1 | /////////////////////////////////////////////////////////////////////////////// |
---|
2 | static const char * errmsg = "\nYou found a bug!\nPlease inform singular@mathematik.uni-kl.de\nPlease include above information and your input (the ideal/polynomial and characteristic) in your bug-report.\nThank you."; |
---|
3 | /////////////////////////////////////////////////////////////////////////////// |
---|
4 | // FACTORY - Includes |
---|
5 | #include <factory.h> |
---|
6 | #ifndef NOSTREAMIO |
---|
7 | #ifdef HAVE_IOSTREAM |
---|
8 | #include <iostream> |
---|
9 | #define CERR std::cerr |
---|
10 | #define CIN std::cin |
---|
11 | #elif defined(HAVE_IOSTREAM_H) |
---|
12 | #include <iostream.h> |
---|
13 | #define CERR cerr |
---|
14 | #define CIN cin |
---|
15 | #endif |
---|
16 | #endif |
---|
17 | // Factor - Includes |
---|
18 | #include "tmpl_inst.h" |
---|
19 | #include "SqrFree.h" |
---|
20 | #include "helpstuff.h" |
---|
21 | #include "MVMultiHensel.h" |
---|
22 | #include "Truefactor.h" |
---|
23 | #include "homogfactor.h" |
---|
24 | #include "interrupt.h" |
---|
25 | // some CC's need this: |
---|
26 | #include "Factor.h" |
---|
27 | |
---|
28 | #include "alg_factor.h" |
---|
29 | void out_cf(char *s1,const CanonicalForm &f,char *s2); |
---|
30 | void out_cff(CFFList &L); |
---|
31 | |
---|
32 | |
---|
33 | #ifdef FACTORDEBUG |
---|
34 | # define DEBUGOUTPUT |
---|
35 | #else |
---|
36 | # undef DEBUGOUTPUT |
---|
37 | #endif |
---|
38 | |
---|
39 | #include <libfac/factor/debug.h> |
---|
40 | #include "timing.h" |
---|
41 | TIMING_DEFINE_PRINT(factorize_time) |
---|
42 | TIMING_DEFINE_PRINT(sqrfree_time) |
---|
43 | TIMING_DEFINE_PRINT(discr_time) |
---|
44 | TIMING_DEFINE_PRINT(evaluate_time) |
---|
45 | TIMING_DEFINE_PRINT(hensel_time) |
---|
46 | TIMING_DEFINE_PRINT(truefactor_time) |
---|
47 | |
---|
48 | /* |
---|
49 | * a wrapper for factorize over algebraic extensions: |
---|
50 | * does a sanity check and, if nec., a conversion |
---|
51 | * before calling factorize(f,alpha) |
---|
52 | * ( in factorize, alpha.level() must be < 0 ) |
---|
53 | */ |
---|
54 | CFFList factorize2 ( const CanonicalForm & f, |
---|
55 | const Variable & alpha, const CanonicalForm & mipo ) |
---|
56 | { |
---|
57 | if (alpha.level() <0) |
---|
58 | { |
---|
59 | return factorize(f,alpha); |
---|
60 | } |
---|
61 | else |
---|
62 | { |
---|
63 | bool repl=(f.mvar() != alpha); |
---|
64 | //out_cf("f2 - factor:",f,"\n"); |
---|
65 | //out_cf("f2 - ext:",alpha,"\n"); |
---|
66 | //out_cf("f2 - mipo:",mipo,"\n"); |
---|
67 | Variable X=rootOf(mipo); |
---|
68 | CanonicalForm F=f; |
---|
69 | if (repl) F=replacevar(f,alpha,X); |
---|
70 | //out_cf("call - factor:",F,"\n"); |
---|
71 | //out_cf("call - ext:",X,"\n"); |
---|
72 | //out_cf("call - mipo:",getMipo(X,'A'),"\n"); |
---|
73 | CFFList L=factorize(F,X); |
---|
74 | CFFListIterator i=L; |
---|
75 | if (repl) |
---|
76 | { |
---|
77 | CFFList Outputlist; |
---|
78 | for(;i.hasItem(); i++ ) |
---|
79 | { |
---|
80 | Outputlist.append(CFFactor( |
---|
81 | replacevar(i.getItem().factor(),X,alpha), |
---|
82 | i.getItem().exp())); |
---|
83 | } |
---|
84 | return Outputlist; |
---|
85 | } |
---|
86 | else return L; |
---|
87 | } |
---|
88 | } |
---|
89 | /////////////////////////////////////////////////////////////// |
---|
90 | // Choose a main variable if the user didn`t wish a // |
---|
91 | // special one. Returns level of main variable. // |
---|
92 | /////////////////////////////////////////////////////////////// |
---|
93 | static int |
---|
94 | choose_main_variable( const CanonicalForm & f, int Mainvar=0){ |
---|
95 | CanonicalForm remlc, newlc; |
---|
96 | int n= level(f), mainvar= Mainvar; |
---|
97 | |
---|
98 | if (mainvar != 0) return mainvar ; // We force use of the wished mainvar |
---|
99 | remlc= LC(f,n); mainvar = n; |
---|
100 | if ( totaldegree(remlc)==0 ){ remlc=f.genOne() ; } |
---|
101 | DEBOUTLN(CERR, "remlc= " , remlc); |
---|
102 | for ( int i=n-1; i>=1; i-- ) |
---|
103 | { |
---|
104 | newlc= LC(f,i); |
---|
105 | if ( totaldegree(newlc)==0 ){ newlc=f.genOne() ; } |
---|
106 | DEBOUTLN(CERR, "newlc= " , newlc); |
---|
107 | if ( (remlc.isOne()) && (newlc.isOne()) ){ // take care of the degrees |
---|
108 | if ( degree(f,i) < degree(f,mainvar) ){ |
---|
109 | remlc= newlc; |
---|
110 | mainvar= i; |
---|
111 | } |
---|
112 | } |
---|
113 | else if ( (! remlc.isOne() ) && ( newlc.isOne() ) ){ |
---|
114 | remlc= newlc; |
---|
115 | mainvar= i; |
---|
116 | } |
---|
117 | } |
---|
118 | return mainvar; |
---|
119 | } |
---|
120 | |
---|
121 | /////////////////////////////////////////////////////////////// |
---|
122 | // Check if the derivative is nonzero for oldmainvar. // |
---|
123 | // Returns the level of the choosen main variable. // |
---|
124 | /////////////////////////////////////////////////////////////// |
---|
125 | static int |
---|
126 | necessary_condition( const CanonicalForm & F, int oldmainvar){ |
---|
127 | CanonicalForm g; |
---|
128 | int n=level(F); |
---|
129 | |
---|
130 | g= swapvar(F,oldmainvar,n); |
---|
131 | g= g.deriv(); |
---|
132 | if ( g.isZero() ) |
---|
133 | { |
---|
134 | for ( int i=n; i>=1; i-- ) |
---|
135 | { |
---|
136 | g= swapvar(F,i,n); |
---|
137 | g= g.deriv(); |
---|
138 | if ( ! g.isZero() ) return i; |
---|
139 | } |
---|
140 | } |
---|
141 | return oldmainvar; |
---|
142 | } |
---|
143 | |
---|
144 | /////////////////////////////////////////////////////////////// |
---|
145 | // Make F monic. Return monic polynomial. // |
---|
146 | /////////////////////////////////////////////////////////////// |
---|
147 | static CanonicalForm |
---|
148 | make_monic( const CanonicalForm & F, const CanonicalForm & lt) |
---|
149 | { |
---|
150 | CanonicalForm intermediatpoly,f; |
---|
151 | Variable x(level(F)); |
---|
152 | |
---|
153 | if ( degree(lt) == 0 ) f= 1/lt * F ; |
---|
154 | else |
---|
155 | { |
---|
156 | intermediatpoly= power(lt,degree(F)-1); |
---|
157 | for ( int i=0; i<=degree(F); i++ ) |
---|
158 | if ( ! F[i].isZero()) |
---|
159 | f+= (F[i] * intermediatpoly*power(x,i))/power(lt,i); |
---|
160 | } |
---|
161 | return f; |
---|
162 | } |
---|
163 | |
---|
164 | /////////////////////////////////////////////////////////////// |
---|
165 | // Decide whether num/denum (num,denum both from the // |
---|
166 | // FiniteFielddomain) lies in the RationalDomain. // |
---|
167 | // If false, return num/denum else return the zero poly from // |
---|
168 | // the FiniteFielddomain. // |
---|
169 | /////////////////////////////////////////////////////////////// |
---|
170 | static CanonicalForm |
---|
171 | is_rational( const CanonicalForm & num, const CanonicalForm & denum ){ |
---|
172 | CanonicalForm a, b; |
---|
173 | int retvalue; |
---|
174 | |
---|
175 | retvalue= mydivremt(num,denum,a,b); |
---|
176 | if ( retvalue && b == num.genZero() ) // num/denum from FFdomain |
---|
177 | return a; |
---|
178 | else // num/denum is rational |
---|
179 | return num.genZero(); |
---|
180 | } |
---|
181 | |
---|
182 | /////////////////////////////////////////////////////////////// |
---|
183 | // lt_is_product returns 1 iff lt is a product, 0 iff lt is // |
---|
184 | // a sum. // |
---|
185 | /////////////////////////////////////////////////////////////// |
---|
186 | static int |
---|
187 | lt_is_product( const CanonicalForm & lt ){ |
---|
188 | CFList result; |
---|
189 | |
---|
190 | result= get_Terms(lt); |
---|
191 | if ( result.length() > 1 ) return 0; |
---|
192 | else return 1; |
---|
193 | } |
---|
194 | |
---|
195 | /////////////////////////////////////////////////////////////// |
---|
196 | // Reverse the make_monic transformation. // |
---|
197 | // Return the list of factors. // |
---|
198 | /////////////////////////////////////////////////////////////// |
---|
199 | static CFFList |
---|
200 | not_monic( const CFFList & TheList, const CanonicalForm & ltt, const CanonicalForm & F, int levelF) |
---|
201 | { |
---|
202 | CFFList Returnlist,IntermediateList; |
---|
203 | CFFListIterator i; |
---|
204 | CanonicalForm intermediate,lt= ltt,savelc; |
---|
205 | CanonicalForm numerator,denumerator,test,a,b; |
---|
206 | Variable x(level(F)); |
---|
207 | int test1; |
---|
208 | |
---|
209 | if ( lt.isOne() ) return TheList; // the poly was already monic |
---|
210 | if ( TheList.length() <= 1 ) // only one factor to substitute back |
---|
211 | { |
---|
212 | if ( totaldegree(lt) == 0 ) // lt is type numeric |
---|
213 | Returnlist.append( CFFactor(lt*TheList.getFirst().factor(), |
---|
214 | TheList.getFirst().exp()) ); |
---|
215 | else |
---|
216 | { |
---|
217 | intermediate = F(x*lt, levelF)/power(lt,degree(F,levelF)-1); |
---|
218 | Returnlist.append(CFFactor(intermediate,TheList.getFirst().exp())); |
---|
219 | } |
---|
220 | } |
---|
221 | else // more then one factor |
---|
222 | { |
---|
223 | IntermediateList= TheList; |
---|
224 | if ( totaldegree(lt) == 0 ){ // lt is type numeric;(SqrFree-use, see above) |
---|
225 | Returnlist.append( CFFactor(lt*IntermediateList.getFirst().factor() |
---|
226 | , IntermediateList.getFirst().exp()) ); |
---|
227 | IntermediateList.removeFirst(); |
---|
228 | Returnlist= Union(Returnlist,IntermediateList); |
---|
229 | } |
---|
230 | else // lt is a) a product or b) a sum of terms |
---|
231 | { |
---|
232 | if ( lt_is_product(lt) ) // case a) |
---|
233 | { |
---|
234 | DEBOUTLN(CERR, "lt_is_product: ", lt); |
---|
235 | savelc= content(lt) ; // can we simplify to savelc= lc(lt); ? |
---|
236 | while ( getNumVars(savelc) != 0 ) |
---|
237 | savelc= content(savelc); |
---|
238 | for ( i=TheList; i.hasItem();i++ ) |
---|
239 | { |
---|
240 | numerator= i.getItem().factor(); |
---|
241 | numerator= numerator(x*lt,levelF); // x <- x*lt |
---|
242 | denumerator= power(lt,degree(F,levelF)-1); // == lt^(1-degree(F,x) |
---|
243 | while (numerator.genZero() == is_rational(numerator, denumerator)) |
---|
244 | numerator*= lt; |
---|
245 | intermediate= is_rational(numerator,denumerator); |
---|
246 | |
---|
247 | Returnlist.append( CFFactor(lc(content(intermediate))*intermediate/content(intermediate), i.getItem().exp() ) ); |
---|
248 | } |
---|
249 | // Now we add a test. If product(factors)/F is a multiple of |
---|
250 | // savelc, we have to add 1/multiplicity to the factors |
---|
251 | IntermediateList= Returnlist; |
---|
252 | intermediate= 1; |
---|
253 | for ( CFFListIterator j=IntermediateList; j.hasItem(); j++) |
---|
254 | intermediate*= j.getItem().factor(); |
---|
255 | test1= mydivremt( intermediate,F,a,b); |
---|
256 | if ( test1 && b == intermediate.genZero() ) // Yupp! |
---|
257 | { |
---|
258 | IntermediateList.append(CFFactor(1/a,1)); |
---|
259 | Returnlist= IntermediateList; |
---|
260 | } |
---|
261 | else { Returnlist= IntermediateList; } |
---|
262 | } |
---|
263 | else // case b) |
---|
264 | { |
---|
265 | DEBOUTLN(CERR, "lt_is_sum: ", lt); |
---|
266 | CanonicalForm save_denumerator= 1; |
---|
267 | for ( i=TheList; i.hasItem(); i++ ) |
---|
268 | { |
---|
269 | numerator= i.getItem().factor(); |
---|
270 | numerator= numerator(x*lt,levelF); // x <- x*lt |
---|
271 | denumerator= power(lt,degree(numerator,levelF)); // == lt^(-degree(numerator,x) |
---|
272 | test= content(numerator,x); |
---|
273 | test1= mydivremt(denumerator,test,a,b); |
---|
274 | if ( test1 && b == numerator.genZero() ) // Yupp! |
---|
275 | { |
---|
276 | save_denumerator*= a; |
---|
277 | Returnlist.append(CFFactor(numerator/test ,1)); |
---|
278 | } |
---|
279 | else |
---|
280 | { |
---|
281 | factoryError("libfac: ERROR: not_monic1: case lt is a sum."); |
---|
282 | } |
---|
283 | } |
---|
284 | // Now we add a test if we did the right thing: |
---|
285 | // save_denumerator should be a multiple of the leading coeff |
---|
286 | test1= mydivremt(save_denumerator,lt,a,b); |
---|
287 | if ( test1 && b == save_denumerator.genZero() ) // Yupp! |
---|
288 | // We have to multiply one of the factors with |
---|
289 | // the multiplicity of the save_denumerator <-> lc |
---|
290 | // the following will do what we want |
---|
291 | Returnlist= myUnion( CFFList(CFFactor(1/a,1)),Returnlist) ; |
---|
292 | else |
---|
293 | { |
---|
294 | factoryError("libfac: ERROR: not_monic2: case lt is a sum."); |
---|
295 | } |
---|
296 | } |
---|
297 | } |
---|
298 | } |
---|
299 | DEBOUTLN(CERR,"Returnlist: ", Returnlist); |
---|
300 | return Returnlist; |
---|
301 | } |
---|
302 | |
---|
303 | /////////////////////////////////////////////////////////////// |
---|
304 | // Substitute the (Variable,Value)-Pair(s) from Substitution-// |
---|
305 | // list into the polynomial F. Returns the resulting poly. // |
---|
306 | /////////////////////////////////////////////////////////////// |
---|
307 | static CanonicalForm |
---|
308 | substitutePoly( const CanonicalForm & F, const SFormList & Substitutionlist){ |
---|
309 | CanonicalForm f= F; |
---|
310 | |
---|
311 | for ( SFormListIterator i=Substitutionlist; i.hasItem(); i++ ) |
---|
312 | f= f(i.getItem().exp(),level(i.getItem().factor())); |
---|
313 | return f; |
---|
314 | } |
---|
315 | |
---|
316 | /////////////////////////////////////////////////////////////// |
---|
317 | // Find specialization values for the poly F. Returns 0 if // |
---|
318 | // procedure failed, 1 otherwise. On success Substitutionlist// |
---|
319 | // holds (Variable,Value)-pairs. On failure we only have a // |
---|
320 | // partitial list. // |
---|
321 | /////////////////////////////////////////////////////////////// |
---|
322 | // *** This is the version with extensions *** // |
---|
323 | /////////////////////////////////////////////////////////////// |
---|
324 | |
---|
325 | /////////////////////////////////////////////////////////////// |
---|
326 | // is CF g ok? // |
---|
327 | /////////////////////////////////////////////////////////////// |
---|
328 | static int |
---|
329 | various_tests( const CanonicalForm & g, int deg, int vars_left) |
---|
330 | { |
---|
331 | CFMap m; |
---|
332 | |
---|
333 | if ( degree(g) == deg ) // degrees match |
---|
334 | if ( level(compress(g,m)) == (vars_left) ) // exactly one variable less |
---|
335 | if ( SqrFreeTest(g,1) ) // poly is sqrfree |
---|
336 | if ( gcd(g,g.deriv()).isOne() ) // Discriminante != 0 |
---|
337 | return 1; |
---|
338 | return 0; |
---|
339 | } |
---|
340 | |
---|
341 | /////////////////////////////////////////////////////////////// |
---|
342 | // specialize one variable over the given field. // |
---|
343 | /////////////////////////////////////////////////////////////// |
---|
344 | // substitutes in poly f of degree deg with former |
---|
345 | // former_nr_of_variables variables the variable nr_of_variable ; |
---|
346 | // this is done in the field of Char getCharacteristic() and |
---|
347 | // Extension given by Extgenerator. |
---|
348 | /////////////////////////////////////////////////////////////// |
---|
349 | static int |
---|
350 | specialize_variable( CanonicalForm & f, int deg, SFormList & Substitutionlist, int nr_of_variable, |
---|
351 | int former_nr_of_variables, CFGenerator & Extgenerator ){ |
---|
352 | CanonicalForm g; |
---|
353 | Variable x(nr_of_variable); |
---|
354 | |
---|
355 | DEBOUTLN(CERR, "specialize_variable: called with: ", f); |
---|
356 | for ( Extgenerator.reset(); Extgenerator.hasItems(); Extgenerator.next() ){ |
---|
357 | DEBOUTLN(CERR, " specialize_variable: trying: ", Extgenerator.item()); |
---|
358 | g= f( Extgenerator.item(), x ); |
---|
359 | DEBOUTLN(CERR, " specialize_variable: resulting g= ", g); |
---|
360 | if ( various_tests(g,deg,former_nr_of_variables - nr_of_variable ) ){ |
---|
361 | Substitutionlist.insert(SForm(x,Extgenerator.item())); // append (Var,value) pair |
---|
362 | f= g; |
---|
363 | return 1; |
---|
364 | } |
---|
365 | } |
---|
366 | return 0; |
---|
367 | } |
---|
368 | static int |
---|
369 | specialize_agvariable( CanonicalForm & f, int deg, SFormList & Substitutionlist, int nr_of_variable, |
---|
370 | int former_nr_of_variables, AlgExtGenerator & Extgenerator ){ |
---|
371 | CanonicalForm g; |
---|
372 | Variable x(nr_of_variable); |
---|
373 | |
---|
374 | DEBOUTLN(CERR, "specialize_variable: called with: ", f); |
---|
375 | for ( Extgenerator.reset(); Extgenerator.hasItems(); Extgenerator.next() ){ |
---|
376 | DEBOUTLN(CERR, " specialize_variable: trying: ", Extgenerator.item()); |
---|
377 | g= f( Extgenerator.item(), x ); |
---|
378 | DEBOUTLN(CERR, " specialize_variable: resulting g= ", g); |
---|
379 | if ( various_tests(g,deg,former_nr_of_variables - nr_of_variable ) ){ |
---|
380 | Substitutionlist.insert(SForm(x,Extgenerator.item())); // append (Var,value) pair |
---|
381 | f= g; |
---|
382 | return 1; |
---|
383 | } |
---|
384 | } |
---|
385 | return 0; |
---|
386 | } |
---|
387 | |
---|
388 | /////////////////////////////////////////////////////////////// |
---|
389 | // generate a minpoly of degree degree_of_Extension in the // |
---|
390 | // field getCharacteristik()^Extension. // |
---|
391 | /////////////////////////////////////////////////////////////// |
---|
392 | CanonicalForm |
---|
393 | generate_mipo( int degree_of_Extension , const Variable & Extension ){ |
---|
394 | FFRandom gen; |
---|
395 | if ( degree(Extension) > 0 ) GFRandom gen; |
---|
396 | else { |
---|
397 | if ( degree(Extension) == 0 ) FFRandom gen; |
---|
398 | else |
---|
399 | { |
---|
400 | factoryError("libfac: evaluate: Extension not inFF() or inGF() !"); |
---|
401 | } |
---|
402 | } |
---|
403 | return find_irreducible( degree_of_Extension, gen, Variable(1) ); |
---|
404 | } |
---|
405 | |
---|
406 | /////////////////////////////////////////////////////////////// |
---|
407 | // Try to find a specialization for f over the field of char // |
---|
408 | // f.getCharacteristic() and (possible) extension defined by // |
---|
409 | // the variable Extension . // |
---|
410 | // Returns 1 iff specialisation was found, 0 otherwise. // |
---|
411 | // If 0 is returned there are variables left to substitute. // |
---|
412 | // We check if Substitutionlist.length() > 0, i.e. we // |
---|
413 | // previously tried to find specialization values for some // |
---|
414 | // values. We take them and work with the resulting poly. // |
---|
415 | /////////////////////////////////////////////////////////////// |
---|
416 | static int |
---|
417 | try_specializePoly(const CanonicalForm & f, const Variable & Extension, int deg, SFormList & Substitutionlist, int ii,int j) |
---|
418 | { |
---|
419 | int ok,i= ii; |
---|
420 | CanonicalForm ff= f; |
---|
421 | |
---|
422 | if ( Substitutionlist.length() > 0 ){ // we formerly tried to specialize |
---|
423 | ff= substitutePoly(f,Substitutionlist); // substitute found values |
---|
424 | i= Substitutionlist.length() + 1; |
---|
425 | } |
---|
426 | |
---|
427 | if ( degree(Extension) > 0 ) |
---|
428 | { // working over Extensions |
---|
429 | DEBOUTLN(CERR, "try_specializePoly: working over Extensions: ", Extension); |
---|
430 | if (Extension.level() > 0) |
---|
431 | { |
---|
432 | // AlgExtGenerator g(Extension,minpoly ); |
---|
433 | // for ( int k=i ; k<j ; k++ ) // try to find specialization for all |
---|
434 | // { // variables (# = k ) beginning with the |
---|
435 | // // starting value i |
---|
436 | // ok= specialize_agvariable( ff, deg, Substitutionlist, k, j, g ); |
---|
437 | // if ( ! ok ) return 0; // we failed |
---|
438 | // } |
---|
439 | #ifndef NDEBUG |
---|
440 | //printf("libfac: try_specializePoly: extension level >0\n"); |
---|
441 | #endif |
---|
442 | return 0; // we failed |
---|
443 | } |
---|
444 | else |
---|
445 | { |
---|
446 | AlgExtGenerator g(Extension); |
---|
447 | for ( int k=i ; k<j ; k++ ) // try to find specialization for all |
---|
448 | { // variables (# = k ) beginning with the |
---|
449 | // starting value i |
---|
450 | ok= specialize_agvariable( ff, deg, Substitutionlist, k, j, g ); |
---|
451 | if ( ! ok ) return 0; // we failed |
---|
452 | } |
---|
453 | } |
---|
454 | } |
---|
455 | else{ // working over the ground-field |
---|
456 | FFGenerator g; |
---|
457 | DEBOUTMSG(CERR, "try_specializePoly: working over the ground-field."); |
---|
458 | for ( int k=i ; k<j ; k++ ){ |
---|
459 | ok= specialize_variable( ff, deg, Substitutionlist, k, j, g ); |
---|
460 | if ( ! ok ) return 0; // we failed |
---|
461 | } |
---|
462 | } |
---|
463 | return 1; |
---|
464 | } |
---|
465 | |
---|
466 | static int |
---|
467 | specializePoly(const CanonicalForm & f, Variable & Extension, int deg, SFormList & Substitutionlist, int i,int j){ |
---|
468 | Variable minpoly= Extension; |
---|
469 | int ok,extended= degree(Extension), working_over_extension; |
---|
470 | |
---|
471 | // Remember if we are working over an extension-field |
---|
472 | if ( extended >= 2 ) { working_over_extension = 1; } |
---|
473 | else { working_over_extension = 0; extended = 1; } |
---|
474 | // First try: |
---|
475 | ok = try_specializePoly(f,minpoly,deg,Substitutionlist,i,j); |
---|
476 | while ( ! ok ){ // we have to extend! |
---|
477 | extended+= 1; |
---|
478 | if ( ! working_over_extension ){ |
---|
479 | minpoly= rootOf(generate_mipo( extended,Extension )); |
---|
480 | Extension= minpoly; |
---|
481 | ok= try_specializePoly(f,minpoly,deg,Substitutionlist,i,j); |
---|
482 | } |
---|
483 | else |
---|
484 | { |
---|
485 | factoryError("libfac: spezializePoly ERROR: Working over given extension-field not yet implemented!"); |
---|
486 | return 0; |
---|
487 | } |
---|
488 | } |
---|
489 | return 1; |
---|
490 | } |
---|
491 | |
---|
492 | |
---|
493 | // This is a procedure to play with: lot's of parameters! |
---|
494 | // returns: 0 iff no success (possibly because Extension isn't great enough |
---|
495 | // >0 iff g (univariate) splits into n factors; |
---|
496 | // if n>0 BestEvaluationpoint contains the choice of values for the variables |
---|
497 | // |
---|
498 | // tries to find at least maxtries evaluation points |
---|
499 | // if g factored sametries into the same number of poly's the procedure stops |
---|
500 | // if we tried failtries evaluations not found valid, we stop. Perhaps |
---|
501 | // Extension isn't big enough! |
---|
502 | static int |
---|
503 | evaluate( int maxtries, int sametries, int failtries, const CanonicalForm &f , const Variable & Extension, const CanonicalForm &mipo, SFormList & BestEvaluationpoint, CFFList & BestFactorisation ){ |
---|
504 | int minfactors=degree(f),degf=degree(f),n=level(f.mvar())-1; |
---|
505 | SFormList minEvaluation; |
---|
506 | CFFList minFactorisation; |
---|
507 | int samefactors=0, failedfactor=0, tried=0; |
---|
508 | FFRandom gen; |
---|
509 | CFFList unilist; |
---|
510 | |
---|
511 | if ( degree(Extension) >0 ) GFRandom gen; |
---|
512 | else |
---|
513 | { |
---|
514 | if ( degree(Extension) == 0 ) FFRandom gen; |
---|
515 | else |
---|
516 | { |
---|
517 | factoryError("libfac: evaluate: Extension not inFF() or inGF() !"); |
---|
518 | } |
---|
519 | } |
---|
520 | REvaluation k(1,n,gen); |
---|
521 | k.nextpoint(); |
---|
522 | for ( int i=1; i<=maxtries ; i++) |
---|
523 | { |
---|
524 | // k.nextpoint(); |
---|
525 | SFormList Substitutionlist; |
---|
526 | for ( int j=1; j<=n; j++ ) |
---|
527 | Substitutionlist.insert(SForm(Variable(j),k[j])); |
---|
528 | k.nextpoint(); |
---|
529 | CanonicalForm g=substitutePoly(f,Substitutionlist); |
---|
530 | if ( various_tests(g, degf,1) ) |
---|
531 | { // found a valid point |
---|
532 | failedfactor = 0; tried += 1; |
---|
533 | if ( degree(Extension) == 0 ) |
---|
534 | unilist = factorize(g,1); // poly is sqr-free! |
---|
535 | else |
---|
536 | { |
---|
537 | unilist = factorize2(g,Extension,mipo); |
---|
538 | } |
---|
539 | if (unilist.length() <= minfactors ) |
---|
540 | { |
---|
541 | minfactors=unilist.length(); |
---|
542 | minEvaluation=Substitutionlist; |
---|
543 | minFactorisation=unilist; |
---|
544 | } |
---|
545 | else samefactors +=1; |
---|
546 | |
---|
547 | if (unilist.length() == 1 ) // wow! we found f is irreducible! |
---|
548 | { |
---|
549 | BestEvaluationpoint=minEvaluation; |
---|
550 | BestFactorisation=minFactorisation; |
---|
551 | return 1; |
---|
552 | } |
---|
553 | |
---|
554 | if ( samefactors >= sametries ) // now we stop ( maybe polynomial *has* |
---|
555 | // minfactors factors? ) |
---|
556 | { |
---|
557 | BestEvaluationpoint=minEvaluation; |
---|
558 | BestFactorisation=minFactorisation; |
---|
559 | return minfactors; |
---|
560 | } |
---|
561 | |
---|
562 | } |
---|
563 | else |
---|
564 | failedfactor += 1; |
---|
565 | |
---|
566 | if ( failedfactor >= failtries ) // now we stop ( perhaps Extension isn't |
---|
567 | // big enough ) |
---|
568 | { |
---|
569 | if ( tried == 0 ) |
---|
570 | return 0; |
---|
571 | else |
---|
572 | { |
---|
573 | BestEvaluationpoint=minEvaluation; |
---|
574 | BestFactorisation=minFactorisation; |
---|
575 | return minfactors; |
---|
576 | } |
---|
577 | } |
---|
578 | } |
---|
579 | BestEvaluationpoint=minEvaluation; |
---|
580 | BestFactorisation=minFactorisation; |
---|
581 | return minfactors; |
---|
582 | } |
---|
583 | |
---|
584 | /////////////////////////////////////////////////////////////// |
---|
585 | // A factorization routine for a sqrfree polynomial. // |
---|
586 | // Returns the list of factors. // |
---|
587 | /////////////////////////////////////////////////////////////// |
---|
588 | CFFList |
---|
589 | Factorized( const CanonicalForm & F, const CanonicalForm & alpha, int Mainvar) |
---|
590 | { |
---|
591 | CanonicalForm f,lt,ff,ffuni; |
---|
592 | Variable Extension=alpha.mvar(); |
---|
593 | CFFList Outputlist,UnivariateFactorlist,Outputlist2; |
---|
594 | SFormList Substitutionlist, Evaluationpoint; |
---|
595 | CFFactor copy; |
---|
596 | int mainvar=Mainvar,success,oldmainvar; |
---|
597 | CFMap m; |
---|
598 | |
---|
599 | // INTERRUPTHANDLER |
---|
600 | if ( interrupt_handle() ) return CFFList() ; |
---|
601 | // INTERRUPTHANDLER |
---|
602 | |
---|
603 | if (F.inCoeffDomain()) { return CFFList(CFFactor(F,1)); } |
---|
604 | if ( F.isUnivariate() ) // could have lost one Variable elsewhere |
---|
605 | { |
---|
606 | if ( degree(Extension) == 0 ) |
---|
607 | { |
---|
608 | TIMING_START(evaluate_time); |
---|
609 | Outputlist = factorize(F,1); // poly is sqr-free |
---|
610 | TIMING_END(evaluate_time); |
---|
611 | return Outputlist; |
---|
612 | } |
---|
613 | else |
---|
614 | { |
---|
615 | if (Extension.level()<0) |
---|
616 | DEBOUTLN(CERR, "Univ. Factorization over extension of degree ", |
---|
617 | degree(getMipo(Extension,'x')) ); |
---|
618 | else |
---|
619 | DEBOUTLN(CERR, "Univ. Factorization over extension of level ??", |
---|
620 | Extension.level()); |
---|
621 | TIMING_START(evaluate_time); |
---|
622 | Outputlist = factorize2(F,Extension,alpha); |
---|
623 | TIMING_END(evaluate_time); |
---|
624 | return Outputlist; |
---|
625 | } |
---|
626 | } |
---|
627 | |
---|
628 | if ( Mainvar ) oldmainvar=Mainvar; else oldmainvar=level(F); |
---|
629 | // First choose a main variable; this may be revisted in the next step |
---|
630 | mainvar = choose_main_variable(F); |
---|
631 | // Let`s look if @f/@mainvar is nonzero |
---|
632 | mainvar = necessary_condition(F,mainvar); |
---|
633 | // Now we have definetly choosen a main variable |
---|
634 | // swap poly such that the mainvar has highest level |
---|
635 | f=swapvar(F,mainvar,level(F)); |
---|
636 | |
---|
637 | // INTERRUPTHANDLER |
---|
638 | if ( interrupt_handle() ) return CFFList() ; |
---|
639 | // INTERRUPTHANDLER |
---|
640 | |
---|
641 | if ( oldmainvar != mainvar ){ |
---|
642 | DEBOUTSL(CERR); DEBOUT(CERR,"Swapped poly ", F); |
---|
643 | DEBOUT(CERR, " in ", f); DEBOUTNL(CERR); |
---|
644 | DEBOUTSL(CERR); DEBOUT(CERR,"Swapped ", oldmainvar ); |
---|
645 | DEBOUT(CERR, " <-- ", mainvar ); DEBOUT(CERR, " Mainvar= ", f.mvar()); |
---|
646 | DEBOUTNL(CERR); |
---|
647 | ff = f.deriv(); |
---|
648 | TIMING_START(discr_time); |
---|
649 | ffuni = gcd(f,ff); |
---|
650 | TIMING_END(discr_time); |
---|
651 | if ( !(ffuni.isOne()) ){ //discriminante nonzero: split poly |
---|
652 | DEBOUTLN(CERR,"Nontrivial GCD of f= ", f); |
---|
653 | DEBOUTLN(CERR," and @f= ", ff); |
---|
654 | DEBOUTLN(CERR," GCD(f,@f)= ", ffuni); |
---|
655 | ff=f/ffuni; |
---|
656 | CFFList Outputlist_a, Outputlist_b; |
---|
657 | Outputlist_a = Factorized(ff,alpha); |
---|
658 | DEBOUTLN(CERR, "Outputlist_a = ", Outputlist_a); |
---|
659 | Outputlist_b = Factorized(ffuni,alpha); |
---|
660 | DEBOUTLN(CERR, "Outputlist_b = ", Outputlist_b); |
---|
661 | Outputlist = myUnion(Outputlist_a, Outputlist_b); |
---|
662 | // have to back-swapvar the factors.... |
---|
663 | for ( CFFListIterator i=Outputlist; i.hasItem(); i++ ){ |
---|
664 | copy=i.getItem(); |
---|
665 | Outputlist2.append(CFFactor(swapvar(copy.factor(),oldmainvar,mainvar),copy.exp())); |
---|
666 | } |
---|
667 | DEBOUTLN(CERR, "Outputlist2 (a+b swapped) (to return) = ", Outputlist2); |
---|
668 | return Outputlist2; |
---|
669 | } |
---|
670 | } |
---|
671 | |
---|
672 | // Check special cases |
---|
673 | for ( int i=1; i<=level(F); i++) |
---|
674 | { |
---|
675 | if ( degree(f,Variable(i) ) == 1 ) |
---|
676 | //test trivial case; only true iff F is primitiv w.r.t every variable; else check (if F=ax+b) gcd(a,b)=1 ? |
---|
677 | { |
---|
678 | DEBOUTLN(CERR, "Trivial case: ", F); |
---|
679 | Outputlist.append(CFFactor(F,1)); |
---|
680 | return Outputlist; |
---|
681 | } |
---|
682 | } |
---|
683 | |
---|
684 | // Look at the leading term: |
---|
685 | lt = LC(f); |
---|
686 | DEBOUTLN(CERR, "Leading term: ", lt); |
---|
687 | //if ( lt != f.genOne() ) |
---|
688 | if ( !lt.isOne() ) |
---|
689 | { |
---|
690 | // make the polynomial monic in the main variable |
---|
691 | ff = make_monic(f,lt); ffuni = ff; |
---|
692 | DEBOUTLN(CERR, "make_monic returned: ", ff); |
---|
693 | } |
---|
694 | else{ ff= f; ffuni= ff; } |
---|
695 | |
---|
696 | TIMING_START(evaluate_time); |
---|
697 | success=evaluate(min(10,max(degree(ff), 5)), min(degree(ff),3), min(degree(ff),3), ff, Extension, alpha, Substitutionlist,UnivariateFactorlist); |
---|
698 | DEBOUTLN(CERR, "Returned from evaluate: success: ", success); |
---|
699 | for ( SFormListIterator ii=Substitutionlist; ii.hasItem(); ii++ ) |
---|
700 | { |
---|
701 | DEBOUTLN(CERR, "Substituting ", ii.getItem().factor()); |
---|
702 | DEBOUTLN(CERR, " with value: ", ii.getItem().exp()); |
---|
703 | } |
---|
704 | |
---|
705 | if ( success==0 ) // evalute wasn't successfull |
---|
706 | { |
---|
707 | success= specializePoly(ffuni,Extension,degree(ff),Substitutionlist,1,getNumVars(compress(ff,m))); |
---|
708 | DEBOUTLN(CERR, "Returned from specializePoly: success: ", success); |
---|
709 | if (success == 0 ) // No spezialisation could be found |
---|
710 | { |
---|
711 | factoryError("libfac: Factorize: ERROR: Not able to find a valid specialization!"); |
---|
712 | Outputlist.append(CFFactor(F,1)); |
---|
713 | return Outputlist; |
---|
714 | } |
---|
715 | |
---|
716 | // INTERRUPTHANDLER |
---|
717 | if ( interrupt_handle() ) return CFFList() ; |
---|
718 | // INTERRUPTHANDLER |
---|
719 | |
---|
720 | ffuni = substitutePoly(ff,Substitutionlist); |
---|
721 | // We now have an univariat poly; factorize that |
---|
722 | if ( degree(Extension) == 0 ) |
---|
723 | { |
---|
724 | DEBOUTMSG(CERR, "Univ. Factorization over the ground field"); |
---|
725 | UnivariateFactorlist = factorize(ffuni,1); // univ. poly is sqr-free! |
---|
726 | } |
---|
727 | else |
---|
728 | { |
---|
729 | DEBOUTLN(CERR, "Univ. Factorization over extension of degree ", |
---|
730 | degree(getMipo(Extension,'x')) ); |
---|
731 | UnivariateFactorlist = factorize2(ffuni,Extension,alpha); |
---|
732 | } |
---|
733 | } |
---|
734 | else |
---|
735 | { |
---|
736 | ffuni = substitutePoly(ff,Substitutionlist); |
---|
737 | } |
---|
738 | TIMING_END(evaluate_time); |
---|
739 | if (UnivariateFactorlist.length() == 1) |
---|
740 | { // poly is irreduzibel |
---|
741 | DEBOUTLN(CERR, "Univ. poly is irreduzible: ", UnivariateFactorlist); |
---|
742 | Outputlist.append(CFFactor(F,1)); |
---|
743 | return Outputlist; |
---|
744 | } |
---|
745 | else |
---|
746 | { // we have factors |
---|
747 | DEBOUTSL(CERR); |
---|
748 | DEBOUT(CERR, "Univariate poly has " , UnivariateFactorlist.length()); |
---|
749 | DEBOUT(CERR, " factors: ", ffuni); |
---|
750 | DEBOUT(CERR, " = ", UnivariateFactorlist); DEBOUTNL(CERR); |
---|
751 | |
---|
752 | // INTERRUPTHANDLER |
---|
753 | if ( interrupt_handle() ) return CFFList() ; |
---|
754 | // INTERRUPTHANDLER |
---|
755 | |
---|
756 | TIMING_START(hensel_time); |
---|
757 | Outputlist = MultiHensel(ff,UnivariateFactorlist,Substitutionlist, alpha); |
---|
758 | DEBOUTLN(CERR, "Outputlist after MultiHensel: ", Outputlist); |
---|
759 | TIMING_END(hensel_time); |
---|
760 | |
---|
761 | // INTERRUPTHANDLER |
---|
762 | if ( interrupt_handle() ) return CFFList() ; |
---|
763 | // INTERRUPTHANDLER |
---|
764 | |
---|
765 | TIMING_START(truefactor_time); |
---|
766 | Outputlist = Truefactors(ff, level(ff), Substitutionlist, Outputlist); |
---|
767 | DEBOUTLN(CERR, "Outputlist after Truefactors: ", Outputlist); |
---|
768 | TIMING_END(truefactor_time); |
---|
769 | |
---|
770 | // INTERRUPTHANDLER |
---|
771 | if ( interrupt_handle() ) return CFFList() ; |
---|
772 | // INTERRUPTHANDLER |
---|
773 | |
---|
774 | //if ( lt != f.genOne() ) |
---|
775 | if ( !lt.isOne() ) |
---|
776 | { |
---|
777 | Outputlist = not_monic(Outputlist,lt,ff,level(ff)); |
---|
778 | DEBOUTLN(CERR, "not_monic returned: ", Outputlist); |
---|
779 | } |
---|
780 | |
---|
781 | // have to back-swapvar the factors.... |
---|
782 | for ( CFFListIterator i=Outputlist; i.hasItem(); i++ ) |
---|
783 | { |
---|
784 | copy=i.getItem(); |
---|
785 | Outputlist2.append(CFFactor(swapvar(copy.factor(),oldmainvar,mainvar),copy.exp())); |
---|
786 | } |
---|
787 | |
---|
788 | return Outputlist2; |
---|
789 | } |
---|
790 | } |
---|
791 | |
---|
792 | int cmpCF( const CFFactor & f, const CFFactor & g ); |
---|
793 | |
---|
794 | /////////////////////////////////////////////////////////////// |
---|
795 | // The user front-end for a uni/multivariate factorization // |
---|
796 | // routine. F needs not to be SqrFree. // |
---|
797 | // Option of * choosing a main variable (n.y.i.) // |
---|
798 | // * choosing an algebraic extension (n.y.u.) // |
---|
799 | // * ensuring poly is sqrfree (n.y.i.) // |
---|
800 | // use Factorize(F,alpha,is_SqrFree) if not over Zp[x]/Q[x] // |
---|
801 | /////////////////////////////////////////////////////////////// |
---|
802 | int find_mvar(const CanonicalForm &f); |
---|
803 | CFFList Factorize(const CanonicalForm & F, int is_SqrFree ) |
---|
804 | { |
---|
805 | //out_cf("Factorize ",F,"\n"); |
---|
806 | CFFList Outputlist,SqrFreeList,Intermediatelist,Outputlist2; |
---|
807 | ListIterator<CFFactor> i,j; |
---|
808 | CanonicalForm g=1,unit=1,r=1; |
---|
809 | Variable minpoly; // dummy |
---|
810 | int exp; |
---|
811 | CFMap m; |
---|
812 | |
---|
813 | // INTERRUPTHANDLER |
---|
814 | if ( interrupt_handle() ) return CFFList() ; |
---|
815 | // INTERRUPTHANDLER |
---|
816 | |
---|
817 | DEBINCLEVEL(CERR, "Factorize"); |
---|
818 | DEBOUTLN(CERR, "Called with F= ", F); |
---|
819 | if (( getCharacteristic() == 0 ) || (F.isUnivariate())) |
---|
820 | { // char == 0 |
---|
821 | TIMING_START(factorize_time); |
---|
822 | //CERR << "Factoring in char=0 of " << F << " = " << Outputlist << "\n"; |
---|
823 | Outputlist= factorize(F); |
---|
824 | // Factorization in char=0 doesn't sometimes return at least two elements!!! |
---|
825 | if ( getNumVars(Outputlist.getFirst().factor()) != 0 ) |
---|
826 | Outputlist.insert(CFFactor(1,1)); |
---|
827 | //CERR << " Factorize in char=0: returning with: " << Outputlist << "\n"; |
---|
828 | TIMING_END(factorize_time); |
---|
829 | DEBDECLEVEL(CERR, "Factorize"); |
---|
830 | TIMING_PRINT(factorize_time, "\ntime used for factorization : "); |
---|
831 | return Outputlist; |
---|
832 | } |
---|
833 | TIMING_START(factorize_time); |
---|
834 | // search an "optimal" main variavble |
---|
835 | int mv=F.level(); |
---|
836 | if ((mv != LEVELBASE) /* && (! F.isUnivariate()) */) |
---|
837 | { |
---|
838 | mv=find_mvar(F); |
---|
839 | if (mv!=F.level()) |
---|
840 | { |
---|
841 | swapvar(F,Variable(mv),F.mvar()); |
---|
842 | } |
---|
843 | } |
---|
844 | |
---|
845 | /////// |
---|
846 | // Maybe it`s better to add a sqrfree-test before? |
---|
847 | // (If gcd is fast...) |
---|
848 | /////// |
---|
849 | // if ( ! SqrFreeTest(F) ){ |
---|
850 | if ( ! is_SqrFree ) |
---|
851 | { |
---|
852 | TIMING_START(sqrfree_time); |
---|
853 | SqrFreeList = SqrFreeMV(F) ; // first sqrfree the polynomial |
---|
854 | // don't use sqrFree(F), factory's internal sqrFree for multiv. |
---|
855 | // Polynomials; it's wrong!! Ex.: char=p f= x^p*(y+1); |
---|
856 | // SqrFreeMV(f)= ( y+1, (x)^p ), sqrFree(f)= ( y+1 ) . |
---|
857 | TIMING_END(sqrfree_time); |
---|
858 | |
---|
859 | // INTERRUPTHANDLER |
---|
860 | if ( interrupt_handle() ) return CFFList() ; |
---|
861 | // INTERRUPTHANDLER |
---|
862 | |
---|
863 | } |
---|
864 | else |
---|
865 | SqrFreeList.append(CFFactor(F,1)); |
---|
866 | |
---|
867 | DEBOUTLN(CERR, "SqrFreeMV= ", SqrFreeList); |
---|
868 | for ( i=SqrFreeList; i.hasItem(); i++ ) |
---|
869 | { |
---|
870 | DEBOUTLN(CERR, "Factor under consideration: ", i.getItem().factor()); |
---|
871 | // We need a compress on each list item ! Maybe we have less variables! |
---|
872 | g =compress(i.getItem().factor(),m); |
---|
873 | exp = i.getItem().exp(); |
---|
874 | if ( getNumVars(g) ==0 ) // a constant; Exp==1 |
---|
875 | Outputlist.append( CFFactor(g,1) ) ; |
---|
876 | else// a real polynomial |
---|
877 | if ( g.isUnivariate() ) |
---|
878 | { |
---|
879 | //out_cf("univ. poly: ",g,"\n"); |
---|
880 | Intermediatelist=factorize(g,1); // poly is sqr-free! |
---|
881 | for ( j=Intermediatelist; j.hasItem(); j++ ) |
---|
882 | //Normally j.getItem().exp() should be 1 |
---|
883 | Outputlist.append( CFFactor( m(j.getItem().factor()),exp*j.getItem().exp())); |
---|
884 | } |
---|
885 | else |
---|
886 | { // multivariate polynomial |
---|
887 | if ( g.isHomogeneous() ) |
---|
888 | { |
---|
889 | DEBOUTLN(CERR, "Poly is homogeneous! : ", g); |
---|
890 | // Now we can substitute one variable to 1, factorize and then |
---|
891 | // look on the resulting factors and their monomials for |
---|
892 | // backsubstitution of the substituted variable. |
---|
893 | Intermediatelist = HomogFactor(g, minpoly, 0); |
---|
894 | } |
---|
895 | else // not homogeneous |
---|
896 | Intermediatelist = Factorized(g, minpoly, 0); |
---|
897 | |
---|
898 | // INTERRUPTHANDLER |
---|
899 | if ( interrupt_handle() ) return CFFList() ; |
---|
900 | // INTERRUPTHANDLER |
---|
901 | |
---|
902 | for ( j=Intermediatelist; j.hasItem(); j++ ) |
---|
903 | //Normally j.getItem().exp() should be 1 |
---|
904 | Outputlist= myappend( Outputlist, CFFactor(m(j.getItem().factor()),exp*j.getItem().exp())); |
---|
905 | } |
---|
906 | } |
---|
907 | g=1; unit=1; |
---|
908 | DEBOUTLN(CERR, "Outputlist is ", Outputlist); |
---|
909 | for ( i=Outputlist; i.hasItem(); i++ ) |
---|
910 | if ( level(i.getItem().factor()) > 0 ) |
---|
911 | { |
---|
912 | unit = lc(i.getItem().factor()); |
---|
913 | if ( getNumVars(unit) == 0 ) |
---|
914 | { // a constant; possibly 1 |
---|
915 | Outputlist2.append(CFFactor(i.getItem().factor()/unit , i.getItem().exp())); |
---|
916 | g *=power(i.getItem().factor()/unit,i.getItem().exp()); |
---|
917 | } |
---|
918 | else |
---|
919 | { |
---|
920 | Outputlist2.append(i.getItem()); |
---|
921 | g *=power(i.getItem().factor(),i.getItem().exp()); |
---|
922 | } |
---|
923 | } |
---|
924 | |
---|
925 | r=F/g; |
---|
926 | Outputlist2.insert(CFFactor(r,1)); |
---|
927 | |
---|
928 | if ((mv!=F.level()) && (! F.isUnivariate() )) |
---|
929 | { |
---|
930 | CFFListIterator J=Outputlist2; |
---|
931 | for ( ; J.hasItem(); J++) |
---|
932 | { |
---|
933 | swapvar(J.getItem().factor(),Variable(mv),F.mvar()); |
---|
934 | } |
---|
935 | swapvar(F,Variable(mv),F.mvar()); |
---|
936 | } |
---|
937 | DEBDECLEVEL(CERR, "Factorize"); |
---|
938 | TIMING_END(factorize_time); |
---|
939 | |
---|
940 | TIMING_PRINT(sqrfree_time, "\ntime used for sqrfree : "); |
---|
941 | TIMING_PRINT(discr_time, "time used for discriminante : "); |
---|
942 | TIMING_PRINT(evaluate_time, "time used for evaluation and univ. factorization : "); |
---|
943 | TIMING_PRINT(hensel_time, "time used for hensel-lift : "); |
---|
944 | TIMING_PRINT(truefactor_time, "time used for truefactors : "); |
---|
945 | TIMING_PRINT(factorize_time, "\ntime used for factorization : "); |
---|
946 | |
---|
947 | if(isOn(SW_USE_NTL_SORT)) Outputlist2.sort(cmpCF); |
---|
948 | |
---|
949 | return Outputlist2; |
---|
950 | } |
---|
951 | |
---|
952 | /////////////////////////////////////////////////////////////// |
---|
953 | // The user front-end for a uni/multivariate factorization // |
---|
954 | // routine. F needs not to be SqrFree. // |
---|
955 | // Option of * choosing a main variable (n.y.i.) // |
---|
956 | // * choosing an algebraic extension (n.y.u.) // |
---|
957 | // * ensuring poly is sqrfree (n.y.i.) // |
---|
958 | /////////////////////////////////////////////////////////////// |
---|
959 | static bool fdivides2(const CanonicalForm &F, const CanonicalForm &G, const CanonicalForm &minpoly) |
---|
960 | { |
---|
961 | if (!minpoly.isZero()) |
---|
962 | { |
---|
963 | #if 0 |
---|
964 | Variable Alpha=minpoly.mvar(); |
---|
965 | Variable X=rootOf(minpoly); |
---|
966 | CanonicalForm rF=replacevar(F,Alpha,X); |
---|
967 | CanonicalForm rG=replacevar(G,Alpha,X); |
---|
968 | return fdivides(rF,rG);; |
---|
969 | #else |
---|
970 | if (degree(F,F.mvar()) > degree(G,F.mvar())) return false; |
---|
971 | return true; |
---|
972 | //CanonicalForm a,b; |
---|
973 | //mydivrem(G,F,a,b); |
---|
974 | //if (b.isZero()) return true; |
---|
975 | //else return false; |
---|
976 | #endif |
---|
977 | } |
---|
978 | else |
---|
979 | return fdivides(F,G); |
---|
980 | } |
---|
981 | |
---|
982 | CFFList |
---|
983 | Factorize(const CanonicalForm & F, const CanonicalForm & minpoly, int is_SqrFree ) |
---|
984 | { |
---|
985 | //out_cf("Factorize: F=",F,"\n"); |
---|
986 | //out_cf(" minpoly:",minpoly,"\n"); |
---|
987 | CFFList Outputlist,SqrFreeList,Intermediatelist,Outputlist2; |
---|
988 | ListIterator<CFFactor> i,j; |
---|
989 | CanonicalForm g=1,unit=1,r=1; |
---|
990 | //Variable minpoly; // reserved (-> Factorisation over algebraic Extensions) |
---|
991 | int exp; |
---|
992 | CFMap m; |
---|
993 | |
---|
994 | // INTERRUPTHANDLER |
---|
995 | if ( interrupt_handle() ) return CFFList() ; |
---|
996 | // INTERRUPTHANDLER |
---|
997 | |
---|
998 | DEBINCLEVEL(CERR, "Factorize"); |
---|
999 | DEBOUTLN(CERR, "Called with F= ", F); |
---|
1000 | if ( getCharacteristic() == 0 ) |
---|
1001 | { // char == 0 |
---|
1002 | TIMING_START(factorize_time); |
---|
1003 | //CERR << "Factoring in char=0 of " << F << " = " << Outputlist << "\n"; |
---|
1004 | #if 0 |
---|
1005 | // SHOULD: Outputlist= factorize(F,minpoly); |
---|
1006 | Outputlist= factorize(F); |
---|
1007 | #else |
---|
1008 | if (!minpoly.isZero()) |
---|
1009 | { |
---|
1010 | if ( F.isHomogeneous() ) |
---|
1011 | { |
---|
1012 | DEBOUTLN(CERR, "Poly is homogeneous! : ", F); |
---|
1013 | // Now we can substitute one variable to 1, factorize and then |
---|
1014 | // look on the resulting factors and their monomials for |
---|
1015 | // backsubstitution of the substituted variable. |
---|
1016 | Outputlist=HomogFactor(F, minpoly, 0); |
---|
1017 | } |
---|
1018 | else |
---|
1019 | { |
---|
1020 | CFList as(minpoly); |
---|
1021 | //CFFList sqF=sqrFree(F); // sqrFreeZ |
---|
1022 | CFFList sqF=SqrFreeMV(F,minpoly); |
---|
1023 | if (sqF.isEmpty()) sqF=sqrFree(F); |
---|
1024 | CFFList G,H; |
---|
1025 | CanonicalForm fac; |
---|
1026 | int d; |
---|
1027 | ListIterator<CFFactor> i,k; |
---|
1028 | for ( i = sqF; i.hasItem(); ++i ) |
---|
1029 | { |
---|
1030 | d = i.getItem().exp(); |
---|
1031 | fac = i.getItem().factor(); |
---|
1032 | int success=1; |
---|
1033 | G = newfactoras( fac, as, success); |
---|
1034 | for ( k = G; k.hasItem(); ++k ) |
---|
1035 | { |
---|
1036 | fac = k.getItem().factor(); |
---|
1037 | int dd = k.getItem().exp(); |
---|
1038 | H.append( CFFactor( fac , d*dd ) ); |
---|
1039 | } |
---|
1040 | } |
---|
1041 | Outputlist = H; |
---|
1042 | } |
---|
1043 | } |
---|
1044 | else // minpoly==0 |
---|
1045 | Outputlist=factorize(F); |
---|
1046 | #endif |
---|
1047 | // Factorization in char=0 doesn't sometimes return at least two elements!!! |
---|
1048 | if ( getNumVars(Outputlist.getFirst().factor()) != 0 ) |
---|
1049 | Outputlist.insert(CFFactor(1,1)); |
---|
1050 | //CERR << " Factorize in char=0: returning with: " << Outputlist << "\n"; |
---|
1051 | TIMING_END(factorize_time); |
---|
1052 | DEBDECLEVEL(CERR, "Factorize"); |
---|
1053 | TIMING_PRINT(factorize_time, "\ntime used for factorization : "); |
---|
1054 | //out_cff(Outputlist); |
---|
1055 | return Outputlist; |
---|
1056 | } |
---|
1057 | TIMING_START(factorize_time); |
---|
1058 | // search an "optimal" main variavble |
---|
1059 | int mv=F.level(); |
---|
1060 | if (mv != LEVELBASE && ! F.isUnivariate() ) |
---|
1061 | { |
---|
1062 | mv=find_mvar(F); |
---|
1063 | if (mv!=F.level()) |
---|
1064 | { |
---|
1065 | swapvar(F,Variable(mv),F.mvar()); |
---|
1066 | } |
---|
1067 | } |
---|
1068 | |
---|
1069 | /////// |
---|
1070 | // Maybe it`s better to add a sqrfree-test before? |
---|
1071 | // (If gcd is fast...) |
---|
1072 | /////// |
---|
1073 | // if ( ! SqrFreeTest(F) ){ |
---|
1074 | if ( ! is_SqrFree ) |
---|
1075 | { |
---|
1076 | TIMING_START(sqrfree_time); |
---|
1077 | SqrFreeList = SqrFreeMV(F, minpoly) ; // first sqrfree the polynomial |
---|
1078 | // don't use sqrFree(F), factory's internal sqrFree for multiv. |
---|
1079 | // Polynomials; it's wrong!! Ex.: char=p f= x^p*(y+1); |
---|
1080 | // SqrFreeMV(f)= ( y+1, (x)^p ), sqrFree(f)= ( y+1 ) . |
---|
1081 | TIMING_END(sqrfree_time); |
---|
1082 | |
---|
1083 | // INTERRUPTHANDLER |
---|
1084 | if ( interrupt_handle() ) return CFFList() ; |
---|
1085 | // INTERRUPTHANDLER |
---|
1086 | |
---|
1087 | } |
---|
1088 | else |
---|
1089 | SqrFreeList.append(CFFactor(F,1)); |
---|
1090 | DEBOUTLN(CERR, "SqrFreeMV= ", SqrFreeList); |
---|
1091 | for ( i=SqrFreeList; i.hasItem(); i++ ) |
---|
1092 | { |
---|
1093 | DEBOUTLN(CERR, "Factor under consideration: ", i.getItem().factor()); |
---|
1094 | // We need a compress on each list item ! Maybe we have less variables! |
---|
1095 | g =compress(i.getItem().factor(),m); |
---|
1096 | exp = i.getItem().exp(); |
---|
1097 | if ( getNumVars(g) ==0 ) // a constant; Exp==1 |
---|
1098 | Outputlist.append( CFFactor(g,1) ) ; |
---|
1099 | else// a real polynomial |
---|
1100 | { |
---|
1101 | if ( g.isUnivariate() ) |
---|
1102 | { |
---|
1103 | Variable alpha=rootOf(minpoly); |
---|
1104 | Intermediatelist=factorize2(g,alpha,minpoly); // poly is sqr-free! |
---|
1105 | for ( j=Intermediatelist; j.hasItem(); j++ ) |
---|
1106 | //Normally j.getItem().exp() should be 1 |
---|
1107 | Outputlist.append( |
---|
1108 | CFFactor( m(replacevar(j.getItem().factor(),alpha,minpoly.mvar())), |
---|
1109 | exp*j.getItem().exp())); |
---|
1110 | } |
---|
1111 | else // multivariate polynomial |
---|
1112 | { |
---|
1113 | if ( g.isHomogeneous() ) |
---|
1114 | { |
---|
1115 | DEBOUTLN(CERR, "Poly is homogeneous! : ", g); |
---|
1116 | // Now we can substitute one variable to 1, factorize and then |
---|
1117 | // look on the resulting factors and their monomials for |
---|
1118 | // backsubstitution of the substituted variable. |
---|
1119 | Intermediatelist = HomogFactor(g, minpoly, 0); |
---|
1120 | } |
---|
1121 | else // not homogeneous |
---|
1122 | Intermediatelist = Factorized(g, minpoly, 0); |
---|
1123 | |
---|
1124 | // INTERRUPTHANDLER |
---|
1125 | if ( interrupt_handle() ) return CFFList() ; |
---|
1126 | // INTERRUPTHANDLER |
---|
1127 | |
---|
1128 | for ( j=Intermediatelist; j.hasItem(); j++ ) |
---|
1129 | //Normally j.getItem().exp() should be 1 |
---|
1130 | Outputlist= myappend( Outputlist, CFFactor(m(j.getItem().factor()),exp*j.getItem().exp())); |
---|
1131 | } |
---|
1132 | } |
---|
1133 | } |
---|
1134 | g=1; unit=1; |
---|
1135 | DEBOUTLN(CERR, "Outputlist is ", Outputlist); |
---|
1136 | for ( i=Outputlist; i.hasItem(); i++ ) |
---|
1137 | if ( level(i.getItem().factor()) > 0 ) |
---|
1138 | { |
---|
1139 | unit = lc(i.getItem().factor()); |
---|
1140 | if ( getNumVars(unit) == 0 ){ // a constant; possibly 1 |
---|
1141 | Outputlist2.append(CFFactor(i.getItem().factor()/unit , i.getItem().exp())); |
---|
1142 | g *=power(i.getItem().factor()/unit,i.getItem().exp()); |
---|
1143 | } |
---|
1144 | else |
---|
1145 | { |
---|
1146 | Outputlist2.append(i.getItem()); |
---|
1147 | g *=power(i.getItem().factor(),i.getItem().exp()); |
---|
1148 | } |
---|
1149 | } |
---|
1150 | |
---|
1151 | r=F/g; |
---|
1152 | Outputlist2.insert(CFFactor(r,1)); |
---|
1153 | |
---|
1154 | if ((mv!=F.level()) && (! F.isUnivariate() )) |
---|
1155 | { |
---|
1156 | CFFListIterator J=Outputlist2; |
---|
1157 | for ( ; J.hasItem(); J++) |
---|
1158 | { |
---|
1159 | swapvar(J.getItem().factor(),Variable(mv),F.mvar()); |
---|
1160 | } |
---|
1161 | swapvar(F,Variable(mv),F.mvar()); |
---|
1162 | } |
---|
1163 | |
---|
1164 | DEBDECLEVEL(CERR, "Factorize"); |
---|
1165 | TIMING_END(factorize_time); |
---|
1166 | |
---|
1167 | TIMING_PRINT(sqrfree_time, "\ntime used for sqrfree : "); |
---|
1168 | TIMING_PRINT(discr_time, "time used for discriminante : "); |
---|
1169 | TIMING_PRINT(evaluate_time, "time used for evaluation and univ. factorization : "); |
---|
1170 | TIMING_PRINT(hensel_time, "time used for hensel-lift : "); |
---|
1171 | TIMING_PRINT(truefactor_time, "time used for truefactors : "); |
---|
1172 | TIMING_PRINT(factorize_time, "\ntime used for factorization : "); |
---|
1173 | |
---|
1174 | if(isOn(SW_USE_NTL_SORT)) Outputlist2.sort(cmpCF); |
---|
1175 | |
---|
1176 | //out_cff(Outputlist2); |
---|
1177 | return Outputlist2; |
---|
1178 | } |
---|
1179 | |
---|