1 | /* emacs edit mode for this file is -*- C++ -*- */ |
---|
2 | |
---|
3 | //{{{ docu |
---|
4 | // |
---|
5 | // gengftables.cc - generate addition tables used by Factory |
---|
6 | // to calculate in GF(q). |
---|
7 | // |
---|
8 | // Note: This may take quite a while ... |
---|
9 | // |
---|
10 | //}}} |
---|
11 | |
---|
12 | |
---|
13 | #include "config.h" |
---|
14 | |
---|
15 | |
---|
16 | #ifdef HAVE_IOSTREAM |
---|
17 | #include <iostream> |
---|
18 | #include <fstream> |
---|
19 | #include <strstream> |
---|
20 | using namespace std; |
---|
21 | #elif defined(HAVE_IOSTREAM_H) |
---|
22 | #include <iostream.h> |
---|
23 | #include <fstream.h> |
---|
24 | #include <strstream.h> |
---|
25 | #endif |
---|
26 | |
---|
27 | #include "cf_assert.h" |
---|
28 | #include "gf_tabutil.h" |
---|
29 | #include "cf_algorithm.h" |
---|
30 | #include "cf_iter.h" |
---|
31 | |
---|
32 | //{{{ constants |
---|
33 | //{{{ docu |
---|
34 | // |
---|
35 | // - constants. |
---|
36 | // |
---|
37 | // maxtable: maximal size of a gf_table |
---|
38 | // primes, primes_len: |
---|
39 | // used to step through possible extensions |
---|
40 | // |
---|
41 | //}}} |
---|
42 | const int maxtable = 32767; |
---|
43 | |
---|
44 | const int primes_len = 42; |
---|
45 | STATIC_VAR unsigned short primes [] = |
---|
46 | { |
---|
47 | 2, 3, 5, 7, 11, 13, 17, 19, |
---|
48 | 23, 29, 31, 37, 41, 43, 47, 53, |
---|
49 | 59, 61, 67, 71, 73, 79, 83, 89, |
---|
50 | 97, 101, 103, 107, 109, 113, 127, 131, |
---|
51 | 137, 139, 149, 151, 157, 163, 167, 173, |
---|
52 | 179, 181 |
---|
53 | }; |
---|
54 | //}}} |
---|
55 | |
---|
56 | //{{{ bool isIrreducible ( const CanonicalForm & f ) |
---|
57 | //{{{ docu |
---|
58 | // |
---|
59 | // isIrreducible() - return true iff f is irreducible. |
---|
60 | // |
---|
61 | //}}} |
---|
62 | bool |
---|
63 | isIrreducible ( const CanonicalForm & f ) |
---|
64 | { |
---|
65 | CFFList F = factorize( f ); |
---|
66 | return F.length() == 1 && F.getFirst().exp() == 1; |
---|
67 | } |
---|
68 | //}}} |
---|
69 | |
---|
70 | //{{{ int exponent ( const CanonicalForm & f, int q ) |
---|
71 | //{{{ docu |
---|
72 | // |
---|
73 | // exponent() - return e > 0 such that x^e == 1 mod f. |
---|
74 | // |
---|
75 | // q: upper limit for e (?) |
---|
76 | // |
---|
77 | //}}} |
---|
78 | int |
---|
79 | exponent ( const CanonicalForm & f, int q ) |
---|
80 | { |
---|
81 | Variable x = f.mvar(); |
---|
82 | int e = 1; |
---|
83 | CanonicalForm prod = x; |
---|
84 | while ( e <= q && ! prod.isOne() ) { |
---|
85 | e++; |
---|
86 | prod = ( prod * x ) % f; |
---|
87 | } |
---|
88 | return e; |
---|
89 | } |
---|
90 | //}}} |
---|
91 | |
---|
92 | //{{{ bool findGenRec ( int d, int n, int q, const CanonicalForm & m, const Variable & x, CanonicalForm & result ) |
---|
93 | //{{{ docu |
---|
94 | // |
---|
95 | // findGenRec() - find a generator of GF(q). |
---|
96 | // |
---|
97 | // Returns true iff result is a valid generator. |
---|
98 | // |
---|
99 | // d: degree of extension |
---|
100 | // q: the q in GF(q) (q == p^d) |
---|
101 | // x: generator should be a poly in x |
---|
102 | // n, m: used to step recursively through all polys in FF(p) |
---|
103 | // Initially, n == d and m == 0. If 0 <= n <= d we are |
---|
104 | // in the process of building m, if n < 0 we built m and |
---|
105 | // may test whether it generates GF(q). |
---|
106 | // result: generator found |
---|
107 | // |
---|
108 | // i: used to step through GF(p) |
---|
109 | // p: current characteristic |
---|
110 | // |
---|
111 | //}}} |
---|
112 | bool |
---|
113 | findGenRec ( int d, int n, int q, |
---|
114 | const CanonicalForm & m, const Variable & x, |
---|
115 | CanonicalForm & result ) |
---|
116 | { |
---|
117 | int i, p = getCharacteristic(); |
---|
118 | if ( n < 0 ) { |
---|
119 | cerr << "."; cerr.flush(); |
---|
120 | // check whether m is irreducible |
---|
121 | if ( isIrreducible( m ) ) { |
---|
122 | cerr << "*"; cerr.flush(); |
---|
123 | // check whether m generates multiplicative group |
---|
124 | if ( exponent( m, q ) == q - 1 ) { |
---|
125 | result = m; |
---|
126 | return true; |
---|
127 | } |
---|
128 | else |
---|
129 | return false; |
---|
130 | } |
---|
131 | else |
---|
132 | return false; |
---|
133 | } |
---|
134 | // for each monomial x^0, ..., x^n, ..., x^d, try all possible coefficients |
---|
135 | else if ( n == d || n == 0 ) { |
---|
136 | // we want to have a leading coefficient and a constant term, |
---|
137 | // so start with coefficient >= 1 |
---|
138 | for ( i = 1; i < p; i++ ) |
---|
139 | if ( findGenRec( d, n-1, q, m + i * power( x, n ), x, result ) ) |
---|
140 | return true; |
---|
141 | } |
---|
142 | else { |
---|
143 | for ( i = 0; i < p; i++ ) |
---|
144 | if ( findGenRec( d, n-1, q, m + i * power( x, n ), x, result ) ) |
---|
145 | return true; |
---|
146 | } |
---|
147 | return false; |
---|
148 | } |
---|
149 | //}}} |
---|
150 | |
---|
151 | //{{{ CanonicalForm findGen ( int d, int q ) |
---|
152 | //{{{ docu |
---|
153 | // |
---|
154 | // findGen() - find and return a generator of GF(q). |
---|
155 | // |
---|
156 | // d: degree of extension |
---|
157 | // q: the q in GF(q) |
---|
158 | // |
---|
159 | //}}} |
---|
160 | CanonicalForm |
---|
161 | findGen ( int d, int q ) |
---|
162 | { |
---|
163 | Variable x( 1 ); |
---|
164 | CanonicalForm result; |
---|
165 | cerr << "testing p = " << getCharacteristic() << ", d = " << d << " ... "; |
---|
166 | cerr.flush(); |
---|
167 | bool ok = findGenRec( d, d, q, 0, x, result ); |
---|
168 | cerr << endl; |
---|
169 | if ( ! ok ) |
---|
170 | return 0; |
---|
171 | else |
---|
172 | return result; |
---|
173 | } |
---|
174 | //}}} |
---|
175 | |
---|
176 | //{{{ void printTable ( int d, int q, CanonicalForm mipo ) |
---|
177 | //{{{ docu |
---|
178 | // |
---|
179 | // printTable - print +1 table of field GF(q). |
---|
180 | // |
---|
181 | // d: degree of extension |
---|
182 | // q: the q in GF(q) |
---|
183 | // mipo: the minimal polynomial of the extension |
---|
184 | // |
---|
185 | // p: current characteristic |
---|
186 | // |
---|
187 | //}}} |
---|
188 | void |
---|
189 | printTable ( int d, int q, CanonicalForm mipo ) |
---|
190 | { |
---|
191 | int i, p = getCharacteristic(); |
---|
192 | |
---|
193 | // open file to write to |
---|
194 | ostrstream fname; |
---|
195 | fname << "gftables/gftable." << p << "." << d << '\0'; |
---|
196 | char * fn = fname.str(); |
---|
197 | ofstream outfile; |
---|
198 | outfile.open( fn, ios::out ); |
---|
199 | STICKYASSERT1( outfile, "can not open GF(q) table %s for writing", fn ); |
---|
200 | delete fn; |
---|
201 | |
---|
202 | cerr << "mipo = " << mipo << ": "; |
---|
203 | cerr << "generating multiplicative group ... "; |
---|
204 | cerr.flush(); |
---|
205 | |
---|
206 | CanonicalForm * T = new CanonicalForm[maxtable]; |
---|
207 | Variable x( 1 ); |
---|
208 | |
---|
209 | // fill T with powers of x |
---|
210 | T[0] = 1; |
---|
211 | for ( i = 1; i < q; i++ ) |
---|
212 | T[i] = ( T[i-1] * x ) % mipo; |
---|
213 | |
---|
214 | cerr << "generating addition table ... "; |
---|
215 | cerr.flush(); |
---|
216 | |
---|
217 | // brute force method |
---|
218 | int * table = new int[maxtable]; |
---|
219 | CanonicalForm f; |
---|
220 | |
---|
221 | for ( i = 0; i < q; i++ ) { |
---|
222 | f = T[i] + 1; |
---|
223 | int j = 0; |
---|
224 | while ( j < q && T[j] != f ) j++; |
---|
225 | table[i] = j; |
---|
226 | } |
---|
227 | |
---|
228 | cerr << "writing table ... "; |
---|
229 | cerr.flush(); |
---|
230 | |
---|
231 | outfile << "@@ factory GF(q) table @@" << endl; |
---|
232 | outfile << p << " " << d << " " << mipo << "; "; |
---|
233 | |
---|
234 | // print simple reprenstation of mipo |
---|
235 | outfile << d; |
---|
236 | CFIterator MiPo = mipo; |
---|
237 | for ( i = d; MiPo.hasTerms(); i--, MiPo++ ) { |
---|
238 | int exp; |
---|
239 | for ( exp = MiPo.exp(); exp < i; i-- ) |
---|
240 | outfile << " 0"; |
---|
241 | outfile << " " << MiPo.coeff(); |
---|
242 | } |
---|
243 | // since mipo is irreducible, it has a constant term, |
---|
244 | // so i == 0 at this point |
---|
245 | outfile << endl; |
---|
246 | |
---|
247 | int m = gf_tab_numdigits62( q ); |
---|
248 | char * outstr = new char[30*m+1]; |
---|
249 | outstr[30*m] = '\0'; |
---|
250 | i = 1; |
---|
251 | while ( i < q ) { |
---|
252 | int k = 0; |
---|
253 | char * sptr = outstr; |
---|
254 | while ( i < q && k < 30 ) { |
---|
255 | convert62( table[i], m, sptr ); |
---|
256 | sptr += m; |
---|
257 | k++; i++; |
---|
258 | } |
---|
259 | while ( k < 30 ) { |
---|
260 | convert62( 0, m, sptr ); |
---|
261 | sptr += m; |
---|
262 | k++; |
---|
263 | } |
---|
264 | outfile << outstr << endl; |
---|
265 | } |
---|
266 | outfile.close(); |
---|
267 | |
---|
268 | delete [] outstr; |
---|
269 | delete [] T; |
---|
270 | delete [] table; |
---|
271 | |
---|
272 | cerr << endl; |
---|
273 | } |
---|
274 | //}}} |
---|
275 | |
---|
276 | int |
---|
277 | main() |
---|
278 | { |
---|
279 | int i, p, q, n; |
---|
280 | for ( i = 0; i < primes_len; i++ ) { |
---|
281 | p = primes[i]; |
---|
282 | q = p*p; |
---|
283 | n = 2; |
---|
284 | setCharacteristic( p ); |
---|
285 | while ( q < maxtable ) { |
---|
286 | CanonicalForm f = findGen( n, q ); |
---|
287 | ASSERT( f != 0, "no generator found" ); |
---|
288 | printTable( n, q, f ); |
---|
289 | n++; q *= p; |
---|
290 | } |
---|
291 | } |
---|
292 | } |
---|