1 | /* |
---|
2 | * lib_zmatrix.h |
---|
3 | * |
---|
4 | * Created on: Sep 28, 2010 |
---|
5 | * Author: anders |
---|
6 | */ |
---|
7 | |
---|
8 | #ifndef LIB_ZMATRIX_H_ |
---|
9 | #define LIB_ZMATRIX_H_ |
---|
10 | |
---|
11 | #include <vector> |
---|
12 | #include <algorithm> |
---|
13 | #include "gfanlib_vector.h" |
---|
14 | |
---|
15 | namespace gfan{ |
---|
16 | |
---|
17 | template <class typ> class Matrix{ |
---|
18 | int width,height; |
---|
19 | std::vector<Vector<typ> > rows; |
---|
20 | public: |
---|
21 | // rowIterator; |
---|
22 | // std::vector<Vector<typ> >::iterator rowsBegin(){return rows.begin();} |
---|
23 | // std::vector<Vector<typ> >::iterator rowsEnd(){return rows.end();} |
---|
24 | inline int getHeight()const{return height;}; |
---|
25 | inline int getWidth()const{return width;}; |
---|
26 | Matrix(const Matrix &a):width(a.getWidth()),height(a.getHeight()),rows(a.rows){ |
---|
27 | } |
---|
28 | Matrix(int height_, int width_):width(width_),height(height_),rows(height_){ |
---|
29 | assert(height>=0); |
---|
30 | assert(width>=0); |
---|
31 | for(int i=0;i<getHeight();i++)rows[i]=Vector<typ>(width); |
---|
32 | }; |
---|
33 | ~Matrix(){ |
---|
34 | }; |
---|
35 | Matrix():width(0),height(0){ |
---|
36 | }; |
---|
37 | static Matrix rowVectorMatrix(Vector<typ> const &v) |
---|
38 | { |
---|
39 | Matrix ret(1,v.size()); |
---|
40 | for(int i=0;i<v.size();i++)ret[0][i]=v[i]; |
---|
41 | return ret; |
---|
42 | } |
---|
43 | Vector<typ> column(int i)const |
---|
44 | { |
---|
45 | assert(i>=0); |
---|
46 | assert(i<getWidth()); |
---|
47 | Vector<typ> ret(getHeight()); |
---|
48 | for(int j=0;j<getHeight();j++)ret[j]=rows[j][i]; |
---|
49 | return ret; |
---|
50 | } |
---|
51 | Matrix transposed()const |
---|
52 | { |
---|
53 | Matrix ret(getWidth(),getHeight()); |
---|
54 | for(int i=0;i<getWidth();i++) |
---|
55 | ret.rows[i]=column(i); |
---|
56 | return ret; |
---|
57 | } |
---|
58 | static Matrix identity(int n) |
---|
59 | { |
---|
60 | Matrix m(n,n); |
---|
61 | for(int i=0;i<n;i++)m.rows[i]=Vector<typ>::standardVector(n,i); |
---|
62 | return m; |
---|
63 | } |
---|
64 | void append(Matrix const &m) |
---|
65 | { |
---|
66 | for(int i=0;i<m.height;i++) |
---|
67 | { |
---|
68 | rows.push_back(m[i]); |
---|
69 | } |
---|
70 | height+=m.height; |
---|
71 | } |
---|
72 | void appendRow(Vector<typ> const &v) |
---|
73 | { |
---|
74 | assert((int)v.size()==width); |
---|
75 | rows.push_back(v); |
---|
76 | height++; |
---|
77 | } |
---|
78 | void eraseLastRow() |
---|
79 | { |
---|
80 | assert(rows.size()>0); |
---|
81 | rows.pop_back(); |
---|
82 | height--; |
---|
83 | } |
---|
84 | /*IntegerVector vectormultiply(IntegerVector const &v)const |
---|
85 | { |
---|
86 | assert(v.size()==width); |
---|
87 | IntegerVector ret(height); |
---|
88 | for(int i=0;i<height;i++) |
---|
89 | ret[i]=dot(rows[i],v); |
---|
90 | return ret; |
---|
91 | }*/ |
---|
92 | /** |
---|
93 | * Decides if v is in the kernel of the matrix. |
---|
94 | */ |
---|
95 | /* bool inKernel(IntegerVector const &v)const |
---|
96 | { |
---|
97 | assert(v.size()==width); |
---|
98 | for(int i=0;i<height;i++) |
---|
99 | if(dotLong(rows[i],v)!=0)return false; |
---|
100 | return true; |
---|
101 | } |
---|
102 | */ |
---|
103 | friend Matrix operator*(const typ &s, const Matrix& q) |
---|
104 | { |
---|
105 | Matrix p=q; |
---|
106 | for(int i=0;i<q.height;i++)p[i]=s*(q[i]); |
---|
107 | return p; |
---|
108 | } |
---|
109 | friend Matrix operator*(const Matrix& a, const Matrix& b) |
---|
110 | { |
---|
111 | assert(a.width==b.height); |
---|
112 | Matrix ret(b.width,a.height); |
---|
113 | for(int i=0;i<b.width;i++) |
---|
114 | ret[i]=a.vectormultiply(b.column(i)); |
---|
115 | return ret.transposed(); |
---|
116 | } |
---|
117 | /* template<class T> |
---|
118 | Matrix<T>(const Matrix<T>& c):v(c.size()){ |
---|
119 | for(int i=0;i<size();i++)v[i]=typ(c[i]);} |
---|
120 | */ |
---|
121 | friend Matrix operator-(const Matrix &b) |
---|
122 | { |
---|
123 | Matrix ret(b.height,b.width); |
---|
124 | for(int i=0;i<b.height;i++)ret[i]=-b[i]; |
---|
125 | return ret; |
---|
126 | } |
---|
127 | |
---|
128 | /** |
---|
129 | Returns the specified submatrix. The endRow and endColumn are not included. |
---|
130 | */ |
---|
131 | Matrix submatrix(int startRow, int startColumn, int endRow, int endColumn)const |
---|
132 | { |
---|
133 | assert(startRow>=0); |
---|
134 | assert(startColumn>=0); |
---|
135 | assert(endRow>=startRow); |
---|
136 | assert(endColumn>=startColumn); |
---|
137 | assert(endRow<=height); |
---|
138 | assert(endColumn<=width); |
---|
139 | Matrix ret(endRow-startRow,endColumn-startColumn); |
---|
140 | for(int i=startRow;i<endRow;i++) |
---|
141 | for(int j=startColumn;j<endColumn;j++) |
---|
142 | ret[i-startRow][j-startColumn]=rows[i][j]; |
---|
143 | return ret; |
---|
144 | } |
---|
145 | const Vector<typ>& operator[](int n)const{assert(n>=0 && n<getHeight());return (rows[n]);} |
---|
146 | // Bugfix for gcc4.5 (passing assertion to the above operator): |
---|
147 | Vector<typ>& operator[](int n){if(!(n>=0 && n<getHeight())){(*(const Matrix<typ>*)(this))[n];}return (rows[n]);} |
---|
148 | |
---|
149 | |
---|
150 | bool operator<(const Matrix & b)const |
---|
151 | { |
---|
152 | if(getWidth()<b.getWidth())return true; |
---|
153 | if(b.getWidth()<getWidth())return false; |
---|
154 | if(getHeight()<b.getHeight())return true; |
---|
155 | if(b.getHeight()<getHeight())return false; |
---|
156 | |
---|
157 | for(int i=0;i<getHeight();i++) |
---|
158 | { |
---|
159 | if((*this)[i]<b[i])return true; |
---|
160 | if(b[i]<(*this)[i])return false; |
---|
161 | } |
---|
162 | return false; |
---|
163 | } |
---|
164 | /** |
---|
165 | Adds a times the i th row to the j th row. |
---|
166 | */ |
---|
167 | void madd(int i, typ a, int j) |
---|
168 | { |
---|
169 | assert(i!=j); |
---|
170 | assert(i>=0 && i<height); |
---|
171 | assert(j>=0 && j<height); |
---|
172 | |
---|
173 | if(!a.isZero()) |
---|
174 | for(int k=0;k<width;k++) |
---|
175 | if(!rows[i][k].isZero()) |
---|
176 | rows[j][k].madd(rows[i][k],a); |
---|
177 | } |
---|
178 | |
---|
179 | friend std::ostream &operator<<(std::ostream &f, Matrix const &a){ |
---|
180 | f<<"{"; |
---|
181 | for(int i=0;i<a.getHeight();i++) |
---|
182 | { |
---|
183 | if(i)f<<","<<std::endl; |
---|
184 | f<<a.rows[i]; |
---|
185 | } |
---|
186 | f<<"}"<<std::endl; |
---|
187 | return f; |
---|
188 | } |
---|
189 | |
---|
190 | std::string toString()const |
---|
191 | { |
---|
192 | std::stringstream f; |
---|
193 | f<<*this; |
---|
194 | return f.str(); |
---|
195 | } |
---|
196 | |
---|
197 | /** |
---|
198 | Swaps the i th and the j th row. |
---|
199 | */ |
---|
200 | void swapRows(int i, int j) |
---|
201 | { |
---|
202 | std::swap(rows[i],rows[j]); |
---|
203 | } |
---|
204 | /** |
---|
205 | This method is used for iterating through the pivots in a matrix |
---|
206 | in row echelon form. To find the first pivot put i=-1 and |
---|
207 | j=-1 and call this routine. The (i,j) th entry of the matrix is a |
---|
208 | pivot. Call the routine again to get the next pivot. When no more |
---|
209 | pivots are found the routine returns false. |
---|
210 | */ |
---|
211 | bool nextPivot(int &i, int &j)const |
---|
212 | { |
---|
213 | i++; |
---|
214 | if(i>=height)return false; |
---|
215 | while(++j<width) |
---|
216 | { |
---|
217 | if(!rows[i][j].isZero()) return true; |
---|
218 | } |
---|
219 | return false; |
---|
220 | } |
---|
221 | /** |
---|
222 | Returns the indices of the columns containing a pivot. |
---|
223 | The returned list is sorted. |
---|
224 | The matrix must be in row echelon form. |
---|
225 | */ |
---|
226 | std::vector<int> pivotColumns()const |
---|
227 | { |
---|
228 | std::vector<int> ret; |
---|
229 | int pivotI=-1; |
---|
230 | int pivotJ=-1; |
---|
231 | while(nextPivot(pivotI,pivotJ))ret.push_back(pivotJ); |
---|
232 | return ret; |
---|
233 | } |
---|
234 | /** |
---|
235 | Returns the indices of the columns not containing a pivot. |
---|
236 | The returned list is sorted. |
---|
237 | The matrix must be in row echelon form. |
---|
238 | */ |
---|
239 | std::vector<int> nonPivotColumns()const |
---|
240 | { |
---|
241 | std::vector<int> ret; |
---|
242 | int pivotI=-1; |
---|
243 | int pivotJ=-1; |
---|
244 | int firstPossiblePivot=0; |
---|
245 | while(nextPivot(pivotI,pivotJ)) |
---|
246 | { |
---|
247 | for(int j=firstPossiblePivot;j<pivotJ;j++) |
---|
248 | ret.push_back(j); |
---|
249 | firstPossiblePivot=pivotJ+1; |
---|
250 | } |
---|
251 | for(int j=firstPossiblePivot;j<getWidth();j++) |
---|
252 | ret.push_back(j); |
---|
253 | |
---|
254 | return ret; |
---|
255 | } |
---|
256 | /** |
---|
257 | This routine removes the zero rows of the matrix. |
---|
258 | */ |
---|
259 | void removeZeroRows() |
---|
260 | { |
---|
261 | int nonZeros=0; |
---|
262 | for(int i=0;i<height;i++)if(!(*this)[i].isZero())nonZeros++; |
---|
263 | if(nonZeros==height)return; |
---|
264 | |
---|
265 | Matrix b(nonZeros,width); |
---|
266 | |
---|
267 | int j=0; |
---|
268 | for(int i=0;i<height;i++) |
---|
269 | { |
---|
270 | if(!(*this)[i].isZero()) |
---|
271 | { |
---|
272 | b[j]=(*this)[i]; |
---|
273 | j++; |
---|
274 | } |
---|
275 | } |
---|
276 | *this=b; |
---|
277 | } |
---|
278 | /** |
---|
279 | Returns the index of a row whose index is at least currentRow and |
---|
280 | which has a non-zero element on the column th entry. If no such |
---|
281 | row exists then -1 is returned. This routine is used in the Gauss |
---|
282 | reduction. To make the reduction more efficient the routine |
---|
283 | chooses its row with as few non-zero entries as possible. |
---|
284 | */ |
---|
285 | int findRowIndex(int column, int currentRow)const |
---|
286 | { |
---|
287 | int best=-1; |
---|
288 | int bestNumberOfNonZero=0; |
---|
289 | for(int i=currentRow;i<height;i++) |
---|
290 | if(!rows[i][column].isZero()) |
---|
291 | { |
---|
292 | int nz=0; |
---|
293 | for(int k=column+1;k<width;k++) |
---|
294 | if(!rows[i][k].isZero())nz++; |
---|
295 | if(best==-1) |
---|
296 | { |
---|
297 | best=i; |
---|
298 | bestNumberOfNonZero=nz; |
---|
299 | } |
---|
300 | else if(nz<bestNumberOfNonZero) |
---|
301 | { |
---|
302 | best=i; |
---|
303 | bestNumberOfNonZero=nz; |
---|
304 | } |
---|
305 | } |
---|
306 | return best; |
---|
307 | } |
---|
308 | /** |
---|
309 | Performs a Gauss reduction and returns the number of row swaps (and negative scalings) |
---|
310 | done. The result is a matrix in row echelon form. The pivots may |
---|
311 | not be all 1. In terms of Groebner bases, what is computed is a |
---|
312 | minimal (not necessarily reduced) Groebner basis of the linear |
---|
313 | ideal generated by the rows. The number of swaps is need if one |
---|
314 | wants to compute the determinant afterwards. In this case it is |
---|
315 | also a good idea to set the flag returnIfZeroDeterminant which |
---|
316 | make the routine terminate before completion if it discovers that |
---|
317 | the determinant is zero. |
---|
318 | */ |
---|
319 | int reduce(bool returnIfZeroDeterminant=false, bool integral=false, bool makePivotsOne=false) |
---|
320 | { |
---|
321 | assert(integral || typ::isField()); |
---|
322 | assert(!makePivotsOne || !integral); |
---|
323 | |
---|
324 | int retSwaps=0; |
---|
325 | int currentRow=0; |
---|
326 | |
---|
327 | for(int i=0;i<width;i++) |
---|
328 | { |
---|
329 | int s=findRowIndex(i,currentRow); |
---|
330 | |
---|
331 | if(s!=-1) |
---|
332 | { |
---|
333 | if(s!=currentRow) |
---|
334 | { |
---|
335 | swapRows(currentRow,s); |
---|
336 | retSwaps++; |
---|
337 | } |
---|
338 | if(makePivotsOne) |
---|
339 | {//THE PIVOT SHOULD BE SET TO ONE IF INTEGRAL IS FALSE |
---|
340 | if(rows[currentRow][i].sign()>=0)retSwaps++; |
---|
341 | typ inverse=typ(1)/rows[currentRow][i]; |
---|
342 | // if(!rows[currentRow][i].isOne()) |
---|
343 | { |
---|
344 | for(int k=0;k<width;k++) |
---|
345 | if(!rows[currentRow][k].isZero()) |
---|
346 | rows[currentRow][k]*=inverse; |
---|
347 | } |
---|
348 | } |
---|
349 | for(int j=currentRow+1;j<height;j++) |
---|
350 | if(integral) |
---|
351 | { |
---|
352 | if(!rows[j][i].isZero()) |
---|
353 | { |
---|
354 | typ s; |
---|
355 | typ t; |
---|
356 | |
---|
357 | typ g=typ::gcd(rows[currentRow][i],rows[j][i],s,t); |
---|
358 | typ u=-rows[j][i]/g; |
---|
359 | typ v=rows[currentRow][i]/g; |
---|
360 | /* We want the (s,t) vector to be as small as possible. |
---|
361 | * We are allowed to adjust by multiples of (u,v). |
---|
362 | * The following computes the correct multiplier (in most cases). |
---|
363 | */ |
---|
364 | /* { |
---|
365 | FieldElement multiplier=(s*u+t*v)*((u*u+v*v).inverse()); |
---|
366 | double d=mpq_get_d(*(multiplier.getGmpRationalTemporaryPointer())); |
---|
367 | multiplier=multiplier.getField()->zHomomorphism(-(((int)(d+10000.5))-10000)); |
---|
368 | s.madd(multiplier,u); |
---|
369 | t.madd(multiplier,v); |
---|
370 | }*/ |
---|
371 | for(int k=0;k<width;k++) |
---|
372 | { |
---|
373 | typ A=rows[currentRow][k]; |
---|
374 | typ B=rows[j][k]; |
---|
375 | |
---|
376 | rows[currentRow][k]=s*A+t*B; |
---|
377 | rows[j][k]=u*A+v*B; |
---|
378 | } |
---|
379 | } |
---|
380 | } |
---|
381 | else |
---|
382 | { |
---|
383 | if(!rows[j][i].isZero()) |
---|
384 | madd(currentRow,-rows[j][i]/rows[currentRow][i],j); |
---|
385 | } |
---|
386 | currentRow++; |
---|
387 | } |
---|
388 | else |
---|
389 | if(returnIfZeroDeterminant)return -1; |
---|
390 | } |
---|
391 | |
---|
392 | return retSwaps; |
---|
393 | } |
---|
394 | /** |
---|
395 | Computes a reduced row echelon form from a row echelon form. In |
---|
396 | Groebner basis terms this is the same as tranforming a minimal |
---|
397 | Groebner basis to a reduced one except that we do not force |
---|
398 | pivots to be 1 unless the scalePivotsToOne parameter is set. |
---|
399 | */ |
---|
400 | int REformToRREform(bool scalePivotsToOne=false) |
---|
401 | { |
---|
402 | int ret=0; |
---|
403 | int pivotI=-1; |
---|
404 | int pivotJ=-1; |
---|
405 | while(nextPivot(pivotI,pivotJ)) |
---|
406 | { |
---|
407 | if(scalePivotsToOne) |
---|
408 | rows[pivotI]=rows[pivotI]/rows[pivotI][pivotJ]; |
---|
409 | for(int i=0;i<pivotI;i++) |
---|
410 | if(!rows[i][pivotJ].isZero()) |
---|
411 | madd(pivotI,-rows[i][pivotJ]/rows[pivotI][pivotJ],i); |
---|
412 | } |
---|
413 | return ret; |
---|
414 | } |
---|
415 | /** |
---|
416 | This function may be called if the FieldMatrix is in Row Echelon |
---|
417 | Form. The input is a FieldVector which is rewritten modulo the |
---|
418 | rows of the matrix. The result is unique and is the same as the |
---|
419 | normal form of the input vector modulo the Groebner basis of the |
---|
420 | linear ideal generated by the rows of the matrix. |
---|
421 | */ |
---|
422 | Vector<typ> canonicalize(Vector<typ> v)const |
---|
423 | { |
---|
424 | assert(typ::isField()); |
---|
425 | assert((int)v.size()==getWidth()); |
---|
426 | |
---|
427 | int pivotI=-1; |
---|
428 | int pivotJ=-1; |
---|
429 | |
---|
430 | while(nextPivot(pivotI,pivotJ)) |
---|
431 | if(!v[pivotJ].isZero()) |
---|
432 | { |
---|
433 | typ s=-v[pivotJ]/rows[pivotI][pivotJ]; |
---|
434 | |
---|
435 | for(int k=0;k<width;k++) |
---|
436 | if(!rows[pivotI][k].isZero()) |
---|
437 | v[k].madd(rows[pivotI][k],s); |
---|
438 | } |
---|
439 | return v; |
---|
440 | } |
---|
441 | /** |
---|
442 | Calls reduce() and constructs matrix whose rows forms a basis of |
---|
443 | the kernel of the linear map defined by the original matrix. The |
---|
444 | return value is the new matrix. |
---|
445 | */ |
---|
446 | Matrix reduceAndComputeKernel() |
---|
447 | { |
---|
448 | Matrix ret(width-reduceAndComputeRank(),width); |
---|
449 | |
---|
450 | REformToRREform(); |
---|
451 | |
---|
452 | int k=0; |
---|
453 | int pivotI=-1; |
---|
454 | int pivotJ=-1; |
---|
455 | bool pivotExists=nextPivot(pivotI,pivotJ); |
---|
456 | for(int j=0;j<width;j++) |
---|
457 | { |
---|
458 | if(pivotExists && (pivotJ==j)) |
---|
459 | { |
---|
460 | pivotExists=nextPivot(pivotI,pivotJ); |
---|
461 | continue; |
---|
462 | } |
---|
463 | int pivot2I=-1; |
---|
464 | int pivot2J=-1; |
---|
465 | while(nextPivot(pivot2I,pivot2J)) |
---|
466 | { |
---|
467 | ret[k][pivot2J]=rows[pivot2I][j]/rows[pivot2I][pivot2J]; |
---|
468 | } |
---|
469 | ret[k][j]=typ(-1); |
---|
470 | k++; |
---|
471 | } |
---|
472 | return ret; |
---|
473 | } |
---|
474 | /** |
---|
475 | Assumes that the matrix has a kernel of dimension 1. |
---|
476 | Calls reduce() and returns a non-zero vector in the kernel. |
---|
477 | If the matrix is an (n-1)x(n) matrix then the returned vector has |
---|
478 | the property that if it was appended as a row to the original matrix |
---|
479 | then the determinant of that matrix would be positive. Of course |
---|
480 | this property, as described here, only makes sense for ordered fields. |
---|
481 | Only allowed for fields at the moment. |
---|
482 | */ |
---|
483 | Vector<typ> reduceAndComputeVectorInKernel() |
---|
484 | { |
---|
485 | assert(typ::isField()); |
---|
486 | // TODO: (optimization) if the field is ordered, then it is better to just keep track of signs rather than |
---|
487 | // multiplying by sign*diagonalProduct*lastEntry at the end. |
---|
488 | int nswaps=this->reduce(); |
---|
489 | typ sign=typ(1-2*(nswaps&1)); |
---|
490 | int rank=reduceAndComputeRank(); |
---|
491 | assert(rank+1==width); |
---|
492 | |
---|
493 | REformToRREform(); |
---|
494 | |
---|
495 | Vector<typ> ret(width); |
---|
496 | |
---|
497 | typ diagonalProduct(1); |
---|
498 | { |
---|
499 | int pivot2I=-1; |
---|
500 | int pivot2J=-1; |
---|
501 | while(nextPivot(pivot2I,pivot2J)) |
---|
502 | { |
---|
503 | diagonalProduct*=rows[pivot2I][pivot2J]; |
---|
504 | } |
---|
505 | } |
---|
506 | { |
---|
507 | int j=nonPivotColumns().front(); |
---|
508 | int pivot2I=-1; |
---|
509 | int pivot2J=-1; |
---|
510 | ret[j]=typ(-1); |
---|
511 | // Pretend that we are appending ret to the matrix, and reducing this |
---|
512 | // new row by the previous ones. The last entry of the resulting matrix |
---|
513 | // is lastEntry. |
---|
514 | typ lastEntry=ret[j]; |
---|
515 | while(nextPivot(pivot2I,pivot2J)) |
---|
516 | { |
---|
517 | ret[pivot2J]=rows[pivot2I][j]/rows[pivot2I][pivot2J]; |
---|
518 | lastEntry-=ret[pivot2J]*ret[pivot2J]; |
---|
519 | } |
---|
520 | ret=(sign*(diagonalProduct*lastEntry))*ret; |
---|
521 | } |
---|
522 | |
---|
523 | return ret; |
---|
524 | } |
---|
525 | |
---|
526 | /** |
---|
527 | Calls reduce() and returns the rank of the matrix. |
---|
528 | */ |
---|
529 | int reduceAndComputeRank() |
---|
530 | { |
---|
531 | reduce(false,!typ::isField(),false); |
---|
532 | int ret=0; |
---|
533 | int pivotI=-1; |
---|
534 | int pivotJ=-1; |
---|
535 | while(nextPivot(pivotI,pivotJ))ret++; |
---|
536 | return ret; |
---|
537 | } |
---|
538 | /** |
---|
539 | * Sort the rows of the matrix. |
---|
540 | */ |
---|
541 | void sortRows() |
---|
542 | { |
---|
543 | std::sort(rows.begin(),rows.end()); |
---|
544 | } |
---|
545 | /** |
---|
546 | * Sort the rows of the matrix and remove duplicate rows. |
---|
547 | */ |
---|
548 | void sortAndRemoveDuplicateRows() |
---|
549 | { |
---|
550 | sortRows(); |
---|
551 | if(getHeight()==0)return; |
---|
552 | Matrix B(0,getWidth()); |
---|
553 | B.appendRow((*this)[0]); |
---|
554 | for(int i=1;i<getHeight();i++) |
---|
555 | if(rows[i]!=rows[i-1])B.appendRow((*this)[i]); |
---|
556 | *this=B; |
---|
557 | } |
---|
558 | /** |
---|
559 | Takes two matrices with the same number of columns and construct |
---|
560 | a new matrix which has the rows of the matrix top on the top and |
---|
561 | the rows of the matrix bottom at the bottom. The return value is |
---|
562 | the constructed matrix. |
---|
563 | */ |
---|
564 | friend Matrix combineOnTop(Matrix const &top, Matrix const &bottom) |
---|
565 | { |
---|
566 | assert(bottom.getWidth()==top.getWidth()); |
---|
567 | Matrix ret(top.getHeight()+bottom.getHeight(),top.getWidth()); |
---|
568 | for(int i=0;i<top.getHeight();i++)ret.rows[i]=top.rows[i]; |
---|
569 | for(int i=0;i<bottom.getHeight();i++)ret.rows[i+top.getHeight()]=bottom.rows[i]; |
---|
570 | |
---|
571 | return ret; |
---|
572 | } |
---|
573 | /** |
---|
574 | Takes two matrices with the same number of rows and construct |
---|
575 | a new matrix which has the columns of the matrix left on the left and |
---|
576 | the columns of the matrix right on the right. The return value is |
---|
577 | the constructed matrix. |
---|
578 | */ |
---|
579 | friend Matrix combineLeftRight(Matrix const &left, Matrix const &right) |
---|
580 | { |
---|
581 | assert(left.getHeight()==right.getHeight()); |
---|
582 | Matrix ret(left.getHeight(),left.getWidth()+right.getWidth()); |
---|
583 | for(int i=0;i<left.getHeight();i++) |
---|
584 | { |
---|
585 | for(int j=0;j<left.getWidth();j++)ret.rows[i][j]=left.rows[i][j]; |
---|
586 | for(int j=0;j<right.getWidth();j++)ret.rows[i][j+left.getWidth()]=right.rows[i][j]; |
---|
587 | } |
---|
588 | return ret; |
---|
589 | } |
---|
590 | }; |
---|
591 | |
---|
592 | typedef Matrix<Integer> ZMatrix; |
---|
593 | typedef Matrix<Rational> QMatrix; |
---|
594 | typedef Matrix<int> IntMatrix; |
---|
595 | |
---|
596 | inline QMatrix ZToQMatrix(ZMatrix const &m) |
---|
597 | { |
---|
598 | QMatrix ret(m.getHeight(),m.getWidth()); |
---|
599 | for(int i=0;i<m.getHeight();i++)ret[i]=ZToQVector(m[i]); |
---|
600 | return ret; |
---|
601 | } |
---|
602 | |
---|
603 | inline ZMatrix QToZMatrixPrimitive(QMatrix const &m) |
---|
604 | { |
---|
605 | ZMatrix ret(m.getHeight(),m.getWidth()); |
---|
606 | for(int i=0;i<m.getHeight();i++)ret[i]=QToZVectorPrimitive(m[i]); |
---|
607 | return ret; |
---|
608 | } |
---|
609 | |
---|
610 | |
---|
611 | inline IntMatrix ZToIntMatrix(ZMatrix const &m) |
---|
612 | { |
---|
613 | IntMatrix ret(m.getHeight(),m.getWidth()); |
---|
614 | for(int i=0;i<m.getHeight();i++)ret[i]=ZToIntVector(m[i]); |
---|
615 | return ret; |
---|
616 | } |
---|
617 | |
---|
618 | |
---|
619 | inline ZMatrix IntToZMatrix(IntMatrix const &m) |
---|
620 | { |
---|
621 | ZMatrix ret(m.getHeight(),m.getWidth()); |
---|
622 | for(int i=0;i<m.getHeight();i++)ret[i]=IntToZVector(m[i]); |
---|
623 | return ret; |
---|
624 | } |
---|
625 | |
---|
626 | inline QMatrix canonicalizeSubspace(QMatrix const &m) |
---|
627 | { |
---|
628 | QMatrix temp=m; |
---|
629 | temp.reduce(); |
---|
630 | temp.REformToRREform(); |
---|
631 | temp.removeZeroRows(); |
---|
632 | return temp; |
---|
633 | } |
---|
634 | |
---|
635 | inline ZMatrix canonicalizeSubspace(ZMatrix const &m) |
---|
636 | { |
---|
637 | return QToZMatrixPrimitive(canonicalizeSubspace(ZToQMatrix(m))); |
---|
638 | } |
---|
639 | |
---|
640 | |
---|
641 | inline QMatrix kernel(QMatrix const &m) |
---|
642 | { |
---|
643 | QMatrix temp=m; |
---|
644 | return temp.reduceAndComputeKernel(); |
---|
645 | } |
---|
646 | |
---|
647 | inline ZMatrix kernel(ZMatrix const &m) |
---|
648 | { |
---|
649 | return QToZMatrixPrimitive(kernel(ZToQMatrix(m))); |
---|
650 | } |
---|
651 | |
---|
652 | } |
---|
653 | |
---|
654 | |
---|
655 | #endif /* LIB_ZMATRIX_H_ */ |
---|