1 | //////////////////////////////////////////////////////////// |
---|
2 | // emacs edit mode for this file is -*- C++ -*- |
---|
3 | //////////////////////////////////////////////////////////// |
---|
4 | |
---|
5 | // FACTORY - Includes |
---|
6 | #include <factory.h> |
---|
7 | // Factor - Includes |
---|
8 | #include <tmpl_inst.h> |
---|
9 | #include <Factor.h> |
---|
10 | #include <SqrFree.h> |
---|
11 | #include <helpstuff.h> |
---|
12 | // Charset - Includes |
---|
13 | #include "csutil.h" |
---|
14 | #include "charset.h" |
---|
15 | #include "reorder.h" |
---|
16 | #include "algfactor.h" |
---|
17 | // some CC's need this: |
---|
18 | #include "alg_factor.h" |
---|
19 | |
---|
20 | void out_cf(const char *s1,const CanonicalForm &f,const char *s2); |
---|
21 | |
---|
22 | #ifdef ALGFACTORDEBUG |
---|
23 | # define DEBUGOUTPUT |
---|
24 | #else |
---|
25 | # undef DEBUGOUTPUT |
---|
26 | #endif |
---|
27 | |
---|
28 | #include <libfac/factor/debug.h> |
---|
29 | |
---|
30 | static Varlist |
---|
31 | Var_is_in_AS(const Varlist & uord, const CFList & Astar); |
---|
32 | |
---|
33 | int getAlgVar(const CanonicalForm &f, Variable &X) |
---|
34 | { |
---|
35 | if (f.inBaseDomain()) return 0; |
---|
36 | if (f.inCoeffDomain()) |
---|
37 | { |
---|
38 | if (f.level()!=0) |
---|
39 | { |
---|
40 | X= f.mvar(); |
---|
41 | return 1; |
---|
42 | } |
---|
43 | return getAlgVar(f.LC(),X); |
---|
44 | } |
---|
45 | if (f.inPolyDomain()) |
---|
46 | { |
---|
47 | if (getAlgVar(f.LC(),X)) return 1; |
---|
48 | for( CFIterator i=f; i.hasTerms(); i++) |
---|
49 | { |
---|
50 | if (getAlgVar(i.coeff(),X)) return 1; |
---|
51 | } |
---|
52 | } |
---|
53 | return 0; |
---|
54 | } |
---|
55 | |
---|
56 | //////////////////////////////////////////////////////////////////////// |
---|
57 | // This implements the algorithm of Trager for factorization of |
---|
58 | // (multivariate) polynomials over algebraic extensions and so called |
---|
59 | // function field extensions. |
---|
60 | //////////////////////////////////////////////////////////////////////// |
---|
61 | |
---|
62 | // // missing class: IntGenerator: |
---|
63 | bool IntGenerator::hasItems() const |
---|
64 | { |
---|
65 | return 1; |
---|
66 | } |
---|
67 | |
---|
68 | CanonicalForm IntGenerator::item() const |
---|
69 | //int IntGenerator::item() const |
---|
70 | { |
---|
71 | //return current; //CanonicalForm( current ); |
---|
72 | return mapinto(CanonicalForm( current )); |
---|
73 | } |
---|
74 | |
---|
75 | void IntGenerator::next() |
---|
76 | { |
---|
77 | current++; |
---|
78 | } |
---|
79 | |
---|
80 | // replacement for factory's broken resultant |
---|
81 | static CanonicalForm |
---|
82 | resultante( const CanonicalForm & f, const CanonicalForm& g, const Variable & v ) |
---|
83 | { |
---|
84 | bool on_rational = isOn(SW_RATIONAL); |
---|
85 | On(SW_RATIONAL); |
---|
86 | CanonicalForm cd = bCommonDen( f ); |
---|
87 | CanonicalForm fz = f * cd; |
---|
88 | cd = bCommonDen( g ); |
---|
89 | CanonicalForm gz = g * cd; |
---|
90 | if (!on_rational) Off(SW_RATIONAL); |
---|
91 | |
---|
92 | return resultant(fz,gz,v); |
---|
93 | } |
---|
94 | |
---|
95 | // sqr-free routine for algebraic extensions |
---|
96 | // we need it! Ex.: f=c^2+2*a*c-1; as=[a^2+1]; f=(c+a)^2 |
---|
97 | //static CFFList alg_sqrfree( const CanonicalForm & f ) |
---|
98 | //{ |
---|
99 | // CFFList L; |
---|
100 | // |
---|
101 | // L.append(CFFactor(f,1)); |
---|
102 | // return L; |
---|
103 | //} |
---|
104 | |
---|
105 | // Calculates a square free norm |
---|
106 | // Input: f(x, alpha) a square free polynomial over K(alpha), |
---|
107 | // alpha is defined by the minimal polynomial Palpha |
---|
108 | // K has more than S elements (S is defined in thesis; look getextension) |
---|
109 | static void |
---|
110 | sqrf_norm_sub( const CanonicalForm & f, const CanonicalForm & PPalpha, |
---|
111 | CFGenerator & myrandom, CanonicalForm & s, CanonicalForm & g, |
---|
112 | CanonicalForm & R) |
---|
113 | { |
---|
114 | Variable y=PPalpha.mvar(),vf=f.mvar(); |
---|
115 | CanonicalForm temp, Palpha=PPalpha, t; |
---|
116 | int sqfreetest=0; |
---|
117 | CFFList testlist; |
---|
118 | CFFListIterator i; |
---|
119 | |
---|
120 | DEBOUTLN(CERR, "sqrf_norm_sub: f= ", f); |
---|
121 | DEBOUTLN(CERR, "sqrf_norm_sub: Palpha= ", Palpha); |
---|
122 | myrandom.reset(); s=f.mvar()-myrandom.item()*Palpha.mvar(); g=f; |
---|
123 | R= CanonicalForm(0); |
---|
124 | DEBOUTLN(CERR, "sqrf_norm_sub: myrandom s= ", s); |
---|
125 | |
---|
126 | // Norm, resultante taken with respect to y |
---|
127 | while ( !sqfreetest ) |
---|
128 | { |
---|
129 | DEBOUTLN(CERR, "sqrf_norm_sub: Palpha= ", Palpha); |
---|
130 | R = resultante(Palpha, g, y); R= R* bCommonDen(R); |
---|
131 | DEBOUTLN(CERR, "sqrf_norm_sub: R= ", R); |
---|
132 | // sqfree check ; R is a polynomial in K[x] |
---|
133 | if ( getCharacteristic() == 0 ) |
---|
134 | { |
---|
135 | temp= gcd(R, R.deriv(vf)); |
---|
136 | DEBOUTLN(CERR, "sqrf_norm_sub: temp= ", temp); |
---|
137 | if (degree(temp,vf) != 0 || temp == temp.genZero() ){ sqfreetest= 0; } |
---|
138 | else { sqfreetest= 1; } |
---|
139 | DEBOUTLN(CERR, "sqrf_norm_sub: sqfreetest= ", sqfreetest); |
---|
140 | } |
---|
141 | else |
---|
142 | { |
---|
143 | DEBOUTMSG(CERR, "Starting SqrFreeTest(R)!"); |
---|
144 | // Look at SqrFreeTest! |
---|
145 | // (z+a^5+w)^4 with z<w<a should not give sqfreetest=1 ! |
---|
146 | // for now we use this workaround with Factorize... |
---|
147 | // ...but it should go away soon!!!! |
---|
148 | Variable X; |
---|
149 | if (getAlgVar(R,X)) |
---|
150 | { |
---|
151 | testlist=factorize( R, X ); |
---|
152 | } |
---|
153 | else |
---|
154 | testlist= Factorize(R); |
---|
155 | DEBOUTLN(CERR, "testlist= ", testlist); |
---|
156 | testlist.removeFirst(); |
---|
157 | sqfreetest=1; |
---|
158 | for ( i=testlist; i.hasItem(); i++) |
---|
159 | if ( i.getItem().exp() > 1 && degree(i.getItem().factor(), R.mvar()) > 0) { sqfreetest=0; break; } |
---|
160 | DEBOUTLN(CERR, "SqrFreeTest(R)= ", sqfreetest); |
---|
161 | } |
---|
162 | if ( ! sqfreetest ) |
---|
163 | { |
---|
164 | myrandom.next(); |
---|
165 | DEBOUTLN(CERR, "sqrf_norm_sub generated new myrandom item: ", myrandom.item()); |
---|
166 | if ( getCharacteristic() == 0 ) t= CanonicalForm(mapinto(myrandom.item())); |
---|
167 | else t= CanonicalForm(myrandom.item()); |
---|
168 | s= f.mvar()+t*Palpha.mvar(); // s defines backsubstitution |
---|
169 | DEBOUTLN(CERR, "sqrf_norm_sub: testing s= ", s); |
---|
170 | g= f(f.mvar()-t*Palpha.mvar(), f.mvar()); |
---|
171 | DEBOUTLN(CERR, " gives g= ", g); |
---|
172 | } |
---|
173 | } |
---|
174 | } |
---|
175 | static void |
---|
176 | sqrf_agnorm_sub( const CanonicalForm & f, const CanonicalForm & PPalpha, |
---|
177 | AlgExtGenerator & myrandom, CanonicalForm & s, CanonicalForm & g, |
---|
178 | CanonicalForm & R) |
---|
179 | { |
---|
180 | Variable y=PPalpha.mvar(),vf=f.mvar(); |
---|
181 | CanonicalForm temp, Palpha=PPalpha, t; |
---|
182 | int sqfreetest=0; |
---|
183 | CFFList testlist; |
---|
184 | CFFListIterator i; |
---|
185 | |
---|
186 | DEBOUTLN(CERR, "sqrf_norm_sub: f= ", f); |
---|
187 | DEBOUTLN(CERR, "sqrf_norm_sub: Palpha= ", Palpha); |
---|
188 | myrandom.reset(); s=f.mvar()-myrandom.item()*Palpha.mvar(); g=f; |
---|
189 | R= CanonicalForm(0); |
---|
190 | DEBOUTLN(CERR, "sqrf_norm_sub: myrandom s= ", s); |
---|
191 | |
---|
192 | // Norm, resultante taken with respect to y |
---|
193 | while ( !sqfreetest ) |
---|
194 | { |
---|
195 | DEBOUTLN(CERR, "sqrf_norm_sub: Palpha= ", Palpha); |
---|
196 | R = resultante(Palpha, g, y); R= R* bCommonDen(R); |
---|
197 | DEBOUTLN(CERR, "sqrf_norm_sub: R= ", R); |
---|
198 | // sqfree check ; R is a polynomial in K[x] |
---|
199 | if ( getCharacteristic() == 0 ) |
---|
200 | { |
---|
201 | temp= gcd(R, R.deriv(vf)); |
---|
202 | DEBOUTLN(CERR, "sqrf_norm_sub: temp= ", temp); |
---|
203 | if (degree(temp,vf) != 0 || temp == temp.genZero() ){ sqfreetest= 0; } |
---|
204 | else { sqfreetest= 1; } |
---|
205 | DEBOUTLN(CERR, "sqrf_norm_sub: sqfreetest= ", sqfreetest); |
---|
206 | } |
---|
207 | else |
---|
208 | { |
---|
209 | DEBOUTMSG(CERR, "Starting SqrFreeTest(R)!"); |
---|
210 | // Look at SqrFreeTest! |
---|
211 | // (z+a^5+w)^4 with z<w<a should not give sqfreetest=1 ! |
---|
212 | // for now we use this workaround with Factorize... |
---|
213 | // ...but it should go away soon!!!! |
---|
214 | Variable X; |
---|
215 | if (getAlgVar(R,X)) |
---|
216 | { |
---|
217 | testlist=factorize( R, X ); |
---|
218 | } |
---|
219 | else |
---|
220 | testlist= Factorize(R); |
---|
221 | DEBOUTLN(CERR, "testlist= ", testlist); |
---|
222 | testlist.removeFirst(); |
---|
223 | sqfreetest=1; |
---|
224 | for ( i=testlist; i.hasItem(); i++) |
---|
225 | if ( i.getItem().exp() > 1 && degree(i.getItem().factor(), R.mvar()) > 0) { sqfreetest=0; break; } |
---|
226 | DEBOUTLN(CERR, "SqrFreeTest(R)= ", sqfreetest); |
---|
227 | } |
---|
228 | if ( ! sqfreetest ) |
---|
229 | { |
---|
230 | myrandom.next(); |
---|
231 | DEBOUTLN(CERR, "sqrf_norm_sub generated new myrandom item: ", myrandom.item()); |
---|
232 | if ( getCharacteristic() == 0 ) t= CanonicalForm(mapinto(myrandom.item())); |
---|
233 | else t= CanonicalForm(myrandom.item()); |
---|
234 | s= f.mvar()+t*Palpha.mvar(); // s defines backsubstitution |
---|
235 | DEBOUTLN(CERR, "sqrf_norm_sub: testing s= ", s); |
---|
236 | g= f(f.mvar()-t*Palpha.mvar(), f.mvar()); |
---|
237 | DEBOUTLN(CERR, " gives g= ", g); |
---|
238 | } |
---|
239 | } |
---|
240 | } |
---|
241 | |
---|
242 | static void |
---|
243 | sqrf_norm( const CanonicalForm & f, const CanonicalForm & PPalpha, |
---|
244 | const Variable & Extension, CanonicalForm & s, CanonicalForm & g, |
---|
245 | CanonicalForm & R) |
---|
246 | { |
---|
247 | DEBOUTLN(CERR, "sqrf_norm: f= ", f); |
---|
248 | DEBOUTLN(CERR, "sqrf_norm: Palpha= ", PPalpha); |
---|
249 | if ( getCharacteristic() == 0 ) |
---|
250 | { |
---|
251 | IntGenerator myrandom; |
---|
252 | DEBOUTMSG(CERR, "sqrf_norm: no extension, char=0"); |
---|
253 | sqrf_norm_sub(f,PPalpha, myrandom, s,g,R); |
---|
254 | DEBOUTLN(CERR, "sqrf_norm: f= ", f); |
---|
255 | DEBOUTLN(CERR, "sqrf_norm: Palpha= ", PPalpha); |
---|
256 | DEBOUTLN(CERR, "sqrf_norm: s= ", s); |
---|
257 | DEBOUTLN(CERR, "sqrf_norm: g= ", g); |
---|
258 | DEBOUTLN(CERR, "sqrf_norm: R= ", R); |
---|
259 | } |
---|
260 | else if ( degree(Extension) > 0 ) // working over Extensions |
---|
261 | { |
---|
262 | DEBOUTLN(CERR, "sqrf_norm: degree of extension is ", degree(Extension)); |
---|
263 | AlgExtGenerator myrandom(Extension); |
---|
264 | sqrf_agnorm_sub(f,PPalpha, myrandom, s,g,R); |
---|
265 | } |
---|
266 | else |
---|
267 | { |
---|
268 | FFGenerator myrandom; |
---|
269 | DEBOUTMSG(CERR, "sqrf_norm: degree of extension is 0"); |
---|
270 | sqrf_norm_sub(f,PPalpha, myrandom, s,g,R); |
---|
271 | } |
---|
272 | } |
---|
273 | |
---|
274 | static Varlist |
---|
275 | Var_is_in_AS(const Varlist & uord, const CFList & Astar){ |
---|
276 | Varlist output; |
---|
277 | CanonicalForm elem; |
---|
278 | Variable x; |
---|
279 | |
---|
280 | for ( VarlistIterator i=uord; i.hasItem(); i++) |
---|
281 | { |
---|
282 | x=i.getItem(); |
---|
283 | for ( CFListIterator j=Astar; j.hasItem(); j++ ) |
---|
284 | { |
---|
285 | elem= j.getItem(); |
---|
286 | if ( degree(elem,x) > 0 ) // x actually occures in Astar |
---|
287 | { |
---|
288 | output.append(x); |
---|
289 | break; |
---|
290 | } |
---|
291 | } |
---|
292 | } |
---|
293 | return output; |
---|
294 | } |
---|
295 | |
---|
296 | // Look if Minimalpolynomials in Astar define seperable Extensions |
---|
297 | // Must be a power of p: i.e. y^{p^e}-x |
---|
298 | static int |
---|
299 | inseperable(const CFList & Astar) |
---|
300 | { |
---|
301 | CanonicalForm elem; |
---|
302 | int Counter= 1; |
---|
303 | |
---|
304 | if ( Astar.length() == 0 ) return 0; |
---|
305 | for ( CFListIterator i=Astar; i.hasItem(); i++) |
---|
306 | { |
---|
307 | elem= i.getItem(); |
---|
308 | if ( elem.deriv() == elem.genZero() ) return Counter; |
---|
309 | else Counter += 1; |
---|
310 | } |
---|
311 | return 0; |
---|
312 | } |
---|
313 | |
---|
314 | // calculate gcd of f and g in char=0 |
---|
315 | static CanonicalForm |
---|
316 | gcd0( CanonicalForm f, CanonicalForm g ) |
---|
317 | { |
---|
318 | int charac= getCharacteristic(); |
---|
319 | int save=isOn(SW_RATIONAL); |
---|
320 | setCharacteristic(0); Off(SW_RATIONAL); |
---|
321 | CanonicalForm ff= mapinto(f), gg= mapinto(g); |
---|
322 | CanonicalForm result= gcd(ff,gg); |
---|
323 | setCharacteristic(charac); |
---|
324 | if (save) On(SW_RATIONAL); |
---|
325 | return mapinto(result); |
---|
326 | } |
---|
327 | |
---|
328 | // calculate big enough extension for finite fields |
---|
329 | // Idea: first calculate k, such that q^k > S (->thesis, -> getextension) |
---|
330 | // Second, search k with gcd(k,m_i)=1, where m_i is the degree of the i'th |
---|
331 | // minimal polynomial. Then the minpoly f_i remains irrd. over q^k and we |
---|
332 | // have enough elements to plug in. |
---|
333 | static int |
---|
334 | getextension( IntList & degreelist, int n) |
---|
335 | { |
---|
336 | int charac= getCharacteristic(); |
---|
337 | setCharacteristic(0); // need it for k ! |
---|
338 | int k=1, m=1, length=degreelist.length(); |
---|
339 | IntListIterator i; |
---|
340 | |
---|
341 | for (i=degreelist; i.hasItem(); i++) m= m*i.getItem(); |
---|
342 | int q=charac; |
---|
343 | while (q <= ((n*m)*(n*m)/2)) { k= k+1; q= q*charac;} |
---|
344 | int l=0; |
---|
345 | do { |
---|
346 | for (i=degreelist; i.hasItem(); i++){ |
---|
347 | l= l+1; |
---|
348 | if ( gcd0(k,i.getItem()) == 1){ |
---|
349 | DEBOUTLN(CERR, "getextension: gcd == 1, l=",l); |
---|
350 | if ( l==length ){ setCharacteristic(charac); return k; } |
---|
351 | } |
---|
352 | else { DEBOUTMSG(CERR, "getextension: Next iteration"); break; } |
---|
353 | } |
---|
354 | k= k+1; l=0; |
---|
355 | } |
---|
356 | while ( 1 ); |
---|
357 | } |
---|
358 | |
---|
359 | // calculate a "primitive element" |
---|
360 | // K must have more than S elements (->thesis, -> getextension) |
---|
361 | static CFList |
---|
362 | simpleextension(const CFList & Astar, const Variable & Extension, |
---|
363 | CanonicalForm & R){ |
---|
364 | CFList Returnlist, Bstar=Astar; |
---|
365 | CanonicalForm s, g; |
---|
366 | |
---|
367 | DEBOUTLN(CERR, "simpleextension: Astar= ", Astar); |
---|
368 | DEBOUTLN(CERR, "simpleextension: R= ", R); |
---|
369 | DEBOUTLN(CERR, "simpleextension: Extension= ", Extension); |
---|
370 | if ( Astar.length() == 1 ){ R= Astar.getFirst();} |
---|
371 | else{ |
---|
372 | R=Bstar.getFirst(); Bstar.removeFirst(); |
---|
373 | for ( CFListIterator i=Bstar; i.hasItem(); i++){ |
---|
374 | DEBOUTLN(CERR, "simpleextension: f(x)= ", i.getItem()); |
---|
375 | DEBOUTLN(CERR, "simpleextension: P(x)= ", R); |
---|
376 | sqrf_norm(i.getItem(), R, Extension, s, g, R); |
---|
377 | // spielt die Repraesentation eine Rolle? |
---|
378 | // muessen wir die Nachfolger aendern, wenn s != 0 ? |
---|
379 | DEBOUTLN(CERR, "simpleextension: g= ", g); |
---|
380 | if ( s != 0 ) DEBOUTLN(CERR, "simpleextension: s= ", s); |
---|
381 | else DEBOUTLN(CERR, "simpleextension: s= ", s); |
---|
382 | DEBOUTLN(CERR, "simpleextension: R= ", R); |
---|
383 | Returnlist.insert(s); |
---|
384 | } |
---|
385 | } |
---|
386 | |
---|
387 | return Returnlist; |
---|
388 | } |
---|
389 | |
---|
390 | CanonicalForm alg_lc(const CanonicalForm &f) |
---|
391 | { |
---|
392 | if (f.level()>0) |
---|
393 | { |
---|
394 | return alg_lc(f.LC()); |
---|
395 | } |
---|
396 | //assert(f.inCoeffDomain()); |
---|
397 | return f; |
---|
398 | } |
---|
399 | |
---|
400 | // the heart of the algorithm: the one from Trager |
---|
401 | static CFFList |
---|
402 | alg_factor( const CanonicalForm & f, const CFList & Astar, const Variable & vminpoly, const Varlist & oldord, const CFList & as) |
---|
403 | { |
---|
404 | CFFList L, Factorlist; |
---|
405 | CanonicalForm R, Rstar, s, g, h; |
---|
406 | CFList substlist; |
---|
407 | |
---|
408 | DEBINCLEVEL(CERR,"alg_factor"); |
---|
409 | DEBOUTLN(CERR, "alg_factor: f= ", f); |
---|
410 | |
---|
411 | //out_cf("start alg_factor:",f,"\n"); |
---|
412 | substlist= simpleextension(Astar, vminpoly, Rstar); |
---|
413 | DEBOUTLN(CERR, "alg_factor: substlist= ", substlist); |
---|
414 | DEBOUTLN(CERR, "alg_factor: minpoly Rstar= ", Rstar); |
---|
415 | DEBOUTLN(CERR, "alg_factor: vminpoly= ", vminpoly); |
---|
416 | |
---|
417 | sqrf_norm(f, Rstar, vminpoly, s, g, R ); |
---|
418 | //out_cf("sqrf_norm R:",R,"\n"); |
---|
419 | //out_cf("sqrf_norm s:",s,"\n"); |
---|
420 | //out_cf("sqrf_norm g:",g,"\n"); |
---|
421 | DEBOUTLN(CERR, "alg_factor: g= ", g); |
---|
422 | DEBOUTLN(CERR, "alg_factor: s= ", s); |
---|
423 | DEBOUTLN(CERR, "alg_factor: R= ", R); |
---|
424 | Off(SW_RATIONAL); |
---|
425 | Variable X; |
---|
426 | if (getAlgVar(R,X)) |
---|
427 | { |
---|
428 | // factorize R over alg.extension with X |
---|
429 | //CERR << "alg: "<< X << " mipo=" << getMipo(X,Variable('X')) <<"\n"; |
---|
430 | if (R.isUnivariate()) |
---|
431 | { |
---|
432 | DEBOUTLN(CERR, "alg_factor: factorize( ", R); |
---|
433 | Factorlist = factorize( R, X ); |
---|
434 | } |
---|
435 | else |
---|
436 | { |
---|
437 | #if 1 |
---|
438 | Variable XX; |
---|
439 | CanonicalForm mipo=getMipo(X,XX); |
---|
440 | CFList as(mipo); |
---|
441 | DEBOUTLN(CERR, "alg_factor: newfactoras( ", R); |
---|
442 | int success=1; |
---|
443 | Factorlist = newfactoras(R, as , success); |
---|
444 | #else |
---|
445 | // factor R over k |
---|
446 | DEBOUTLN(CERR, "alg_factor: Factorize( ", R); |
---|
447 | Factorlist = Factorize(R); |
---|
448 | #endif |
---|
449 | } |
---|
450 | } |
---|
451 | else |
---|
452 | { |
---|
453 | // factor R over k |
---|
454 | DEBOUTLN(CERR, "alg_factor: Factorize( ", R); |
---|
455 | Factorlist = Factorize(R); |
---|
456 | } |
---|
457 | On(SW_RATIONAL); |
---|
458 | DEBOUTLN(CERR, "alg_factor: Factorize(R)= ", Factorlist); |
---|
459 | if ( !Factorlist.getFirst().factor().inCoeffDomain() ) |
---|
460 | Factorlist.insert(CFFactor(1,1)); |
---|
461 | if ( Factorlist.length() == 2 && Factorlist.getLast().exp()== 1) |
---|
462 | { // irreduzibel (first entry is a constant) |
---|
463 | L.append(CFFactor(f,1)); |
---|
464 | } |
---|
465 | else |
---|
466 | { |
---|
467 | DEBOUTLN(CERR, "alg_factor: g= ", g); |
---|
468 | CanonicalForm gnew= g(s,s.mvar()); |
---|
469 | DEBOUTLN(CERR, "alg_factor: gnew= ", gnew); |
---|
470 | g=gnew; |
---|
471 | for ( CFFListIterator i=Factorlist; i.hasItem(); i++) |
---|
472 | { |
---|
473 | CanonicalForm fnew=i.getItem().factor(); |
---|
474 | fnew= fnew(s,s.mvar()); |
---|
475 | DEBOUTLN(CERR, "alg_factor: fnew= ", fnew); |
---|
476 | DEBOUTLN(CERR, "alg_factor: substlist= ", substlist); |
---|
477 | for ( CFListIterator ii=substlist; ii.hasItem(); ii++){ |
---|
478 | DEBOUTLN(CERR, "alg_factor: item= ", ii.getItem()); |
---|
479 | fnew= fnew(ii.getItem(), ii.getItem().mvar()); |
---|
480 | DEBOUTLN(CERR, "alg_factor: fnew= ", fnew); |
---|
481 | } |
---|
482 | if (degree(i.getItem().factor()) > 0 ) |
---|
483 | { |
---|
484 | h=alg_gcd(g,fnew,as); |
---|
485 | DEBOUTLN(CERR, " alg_factor: h= ", h); |
---|
486 | DEBOUTLN(CERR, " alg_factor: oldord= ", oldord); |
---|
487 | if ( degree(h) > 0 ) |
---|
488 | { //otherwise it's a constant |
---|
489 | g= divide(g, h,as); |
---|
490 | DEBOUTLN(CERR, "alg_factor: g/h= ", g); |
---|
491 | DEBOUTLN(CERR, "alg_factor: s= ", s); |
---|
492 | DEBOUTLN(CERR, "alg_factor: substlist= ", substlist); |
---|
493 | //out_cf("new g:",g,"\n"); |
---|
494 | L.append(CFFactor(h,1)); |
---|
495 | } |
---|
496 | //else printf("degree <=1\n"); |
---|
497 | } |
---|
498 | } |
---|
499 | // we are not interested in a |
---|
500 | // constant (over K_r, which can be a polynomial!) |
---|
501 | if (degree(g, f.mvar())>0){ L.append(CFFactor(g,1)); } |
---|
502 | } |
---|
503 | CFFList LL; |
---|
504 | if (getCharacteristic()>0) |
---|
505 | { |
---|
506 | CFFListIterator i=L; |
---|
507 | CanonicalForm c_fac=1; |
---|
508 | CanonicalForm c; |
---|
509 | for(;i.hasItem(); i++ ) |
---|
510 | { |
---|
511 | CanonicalForm ff=i.getItem().factor(); |
---|
512 | c=alg_lc(ff); |
---|
513 | int e=i.getItem().exp(); |
---|
514 | ff/=c; |
---|
515 | if (!ff.isOne()) LL.append(CFFactor(ff,e)); |
---|
516 | while (e>0) { c_fac*=c;e--; } |
---|
517 | } |
---|
518 | if (!c_fac.isOne()) LL.insert(CFFactor(c_fac,1)); |
---|
519 | } |
---|
520 | else |
---|
521 | { |
---|
522 | LL=L; |
---|
523 | } |
---|
524 | //CFFListIterator i=LL; |
---|
525 | //for(;i.hasItem(); i++ ) |
---|
526 | // out_cf("end alg_f:",i.getItem().factor(),"\n"); |
---|
527 | //printf("end alg_factor\n"); |
---|
528 | DEBOUTLN(CERR, "alg_factor: L= ", LL); |
---|
529 | DEBDECLEVEL(CERR,"alg_factor"); |
---|
530 | return LL; |
---|
531 | } |
---|
532 | |
---|
533 | static CFFList |
---|
534 | endler( const CanonicalForm & f, const CFList & AS, const Varlist & uord ) |
---|
535 | { |
---|
536 | CanonicalForm F=f, g, q,r; |
---|
537 | CFFList Output; |
---|
538 | CFList One, Two, asnew, as=AS; |
---|
539 | CFListIterator i,ii; |
---|
540 | VarlistIterator j; |
---|
541 | Variable vg; |
---|
542 | |
---|
543 | for (i=as; i.hasItem(); i++) |
---|
544 | { |
---|
545 | g= i.getItem(); |
---|
546 | if (g.deriv() == 0 ) |
---|
547 | { |
---|
548 | DEBOUTLN(CERR, "Inseperable extension detected: ", g); |
---|
549 | for (j=uord; j.hasItem(); j++) |
---|
550 | { |
---|
551 | if ( degree(g,j.getItem()) > 0 ) vg= j.getItem(); |
---|
552 | } |
---|
553 | // Now we have the highest transzendental in vg; |
---|
554 | DEBOUTLN(CERR, "Transzendental is ", vg); |
---|
555 | CanonicalForm gg=-1*g[0]; |
---|
556 | divrem(gg,vg,q,r); r= gg-q*vg; gg= gg-r; |
---|
557 | //DEBOUTLN(CERR, "q= ", q); DEBOUTLN(CERR, "r= ", r); |
---|
558 | DEBOUTLN(CERR, " that is ", gg); |
---|
559 | DEBOUTLN(CERR, " maps to ", g+gg); |
---|
560 | One.insert(gg); Two.insert(g+gg); |
---|
561 | // Now transform all remaining polys in as: |
---|
562 | int x=0; |
---|
563 | for (ii=i; ii.hasItem(); ii++) |
---|
564 | { |
---|
565 | if ( x != 0 ) |
---|
566 | { |
---|
567 | divrem(ii.getItem(), gg, q,r); |
---|
568 | // CERR << ii.getItem() << " divided by " << gg << "\n"; |
---|
569 | DEBOUTLN(CERR, "q= ", q); DEBOUTLN(CERR, "r= ", r); |
---|
570 | ii.append(ii.getItem()+q*g); ii.remove(1); |
---|
571 | DEBOUTLN(CERR, "as= ", as); |
---|
572 | } |
---|
573 | x+= 1; |
---|
574 | } |
---|
575 | // Now transform F: |
---|
576 | divrem(F, gg, q,r); |
---|
577 | F= F+q*g; |
---|
578 | DEBOUTLN(CERR, "new F= ", F); |
---|
579 | } |
---|
580 | else{ asnew.append(i.getItem()); }// just the identity |
---|
581 | } |
---|
582 | // factor F with minimal polys given in asnew: |
---|
583 | DEBOUTLN(CERR, "Factor F= ", F); |
---|
584 | DEBOUTLN(CERR, " with as= ", asnew); |
---|
585 | int success=0; |
---|
586 | CFFList factorlist= newcfactor(F,asnew, success); |
---|
587 | DEBOUTLN(CERR, " gives = ", factorlist); |
---|
588 | DEBOUTLN(CERR, "One= ", One); |
---|
589 | DEBOUTLN(CERR, "Two= ", Two); |
---|
590 | |
---|
591 | // Transform back: |
---|
592 | for ( CFFListIterator k=factorlist; k.hasItem(); k++) |
---|
593 | { |
---|
594 | CanonicalForm factor= k.getItem().factor(); |
---|
595 | ii=One; |
---|
596 | for (i=Two; i.hasItem(); i++) |
---|
597 | { |
---|
598 | DEBOUTLN(CERR, "Mapping ", i.getItem()); |
---|
599 | DEBOUTLN(CERR, " to ", ii.getItem()); |
---|
600 | DEBOUTLN(CERR, " in ", factor); |
---|
601 | divrem(factor,i.getItem(),q,r); r=factor -q*i.getItem(); |
---|
602 | DEBOUTLN(CERR, "q= ", q); DEBOUTLN(CERR, "r= ", r); |
---|
603 | factor= ii.getItem()*q +r; // |
---|
604 | ii++; |
---|
605 | } |
---|
606 | Output.append(CFFactor(factor,k.getItem().exp())); |
---|
607 | } |
---|
608 | |
---|
609 | return Output; |
---|
610 | } |
---|
611 | |
---|
612 | |
---|
613 | // 1) prepares data |
---|
614 | // 2) for char=p we distinguish 3 cases: |
---|
615 | // no transcendentals, seperable and inseperable extensions |
---|
616 | CFFList |
---|
617 | newfactoras( const CanonicalForm & f, const CFList & as, int &success) |
---|
618 | { |
---|
619 | Variable vf=f.mvar(); |
---|
620 | CFListIterator i; |
---|
621 | CFFListIterator jj; |
---|
622 | CFList reduceresult; |
---|
623 | CFFList result; |
---|
624 | |
---|
625 | success=1; |
---|
626 | DEBINCLEVEL(CERR, "newfactoras"); |
---|
627 | DEBOUTLN(CERR, "newfactoras called with f= ", f); |
---|
628 | DEBOUTLN(CERR, " content(f)= ", content(f)); |
---|
629 | DEBOUTLN(CERR, " as= ", as); |
---|
630 | DEBOUTLN(CERR, "newfactoras: cls(vf)= ", cls(vf)); |
---|
631 | DEBOUTLN(CERR, "newfactoras: cls(as.getLast())= ", cls(as.getLast())); |
---|
632 | DEBOUTLN(CERR, "newfactoras: degree(f,vf)= ", degree(f,vf)); |
---|
633 | |
---|
634 | // F1: [Test trivial cases] |
---|
635 | // 1) first trivial cases: |
---|
636 | if ( (cls(vf) <= cls(as.getLast())) || degree(f,vf)<=1 ){ |
---|
637 | // ||( (as.length()==1) && (degree(f,vf)==3) && (degree(as.getFirst()==2)) ) |
---|
638 | DEBDECLEVEL(CERR,"newfactoras"); |
---|
639 | return CFFList(CFFactor(f,1)); |
---|
640 | } |
---|
641 | |
---|
642 | // 2) List of variables: |
---|
643 | // 2a) Setup list of those polys in AS having degree(AS[i], AS[i].mvar()) > 1 |
---|
644 | // 2b) Setup variableordering |
---|
645 | CFList Astar; |
---|
646 | Variable x; |
---|
647 | CanonicalForm elem; |
---|
648 | Varlist ord, uord,oldord; |
---|
649 | for ( int ii=1; ii< level(vf) ; ii++ ) { uord.append(Variable(ii)); } |
---|
650 | oldord= uord; oldord.append(vf); |
---|
651 | |
---|
652 | for ( i=as; i.hasItem(); i++ ){ |
---|
653 | elem= i.getItem(); |
---|
654 | x= elem.mvar(); |
---|
655 | if ( degree(elem,x) > 1){ // otherwise it's not an extension |
---|
656 | Astar.append(elem); |
---|
657 | ord.append(x); |
---|
658 | } |
---|
659 | } |
---|
660 | uord= Difference(uord,ord); |
---|
661 | DEBOUTLN(CERR, "Astar is: ", Astar); |
---|
662 | DEBOUTLN(CERR, "ord is: ", ord); |
---|
663 | DEBOUTLN(CERR, "uord is: ", uord); |
---|
664 | |
---|
665 | // 3) second trivial cases: we already prooved irr. of f over no extensions |
---|
666 | if ( Astar.length() == 0 ){ |
---|
667 | DEBDECLEVEL(CERR,"newfactoras"); |
---|
668 | return CFFList(CFFactor(f,1)); |
---|
669 | } |
---|
670 | |
---|
671 | // 4) Try to obtain a partial factorization using prop2 and prop3 |
---|
672 | // Use with caution! We have to proof these propositions first! |
---|
673 | // Not yet implemented |
---|
674 | |
---|
675 | // 5) Look if elements in uord actually occure in any of the minimal |
---|
676 | // polynomials. If no element of uord occures in any of the minimal |
---|
677 | // polynomials, we don't have transzendentals. |
---|
678 | Varlist newuord=Var_is_in_AS(uord,Astar); |
---|
679 | DEBOUTLN(CERR, "newuord is: ", newuord); |
---|
680 | |
---|
681 | CFFList Factorlist; |
---|
682 | Varlist gcdord= Union(ord,newuord); gcdord.append(f.mvar()); |
---|
683 | // This is for now. we need alg_sqrfree implemented! |
---|
684 | CanonicalForm Fgcd; |
---|
685 | Fgcd= alg_gcd(f,f.deriv(),Astar); |
---|
686 | if ( Fgcd == 0 ) DEBOUTMSG(CERR, "WARNING: p'th root ?"); |
---|
687 | if (( degree(Fgcd, f.mvar()) > 0) && (!(f.deriv().isZero())) ){ |
---|
688 | DEBOUTLN(CERR, "Nontrivial GCD found of ", f); |
---|
689 | CanonicalForm Ggcd= divide(f, Fgcd,Astar); |
---|
690 | DEBOUTLN(CERR, " split into ", Fgcd); |
---|
691 | DEBOUTLN(CERR, " and ", Ggcd); |
---|
692 | Fgcd= pp(Fgcd); Ggcd= pp(Ggcd); |
---|
693 | DEBDECLEVEL(CERR,"newfactoras"); |
---|
694 | return myUnion(newfactoras(Fgcd,as,success) , newfactoras(Ggcd,as,success)); |
---|
695 | } |
---|
696 | if ( getCharacteristic() > 0 ){ |
---|
697 | |
---|
698 | // First look for extension! |
---|
699 | IntList degreelist; |
---|
700 | Variable vminpoly; |
---|
701 | for (i=Astar; i.hasItem(); i++){degreelist.append(degree(i.getItem()));} |
---|
702 | int extdeg= getextension(degreelist, degree(f)); |
---|
703 | DEBOUTLN(CERR, "Extension needed of degree ", extdeg); |
---|
704 | |
---|
705 | // Now the real stuff! |
---|
706 | if ( newuord.length() == 0 ){ // no transzendentals |
---|
707 | DEBOUTMSG(CERR, "No transzendentals!"); |
---|
708 | if ( extdeg > 1 ){ |
---|
709 | CanonicalForm MIPO= generate_mipo( extdeg, vminpoly); |
---|
710 | DEBOUTLN(CERR, "Minpoly produced ", MIPO); |
---|
711 | vminpoly= rootOf(MIPO); |
---|
712 | } |
---|
713 | Factorlist= alg_factor(f, Astar, vminpoly, oldord, as); |
---|
714 | DEBDECLEVEL(CERR,"newfactoras"); |
---|
715 | return Factorlist; |
---|
716 | } |
---|
717 | else if ( inseperable(Astar) > 0 ){ // Look if extensions are seperable |
---|
718 | // a) Use Endler |
---|
719 | DEBOUTMSG(CERR, "Inseperable extensions! Using Endler!"); |
---|
720 | CFFList templist= endler(f,Astar, newuord); |
---|
721 | DEBOUTLN(CERR, "Endler gives: ", templist); |
---|
722 | return templist; |
---|
723 | } |
---|
724 | else{ // we are on the save side: Use trager |
---|
725 | DEBOUTMSG(CERR, "Only seperable extensions!"); |
---|
726 | if (extdeg > 1 ){ |
---|
727 | CanonicalForm MIPO=generate_mipo(extdeg, vminpoly ); |
---|
728 | vminpoly= rootOf(MIPO); |
---|
729 | DEBOUTLN(CERR, "Minpoly generated: ", MIPO); |
---|
730 | DEBOUTLN(CERR, "vminpoly= ", vminpoly); |
---|
731 | DEBOUTLN(CERR, "degree(vminpoly)= ", degree(vminpoly)); |
---|
732 | } |
---|
733 | Factorlist= alg_factor(f, Astar, vminpoly, oldord, as); |
---|
734 | DEBDECLEVEL(CERR,"newfactoras"); |
---|
735 | return Factorlist; |
---|
736 | } |
---|
737 | } |
---|
738 | else{ // char=0 apply trager directly |
---|
739 | DEBOUTMSG(CERR, "Char=0! Apply Trager!"); |
---|
740 | Variable vminpoly; |
---|
741 | Factorlist= alg_factor(f, Astar, vminpoly, oldord, as); |
---|
742 | DEBDECLEVEL(CERR,"newfactoras"); |
---|
743 | return Factorlist; |
---|
744 | } |
---|
745 | |
---|
746 | DEBDECLEVEL(CERR,"newfactoras"); |
---|
747 | return CFFList(CFFactor(f,1)); |
---|
748 | } |
---|
749 | |
---|
750 | CFFList |
---|
751 | newcfactor(const CanonicalForm & f, const CFList & as, int & success ) |
---|
752 | { |
---|
753 | Off(SW_RATIONAL); |
---|
754 | CFFList Output, output, Factors=Factorize(f); |
---|
755 | On(SW_RATIONAL); |
---|
756 | Factors.removeFirst(); |
---|
757 | |
---|
758 | if ( as.length() == 0 ){ success=1; return Factors;} |
---|
759 | if ( cls(f) <= cls(as.getLast()) ) { success=1; return Factors;} |
---|
760 | |
---|
761 | success=1; |
---|
762 | for ( CFFListIterator i=Factors; i.hasItem(); i++ ) |
---|
763 | { |
---|
764 | output=newfactoras(i.getItem().factor(),as, success); |
---|
765 | for ( CFFListIterator j=output; j.hasItem(); j++) |
---|
766 | Output = myappend(Output,CFFactor(j.getItem().factor(),j.getItem().exp()*i.getItem().exp())); |
---|
767 | } |
---|
768 | return Output; |
---|
769 | } |
---|