1 | /////////////////////////////////////////////////////////////////////////////// |
---|
2 | // emacs edit mode for this file is -*- C++ -*- |
---|
3 | // $Id$ |
---|
4 | /////////////////////////////////////////////////////////////////////////////// |
---|
5 | // FACTORY - Includes |
---|
6 | #include <factory.h> |
---|
7 | #ifndef NOSTREAMIO |
---|
8 | #ifdef HAVE_IOSTREAM |
---|
9 | #include <iostream> |
---|
10 | #define OSTREAM std::ostream |
---|
11 | #define ISTREAM std::istream |
---|
12 | #define CERR std::cerr |
---|
13 | #define CIN std::cin |
---|
14 | #elif defined(HAVE_IOSTREAM_H) |
---|
15 | #include <iostream.h> |
---|
16 | #define OSTREAM ostream |
---|
17 | #define ISTREAM istream |
---|
18 | #define CERR cerr |
---|
19 | #define CIN cin |
---|
20 | #endif |
---|
21 | #endif |
---|
22 | // Factor - Includes |
---|
23 | #include "tmpl_inst.h" |
---|
24 | #include "helpstuff.h" |
---|
25 | // some CC's need this: |
---|
26 | #include "MVMultiHensel.h" |
---|
27 | |
---|
28 | #ifndef NOSTREAMIO |
---|
29 | void out_cf(const char *s1,const CanonicalForm &f,const char *s2); |
---|
30 | #endif |
---|
31 | |
---|
32 | extern int libfac_interruptflag; |
---|
33 | |
---|
34 | #ifdef HENSELDEBUG |
---|
35 | # define DEBUGOUTPUT |
---|
36 | #else |
---|
37 | # undef DEBUGOUTPUT |
---|
38 | #endif |
---|
39 | |
---|
40 | #include <libfac/factor/debug.h> |
---|
41 | #include "interrupt.h" |
---|
42 | #include "timing.h" |
---|
43 | |
---|
44 | /////////////////////////////////////////////////////////////// |
---|
45 | // some class definition needed in MVMultiHensel |
---|
46 | /////////////////////////////////////////////////////////////// |
---|
47 | typedef bool Boolean; |
---|
48 | |
---|
49 | class DiophantForm |
---|
50 | { |
---|
51 | public: |
---|
52 | CanonicalForm One; |
---|
53 | CanonicalForm Two; |
---|
54 | inline DiophantForm& operator=( const DiophantForm& value ) |
---|
55 | { |
---|
56 | if ( this != &value ) |
---|
57 | { |
---|
58 | One = value.One; |
---|
59 | Two = value.Two; |
---|
60 | } |
---|
61 | return *this; |
---|
62 | } |
---|
63 | }; |
---|
64 | |
---|
65 | // We remember an already calculated value; simple class for RememberArray |
---|
66 | class RememberForm |
---|
67 | { |
---|
68 | public: |
---|
69 | inline RememberForm operator=( CanonicalForm & value ) |
---|
70 | { |
---|
71 | this->calculated = true; |
---|
72 | this->poly = value; |
---|
73 | return *this; |
---|
74 | } |
---|
75 | RememberForm() : poly(0), calculated(false) {} |
---|
76 | Boolean calculated; |
---|
77 | CanonicalForm poly; |
---|
78 | }; |
---|
79 | |
---|
80 | // Array to remember already calculated values; used for the diophantine |
---|
81 | // equation s*f + t*g = x^i |
---|
82 | class RememberArray |
---|
83 | { |
---|
84 | public: |
---|
85 | // operations performed on arrays |
---|
86 | RememberArray( int sz ) |
---|
87 | { |
---|
88 | size = sz; |
---|
89 | ia = new RememberForm[size]; |
---|
90 | // assert( ia != 0 ); // test if we got the memory |
---|
91 | init( sz ); |
---|
92 | } |
---|
93 | ~RememberArray(){ delete [] ia; } |
---|
94 | inline RememberForm& operator[]( int index ) |
---|
95 | { |
---|
96 | return ia[index]; |
---|
97 | } |
---|
98 | bool checksize(int i) {return i<size;} |
---|
99 | protected: |
---|
100 | void init( int ) |
---|
101 | { |
---|
102 | for ( int ix=0; ix < size; ++ix) |
---|
103 | { |
---|
104 | ia[ix].calculated=false; |
---|
105 | ia[ix].poly=0; |
---|
106 | } |
---|
107 | } |
---|
108 | // internal data representation |
---|
109 | int size; |
---|
110 | RememberForm *ia; |
---|
111 | }; |
---|
112 | |
---|
113 | /////////////////////////////////////////////////////////////// |
---|
114 | // Solve the Diophantine equation: ( levelU == mainvar ) // |
---|
115 | // s*F1 + t*F2 = (mainvar)^i // |
---|
116 | // Returns s and t. // |
---|
117 | /////////////////////////////////////////////////////////////// |
---|
118 | static DiophantForm |
---|
119 | diophant( int levelU , const CanonicalForm & F1 , const CanonicalForm & F2 , |
---|
120 | int i , RememberArray & A, RememberArray & B, |
---|
121 | const CanonicalForm &alpha ) |
---|
122 | { |
---|
123 | DiophantForm Retvalue; |
---|
124 | CanonicalForm s,t,q,r; |
---|
125 | Variable x(levelU); |
---|
126 | |
---|
127 | DEBOUT(CERR, "diophant: called with: ", F1); |
---|
128 | DEBOUT(CERR, " ", F2); DEBOUTLN(CERR, " ", i); |
---|
129 | |
---|
130 | // Did we solve the diophantine equation yet? |
---|
131 | // If so, return the calculated values |
---|
132 | if (A.checksize(i) && A[i].calculated && B[i].calculated ) |
---|
133 | { |
---|
134 | Retvalue.One=A[i].poly; |
---|
135 | Retvalue.Two=B[i].poly; |
---|
136 | return Retvalue; |
---|
137 | } |
---|
138 | |
---|
139 | // Degrees ok? degree(F1,mainvar) + degree(F2,mainvar) <= i ? |
---|
140 | if ( (degree(F1,levelU) + degree(F2,levelU) ) <= i ) |
---|
141 | { |
---|
142 | if (!interrupt_handle()) factoryError("libfac: diophant ERROR: degree too large!"); /* (%d + %d <= %d)",degree(F1,levelU), degree(F2,levelU), i);*/ |
---|
143 | Retvalue.One=F1;Retvalue.Two=F2; |
---|
144 | return Retvalue; |
---|
145 | } |
---|
146 | |
---|
147 | if ( i == 0 ) |
---|
148 | { // call the extended gcd |
---|
149 | r=extgcd(F1,F2,s,t); |
---|
150 | // check if gcd(F1,F2) <> 1 , i.e. F1 and F2 are not relatively prime |
---|
151 | if ( ! r.isOne() ) |
---|
152 | { |
---|
153 | if (r.degree()<1) // some constant != 1 ? |
---|
154 | { |
---|
155 | Retvalue.One=s/r;Retvalue.Two=t/r; |
---|
156 | return Retvalue; |
---|
157 | } |
---|
158 | else if (alpha!=0) |
---|
159 | { |
---|
160 | Variable Alpha=alpha.mvar(); |
---|
161 | if (r.mvar()==Alpha) // from field extension ? |
---|
162 | { |
---|
163 | Variable X=rootOf(alpha); |
---|
164 | r=replacevar(r,Alpha,X); |
---|
165 | s=replacevar(s,Alpha,X); |
---|
166 | t=replacevar(t,Alpha,X); |
---|
167 | s/=r; |
---|
168 | t/=r; |
---|
169 | s=replacevar(s,X,Alpha); |
---|
170 | t=replacevar(t,X,Alpha); |
---|
171 | Retvalue.One=s; Retvalue.Two=t; |
---|
172 | return Retvalue; |
---|
173 | } |
---|
174 | } |
---|
175 | if (!interrupt_handle()) |
---|
176 | factoryError("libfac: diophant ERROR: F1 and F2 are not relatively prime! "); |
---|
177 | Retvalue.One=s/r;Retvalue.Two=t/r; |
---|
178 | return Retvalue; |
---|
179 | } |
---|
180 | Retvalue.One = s; Retvalue.Two = t; |
---|
181 | } |
---|
182 | else |
---|
183 | { // recursively call diophant |
---|
184 | Retvalue=diophant(levelU,F1,F2,i-1,A,B,alpha); |
---|
185 | Retvalue.One *= x; // createVar(levelU,1); |
---|
186 | Retvalue.Two *= x; // createVar(levelU,1); |
---|
187 | |
---|
188 | if (interrupt_handle()) return Retvalue; |
---|
189 | |
---|
190 | // Check degrees. |
---|
191 | |
---|
192 | if ( degree(Retvalue.One,levelU) > degree(F2,levelU) ) |
---|
193 | { |
---|
194 | // Make degree(Retvalue.one,mainvar) < degree(F2,mainvar) |
---|
195 | divrem(Retvalue.One,F2,q,r); |
---|
196 | Retvalue.One = r; Retvalue.Two += F1*q; |
---|
197 | } |
---|
198 | else |
---|
199 | { |
---|
200 | if ( degree(Retvalue.Two,levelU) >= degree(F1,levelU) ) |
---|
201 | { |
---|
202 | // Make degree(Retvalue.Two,mainvar) <= degree(F1,mainvar) |
---|
203 | divrem(Retvalue.Two,F1,q,r); |
---|
204 | Retvalue.One += F2*q; Retvalue.Two = r; |
---|
205 | } |
---|
206 | } |
---|
207 | |
---|
208 | } |
---|
209 | if (A.checksize(i)) |
---|
210 | { |
---|
211 | A[i].poly = Retvalue.One ; |
---|
212 | B[i].poly = Retvalue.Two ; |
---|
213 | A[i].calculated = true ; B[i].calculated = true ; |
---|
214 | } |
---|
215 | DEBOUT(CERR, "diophant: Returnvalue is: ", Retvalue.One); |
---|
216 | DEBOUTLN(CERR, " ", Retvalue.Two); |
---|
217 | |
---|
218 | return Retvalue; |
---|
219 | } |
---|
220 | |
---|
221 | /////////////////////////////////////////////////////////////// |
---|
222 | // A more efficient way to solve s*F1 + t*F2 = W // |
---|
223 | // as in Wang and Rothschild [Wang&Roth75]. // |
---|
224 | /////////////////////////////////////////////////////////////// |
---|
225 | static CanonicalForm |
---|
226 | make_delta( int levelU, const CanonicalForm & W, |
---|
227 | const CanonicalForm & F1, const CanonicalForm & F2, |
---|
228 | RememberArray & A, RememberArray & B, |
---|
229 | const CanonicalForm &alpha) |
---|
230 | { |
---|
231 | CanonicalForm Retvalue; |
---|
232 | DiophantForm intermediate; |
---|
233 | |
---|
234 | DEBOUT(CERR, "make_delta: W= ", W); |
---|
235 | DEBOUTLN(CERR, " degree(W,levelU)= ", degree(W,levelU) ); |
---|
236 | |
---|
237 | if ( levelU == level(W) ) // same level, good |
---|
238 | { |
---|
239 | for ( CFIterator i=W; i.hasTerms(); i++) |
---|
240 | { |
---|
241 | intermediate=diophant(levelU,F1,F2,i.exp(),A,B,alpha); |
---|
242 | Retvalue += intermediate.One * i.coeff(); |
---|
243 | |
---|
244 | if (interrupt_handle()) return Retvalue; |
---|
245 | } |
---|
246 | } |
---|
247 | else // level(W) < levelU ; i.e. degree(w,levelU) == 0 |
---|
248 | { |
---|
249 | intermediate=diophant(levelU,F1,F2,0,A,B,alpha); |
---|
250 | Retvalue = W * intermediate.One; |
---|
251 | } |
---|
252 | DEBOUTLN(CERR, "make_delta: Returnvalue= ", Retvalue); |
---|
253 | return Retvalue; |
---|
254 | } |
---|
255 | |
---|
256 | static CanonicalForm |
---|
257 | make_square( int levelU, const CanonicalForm & W, |
---|
258 | const CanonicalForm & F1, const CanonicalForm & F2, |
---|
259 | RememberArray & A, RememberArray & B,const CanonicalForm &alpha) |
---|
260 | { |
---|
261 | CanonicalForm Retvalue; |
---|
262 | DiophantForm intermediate; |
---|
263 | |
---|
264 | DEBOUT(CERR, "make_square: W= ", W ); |
---|
265 | DEBOUTLN(CERR, " degree(W,levelU)= ", degree(W,levelU)); |
---|
266 | |
---|
267 | if ( levelU == level(W) ) // same level, good |
---|
268 | { |
---|
269 | for ( CFIterator i=W; i.hasTerms(); i++) |
---|
270 | { |
---|
271 | intermediate=diophant(levelU,F1,F2,i.exp(),A,B,alpha); |
---|
272 | Retvalue += i.coeff() * intermediate.Two; |
---|
273 | |
---|
274 | if (interrupt_handle()) return Retvalue; |
---|
275 | } |
---|
276 | } |
---|
277 | else // level(W) < levelU ; i.e. degree(w,levelU) == 0 |
---|
278 | { |
---|
279 | intermediate=diophant(levelU,F1,F2,0,A,B,alpha); |
---|
280 | Retvalue = W * intermediate.Two; |
---|
281 | } |
---|
282 | DEBOUTLN(CERR, "make_square: Returnvalue= ", Retvalue); |
---|
283 | |
---|
284 | return Retvalue; |
---|
285 | } |
---|
286 | |
---|
287 | |
---|
288 | /////////////////////////////////////////////////////////////// |
---|
289 | // Multivariat Hensel routine for two factors F and G . // |
---|
290 | // U is the monic univariat polynomial; we manage two arrays // |
---|
291 | // to remember already calculated values for the diophantine // |
---|
292 | // equation. This is suggested by Joel Moses [Moses71] . // |
---|
293 | // Return the fully lifted factors. // |
---|
294 | /////////////////////////////////////////////////////////////// |
---|
295 | static DiophantForm |
---|
296 | mvhensel( const CanonicalForm & U , const CanonicalForm & F , |
---|
297 | const CanonicalForm & G , const SFormList & Substitutionlist, |
---|
298 | const CanonicalForm &alpha) |
---|
299 | { |
---|
300 | CanonicalForm V,Fk=F,Gk=G,Rk,W,D,S; |
---|
301 | int levelU=level(U), degU=subvardegree(U,levelU); // degree(U,{x_1,..,x_(level(U)-1)}) |
---|
302 | DiophantForm Retvalue; |
---|
303 | RememberArray A(degree(F,levelU)+degree(G,levelU)+1); |
---|
304 | RememberArray B(degree(F,levelU)+degree(G,levelU)+1); |
---|
305 | |
---|
306 | DEBOUTLN(CERR, "mvhensel called with: U= ", U); |
---|
307 | DEBOUTLN(CERR, " F= ", F); |
---|
308 | DEBOUTLN(CERR, " G= ", G); |
---|
309 | DEBOUTLN(CERR, " degU= ", degU); |
---|
310 | |
---|
311 | V=change_poly(U,Substitutionlist,0); // change x_i <- x_i + a_i for all i |
---|
312 | Rk = F*G-V; |
---|
313 | #ifdef HENSELDEBUG2 |
---|
314 | CERR << "mvhensel: V = " << V << "\n" |
---|
315 | << " Fk= " << F << "\n" |
---|
316 | << " Gk= " << G << "\n" |
---|
317 | << " Rk= " << Rk << "\n"; |
---|
318 | #endif |
---|
319 | for ( int k=2; k<=degU+1; k++) |
---|
320 | { |
---|
321 | W = mod_power(Rk,k,levelU); |
---|
322 | #ifdef HENSELDEBUG2 |
---|
323 | CERR << "mvhensel: Iteration: " << k << "\n"; |
---|
324 | CERR << "mvhensel: W= " << W << "\n"; |
---|
325 | #endif |
---|
326 | D = make_delta(levelU,W,F,G,A,B,alpha); |
---|
327 | #ifdef HENSELDEBUG2 |
---|
328 | CERR << "mvhensel: D= " << D << "\n"; |
---|
329 | #endif |
---|
330 | S = make_square(levelU,W,F,G,A,B,alpha); |
---|
331 | #ifdef HENSELDEBUG2 |
---|
332 | CERR << "mvhensel: S= " << S << "\n"; |
---|
333 | #endif |
---|
334 | Rk += S*D - D*Fk - S*Gk; |
---|
335 | #ifdef HENSELDEBUG2 |
---|
336 | CERR << "mvhensel: Rk= " << Rk << "\n"; |
---|
337 | #endif |
---|
338 | Fk -= S; |
---|
339 | #ifdef HENSELDEBUG2 |
---|
340 | CERR << "mvhensel: Fk= " << Fk << "\n"; |
---|
341 | #endif |
---|
342 | Gk -= D; |
---|
343 | #ifdef HENSELDEBUG2 |
---|
344 | CERR << "mvhensel: Gk= " << Gk << "\n"; |
---|
345 | #endif |
---|
346 | if ( Rk.isZero() ) break; |
---|
347 | if (interrupt_handle()) break; |
---|
348 | } |
---|
349 | Retvalue.One = change_poly(Fk,Substitutionlist,1); |
---|
350 | Retvalue.Two = change_poly(Gk,Substitutionlist,1); |
---|
351 | |
---|
352 | DEBOUTLN(CERR, "mvhensel: Retvalue: ", Retvalue.One); |
---|
353 | DEBOUTLN(CERR, " ", Retvalue.Two); |
---|
354 | |
---|
355 | return Retvalue ; |
---|
356 | } |
---|
357 | |
---|
358 | /////////////////////////////////////////////////////////////// |
---|
359 | // Recursive Version of MultiHensel. // |
---|
360 | /////////////////////////////////////////////////////////////// |
---|
361 | CFFList |
---|
362 | multihensel( const CanonicalForm & mF, const CFFList & Factorlist, |
---|
363 | const SFormList & Substitutionlist, |
---|
364 | const CanonicalForm &alpha) |
---|
365 | { |
---|
366 | CFFList Returnlist,factorlist=Factorlist; |
---|
367 | DiophantForm intermediat; |
---|
368 | CanonicalForm Pl,Pr; |
---|
369 | int n = factorlist.length(); |
---|
370 | |
---|
371 | DEBOUT(CERR, "multihensel: called with ", mF); |
---|
372 | DEBOUTLN(CERR, " ", factorlist); |
---|
373 | |
---|
374 | if ( n == 1 ) |
---|
375 | { |
---|
376 | Returnlist.append(CFFactor(mF,1)); |
---|
377 | } |
---|
378 | else |
---|
379 | { |
---|
380 | if ( n == 2 ) |
---|
381 | { |
---|
382 | intermediat= mvhensel(mF, factorlist.getFirst().factor(), |
---|
383 | Factorlist.getLast().factor(), |
---|
384 | Substitutionlist,alpha); |
---|
385 | Returnlist.append(CFFactor(intermediat.One,1)); |
---|
386 | Returnlist.append(CFFactor(intermediat.Two,1)); |
---|
387 | } |
---|
388 | else // more then two factors |
---|
389 | { |
---|
390 | #ifdef HENSELDEBUG2 |
---|
391 | CERR << "multihensel: more than two factors!" << "\n"; |
---|
392 | #endif |
---|
393 | Pl=factorlist.getFirst().factor(); factorlist.removeFirst(); |
---|
394 | Pr=Pl.genOne(); |
---|
395 | for ( ListIterator<CFFactor> i=factorlist; i.hasItem(); i++ ) |
---|
396 | Pr *= i.getItem().factor() ; |
---|
397 | #ifdef HENSELDEBUG2 |
---|
398 | CERR << "multihensel: Pl,Pr, factorlist: " << Pl << " " << Pr |
---|
399 | << " " << factorlist << "\n"; |
---|
400 | #endif |
---|
401 | intermediat= mvhensel(mF,Pl,Pr,Substitutionlist,alpha); |
---|
402 | Returnlist.append(CFFactor(intermediat.One,1)); |
---|
403 | Returnlist=Union( multihensel(intermediat.Two,factorlist,Substitutionlist,alpha), |
---|
404 | Returnlist); |
---|
405 | } |
---|
406 | } |
---|
407 | return Returnlist; |
---|
408 | } |
---|
409 | |
---|
410 | /////////////////////////////////////////////////////////////// |
---|
411 | // Generalized Hensel routine. // |
---|
412 | // mF is the monic multivariat polynomial, Factorlist is the // |
---|
413 | // list of factors, Substitutionlist represents the ideal // |
---|
414 | // <x_1+a_1, .. , x_r+a_r>, where r=level(mF)-1 . // |
---|
415 | // Returns the list of fully lifted factors. // |
---|
416 | /////////////////////////////////////////////////////////////// |
---|
417 | CFFList |
---|
418 | MultiHensel( const CanonicalForm & mF, const CFFList & Factorlist, |
---|
419 | const SFormList & Substitutionlist, const CanonicalForm &alpha) |
---|
420 | { |
---|
421 | CFFList Ll; |
---|
422 | CFFList Returnlist,Retlistinter,factorlist=Factorlist; |
---|
423 | CFFListIterator i; |
---|
424 | DiophantForm intermediat; |
---|
425 | CanonicalForm Pl,Pr; |
---|
426 | int n = factorlist.length(),h=n/2, k; |
---|
427 | |
---|
428 | DEBOUT(CERR, "MultiHensel: called with ", mF); |
---|
429 | DEBOUTLN(CERR, " ", factorlist); |
---|
430 | DEBOUT(CERR," : n,h = ", n); |
---|
431 | DEBOUTLN(CERR," ", h); |
---|
432 | |
---|
433 | if ( n == 1 ) |
---|
434 | { |
---|
435 | Returnlist.append(CFFactor(mF,1)); |
---|
436 | } |
---|
437 | else |
---|
438 | { |
---|
439 | if ( n == 2 ) |
---|
440 | { |
---|
441 | intermediat= mvhensel(mF, factorlist.getFirst().factor(), |
---|
442 | Factorlist.getLast().factor(), |
---|
443 | Substitutionlist,alpha); |
---|
444 | Returnlist.append(CFFactor(intermediat.One,1)); |
---|
445 | Returnlist.append(CFFactor(intermediat.Two,1)); |
---|
446 | } |
---|
447 | else // more then two factors |
---|
448 | { |
---|
449 | for ( k=1 ; k<=h; k++) |
---|
450 | { |
---|
451 | Ll.append(factorlist.getFirst()); |
---|
452 | factorlist.removeFirst(); |
---|
453 | } |
---|
454 | |
---|
455 | DEBOUTLN(CERR, "MultiHensel: Ll= ", Ll); |
---|
456 | DEBOUTLN(CERR, " factorlist= ", factorlist); |
---|
457 | |
---|
458 | Pl = 1; Pr = 1; |
---|
459 | for ( i = Ll; i.hasItem(); i++) |
---|
460 | Pl *= i.getItem().factor(); |
---|
461 | DEBOUTLN(CERR, "MultiHensel: Pl= ", Pl); |
---|
462 | for ( i = factorlist; i.hasItem(); i++) |
---|
463 | Pr *= i.getItem().factor(); |
---|
464 | DEBOUTLN(CERR, "MultiHensel: Pr= ", Pr); |
---|
465 | intermediat = mvhensel(mF,Pl,Pr,Substitutionlist,alpha); |
---|
466 | // divison test for intermediat.One and intermediat.Two ? |
---|
467 | CanonicalForm a,b; |
---|
468 | // we add a division test now for intermediat.One and intermediat.Two |
---|
469 | if ( mydivremt (mF,intermediat.One,a,b) && b == mF.genZero() ) |
---|
470 | Retlistinter.append(CFFactor(intermediat.One,1) ); |
---|
471 | if ( mydivremt (mF,intermediat.Two,a,b) && b == mF.genZero() ) |
---|
472 | Retlistinter.append(CFFactor(intermediat.Two,1) ); |
---|
473 | |
---|
474 | Ll = MultiHensel(intermediat.One, Ll, Substitutionlist,alpha); |
---|
475 | Returnlist = MultiHensel(intermediat.Two, factorlist, Substitutionlist,alpha); |
---|
476 | Returnlist = Union(Returnlist,Ll); |
---|
477 | |
---|
478 | Returnlist = Union(Retlistinter,Returnlist); |
---|
479 | |
---|
480 | } |
---|
481 | } |
---|
482 | return Returnlist; |
---|
483 | } |
---|