044 | DEBOUTLN(CERR, "newfactoras: cls(as.getLast())= ", cls(as.getLast())); |
---|
1045 | DEBOUTLN(CERR, "newfactoras: degree(f,vf)= ", degree(f,vf)); |
---|
1046 | |
---|
1047 | // F1: [Test trivial cases] |
---|
1048 | // 1) first trivial cases: |
---|
1049 | if ( (cls(vf) <= cls(as.getLast())) || degree(f,vf)<=1 ){ |
---|
1050 | // ||( (as.length()==1) && (degree(f,vf)==3) && (degree(as.getFirst()==2)) ) |
---|
1051 | DEBDECLEVEL(CERR,"newfactoras"); |
---|
1052 | return CFFList(CFFactor(f,1)); |
---|
1053 | } |
---|
1054 | |
---|
1055 | // 2) List of variables: |
---|
1056 | // 2a) Setup list of those polys in AS having degree(AS[i], AS[i].mvar()) > 1 |
---|
1057 | // 2b) Setup variableordering |
---|
1058 | CFList Astar; |
---|
1059 | Variable x; |
---|
1060 | CanonicalForm elem; |
---|
1061 | Varlist ord, uord,oldord; |
---|
1062 | for ( int ii=1; ii< level(vf) ; ii++ ) { uord.append(Variable(ii)); } |
---|
1063 | oldord= uord; oldord.append(vf); |
---|
1064 | |
---|
1065 | for ( i=as; i.hasItem(); i++ ){ |
---|
1066 | elem= i.getItem(); |
---|
1067 | x= elem.mvar(); |
---|
1068 | if ( degree(elem,x) > 1){ // otherwise it's not an extension |
---|
1069 | Astar.append(elem); |
---|
1070 | ord.append(x); |
---|
1071 | } |
---|
1072 | } |
---|
1073 | uord= Difference(uord,ord); |
---|
1074 | DEBOUTLN(CERR, "Astar is: ", Astar); |
---|
1075 | DEBOUTLN(CERR, "ord is: ", ord); |
---|
1076 | DEBOUTLN(CERR, "uord is: ", uord); |
---|
1077 | |
---|
1078 | // 3) second trivial cases: we already prooved irr. of f over no extensions |
---|
1079 | if ( Astar.length() == 0 ){ |
---|
1080 | DEBDECLEVEL(CERR,"newfactoras"); |
---|
1081 | return CFFList(CFFactor(f,1)); |
---|
1082 | } |
---|
1083 | |
---|
1084 | // 4) Try to obtain a partial factorization using prop2 and prop3 |
---|
1085 | // Use with caution! We have to proof these propositions first! |
---|
1086 | // Not yet implemented |
---|
1087 | |
---|
1088 | // 5) Look if elements in uord actually occure in any of the minimal |
---|
1089 | // polynomials. If no element of uord occures in any of the minimal |
---|
1090 | // polynomials, we don't have transzendentals. |
---|
1091 | Varlist newuord=Var_is_in_AS(uord,Astar); |
---|
1092 | DEBOUTLN(CERR, "newuord is: ", newuord); |
---|
1093 | |
---|
1094 | CFFList Factorlist; |
---|
1095 | Varlist gcdord= Union(ord,newuord); gcdord.append(f.mvar()); |
---|
1096 | bool isFunctionField= (newuord.length() > 0); |
---|
1097 | |
---|
1098 | // This is for now. we need alg_sqrfree implemented! |
---|
1099 | CanonicalForm Fgcd= 0; |
---|
1100 | if (isFunctionField) |
---|
1101 | Fgcd= alg_gcd(f,f.deriv(),Astar); |
---|
1102 | |
---|
1103 | if ( Fgcd == 0 ) {DEBOUTMSG(CERR, "WARNING: p'th root ?");} |
---|
1104 | if (isFunctionField && ( degree(Fgcd, f.mvar()) > 0) && (!(f.deriv().isZero())) ) |
---|
1105 | { |
---|
1106 | DEBOUTLN(CERR, "Nontrivial GCD found of ", f); |
---|
1107 | CanonicalForm Ggcd= divide(f, Fgcd,Astar); |
---|
1108 | if (getCharacteristic() == 0) |
---|
1109 | { |
---|
1110 | CFFList result= newfactoras (Ggcd,as,success); //Ggcd is the squarefree part of f |
---|
1111 | multiplicity (result, f, Astar); |
---|
1112 | return result; |
---|
1113 | } |
---|
1114 | DEBOUTLN(CERR, " split into ", Fgcd); |
---|
1115 | DEBOUTLN(CERR, " and ", Ggcd); |
---|
1116 | Fgcd= pp(Fgcd); Ggcd= pp(Ggcd); |
---|
1117 | DEBDECLEVEL(CERR,"newfactoras"); |
---|
1118 | return myUnion(newfactoras(Fgcd,as,success) , newfactoras(Ggcd,as,success)); |
---|
1119 | } |
---|
1120 | if ( getCharacteristic() > 0 ) |
---|
1121 | { |
---|
1122 | // First look for extension! |
---|
1123 | IntList degreelist; |
---|
1124 | Variable vminpoly; |
---|
1125 | for (i=Astar; i.hasItem(); i++){degreelist.append(degree(i.getItem()));} |
---|
1126 | int extdeg= getextension(degreelist, degree(f)); |
---|
1127 | DEBOUTLN(CERR, "Extension needed of degree ", extdeg); |
---|
1128 | |
---|
1129 | // Now the real stuff! |
---|
1130 | if ( newuord.length() == 0 ){ // no transzendentals |
---|
1131 | DEBOUTMSG(CERR, "No transzendentals!"); |
---|
1132 | if ( extdeg > 1 ){ |
---|
1133 | CanonicalForm MIPO= generate_mipo( extdeg, vminpoly); |
---|
1134 | DEBOUTLN(CERR, "Minpoly produced ", MIPO); |
---|
1135 | vminpoly= rootOf(MIPO); |
---|
1136 | } |
---|
1137 | Factorlist= alg_factor(f, Astar, vminpoly, oldord, as, isFunctionField); |
---|
1138 | DEBDECLEVEL(CERR,"newfactoras"); |
---|
1139 | return Factorlist; |
---|
1140 | } |
---|
1141 | else if ( inseperable(Astar) > 0 ){ // Look if extensions are seperable |
---|
1142 | // a) Use Endler |
---|
1143 | DEBOUTMSG(CERR, "Inseperable extensions! Using Endler!"); |
---|
1144 | CFFList templist= endler(f,Astar, newuord); |
---|
1145 | DEBOUTLN(CERR, "Endler gives: ", templist); |
---|
1146 | return templist; |
---|
1147 | } |
---|
1148 | else{ // we are on the save side: Use trager |
---|
1149 | DEBOUTMSG(CERR, "Only seperable extensions!"); |
---|
1150 | if (extdeg > 1 ){ |
---|
1151 | CanonicalForm MIPO=generate_mipo(extdeg, vminpoly ); |
---|
1152 | vminpoly= rootOf(MIPO); |
---|
1153 | DEBOUTLN(CERR, "Minpoly generated: ", MIPO); |
---|
1154 | DEBOUTLN(CERR, "vminpoly= ", vminpoly); |
---|
1155 | DEBOUTLN(CERR, "degree(vminpoly)= ", degree(vminpoly)); |
---|
1156 | } |
---|
1157 | Factorlist= alg_factor(f, Astar, vminpoly, oldord, as, isFunctionField); |
---|
1158 | DEBDECLEVEL(CERR,"newfactoras"); |
---|
1159 | return Factorlist; |
---|
1160 | } |
---|
1161 | } |
---|
1162 | else{ // char=0 apply trager directly |
---|
1163 | DEBOUTMSG(CERR, "Char=0! Apply Trager!"); |
---|
1164 | Variable vminpoly; |
---|
1165 | Factorlist= alg_factor(f, Astar, vminpoly, oldord, as, isFunctionField); |
---|
1166 | DEBDECLEVEL(CERR,"newfactoras"); |
---|
1167 | return Factorlist; |
---|
1168 | } |
---|
1169 | |
---|
1170 | DEBDECLEVEL(CERR,"newfactoras"); |
---|
1171 | return CFFList(CFFactor(f,1)); |
---|
1172 | } |
---|
1173 | |
---|
1174 | CFFList |
---|
1175 | newcfactor(const CanonicalForm & f, const CFList & as, int & success ) |
---|
1176 | { |
---|
1177 | On (SW_RATIONAL); |
---|
1178 | CFFList Output, output, Factors= factorize(f); |
---|
1179 | if (Factors.getFirst().factor().inCoeffDomain()) |
---|
1180 | Factors.removeFirst(); |
---|
1181 | |
---|
1182 | if ( as.length() == 0 ) |
---|
1183 | { |
---|
1184 | success=1; |
---|
1185 | return Factors; |
---|
1186 | } |
---|
1187 | if ( cls(f) <= cls(as.getLast()) ) |
---|
1188 | { |
---|
1189 | success=1; |
---|
1190 | return Factors; |
---|
1191 | } |
---|
1192 | |
---|
1193 | success=1; |
---|
1194 | for ( CFFListIterator i=Factors; i.hasItem(); i++ ) |
---|
1195 | { |
---|
1196 | output=newfactoras(i.getItem().factor(),as, success); |
---|
1197 | for ( CFFListIterator j=output; j.hasItem(); j++) |
---|
1198 | Output = myappend(Output,CFFactor(j.getItem().factor(),j.getItem().exp()*i.getItem().exp())); |
---|
1199 | } |
---|
1200 | return Output; |
---|
1201 | } |
---|